
Journal of Internet Technology Vol. 26 No. 3, May 2025 293

*Corresponding Author: Chih-Hsien Hsia; E-mail: hsiach@niu.edu.tw
DOI: https://doi.org/10.70003/160792642025052603002

Solving Sparse Reward Tasks Using Self-Balancing
Exploration and Exploitation

Yan Kong1, Junfeng Wei1, Chih-Hsien Hsia2,3*

1 School of Computer and Software, Nanjing University of Information Science and Technology, China
2 Department of Computer Science and Information Engineering, National Ilan University, Taiwan

3 Department of Business Administration, Chaoyang University of Technology, Taiwan
kongyan4282@163.com, 460749067@qq.com, hsiach@niu.edu.tw

Abstract

A core challenge in applying deep reinforcement
learning (DRL) to real-world tasks is the sparse reward
problem, and shaping reward has been one effective
method to solve it. However, due to the enormous state
space and sparse rewards in the real world, a large number
of useless samples may be generated, leading to reduced
sample efficiency and potential local optima. To address
this issue, this study proposes a self-balancing method of
exploration and development to solve the issue of sparse
rewards. Firstly, we shape the reward function according
to the evaluated progress, to guide the agent’s learning
of high-reward samples. Secondly, we construct a dual-
trajectory exploration network, which provides intrinsic
rewards based on the novelty of states and the trajectory
difference of sibling agents to encourage the agent to
explore and adjust the balance between exploration
and exploitation. This method effectively prevents the
generation of a large amount of useless training data during
the interaction between the agent and the environment,
resolves local optimal dilemmas through state novelty,
and adjusts the strategy in a timely manner to solve sparse
reward tasks. Our method outperforms basic reinforcement
learning (RL) and curiosity-driven incentives in these
experimental tasks. The self-balancing exploration
and exploitation approach in our research provides a
new perspective and effective solution for addressing
the problem of sparse rewards, thereby advancing the
application of DRL in real-world problems and achieving
greater success.

Keywords: Deep reinforcement learning, Deep learning,
Artificial intelligence, Sparse reward, Exploration and
exploitation

1 Introduction

In the current wave of research in artificial intelligence
(AI), there is a growing interest in enabling computers
to perform tasks that previously relied solely on human
intelligence. In this regard, reinforcement learning (RL) [1]
has emerged as a unique paradigm. It involves training an

agent to observe the states provided by the environment,
make optimal decisions, analyze the consequences of its
actions through interactions with the environment, and
receives rewards accordingly. This progressive learning
approach bears resemblance to human cognition. The
essence of RL lies in maximizing the accumulated
reward obtained by the agent during interactions with
the environment while tackling specific tasks. The RL
environment can be modeled as a Markov decision process
[2], as shown in Figure 1. Specifically, at each time step
t, the agent reaches a state st , takes an action at , receives
a reward rt+1 from the environment, and iterates until the
final task is completed. Since DeepMind introduced deep
Q-networks (DQN) in 2013, by combining deep neural
networks [3] with RL, deep reinforcement learning (DRL)
[4] has revolutionized the field and become one of the
widely applied AI algorithms, particularly in decision-
making and control domains.

Figure 1. Markov decision process

Designing comprehensive reward functions for agents
to learn from can be challenging in many real-world
problems. Sparse rewards refer to the scenario where
rewards are only provided when the task completion
criteria are achieved, while many intermediate steps do
not receive any reward signal. For example, the quality of
each move is difficult to determine during the game of Go
[5-6], so rewards are only provided based on the outcome.
This approach to setting reward functions is crucial for
solving complex problems, especially those where it is not
possible to define a reward function explicitly. Overcoming
the challenge of sparse rewards opens new possibilities for

294 Journal of Internet Technology Vol. 26 No. 3, May 2025

applying RL to practical problems, which is particularly
important for tasks where modelling reward functions is
difficult. Solving the problem of sparse rewards can help
improve sample utilization efficiency. In DRL, the high
cost lies not in the training process, but in the process of
acquiring samples. Sample acquisition requires interaction
between agents and the environment, and this interaction is
costly not only in terms of time but also in terms of safety,
controllability, recoverability, and many other aspects.
Therefore, if we can to some extent solve the problem of
sparse rewards, we can accelerate the learning process and
reduce the number of interactions between agents and the
environment.

When applying DRL to address real-world problems,
several challenges are typically encountered. Firstly, the
environmental states in the real world are often large and
complex [7]. For example, in the context of autonomous
driving [8], the agent needs to consider information from
various perspectives to make accurate decisions. However,
the number of these states is enormous, and the data
involved is also substantial. This impacts RL algorithms
such as DQN [9] when dealing with large-scale state
spaces because there is minimal repetition of states in
the evaluation function, resulting in prolonged training
periods for the agent [10]. To address this issue, prioritized
experience replay (PER) [11] enhances the utilization
and training speed of samples by changing the sampling
probability of samples. In some specific scenarios, the
priority of experience data is difficult to estimate in certain
continuous decision-making problems because subsequent
decisions related to each state are highly coupled, which
leads to a performance degradation of the algorithm [12].
The second challenge lies in sparse rewards provided
by the environment. Defining appropriate dense reward
functions is often challenging in the real world, making it
difficult for agent to learn effectively. In environments with
sparse rewards, the rewards obtained by the agent from the
environment are extremely limited, posing a significant
difficulty for RL algorithms to improve performance.
Addressing sparse reward problems often requires
heuristic exploration strategies to assist the agent in
discovering sparse rewards. The intrinsic curiosity module
(ICM) [13] is one approach that encourages effectively
the exploration of novel states by utilizing the differences
between predicted and actual states to set intrinsic rewards.
However, ICM also introduces another issue, as it fails
to balance the exploration and exploitation strategies and
does not provide reasonable reward values for correct
samples [14-15], thereby hindering effective exploration.
To addressing these challenges, various methods have been
proposed in research, such as using more advanced deep
learning models, introducing more sophisticated reward
function designs, and employing more agent exploration
strategies. These efforts aim to enhance the performance
and efficiency of DRL in addressing real-world problems.

In this context, this study proposes a self-balancing
exploration and exploitation method based on the DRL
algorithm, as proximal policy optimization (PPO)
[16] to address challenges in large-scale sparse reward
environments. Firstly, to address the extensive state space

in large-scale environments, we evaluate the current agent’s
progress in completing tasks based on external rewards and
optimize its approach to exploration and exploitation. We
shape the reward function to guide the agent in learning
samples with high reward values, thereby reducing the
frequency of interactions with the environment. Secondly,
to address the sparse reward issue, we developed a dual-
trajectory exploration network. Specifically, we constructed
an internal reward function based on the novelty of
states and the degree of trajectory similarity, balancing
exploration and exploitation strategies. This study guided
agents based on shaped rewards and used exploration to
solve the problem of local optima that arise when learning
high-reward samples, effectively addressing the problem of
sparse rewards in large-scale environments. Our approach
differs from other shaped reward methods in that we
propose a self-balancing strategy that prioritizes shaped
rewards while supplementing with exploration. This self-
balancing method for exploration and exploitation enables
us to address challenges posed by large-scale state spaces
and sparse reward environments.

In summary, our contributions are as follows: 1)
This study formulates the concept of progress based on
the received external rewards and dynamically shapes
the reward function to guide the agent in learning high-
reward samples, determining the timing of exploration and
exploitation, and reducing the frequency of interactions
with the environment. 2) It constructs a dual-trajectory
exploration network, utilizing two trajectories from sibling
agents’ interactions with the environment to calculate their
similarity and self-adjust the balance between exploration
and exploitation, thereby addressing the issue of sparse
rewards.

2 Background

2.1 Reinforcement Learning
RL provides us with a solid framework in which an

agent interacts with an environment to generate experience
samples, aiming to learning from these samples and
making optimal decisions in a specific environment. In
RL, the agent is the entity that performs actions, while
the environment responds to the agent’s behavior, such
as through game rules. The interaction process in RL can
be represented by trajectories τ = {(st, at, s

‵
t, rt)}. In the

case of periodic events, tasks will unfold sequentially in
chronological order. The agent will be in some state st∈S,
within the environment, and will select an action at∈A,
based on a trained strategy. This action will interact with
the environment, leading it to a new state s‵t, while the
agent moves to the next time step t+1. The agent receives
corresponding rewards rt based on the task’s reward
function r (st, at, s

‵
t). The agent’s objective is to learn and

implement an optimal strategy to maximize the expected
cumulative reward Eτ~p[Σt γ

t rt], thereby continuously
optimizing its behaviors and decision-making processes.
Through iterative interaction and trial and error with the
environment, the agent can gradually adjust its policy to
improve its decision-making capabilities.

Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation 295

2.2 Proximal Policy Optimization
The traditional RL algorithms face challenges

when dealing with continuous action spaces and high-
dimensional state spaces, while PPO [16] is one of the
new methods proposed to address these challenges. The
PPO algorithm is an improved policy gradient method
introduced by OpenAI, aimed at resolving the optimization
instability and low sampling efficiency issues in
traditional policy gradient methods. Its core idea involves
constraining the parameters of the new and old policy
networks, enabling the new policy network to learn from
data sampled by the old policy network and restricting
the magnitude of policy updates to ensure stability and
convergence of the policy. Specifically, the PPO algorithm
introduces a constraint function to limit the difference
between the new and old policies, and the formula for the
constraint is as follows:

' ' '() [min(() , ((),1 ,1))]CLIP
T t t t tL E r A clip r Aθ θ θ ε ε= − + (1)

within this context, ϴ represents the policy parameters, E‵
t

indicating the expected experience over a time horizon.
rt denotes the probability ratio between the new and old
policies, and A‵

t is an estimate of the advantage value at
time step t. ε is a hyperparameter, typically taking values
of 0.1 or 0.2. The PPO algorithm has demonstrated
outstanding performance in addressing RL problems
in continuous action spaces and high-dimensional state
spaces, and it has been widely applied in areas such as
robot control, autonomous driving, and gaming strategies.

2.3 Intrinsic Curiosity Module
The curiosity-driven model (ICM) [13] primarily

addresses environments with sparse rewards by guiding
the agent to explore novel states through setting internal
rewards. It provides high internal rewards for novel
states and low internal rewards for non-novel states. ICM
introduces two dynamic models: The first is the forward
model, in which based on the feature space representation
φ(st) of the current state st+1 and the current action at, the
forward model obtains an estimated feature vector φ‵(st)
of the next moment’s state st +1, and uses φ‵(st) and the
difference between st+1 and the feature space representation
φ(st) as the internal reward value. The second one is
referred to as the inverse model: This model is based on
the current state st at time t and the next state st+1 at time
t+1, each is represented in the feature space as φ(st) and
φ‵(st), respectively, through the feature model. Then, by
passing through the inverse dynamics model, the estimated
action value a‵

t obtained is then compared with the true
action at to calculate the difference between them. The
reward function designed by ICM is:

r i e
t t tr r= + (2)

where A denotes the external reward value obtained by
the agent interacting with the environment, while r i

t is the
internal reward value derived from the exploration model.

In environments with sparse rewards, ICM can guide
the agent to explore novel states through internal reward
values.

2.4 Related Work
Reward Design and Learning. To address the issue

of sparse rewards, an intuitive approach is to artificially
shape the reward function, enabling the agent to receive
denser rewards during interactions. The method of shaping
the reward function [17-18] involves discussions on the
definition of rewards, relevant empirical research results,
and the impact on behavior. Additionally, Nair et al. [19]
proposed an unsupervised learning approach based on the
goal space, which allows the achievement of imagined
target states by computing distances in the latent space
[20] and shaping the reward function based on these
distances. Through this method, it is possible to more
effectively guide the agent’s behavior, enabling it to learn
more quickly and reach the desired target states.

Experience Replay. In order to more effectively utilize
samples, researchers have proposed the PER method
[11]. The core idea of PER is to prioritize the sampling
of samples in the experience pool based on the size of
the TD-error, in order to focus more on those samples
that have a greater impact on training. Additionally,
Bruin et al. [21] extended the framework of prioritized
experience replay and proposed a unified experience
selection mechanism to determine which samples should
be stored in the experience pool and how to sample them.
This improvement significantly increased the efficiency
of sample utilization in robot arm experiments [22-23],
making the training process more efficient. By prioritizing
the sampling of samples with larger TD-errors, the robot
arm can learn important knowledge more quickly, thereby
enhancing its learning performance.

Exploration and Exploitation. In order to explore
sparse rewards [24], Bellemare et al. [25] proposed a
virtual count method that utilizes a probability generative
model to measure the frequency of state occurrences
and converts the frequency into virtual counts, serving
as additional intrinsic rewards. To handle image states,
Ostrovski et al. [26] emphasized the importance of
probability models and proposed the use of PixelCNN
as the choice for the probability generative model. This
approach is more suitable for processing image states.
Additionally, Pathak et al. [13] employed the intrinsic
curiosity module (ICM) to obtain feature representations
of states by calculating the disparity between predicted
and actual states, and by excluding action-irrelevant
components to enhance the effectiveness of intrinsic
motivation. The improvements of these methods aim to
enhance the agent’s intrinsic drive to better address the
challenges of sparse rewards. By introducing additional
intrinsic rewards or using probability generative models to
measure state frequency [27], agents can better explore the
environment and learn more effective strategies.

C u r r i c u l u m L e a r n i n g . To g r a d u a l l y l e a r n
more complex tasks, agents can use the method of
progressive learning. PowerPlay et al. [28] proposed to
train a progressively more general problem solver by

296 Journal of Internet Technology Vol. 26 No. 3, May 2025

continuously seeking the simplest yet unresolved problem,
using a recursive self-improvement method to adjust
its own structure and parameters to optimize problem-
solving ability. Florsena et al. [29] proposed a reverse
curriculum generation method that can generate task
sequences suitable for the agent’s ability level and task
goals for reinforced learning agents. Their method first
uses a pre-trained policy network to generate some tasks
and then reversely generates suitable task sequences based
on the difficulty of these tasks and the performance of the
agents. This method can improve the learning efficiency
and generalization ability of agents. Through progressive
learning [30], agents can gradually improve their abilities
and cope with more challenging task environments.

3 A Self-Balancing Approach to
Exploration and Exploitation

In Figure 2, the self-balancing exploration and
exploitation was presented. The dynamic shaping of the
reward function based on the agent’s progress in task
completion is detailed in subsection 3.1, while section
3.2 is detailed a comprehensive description of the dual-
path exploration network and the method of self-balancing
exploration and exploitation.

Figure 2. The process of our method

3.1 Dynamically Shaping Reward Functions
In the context of large-scale sparse reward environ-

ments, where the state space is vast and complex, the
agent requires substantial amount of interaction experience
with the environment to learn the optimal policy, severely
impacting the performance of RL algorithms. In this
section, we propose to compute the average of the external
rewards obtained by the agent and use it as an evaluation
of the agent’s progress φ in task completion. We define the
progress evaluation for the first assessment as φ0. After
this progress evaluation, if the external reward rt obtained
by the agent at time step t is not less than φ0, it indicates
that this sample is above the average level and is worth
learning from.

After evaluating the progress, it is necessary to shape
the reward function based on the progress φ . For samples
that exceed the average level, it is important to assign a
greater reward value to encourage the agent to learn from
high-reward samples. The reward function shaped based
on the latest progress φ0 is given by the following equation:

0'

0 0

,

,

e e
t t

t e e
t t

r r
r

r r

ϕ

ω ϕ ϕ

 <= 
≥

 (3)

where re
t is the external reward obtained by the agent at

time step t from interacting with the environment within an
episode, and ω is a hyperparameter.

Based on the obtained external reward, it is used to
determine the progress of the agent. If the obtained reward
is greater than the current task completion progress φ ,
the reward will be significantly higher than the original
external reward value, with ω ensuring that the reward
does not fall below the original reward. This reward
function is designed to guide the agent to learn from high-
reward samples, discarding a large amount of useless
interaction, and promoting the improvement of the
performance of RL algorithms in large-scale environments.

Guiding the agent to learn from high-reward samples
can increase the mean of the external rewards obtained
by the agent, effectively enhancing the agent’s progress in
task completion, denoted as φ . To achieve this, a threshold
β will be set to assess the degree of change in the latest
progress φ . For the current evaluated progress φ1 = φ0 + β,
the progress will be updated by φ to yield φ1, where φ1 =
φ0 + β. Furthermore, after the progress update, the reward
function will be reshaped as follows:

0
'

0 0 1

1 1

,

,

,

e e
t t

e e
t t t

e e
t t

r r
r r r

r r

ϕ

ω ϕ ϕ ϕ

ω ϕ ϕ

 <
= ≤ ≤


≤

 (4)

For the aforementioned formula, given φ1 > φ0 , it
implies that the external rewards obtained by the agent at
time step t fall into three intervals, wherein if re

t is greater
than the latest progress φ1, then the increment in rewards
obtained is maximized.

The agent continues to learn and continuously updates
the mean of the obtained external rewards. If the current
evaluated progress is φ = φi +β , there is a need to update
progress φi to φi+1, where φi+1= φi +β . As the progress
of task completion φ is continuously updated to φn , the
shaped reward function is given by:

0

0 0 1

'
1

1 1 1

,

,

,

,

,

e e
t t

e e
t t

e e
t t i i t i

e e
t n n t i
e e

t n n t

r r

r r

r r r

r r

r r

ϕ

ω ϕ ϕ ϕ

ω ϕ ϕ ϕ

ω ϕ ϕ ϕ

ω ϕ ϕ

+

− − +

 <


≤ ≤


= ≤ ≤


 ≤ ≤

 ≤





 (5)

This reward function divides the progress of task
completion φ into n+1 stages, where the rewards obtained
by the agent from interacting with the environment all
fall within stage n+1, with the increment in the original
external reward values increasing from each stage.
Assuming that the current progress φ of the agent in task
completion is at φn−1 , the external reward r e

t obtained,
regardless of how much greater than φn−1 , remains at
value ω re

t φn−1. After the progress φ is updated to φn, the

Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation 297

reward value of sample re
t ≥ φn at the latest progress φn+1 is

smaller than the reward value of sample re
t ≥ φn at the latest

progress φn, even though both samples receive the same
external reward. Therefore, using progress to dynamically
shape the reward function can incentivize the agent to
effectively learn from high-reward samples, increase the
mean of external rewards, and improve the progress of task
completion.

In large-scale sparse reward environments, where the
majority of samples have no rewards, it is challenging to
effectively promote the learning of the agent. Therefore,
we need to use intrinsic rewards to guide the agent to
explore near high-reward samples, thus facilitating the
learning of the agent.

3.2 Self-Balancing Exploration and Exploitation
Reasonably changing the exploration and exploitation

strategies can effectively promote the learning of the agent.
By dynamically shaping the reward function through
progress φ , the agent is encouraged to learn from high-
reward samples. After an update at progress φ , it can be
indicated that the agent has achieved certain results in
learning from high-reward samples, and under the current
policy, continued interaction with the environment may
yield even higher-reward samples, thus enhancing the
progress of task completion φ . Therefore, at this point,
the agent should lean more towards exploitation under
the current policy to learn from similarly high-reward
samples rather than exploring new samples. If there is no
update in progress φ after a period of time, it can indicate
that after learning from high-reward samples, the agent is
in the vicinity of the high-reward samples being learned,
without substantial progress. Therefore, it is necessary
to encourage the agent to explore near the high-reward

samples to prompt the agent to find even higher-reward
samples. At this point, the agent’s strategy should lean
towards exploration.

The main idea of this approach is to adjust the
exploration and exploitation strategies at the appropriate
time. To this end, we have constructed a dual-trajectory
exploration network as shown in the figure. The first
part of the dual-trajectory exploration network employs
an internal reward mechanism based on the ICM for the
forward model. This involves predicting the next state
based on the current state and action, and then comparing
the predicted value with the actual state to derive the
difference as the internal reward value. This model is used
to assign intrinsic reward values to novel states and the
loss of this model aligns with that of the ICM.

In Figure 3, dual-trajectory exploration network, we
utilize sibling agents to interact with the environment
under the same initial state st through the current policy
πt(a|s), resulting in two sets of trajectories τ1(st … st+k, at

… at+k, rt … rt+k, st+1… st+k+1) and τ2(st … st+k, at … at+k, rt

… rt+k, st+1… st+k+1), where k denotes the number of steps
in which the trajectories interact with the agent. All states
from the samples are stored in separate lists, and then
fed into a feature model to obtain φ1(st+1 … st+k+1; θ) and
φ2(st+1 … st+k+1; θ), respectively. The feature vectors can
be used to compare the states. Subsequently, we calculate
the differences between the feature vectors of the two
trajectories, which is used to evaluate the extent to which
the current policy π balances exploration and exploitation.
In conclusion, the dual-trajectory exploration network
helps the agent calculate the novelty of states and also
assesses the similarity between trajectories of sibling
agents to determine the balance between exploration and
exploitation under the current policy.

Figure 3. Dual-trajectory exploration model

We define the intrinsic reward function as:

 inner inr r sig= ∗ (6)

where rin denotes the discrepancy value between the
predicted state and the actual state obtained through
the forward model, and sig is determined based on the
progress update. The formula for sig is as follows:

298 Journal of Internet Technology Vol. 26 No. 3, May 2025

 ,
,

i

y is updated
s

s
ig

sig d stance y ha not been updatedδ
δ

α
−

+ ∗


=  ∗
 (7)

The variables α and y are hyperparameters, typically
positive integers. The term distance represents the
similarity between trajectories of neighboring agents,
which reflects the balance between exploration and
exploitation in the current policy. Calculating the similarity
between two trajectories helps assess the true extent of
exploration by the current policy. In the given equation,
when there is an update in variable δ, the current policy
needs to learn more from high-reward samples. In this
case, the policy should lean towards exploitation to sample
more high-reward instances. Therefore, the parameter sig
is set as a negative value, resulting in negative intrinsic
rewards within variable r. This indicates that the more
novel a state is, as reflected by a larger value in variable
rin, the smaller the intrinsic reward received. This can be
used during the exploitation phase to discourage the agent
from accessing new states. On the other hand, when there
is no update in variable δ, it implies that the current policy
needs to obtain higher reward samples. In this scenario,
the policy should lean towards exploration. Therefore,
we gradually increase the value of sig, when sig becomes
positive, it indicates that the agent has explored more
novel states, and the intrinsic reward value is larger, which
encourages the agent to visit new states.

The difference value between sibling trajectories can
represent the balance between exploration and exploitation
in the agent’s current policy. Exploitation allows the agent
to dynamically adjust its exploration and exploitation
strategies, aiming to achieve self-balancing exploration
and exploitation.

In large-scale sparse reward environments, we evaluate
the agent’s progress in completing tasks using metric δ and
dynamically shape rewards to encourage the agent to learn
from high-reward samples. This approach significantly
reduces the number of interactions between the agent and
the environment, allowing for more efficient learning from
valuable data samples. To mitigate the impact of the lack of
rewards in sparse reward environments on agent learning,
we employ an intrinsic reward value through a dual-
trajectory exploration network. By leveraging metric δ
effectively, the agent achieves a self-balancing exploration
and exploitation, leading to improved performance of the
DR algorithm.

4 Experimental Results

4.1 Experimental Environment
MuJoCo is a software platform used to achieve

high- performance dynamic simulation and control, for
achieving widely applied in research and development of
robot learning, RL, and control algorithms. The platform
provides efficient dynamic simulators and diverse
physical environments for evaluating and validating the
performance of various robots and control algorithms.
MuJoCo is commonly used for training and evaluating
RL algorithms, particularly for controlling robot motions,

complex object manipulation, and other tasks requiring
highly realistic physical simulation. Within the MuJoCo
environment, one can utilize scenarios such as Ant,
HalfCheetah, Walker2D, Humanoid, and others. The
observation spaces and action spaces of these environments
consist of vectors composed of physical information, with
the action space typically being a continuous action space
of size N. As for rewards, corresponding game scores
are defined based on the specific task, with significant
variations in the rewards for each specific game. MuJoCo’s
environments offer a rich variety of scenarios and physical
parameters, providing an important platform for training
and evaluating RL algorithms.

4.2 Experimental Reward Setting
The MuJoCo environment is well-known for its fast

and highly realistic physical simulation, making it suitable
for simulating various complex physical environments
and robotic systems. Due to the relatively large state
space of each environment, agents require more time to
learn. To better approximate the setting of sparse reward
environments, we set up the MuJoCo platform so that the
agent can receive environment rewards when it completes
every 200 steps or tasks. This adjustment allows the
agent to more realistically coping with sparse reward
environments and promotes its learning process.

4.3 Experimental Baseline
The PPO algorithm in RL has demonstrated strong

solving capabilities in the MuJoCo environment. PPO
addresses the issue of optimizing sample reuse by
employing the clip method, enabling rapid learning
of the optimal policy within a close-range reward. On
the other hand, the ICM algorithm introduces a novel
concept by providing intrinsic rewards based on the
difference between predicted and actual states, effectively
addressing exploration problems under sparse rewards,
thereby enabling the agent to learn to complete tasks.
In this experiment, these two algorithms are used as the
experimental baselines.

4.4 Experimental Analysis
In the MuJoCo experimental environment, agents

face a significantly large state space. In dense reward
environments, agents often find it relatively easy to
complete tasks; however, in sparse reward environments,
extensive learning is required to achieve task proficiency.
Our algorithms have demonstrated excellent performance
across five experimental environments, enabling the
exploration of more valuable experiences and resulting in
higher scores for the agents within the environment.

In the Ant and HalfCheetah environments, the agents’
goal is to coordinate their four legs to move forward, and
the state space is not large. The agents can accomplish
these tasks after a certain level of learning. However,
within the MuJoCo setup, agents are prone to losing
positive rewards due to death, and they only obtain positive
rewards when they are able to move forward in a healthy
manner. During the initial stages of training in these two
environments, our algorithm’s performance is poor due

Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation 299

to frequent deaths resulting from extensive exploration,
as shown in Figure 4(a) and Figure 4(b). However, once
the exploration phase is completed, the agents can easily
make correct movements in the environment, accomplish
tasks successfully, and obtain high rewards. In contrast,
although PPO algorithm tends to be stable but with lower
average rewards due to inadequate exploration. The ICM
algorithm focuses on exploration and can surpass PPO
in terms of average rewards at later stages. However,
due to its drawbacks, the ICM algorithm fails to properly
balance between exploration and exploitation, resulting in
a shortfall in average rewards.

In the Walker2d, Humanoid, and HumanoidStandup
environments, which mimic human walking and standing,
each agent has a large number of physically articulated
connections. This results in an extremely vast state space

that typically requires extensive training to learn how to
complete tasks. As shown in Figure 4(c), Figure 4(d), and
Figure 4(e), the PPO algorithm fails to effectively learn
information in these three sparse reward environments,
leading to a continual inability to improve average rewards.
Due to its exploration capabilities, the ICM algorithm
exhibits slightly inferior and unstable average rewards and
even performs lower than PPO in some cases. However,
our proposed algorithm (using self-balancing exploration
and exploitation, USEE) effectively utilizes exploration by
balancing exploration and exploitation strategies in later
stages. This enables the agents to demonstrate outstanding
performance with fast learning speed and stability in
these three environments. As a result, our algorithm can
fully leverage its capabilities in large-scale sparse reward
environments for accomplishing the agent’s tasks.

 (a) Ant (b) HalfCheetah

 (c) Humanoid (d) HumanoidStandup

(e) Walker2d

Figure 4. Average rewards across different environments

300 Journal of Internet Technology Vol. 26 No. 3, May 2025

5 Conclusion and Future Work

The main focus of this study is to address the issue
of poor learning efficiency of agents in large-scale sparse
reward environments. Firstly, this work evaluates the
agent’s progress in environments with vast state spaces and
shapes rewards based on that progress to guide the agent
in learning high-reward samples and reduce its interaction
with the environment. Secondly, to tackle the problem
of sparse rewards, this work constructs a dual-trajectory
exploration network. The first part of the network
calculates the novelty reward value based on the novelty
of each state, while the second part evaluates the similarity
between sibling trajectories. By self-balancing exploration
and exploitation strategies through similarity at opportune
times for both exploration and exploitation, effective
exploration near high-reward samples is achieved. In our
work, enhancing RL algorithms’ performance in large-scale
sparse reward environments is effectively accomplished by
learning high-reward samples through shaping the reward
function and self-balancing exploration and exploitation.

For future work, we will conduct further research
in the following areas. Firstly, to address the sparse
reward problem, we will not solely rely on exploration
to obtain intrinsic rewards, as we will introduce inverse
RL algorithms to shape more realistic intrinsic rewards
to facilitate agent learning. Secondly, we plan to utilize
other neural networks such as convolutional neural
networks, long short-term memory, and ResNet. Thirdly,
in the reward function shaping aspect, we intend to use
more sophisticated approaches to replace the agent’s task
completion progress.

References

[1] L . P. Kae lb l ing , M. L . L i t tman , A . W. Moore ,
Reinforcement learning: a survey, Journal of Artificial
Intelligence Research, Vol. 4, No. 1, pp. 237-285, January,
1996.

[2] R. Bellman, A Markovian decision process, Journal of
Mathematics and Mechanics, Vol. 6, No. 5, pp. 679-684,
1957. https://www.jstor.org/stable/24900506

[3] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature,
Vol. 521, No. 7553, pp. 436-444, May, 2015. https://doi.
org/10.1038/nature14539

[4] J. Zhang, C. Zhang, W.-C. Chien, Overview of deep
reinforcement learning improvements and applications,
Journal of Internet Technology, Vol. 22, No. 2, pp. 239-
255, March, 2021. https://doi.org/10.3966/160792642021
032202002

[5] Y. Kong, Y. Rui, C.-H. Hsia, A deep reinforcement
learning-based approach in poker game, Journal of
Computers, Vol. 34, No. 2, pp. 41-51, April, 2023. https://
doi.org/10.53106/199115992023043402004

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T.
Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, A general
reinforcement learning algorithm that masters chess, shogi,
and go through self-play, Science, Vol. 362, No. 6419,
pp. 1140-1144, December, 2018. https://doi.org/10.1126/
science.aar6404

[7] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, S.

Mannor, Learn what not to learn: action elimination with
deep reinforcement learning, International Conference on
Neural Information Processing Systems, Montréal Canada,
2018, pp. 3566-3577.

[8] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian and
K. Fujimura, “Navigating occluded intersections with
autonomous vehicles using deep reinforcement learning,”
IEEE International Conference on Robotics and
Automation, pp. 2034-2039, 2018.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, M. Riedmiller, Playing
atari with deep reinforcement learning, arXiv preprint
arXiv:1312.5602v1, December, 2013. https://arxiv.org/
abs/1312.5602

[10] L.-J. Lin, Self-improving reactive agents based on
reinforcement learning, planning and teaching, Machine
Learning, Vol. 8, No. 3-4, pp. 293-321, May, 1992. https://
doi.org/10.1007/BF00992699

[11] Z. Yang, Y. Kong, C.-H. Hsia, DERLight: a deep
reinforcement learning traffic light control algorithm with
dual experience replay, Journal of Internet Technology, Vol.
25, No. 1, pp. 79-86, January, 2024. https://doi.org/10.5310
6/160792642024012501007

[12] Y. Hou, L. Liu, Q. Wei, X. Xu, C. Chen, A novel
DDPG method with prioritized experience replay,
IEEE International Conference on Systems, Man, and
Cybernetics, Banff, AB, Canada, 2017, pp. 316-321, 2017.
https://doi.org/10.1109/SMC.2017.8122622

[13] D. Pathak, P. Agrawal, A. A. Efros, T. Darrell, Curiosity-
driven exploration by self-supervised prediction,
International Conference on Machine Learning, Sydney,
NSW, Australia, 2017, pp. 2778-2787.

[14] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot,
S. Kapturowski, O. Tieleman, M. Arjovsky, A. Pritzel, A.
Bolt, C. Blundell, Never give up: learning directed
exploration strategies, arXiv preprint arXiv:2002.06038,
February, 2020. https://arxiv.org/abs/2002.06038

[15] Y. Burda, H. Edwards, A. Storkey, O. Klimov, Exploration
by random network d is t i l l a t ion , arXiv prepr in t
arXiv:1810.12894v1, October, 2018. https://arxiv.org/
abs/1810.12894

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O.
Klimov, Proximal policy optimization algorithms, arXiv
preprint arXiv:1707.06347v2, August, 2017. https://arxiv.
org/abs/1707.06347

[17] A. Y. Ng, S . J . Russel l , Algor i thms for inverse
reinforcement learning, International Conference on
Machine Learning, Stanford, CA, USA, 2000, pp. 663–670.

[18] J. Asmuth, M. L. Littman, R. Zinkov, Potential-based
shaping in model-based reinforcement learning, AAAI
Conference on Artificial Intelligence, Chicago, Illinois,
2008, pp. 604-609.

[19] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, S. Levine,
Visual reinforcement learning with imagined goals,
International Conference on Neural Information Processing
Systems, Montréal, Canada, 2018, pp. 1-10.

[20] A. Péré, S. Forest ier, O. Sigaud, P. Y. Oudeyer,
Unsupervised learning of goal spaces for intrinsically
m o t i v a t e d g o a l e x p l o r a t i o n , a r X i v p re p r i n t
arXiv:1803.00781v3, October, 2018. https://arxiv.org/
abs/1803.00781

[21] T. D. Bruin, J. Kober, K. Tuyls, R. Babuska, Experience
selection in deep reinforcement learning for control,
Journal of Machine Learning Research, Vol. 19, No. 9, pp.
1-56, 2018.

[22] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, G. Wayne,

Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation 301

Experience replay for continual learning, International
Conference on Neural Information Processing Systems,
Vancouver, BC, Canada, 2019, pp. 350-360.

[23] H. van Hasselt, A. Guez, D. Silver, Deep reinforcement
learning with double Q-learning, AAAI Conference on
Artificial Intelligence, Phoenix, Arizona, 2016, pp. 2094-
2100.

[24] P. Ladosz, L. Weng, M. Kim, H. Oh, Exploration in deep
reinforcement learning: a survey, Information Fusion, Vol.
85, pp. 1-22, September, 2022. https://doi.org/10.1016/
j.inffus.2022.03.003

[25] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D.
Saxton, R. Munos, Unifying count-based exploration and
intrinsic motivation, International Conference on Neural
Information Processing Systems, Barcelona, Spain, 2016,
pp. 1479-1487.

[26] G. Ostrovski, M. G. Bellemare, A. Oord, R. Munos, Count-
based exploration with neural density models, International
Conference on Machine Learning, Sydney, NSW, Australia,
2017, pp. 2721-2730.

[27] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y.
Duan, J. Schulman, F. De Turck, P. Abbeel, Exploration:
a study of count-based exploration for deep reinforcement
learning, International Conference on Neural Information
Processing Systems, Long Beach California USA, 2017, pp.
2750-2759.

[28] J. Schmidhuber, Powerplay: training an increasingly
general problem solver by continually searching for
the simplest still unsolvable problem, Frontiers in
Psychology, Vol. 4, Article No. 313, June, 2013. https://
doi.org/10.3389/fpsyg.2013.00313

[29] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, P. Abbeel,
Reverse curriculum generation for reinforcement learning,
Annual Conference on Robot Learning, Proceedings of
Machine Learning Research, pp. 482-495, 2017.

[30] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor,
P. Stone, Curriculum learning for reinforcement learning
domains: a framework and survey, Journal of Machine
Learning Research, Vol. 21, No. 1, pp. 7382-7431, 2020.

Biographies

Yan Kong received her Ph.D. degree in
Computer Science from the University
of Wollongong, Australia. Currently,
she works as an Associate Professor
in Nanjing University of Information,
Sc ience and Techno logy, Ch ina .
Her research interests include Deep
Reinforcement Learning, Multi-agent

system, and Machine Learning. Moreover, her research
focuses on the smart control on the traffic signal lights to
alleviate the traffic congestion.

Junfeng Wei received his Master’s
degree in Software Engineering from
Nanjing University of Information
Science and Technology, China. His
research interest is deep reinforcement
learning. In addition, his research
focuses on the problem of improving the
learning efficiency of agents in sparse

reward environments.

Chih-Hsien Hsia received the Ph.D.
degree in Electrical and Computer
Engineering from Tamkang University,
and the second Ph.D. degree from
National Cheng Kung Universi ty,
Taiwan, respectively. He currently is a
Full Professor and a Chairperson with
the Department of Computer Science

and Information Engineering, NIU. His research interests
include DSP IC Design, AI in Multimedia, and Cognitive
Engineering.

