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Abstract

Image object localization is an important research 
direction in the development of intelligent autonomous 
control systems for unmanned aerial vehicles (UAVs). 
Major challenges remain, such as cross-view images, 
large-scale deformation, and multitemporal variation. 
We propose a point–set–domain matching method to 
locate objects. First, the property constraints of a point, 
including sparsity, repeatability, and distinguishability, 
are combined into a keypoint response used to optimize 
convolutional neural networks, creating keypoint detector 
and feature descriptor models. With these models, we 
can improve the performance of point matching and 
obtain the corresponding keypoint set accurately. This 
approach solves the cross-view problem. Second, a spatial 
transformation model of the corresponding keypoint set 
is obtained using keypoint-constrained diffeomorphism 
matching, which can align the spatial location of two 
images and solve the large-scale deformation problem. 
Third, an approach combining probability statistics 
with watershed maximally stable extremal regions is 
proposed to divide the object image and reference image 
into several subregions, and then the similarity based on 
diffeomorphism is employed to localize the object in the 
UAV image, which solves the multitemporal variation 
problem. The experimental results show that the proposed 
method can successfully determine the location of the 
object in the UAV image.

Keywords: Image object localization, Point matching, Set 
matching, Region matching, Diffeomorphism

1  Introduction

Drones ones are an important area of technological 
development. They are intelligent robots with autonomous 
positioning, operation, and planning capabilities and can 
work in complex environments. The United States has 
released the “Unmanned Systems Integrated Roadmap 
(2017–2042),” which states that the perception and 
navigation capabilities of unmanned systems need to be 

improved [1].
Image object localization for intelligent autonomous 

control of drones has become a major research direction, 
and its applications have expanded from military to 
civilianareas. In military applications, drones are used for 
high resolution reconnaissance [2-3], and network offense 
and defense [4]. In civilian applications, drones can be 
used in bridge inspection [5-6] of photovoltaic power 
plants, and forest fire prevention [7], among other areas.
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Figure 1. The basic workflow of UAV object localization 
task

The typical workflow for drone object localization 
is shown in Figure 1. Given an object localization task, 
the ground workstation provides the planned route and a 
satellite object image, and the drone enters the operation 
area according to the planned route. The location of the 
object in the drone image is determined using object 
matching methods, illustrated in the red dashed box in 
Figure 1. As shown in Figure 2, the collected satellite 
images are usually overhead images, and the camera 
carried by the drone usually has a 360° acquisition angle. 
There are still challenges in completing complex drone 
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object matching, as shown in Figure 3. The difficulty lies 
in the different viewpoints, large-scale deformation, and 
ground changes between the satellite reference image and 
the airborne object image in the object localization task.

Existing object matching methods often fail to 
accurately complete object localization tasks. Therefore, 
this paper analyzes object matching and localization to 
develop novel methods. First, local keypoints have better 
discriminability in cross-view images, and effective point 
matching methods can solve the problem of cross-view 
changes in o bject localization. Second, an effective set 
matching method is used to determine the deformation 
relationship between the satellite reference images and 
the object images to solve the problem of large-scale 
deformation. Finally, an image matching method based on 
region division is adopted.

Satellite target imageSatellite image acquisition

UAV image acquisition Aerial downward reference image

Figure 2. The basic workflow of UAV target localization 
task

Large-scale deformation imageCross-view changing image Multi-temporal change image
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Figure 3. Illustration of satellite image and object image

This article makes four main novel contributions:
1. We propose a three-level image object matching 

framework based on points, sets, and domains. This 
framework addresses the challenges of cross-view images, 
large-scale deformation, and ground angle variation in 
unmanned aerial vehicle (UAV) image object localization.

2. To address the problem of cross-view matching in 
UAV image object matching, we propose a point matching 
method based on keypoint response constraints. This 
method improves the performance of point matching by 

incorporating keypoint response into the loss function used 
to train neural networks, building on existing learning-
based methods for point matching.

3. To address the issue of large-scale deformation in 
UAV image object matching, we propose a diffeomorphism 
set matching method based on keypoint constraints. 
Corresponding point sets are used as constraints to generate 
a space transformation model, and a static velocity field is 
introduced to effectively improve the performance of set 
matching.

4. To address the problem of ground change in UAV 
target matching, we propose a domain matching method 
ba sed on region partitioning. Probability statistics and 
watershed maximally stable extremal region (MSER) 
detection methods are used to partition the image into 
regions. Furthermore, the diffeomorphism similarity 
calculation method is used for the first time to determine 
the position of a satellite object image in an airborne 
image.

2  Related Work 

Object matching is an important research topic in 
the field of pattern recognition, whose aim is to identify 
objects of the same type in two or more images using 
a matching algorithm. In this paper, object matching is 
divided into a hierarchical matching process from local 
to global, which effectively determines the position of the 
object in the airborne image.

2.1 Feature Point Matching Research
In point matching, the keypoint is first obtained by a 

matching method, and the corresponding point set of the 
image is determined by calculating the similarity of the 
keypoints. An early manual point matching algorithm is 
the Harris corner matching method, which has problems 
such as a fixed scale, a low pixel positioning accuracy, a 
tendency to produce many false corner points, and a high 
computational complexity [8]. Building on this, FAST 
meets the requirements of real-time positioning systems 
[9], and the SIFT [10] method improves the accuracy of 
feature matching. PCA-SIFT [11], SURF [12], SSIFT 
[13], and other methods have been proposed successively. 
With the application of mobile devices in many computer 
vision tasks, binary descriptor operators have also received 
increasing attention. Liu et al. proposed a new ring 
sampling binary descriptor operator [14].

In recent years, learning point matching methods have 
become a research hotspot. DeTone et al. proposed a self-
supervised keypoint learning framework, Superpoint 
[15], which has achieved a strong matching performance. 
However, due to the limited variety of detected keypoints, 
the algorithm may fail in certain special applications. 
Recently, the idea of point matching has also been widely 
used in Object detection and Real-time Reconstruction 
[16-18].

In summary, in recent years, effective point matching 
methods are still based on learning-based point matching 
methods. However, due to the limited variety of detected 
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keypoints, the algorithm may fail in certain special 
applications.

2.2 Set Matching
Geometric transformation is used to spatially 

align corresponding points and faces in two images, 
which can eliminate or weaken the problem of large-
scale deformation between satellite reference images 
and airborne object images. Feature matching can 
be summarized as solving the spatial transformation 
relationship between two corresponding point sets [19]. 
Rigid feature matching has been widely applied in various 
fields, and the most common and influential method is 
the iterative closest point (ICP) algorithm proposed by 
Besl et al. and its extension methods [20]. Non-rigid 
transformation can be defined as a spatial transformation 
with local geometric deformation and has become an 
important research direction in image matching, being 
applied in many complex image processing tasks [21]. 
There are many non-rigid matching methods that can 
describe the feature matching process [22]; the most well-
known is the thin plate spline (TPS) method. Chui et al. 
have proposed a robust point matching method [23].

In recent years, the environment of image matching 
tasks has become increasingly complex, and object 
matching methods that are applicable to large-scale 
changes have become a focus of research. Large 
deformation diffeomorphism metric mapping (LDDMM) 
has been proven to solve the problem of large-scale 
deformation [24]. Tan et al. proposed using multi-
resolution diffeomorphism matrix projection to solve this 
problem [25]. Many authors have conducted in-depth 
analyses on diffeomorphism set matching for various 
applications. This approach has to some extent solved the 
problem of large-scale deformation [26-27].

For the large-scale deformation problem addressed in 
this paper, non-rigid matching methods are a good choice. 
However, these methods do not perform well when directly 
applied to the problem of UAV image object localization. 
Reducing the number of degrees of freedom can solve the 
problem of large-scale deformation in matching.

2.3 Domain Matching
Regional features possess high invariance and stability, 

and these features have repeatability in multiple images 
from different viewpoints, complementing other methods. 
Template matching is considered to be the simplest 
method of regional matching, with representative methods 
such as fast affine template matching (FAST-Match) 
[28] and MSER [29]. Alim et al. classified multispectral 
images using morphological contours guided by extremal 
regions and maximum stable extremal regions, which 
have high robustness to changes in viewpoint and the 
same complexity as MSER [30]. Recently, the idea of 
domain matching has also been widely used in Image 
Reconstruction [31].

For object matching in complex environments, an 
improved optimization method is required to divide the 
satellite reference image and the airborne image into 
regions and then calculate the similarity between the 

two images. Domain matching methods based on region 
division can effectively solve the problem of ground cover 
change.

3  An Image Object Matching Frame-
work Based on Points, Sets, and 
Domains 

The proposed point–set–domain framework for image 
object matching is shown in Figure 4. The architecture 
consists of three main parts: point matching based on 
keypoint response constraints, set matching based on 
diffeomorphism, and domain matching based on region 
partitioning. These are detailed below.

Different imaging methods are used to produce satellite 
reference images and airborne object images, leading to 
cross-view problems between them. In point matching, the 
keypoint response is crucial in determining the keypoints, 
and is used to represent the probability of a point being 
a keypoint. Different point matching methods result in 
keypoint responses with different attributes. In a learning-
based point matching method, this paper proposes to 
use keypoint response to generate the loss for training 
the network. This constrains the generation of keypoint 
detectors and feature descriptor operators, and improves 
the performance of point matching.
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Figure 4. Illustration of object image and reference image
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3.1 Point Matching Based on Keypoint Response 
Constraint
Different imaging methods are used to produce satellite 

reference images and airborne object images, leading to 
cross-view problems between them. In point matching, the 
keypoint response is crucial in determining the keypoints, 
and is used to represent the probability of a point being 
a keypoint. Different point matching methods result in 
keypoint responses with different attributes. In a learning-
based point matching method, this paper proposes to 
use keypoint response to generate the loss for training 
the network. This constrains the generation of keypoint 
detectors and feature descriptor operators, and improves 
the performance of point matching.

3.2 Set Matching Based on Diffeomorphsm
In a complex environment, there are large-scale 

deformations in the satellite reference images and airborne 
object images. Determining the spatial transformation 
model is a solution to address this problem. In this 
paper, we propose to use corresponding keypoint sets for 
set matching based on diffeomorphism, and employ a 
keypoint-constrained diffeomorphism set matching method 
to obtain the spatial transformation relationship between 
the satellite object images and airborne reference images. 
This allows the determination of the position of the 
satellite reference image in the object image. To improve 
the efficiency of the algorithm, we introduce the theory of 
static velocity domain, which also solves the problem of 
large-scale deformation in UAV image object matching 
tasks.

3.3 Domain Matching Based on Region Partitioning
UAVs typically capture images at a range of different 

times, leading to occlusion problems in the reference 
images, such as snow coverage in winter and grass 
coverage in summer. Using global similarity calculation 
methods directly can affect the performance of UAV image 
object localization. In this paper, we propose for the first 
time an effective region partitioning method for satellite 
reference images using a combination of probability 
statistics and watershed segmentation. We also innovate 
by using a diffeomorphism similarity extremal method to 
obtain an accurate position for the object. This addresses 
the problem of terrain changes in UAV image object 
localization.

4  Principles of the Point-Set-Domain 
Object Matching Method

In UAV image object localization tasks, there 
are problems such as cross-view images, large-scale 
deformation, and changes in terrain. Point matching 
methods have become an important part of researching 
cross-view object localization. Set matching can 
effectively complete the spatial transformation between 
satellite reference images and airborne object images, 
and it is necessary to study set matching methods for 
large-scale deformation problems in airborne object 

localization tasks. The area division for optimal domain 
matching is key to solving terrain change problems. This 
article proposes innovative point matching methods with 
keypoint response constraints, set matching methods 
based on diffeomorphism, and domain matching methods 
based on area division to address cross-view, large-scale 
deformation, and terrain change problems in UAV object 
image matching tasks.

4.1 Point Matching with Keypoint Response 
Constraints
This article adopts the general theoretical framework 

proposed by Yan et al. for learning keypoint detector and 
descriptor operators, which only considers properties such 
as sparsity, repeatability, and distinctiveness. However, 
these properties cannot be used alone to effectively 
extract keypoints from cross-view images. To combine 
the advantages of different keypoint detectors, this article 
proposes a point matching method based on keypoint 
response constraints.

The point matching with keypoint response constraints 
first needs to construct keypoint detectors and feature 
descriptor operators. According to the theoretical 
framework in [32], the keypoint detector and feature 
descriptor operator model can be obtained using the 
following constraints:

                    (1)

where Pv(IPj, Dsj) represents the probability of satisfying 
the vth property, v∈{1, 2, ..., V}, and V is the number of 
desired properties, assuming all properties are independent. 
Thus, certain keypoint properties can be used to describe 
the probabilities relevant to the detector and descriptor 
operators by (1), and the keypoint response values can be 
obtained through optimization algorithms.

Using the aforementioned properties to constrain 
convolutional neural networks is theoretically feasible, 
but in practice, it is difficult to find keypoints that 
fully satisfy the constraints of sparsity, repeatability, 
and distinctiveness. To address this issue, this article 
proposes an innovative point matching method based on 
keypoint response constraints. Assuming that a certain 
existing keypoint detector (e.g., SIFT, Superpoint) 
is used to obtain the keypoint response image O, the 
keypoint detector and feature descriptor operator 
model can be optimized by jointly using the keypoint 
response O and the attribute optimization formula 

. Therefore, this 

article constructs a convolutional neural network loss 
function as follows:

          (2)

where Y is the original image, X is the convolution image, 
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O is the keypoint response image, Lp represents the cross-
entropy calculation of the fully convolutional neural 
network, and Ld is the descriptor loss. Full details of the 
method of calculation are given in [33]. The innovation 
of this formula lies in the introduction of the keypoint 
response loss Lo, which represents the normalized gray 
space cross-entropy calculation. Here, xhw∈X, and the 
calculation formula is as follows:

             (3)

where h and w represent the coordinate positions, and 
lo(xhw; ohw) is defined as follows:

             (4)

where K is the number of pixels after convolution.
Based on the above theory, the detector F and feature 

descriptor operator D an be obtained. The inner product 
operation is used to compute the similarity between two 
features D1 and D2 when calculating the corresponding 
key-point set. The formula is as follows:

                                (5)

Where • denotes the inner product. As shown in Figure 
5, the corresponding keypoint set between the satellite 
ref-erence image and the airborne object image can be 
determined using (5).

Keypoint detection Generating consistent point sets

Calculating 
similarity

Keypoint response constrained point matching stage

Figure 5. Illustration of the point matching result

4.2 Set Matching Based on Diffeomorphsm
Based on the multi-scale kernel maximum mean 

discrepancy diffeomorphism projection proposed by Pai 
et al. [34], this paper investigates a keypoint-constrained 
diffeomorphism set matching method for addressing large-
scale deformation in UAV image object localization. Based 
on the definition of diffeomorphism [29], we optimize the 
spatial transformation model using the following formula:

       (6)

where ρ is the constraint that controls the regularization 
freedom. The diffeomorphism φ transforms the satellite 
reference image to the airborne object image on board 

at t = 1. The novelty of our approach lies in the use of a 
static velocity field to fit the spatial transformation model 
φ under the constraint of the corresponding keypoint set. 
The definition of the velocity field V can be extended to 
the family of velocity fields Vm and can be described as 
follows:

                        (7)

where the value function (6) is described in a multi-scale 
reproducing kernel framework as follows:

               (8)

The static velocity field v(x, t) defined as a constant. By 
parameterizing it with the SVF method, high computational 
speed can be achieved.

Therefore, applying group theory, we consider the 
velocity field as a member of the Lie algebra, obtain a 
member of the Lie group space by exponentiation, define a 
linear combination of basis functions through the discrete 
parameters of the velocity field, and express it as follows:

                            (9)

where pi(x) is the basis function and αi is the coeffi-
cient. Finally, by optimizing (9), the projection φ can 
be obtained, where x is the position vector for the 
corresponding keypoint set, which means that the 
determination of φ is not performed on the entire image 
but on the corresponding set of keypoints. This enhances 
the performance of diffeomorphism set matching in UAV 
image object localization. As shown in Figure 6, this lays 
the foundation for subsequent object matching similarity 
calculations.

Transformed 
image

Corresponding point set

Confirm 
transformation model

Figure 6. Image object matching based on point-, set-, 
domain-

4.3 Domain Matching Method Based on Region 
Division
This paper investigates the detection method of 

probability statistical MSER, which builds on the 
traditional MSER method. According to the description 
in [29], the definition of MSER initially comes from edge 
confidence. It is a truncation algorithm that minimizes the 
confidence interval estimation around the mean, and the 
confidence interval of the half-bandwidth of the mean is 
estimated by the following formula:
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                              (10)

where zσ/2 is the standard normal distribution with a 
standard deviation of σ/2, S() represents the sampling 
estimate of the standard deviation, and n is the number of 
sampling points for the estimate.

To improve the accuracy of regional localization, this 
paper innovatively combines probability statistical region 
detection with watershed-based methods to obtain the 
maximum stable extreme value region detection formula 
as follows:

                       (11)

Where CI represents the confidence interval of the 
maximum stable extreme value region, and the local 
minimum of the calculated q(i) value is the detection of 
the maximum stable region. The region division result is 
shown in Figure 7.
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Figure 7. Illustration of the region matching based on 
region division

In traditional similarity calculations for object 
matching, the SSD method is commonly used. However, 
this method does not take into account nonlinear changes 
in image grayscale. This paper proposes an innovative 
approach that uses diffeomorphism for the regional 
similarity calculation, which solves the problem of terrain 
changes in airborne object matching.

Diffeomorphism is currently mainly used for image 
shape matching and detecting changes in object positions. 
However, in the color space of regions, when the spatial 
relationship between two regions is determined, the 
color information should also have a shape relationship. 
Therefore, this paper proposes a similarity calculation 
method based on color diffeomorphism for regional 
matching.

Given a satellite reference image R and an airborne 
object image T, let the color space domain be Ω∈C d, 
where d = 3 represents the number of channels in the 
color space. The color information of all point sets in 

the effective region forms a vector set. To better use the 
diffeomorphism method to accurately project the effective 
region of the satellite reference image onto the effective 
region of the airborne object image, two effective regions 
Re and Te are given for the satellite reference image R and 
the airborne object image T, where e = 1, ..., k, k represents 
the number of effective regions, and the color space 
domain is Ω∈C d. Then, the color space transformation 
φc:Ω×⁪→Ω can align the two color spaces. The similarity 
evaluation Diss(.,.) is defined as follows:

             (12)

Where C r and C t are the corresponding color 
information in the airborne object image and the satellite 
reference image, respectively, and the similarity evaluation 
of the effective region is calculated through Diss. As 
shown in Figure 7, after performing the region division 
using the maximum stable extreme value region detection 
method, multiple region division masks can be obtained. 
The effective regions of the reference image and the 
transformed object image can be obtained through the 
mask image, and the similarity evaluation calculation 
can be completed in this effective region. Meanwhile, the 
optimal value of Diss is searched to determine whether the 
object matching is accurate.

5  Steps for Point-Set-Domain Based 
Image Object Matching Method

As outlined in Algorithm 1, the point–set–domain 
image object matching method first selects partial satellite 
object images and airborne images. The Superpoint point 
matching method is used to obtain the keypoint response 
images O of the satellite object image and the airborne 
object image. Then, the keypoint response is used as the 
loss optimization formula (2), and the keypoint detection 
model and feature descriptor operator are obtained using 
convolutional neural networks.

Next, the keypoint detector and feature descriptor 
operator are used to detect the keypoints in the given 
satellite reference image and the airborne down-looking 
reference image. The similarity between the keypoints is 
calculated using (5) to obtain a corresponding point set. 
For the corresponding point set, (9) is used to determine 
the transformation model φ of the satellite object image 
and airborne object image, and φ is used to align the spatial 
positions of the satellite reference image and the airborne 
object image.

Finally, (11) is used to divide the transformed satellite 
reference image into several regions, and (12) is used 
to calculate the similarity of the corresponding regions. 
Through the point–set object matching method, the 
location of the object image can be obtained as shown in 
Figure 8.
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Determination of object position

Figure 8. Illustration of the region matching

6  Experimental and Analytical Study 
on Object Matching of Tertiary 
Images in Point Cloud Domain

6.1 Standard Dataset
Zheng et al. provided a multi-view and multi-

source image dataset, University-1652, based on image 
geolocation [36]. This dataset differs significantly from 
early geolocation datasets, which were mostly based on 
image pairs in which the reference and object images 
were from different platforms such as cameras and 
satellites. In contrast, the object and reference images in 
the University-1652 dataset are from satellite and UAV 
platforms.

In this study, satellite and UAV images were used, 
as shown in Figure 9. The experimental dataset includes 
image pairs with different viewpoints, large-scale 
deformations, and ground cover changes.

Object image1

Reference image1

Object image2

Reference image2

Object image3

Reference image3

Object image4

Reference image4

Object image5

Reference image5

Figure 9. Illustration of the satellite object and the UAV 
reference image

6.2 Evaluation Metrics
Based on the object matching idea, this paper divides 

evaluation metrics into four categories: point matching, set 
matching, domain matching, and object matching metrics. 

Based on these four categories, the performance of the 
proposed algorithm was experimentally verified.

1. Point matching metrics. Based on the existing 
evaluation methods for point matching [38-40], this paper 
uses five evaluation metrics to evaluate point matching 
performance [41], according to the five key feature 
attributes summarized in [40]: repeatability rate, recall 
rate, accuracy rate, quantization rate, and running time:

Algorithm 1. Point–Set–Domain object matching algo-
rithm
Input: Satellite object image S,

airborne down-looking reference image T
Output: Position of the object in the airborne image
1. Assuming the traditional keypoint detection is KDF, the 
key response Os = KDF(s), OT = KDF(T)
2. for  iter_i = 1 to N do
3.         compute the loss of function with eq. (1), obtain 

the keypoint detector K and feature descriptor op-
erator model M.

4.        compute the feature descriptors of keypoints in the 
object image and the reference image 

            OM = H(O), RM = M(R)
5.        computing 
           v(x) = argminE(OM, RM(exp(vx)) to obtain the 

transformation model y.
6. end for
Return: the airborne object image and mark the position 
of the object.

A. The Repeatability rate RPR is defined as:

                               (13)

where CKN represents the number of corresponding 
keypoints detected by the keypoint detector, and KN 
represents the total number of detected keypoints.

B. The Recall rate RR is defined as:

                  (14)

where DTMPN is the number of corresponding keypoints 
correctly matched by the feature matching algorithm, and 
UDTMPN is the total number of corresponding keypoints 
that were not correctly matched or not detected by the 
algorithm.

C. The Accuracy rate (AR) is defined as:

                             (15)

where DTMPN is the number of corresponding keypoints 
correctly matched by the feature matching algorithm, 
and CKN represents the total number of corresponding 
keypoints detected.
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D. The Quantization rate (QR) is defined as:

                                 (16)

where KN represents the total number of detected 
keypoints, and IPN represents the total number of pixels in 
the image.

E. The runtime (RT) is defined as:

                           (17)

where TCKD represents the keypoint detection time, and 
TCKDM represents the corresponding keypoint detection 
time.

2. Set matching evaluation metrics. This paper uses the 
root mean square error (RMSE) as the evaluation criterion 
for set matching, and tests the intra-class and inter-
class matching performance of the algorithm using the 
decidability index.

Given a set of points in the satellite reference image 
and the object image, denoted by TI and RI, respectively, 
the RMSE is defined as:

     (18)

where TI' = A × TI, A is the transformation matrix 
determined by set matching, N and M represent the height 
and width of the image, and x and y represent the position 
of the pixels in the image, respectively.

3. Domain matching evaluation metric. In this paper, 
the optimal evaluation of the matched image is carried 
out through the domain matching process, and the target 
position is determined based on the optimal evaluation. 
The region root mean square error (RRMSE) is defined 
similarly to (18) and can be considered as the RMSE 
within the region.

To effectively evaluate the discrimination between 
inter-class and intra-class matching in an algorithm, 
this paper proposes a decision index to evaluate the 
performance of the algorithm matching, defined as follows:

                  (19)

where m g(m i)  and S g(s i)  represent  the  mean and 
standard deviation of the intra-class and inter-class 
RRMSE, respectively. A larger value indicates stronger 
discrimination between intra-class and inter-class, and 
better matching performance.

4. Object matching evaluation index. This paper aims 
to apply the point–set–domain object matching method to 
UAV image object localization, so the receiver operating 
characteristic ROC curve is used to verify the performance 
of the object matching method [41]. The curve is a plot of 
the true positive rate against the false positive rate. The 

area under the curve ROC represents the performance of 
the object matching method, with a larger indicating better 
performance.

6.3 Experimental Setup
We conducted experiments on the University-1652 

dataset to verify the performance of the algorithm using 
600 cross-view images, comprising 100 satellite reference 
images and 500 airborne object images. Each satellite 
object image corresponds to 5 different conditions of 
airborne object images for the same object. Similarly, 600 
large-scale deformation datasets and ground cover change 
datasets were also selected. The experimental framework 
evaluated the effects of point matching, set matching, and 
domain matching on cross-view, large-scale deformation, 
and ground cover change object matching.

6.4 Experimental Results and Analysis
6.4.1 Results and Analysis of Point Matching Experi-

ment 
This section validates the point matching method on the 

cross-view dataset and provides experimental comparisons 
and analysis. Table 1 shows the experimental comparisons 
and analysis of the point matching methods, which include 
SIFT [10], FAST [9], ORB [43], TILDE [44], Superpoint 
[15], Pop-net [32], and KPop-net (keypoint response 
constraints Pop-net).

From the RPR and QR values, it can be seen that each 
point matching method can detect enough keypoints for 
feature point matching. In the cross-view dataset, the 
Kpop-net method shows relatively high performance in 
terms of RR and AR. Especially from the AR value, it 
can be seen that SIFT, FAST, and TILDE do not perform 
well in the task of cross-view matching of satellite-
guided airborne objects. ORB, as a manual point matching 
method, has high accuracy and efficiency, and therefore 
is widely used in multiple application fields. Superpoint 
and Pop-net are the most representative point matching 
methods, with Superpoint having the highest accuracy 
and Pop-net being slightly worse. Kpop-net is the method 
studied in this paper, and it is more effective than the 
Pop-net method, as shown in the table. From the runtime 
RT, it can be seen that ORB and Superpoint have better 
efficiency, while the efficiency of other algorithms is 
relatively high. Since Kpop-net introduces complex 
attribute constraints, it leads to a higher runtime, but 
accuracy and time are usually inversely proportional, and 
to ensure accuracy, efficiency is often sacrificed.   

Table 1. Comparison of point matching on cross-view 
dataset

Method RPR RR AR QR RT
SIFT [10] 0.747 0.0008 0.075 0.010 0.12
FAST [9] 0.716 0.0029 0.076 0.006 3.17

TILDE [41] 0.298 0.0002 0.005 0.001 5.07
ORB [42] 0.357 0.0211 0.196 0.001 0.03

Superpoint [15] 0.522 0.0189 0.200 0.002 0.37
Pop-net [32] 0.571 0.0079 0.167 0.003 0.79
KPop-net 0.508 0.0134 0.187 0.002 0.72
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6.4.2 Results and Analysis of Set Matching Experimen t
This article presents an experimental comparison and 

analysis of the set matching method in a dataset with large-
scale morphological changes. The results of the airborne 
object matching experiment are shown in Table 2. From 
the RMSE-DI, it can be seen that the SIFT [10] and ORB 
[43] methods for airborne object matching performance 
are inferior. Corresponding to the high performance of the 
Superpoint [44], the set matching results are higher, and it 
has the highest matching effect among all algorithms. From 
the results of DEMONS [45], LDDMM [25], ICP [46], 
and CPD [47], it can be seen that dense diffeomorphism 
has a positive effect on airborne object matching, but it 
still cannot surpass the Superpoint and KDM set matching 
methods. KDM uses a set matching method based on 
keypoint-constrained diffeomorphism, which can better 
fit the spatial transformation relationship between satellite 
reference images and airborne object images. From Table 
2, it can be seen that due to the use of diffeomorphism in 
the KDM method, its performance is higher than that of the 
Kpop-net object matching method, which also shows that 
the set matching studied in this article effectively improves 
intra-class and inter-class distinguishability.

Table 2. Comparison of set matching on large-scale 
difference dataset

Matching method RMSE-DI
SIFT [10] 0.4815
ORB [43] 0.3977

Superpoint [15] 0.3525
DEMMONS [45] 0.5218

LDDMM [25] 0.1044
ICP [46] 0.3180
CPD [47] 0.0407
KPop-net 0.2339

KDM 0.2439

6.4.3 Results and Analysis of Domain Matching Experi-
ments

This section presents an experimental comparison 
and analysis of domain matching methods on a dataset 
featuring ground cover change. The compared domain 
matching methods are shown in Table 3. Among them, 
BBS [48] and FAST-Match [28] are earlier domain 
matching methods, TBMR [49] and MSER [29] are region 
segmentation methods, and KDMM (keypoint-constrained 
diffeomorphism matching based on MSER) is the domain 
matching method studied in this paper, which is based 
on effective region segmentation. This method uses joint 
probability statistics and watershed maximum stable 
extreme region methods to perform region segmentation 
on satellite reference images and airborne object images, 
and then completes the domain matching process.

As shown in Table 3, the traditional BBS and FAST-
Match methods use a sliding window to extract airborne 
object image blocks and perform template matching 
with satellite reference images. They do not have better 
performance for the satellite image guided airborne object 
matching task. From the RRMSE-DI, it can be seen that 

these two algorithms do not have higher intra-class and 
inter-class discrimination. Since TBMR and MSER use 
region detection methods to perform region segmentation 
on reference images, these two methods have higher 
intra-class and inter-class discrimination. KDMM is an 
improved algorithm based on MSER, and it has the highest 
performance, which demonstrates that domain matching 
methods with effective region segmentation can improve 
the performance of object matching.

Table 3. Comparison of set matching on large-scale 
difference dataset

Matching method RMSE-DI
BBS [48] 0.0352

FAST-Match [28] 0.1203
TBMR [49] 0.0254
MSER [35] 0.3762

KDMM 0.3977

6.4.4 Results and Analysis of Object Matching Experi-
ments

To verify the performance of the object matching 
method, we used ROC curves for analysis on a validation 
dataset that includes viewpoint changes, large-scale 
morphological changes, and ground cover changes. 
Existing domain matching methods were also compared. 
As shown in Figure 10, on the validation dataset, the 
traditional method, SIFT [10], ORB [43], DEMONS [45] 
have the relative lower performance. LDDMM [25] has 
the higher performance them the other traditional methods, 
which illustrates its scale invariance. For the feature 
matching based on deep learning method, Fast-RCNN 
[50] have the lowest performance, Strong-CNN [37],  
OriCNN [51], VIGOR [42], CVM-net [52] have a better 
performance, and our proposed the most performance. 
The AUC of Kpop-net, KDM, KDMM is 0.447, 0.577 
and 0.679. The KDMM object matching method using 
improved MSER for region segmentation has the highest 
performance. Therefore, fusing point matching, set 
matching, and domain matching to complete the object 
matching task is of great research significance. It can 
better solve the problems of cross-view images, large-scale 
deformation, and ground cover changes in airborne object 
positioning tasks. Compared with other object matching 
methods, using the point–set–domain object matching 
method for object localization has significant advantages.

7  Conclusion

This article introduces the basic architecture of a 
three-level image object matching method for UAV target 
localization. Innovation is proposed for the three stages 
in the architecture—point matching, set matching, and 
domain matching—based on keypoint response constraints, 
diffeomorphism, and region partition, respectively. In point 
matching, the method considers the sparsity, repeatability, 
and distinguishability of keypoints, and makes novel 
use of the Superpoint keypoint response to construct the 
loss function of a convolutional neural network, which 
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effectively improves the point matching performance and 
solves the viewpoint difference problem. In set matching, 
the method uses the diffeomorphism set matching method 
based on corresponding keypoint set constraints to 
determine the spatial transformation relationship between 
two images, and improves the algorithm’s efficiency 
through a static velocity field, effectively solving the 
problem of large-scale deformation. In domain matching, 
the method innovatively proposes a maximum stable 
extreme region detection method combining probability 
statistics and watershed, uses this method to divide 
the two images into multiple sub-regions, and uses a 
similarity calculation method based on diffeomorphism 
to determine the location of the target in the UAV image. 
The three methods are experimentally validated against 
existing point, set, domain, and object matching methods. 
Compared with existing object matching methods, the 
point–set–domain image object matching method improves 
performance by an average of 12%.

Figure 10. ROC curves of object localization on 
University1652
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