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Abstract

A core challenge in applying deep reinforcement 
learning (DRL) to real-world tasks is the sparse reward 
problem, and shaping reward has been one effective 
method to solve it. However, due to the enormous state 
space and sparse rewards in the real world, a large number 
of useless samples may be generated, leading to reduced 
sample efficiency and potential local optima. To address 
this issue, this study proposes a self-balancing method of 
exploration and development to solve the issue of sparse 
rewards. Firstly, we shape the reward function according 
to the evaluated progress, to guide the agent’s learning 
of high-reward samples. Secondly, we construct a dual-
trajectory exploration network, which provides intrinsic 
rewards based on the novelty of states and the trajectory 
difference of sibling agents to encourage the agent to 
explore and adjust the balance between exploration 
and exploitation. This method effectively prevents the 
generation of a large amount of useless training data during 
the interaction between the agent and the environment, 
resolves local optimal dilemmas through state novelty, 
and adjusts the strategy in a timely manner to solve sparse 
reward tasks. Our method outperforms basic reinforcement 
learning (RL) and curiosity-driven incentives in these 
experimental tasks. The self-balancing exploration 
and exploitation approach in our research provides a 
new perspective and effective solution for addressing 
the problem of sparse rewards, thereby advancing the 
application of DRL in real-world problems and achieving 
greater success.

Keywords: Deep reinforcement learning, Deep learning, 
Artificial intelligence, Sparse reward, Exploration and 
exploitation

1  Introduction

In the current wave of research in artificial intelligence 
(AI), there is a growing interest in enabling computers 
to perform tasks that previously relied solely on human 
intelligence. In this regard, reinforcement learning (RL) [1] 
has emerged as a unique paradigm. It involves training an 

agent to observe the states provided by the environment, 
make optimal decisions, analyze the consequences of its 
actions through interactions with the environment, and 
receives rewards accordingly. This progressive learning 
approach bears resemblance to human cognition. The 
essence of RL lies in maximizing the accumulated 
reward obtained by the agent during interactions with 
the environment while tackling specific tasks. The RL 
environment can be modeled as a Markov decision process 
[2], as shown in Figure 1. Specifically, at each time step 
t, the agent reaches a state st , takes an action at , receives 
a reward rt+1 from the environment, and iterates until the 
final task is completed. Since DeepMind introduced deep 
Q-networks (DQN) in 2013, by combining deep neural 
networks [3] with RL, deep reinforcement learning (DRL) 
[4] has revolutionized the field and become one of the 
widely applied AI algorithms, particularly in decision-
making and control domains.

Figure 1. Markov decision process

Designing comprehensive reward functions for agents 
to learn from can be challenging in many real-world 
problems. Sparse rewards refer to the scenario where 
rewards are only provided when the task completion 
criteria are achieved, while many intermediate steps do 
not receive any reward signal. For example, the quality of 
each move is difficult to determine during the game of Go 
[5-6], so rewards are only provided based on the outcome. 
This approach to setting reward functions is crucial for 
solving complex problems, especially those where it is not 
possible to define a reward function explicitly. Overcoming 
the challenge of sparse rewards opens new possibilities for 
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applying RL to practical problems, which is particularly 
important for tasks where modelling reward functions is 
difficult. Solving the problem of sparse rewards can help 
improve sample utilization efficiency. In DRL, the high 
cost lies not in the training process, but in the process of 
acquiring samples. Sample acquisition requires interaction 
between agents and the environment, and this interaction is 
costly not only in terms of time but also in terms of safety, 
controllability, recoverability, and many other aspects. 
Therefore, if we can to some extent solve the problem of 
sparse rewards, we can accelerate the learning process and 
reduce the number of interactions between agents and the 
environment.

When applying DRL to address real-world problems, 
several challenges are typically encountered. Firstly, the 
environmental states in the real world are often large and 
complex [7]. For example, in the context of autonomous 
driving [8], the agent needs to consider information from 
various perspectives to make accurate decisions. However, 
the number of these states is enormous, and the data 
involved is also substantial. This impacts RL algorithms 
such as DQN [9] when dealing with large-scale state 
spaces because there is minimal repetition of states in 
the evaluation function, resulting in prolonged training 
periods for the agent [10]. To address this issue, prioritized 
experience replay (PER) [11] enhances the utilization 
and training speed of samples by changing the sampling 
probability of samples. In some specific scenarios, the 
priority of experience data is difficult to estimate in certain 
continuous decision-making problems because subsequent 
decisions related to each state are highly coupled, which 
leads to a performance degradation of the algorithm [12]. 
The second challenge lies in sparse rewards provided 
by the environment. Defining appropriate dense reward 
functions is often challenging in the real world, making it 
difficult for agent to learn effectively. In environments with 
sparse rewards, the rewards obtained by the agent from the 
environment are extremely limited, posing a significant 
difficulty for RL algorithms to improve performance. 
Addressing sparse reward problems often requires 
heuristic exploration strategies to assist the agent in 
discovering sparse rewards. The intrinsic curiosity module 
(ICM) [13] is one approach that encourages effectively 
the exploration of novel states by utilizing the differences 
between predicted and actual states to set intrinsic rewards. 
However, ICM also introduces another issue, as it fails 
to balance the exploration and exploitation strategies and 
does not provide reasonable reward values for correct 
samples [14-15], thereby hindering effective exploration. 
To addressing these challenges, various methods have been 
proposed in research, such as using more advanced deep 
learning models, introducing more sophisticated reward 
function designs, and employing more agent exploration 
strategies. These efforts aim to enhance the performance 
and efficiency of DRL in addressing real-world problems.

In this context, this study proposes a self-balancing 
exploration and exploitation method based on the DRL 
algorithm, as proximal policy optimization (PPO) 
[16] to address challenges in large-scale sparse reward 
environments. Firstly, to address the extensive state space 

in large-scale environments, we evaluate the current agent’s 
progress in completing tasks based on external rewards and 
optimize its approach to exploration and exploitation. We 
shape the reward function to guide the agent in learning 
samples with high reward values, thereby reducing the 
frequency of interactions with the environment. Secondly, 
to address the sparse reward issue, we developed a dual-
trajectory exploration network. Specifically, we constructed 
an internal reward function based on the novelty of 
states and the degree of trajectory similarity, balancing 
exploration and exploitation strategies. This study guided 
agents based on shaped rewards and used exploration to 
solve the problem of local optima that arise when learning 
high-reward samples, effectively addressing the problem of 
sparse rewards in large-scale environments. Our approach 
differs from other shaped reward methods in that we 
propose a self-balancing strategy that prioritizes shaped 
rewards while supplementing with exploration. This self-
balancing method for exploration and exploitation enables 
us to address challenges posed by large-scale state spaces 
and sparse reward environments.

In summary, our contributions are as follows: 1) 
This study formulates the concept of progress based on 
the received external rewards and dynamically shapes 
the reward function to guide the agent in learning high-
reward samples, determining the timing of exploration and 
exploitation, and reducing the frequency of interactions 
with the environment. 2) It constructs a dual-trajectory 
exploration network, utilizing two trajectories from sibling 
agents’ interactions with the environment to calculate their 
similarity and self-adjust the balance between exploration 
and exploitation, thereby addressing the issue of sparse 
rewards.

2  Background

2.1 Reinforcement Learning
RL provides us with a solid framework in which an 

agent interacts with an environment to generate experience 
samples, aiming to learning from these samples and 
making optimal decisions in a specific environment. In 
RL, the agent is the entity that performs actions, while 
the environment responds to the agent’s behavior, such 
as through game rules. The interaction process in RL can 
be represented by trajectories τ = {(st, at, s

‵
t, rt)}. In the 

case of periodic events, tasks will unfold sequentially in 
chronological order. The agent will be in some state st∈S, 
within the environment, and will select an action at∈A, 
based on a trained strategy. This action will interact with 
the environment, leading it to a new state s‵t, while the 
agent moves to the next time step t+1. The agent receives 
corresponding rewards rt based on the task’s reward 
function r (st, at, s

‵
t). The agent’s objective is to learn and 

implement an optimal strategy to maximize the expected 
cumulative reward Eτ~p[Σt γ

t rt], thereby continuously 
optimizing its behaviors and decision-making processes. 
Through iterative interaction and trial and error with the 
environment, the agent can gradually adjust its policy to 
improve its decision-making capabilities.
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2.2 Proximal Policy Optimization
The traditional RL algorithms face challenges 

when dealing with continuous action spaces and high-
dimensional state spaces, while PPO [16] is one of the 
new methods proposed to address these challenges. The 
PPO algorithm is an improved policy gradient method 
introduced by OpenAI, aimed at resolving the optimization 
instability and low sampling efficiency issues in 
traditional policy gradient methods. Its core idea involves 
constraining the parameters of the new and old policy 
networks, enabling the new policy network to learn from 
data sampled by the old policy network and restricting 
the magnitude of policy updates to ensure stability and 
convergence of the policy. Specifically, the PPO algorithm 
introduces a constraint function to limit the difference 
between the new and old policies, and the formula for the 
constraint is as follows:

' ' '( ) [min( ( ) , ( ( ),1 ,1 ) )]CLIP
T t t t tL E r A clip r Aθ θ θ ε ε= − +  (1)

within this context, ϴ represents the policy parameters, E‵
t  

indicating the expected experience over a time horizon. 
rt denotes the probability ratio between the new and old 
policies, and A‵

t is an estimate of the advantage value at 
time step t. ε is a hyperparameter, typically taking values 
of 0.1 or 0.2. The PPO algorithm has demonstrated 
outstanding performance in addressing RL problems 
in continuous action spaces and high-dimensional state 
spaces, and it has been widely applied in areas such as 
robot control, autonomous driving, and gaming strategies.

2.3 Intrinsic Curiosity Module
The curiosity-driven model (ICM) [13] primarily 

addresses environments with sparse rewards by guiding 
the agent to explore novel states through setting internal 
rewards. It provides high internal rewards for novel 
states and low internal rewards for non-novel states. ICM 
introduces two dynamic models: The first is the forward 
model, in which based on the feature space representation 
φ(st) of the current state st+1 and the current action at, the 
forward model obtains an estimated feature vector φ‵(st) 
of the next moment’s state st +1, and uses φ‵(st) and the 
difference between st+1 and the feature space representation 
φ(st) as the internal reward value. The second one is 
referred to as the inverse model: This model is based on 
the current state st at time t and the next state st+1 at time 
t+1, each is represented in the feature space as φ(st) and 
φ‵(st), respectively, through the feature model. Then, by 
passing through the inverse dynamics model, the estimated 
action value a‵

t obtained is then compared with the true 
action at to calculate the difference between them. The 
reward function designed by ICM is:

r i e
t t tr r= +                                   (2)

where A denotes the external reward value obtained by 
the agent interacting with the environment, while r i

t is the 
internal reward value derived from the exploration model. 

In environments with sparse rewards, ICM can guide 
the agent to explore novel states through internal reward 
values.

2.4 Related Work
Reward Design and Learning. To address the issue 

of sparse rewards, an intuitive approach is to artificially 
shape the reward function, enabling the agent to receive 
denser rewards during interactions. The method of shaping 
the reward function [17-18] involves discussions on the 
definition of rewards, relevant empirical research results, 
and the impact on behavior. Additionally, Nair et al. [19] 
proposed an unsupervised learning approach based on the 
goal space, which allows the achievement of imagined 
target states by computing distances in the latent space 
[20] and shaping the reward function based on these 
distances. Through this method, it is possible to more 
effectively guide the agent’s behavior, enabling it to learn 
more quickly and reach the desired target states.

Experience Replay. In order to more effectively utilize 
samples, researchers have proposed the PER method 
[11]. The core idea of PER is to prioritize the sampling 
of samples in the experience pool based on the size of 
the TD-error, in order to focus more on those samples 
that have a greater impact on training. Additionally, 
Bruin et al. [21] extended the framework of prioritized 
experience replay and proposed a unified experience 
selection mechanism to determine which samples should 
be stored in the experience pool and how to sample them. 
This improvement significantly increased the efficiency 
of sample utilization in robot arm experiments [22-23], 
making the training process more efficient. By prioritizing 
the sampling of samples with larger TD-errors, the robot 
arm can learn important knowledge more quickly, thereby 
enhancing its learning performance.

Exploration and Exploitation. In order to explore 
sparse rewards [24], Bellemare et al. [25] proposed a 
virtual count method that utilizes a probability generative 
model to measure the frequency of state occurrences 
and converts the frequency into virtual counts, serving 
as additional intrinsic rewards. To handle image states, 
Ostrovski et al. [26] emphasized the importance of 
probability models and proposed the use of PixelCNN 
as the choice for the probability generative model. This 
approach is more suitable for processing image states. 
Additionally, Pathak et al. [13] employed the intrinsic 
curiosity module (ICM) to obtain feature representations 
of states by calculating the disparity between predicted 
and actual states, and by excluding action-irrelevant 
components to enhance the effectiveness of intrinsic 
motivation. The improvements of these methods aim to 
enhance the agent’s intrinsic drive to better address the 
challenges of sparse rewards. By introducing additional 
intrinsic rewards or using probability generative models to 
measure state frequency [27], agents can better explore the 
environment and learn more effective strategies.

C u r r i c u l u m  L e a r n i n g .  To  g r a d u a l l y  l e a r n 
more complex tasks, agents can use the method of 
progressive learning. PowerPlay et al. [28] proposed to 
train a progressively more general problem solver by 
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continuously seeking the simplest yet unresolved problem, 
using a recursive self-improvement method to adjust 
its own structure and parameters to optimize problem-
solving ability. Florsena et al. [29] proposed a reverse 
curriculum generation method that can generate task 
sequences suitable for the agent’s ability level and task 
goals for reinforced learning agents. Their method first 
uses a pre-trained policy network to generate some tasks 
and then reversely generates suitable task sequences based 
on the difficulty of these tasks and the performance of the 
agents. This method can improve the learning efficiency 
and generalization ability of agents. Through progressive 
learning [30], agents can gradually improve their abilities 
and cope with more challenging task environments.

3  A Self-Balancing Approach to 
Exploration and Exploitation

In Figure 2, the self-balancing exploration and 
exploitation was presented. The dynamic shaping of the 
reward function based on the agent’s progress in task 
completion is detailed in subsection 3.1, while section 
3.2 is detailed a comprehensive description of the dual-
path exploration network and the method of self-balancing 
exploration and exploitation.

Figure 2. The process of our method

3.1 Dynamically Shaping Reward Functions
In the context of large-scale sparse reward environ-

ments, where the state space is vast and complex, the 
agent requires substantial amount of interaction experience 
with the environment to learn the optimal policy, severely 
impacting the performance of RL algorithms. In this 
section, we propose to compute the average of the external 
rewards obtained by the agent and use it as an evaluation 
of the agent’s progress φ in task completion. We define the 
progress evaluation for the first assessment as φ0. After 
this progress evaluation, if the external reward rt obtained 
by the agent at time step t is not less than φ0, it indicates 
that this sample is above the average level and is worth 
learning from.

After evaluating the progress, it is necessary to shape 
the reward function based on the progress φ . For samples 
that exceed the average level, it is important to assign a 
greater reward value to encourage the agent to learn from 
high-reward samples. The reward function shaped based 
on the latest progress φ0 is given by the following equation:
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where re
t is the external reward obtained by the agent at 

time step t from interacting with the environment within an 
episode, and ω is a hyperparameter.

Based on the obtained external reward, it is used to 
determine the progress of the agent. If the obtained reward 
is greater than the current task completion progress φ , 
the reward will be significantly higher than the original 
external reward value, with ω ensuring that the reward 
does not fall below the original reward. This reward 
function is designed to guide the agent to learn from high-
reward samples, discarding a large amount of useless 
interaction, and promoting the improvement of the 
performance of RL algorithms in large-scale environments.

Guiding the agent to learn from high-reward samples 
can increase the mean of the external rewards obtained 
by the agent, effectively enhancing the agent’s progress in 
task completion, denoted as φ . To achieve this, a threshold 
β will be set to assess the degree of change in the latest 
progress φ . For the current evaluated progress φ1 = φ0 + β, 
the progress will be updated by φ to yield φ1, where φ1 = 
φ0 + β. Furthermore, after the progress update, the reward 
function will be reshaped as follows:
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For the aforementioned formula, given φ1 > φ0 , it 
implies that the external rewards obtained by the agent at 
time step t fall into three intervals, wherein if re

t is greater 
than the latest progress φ1, then the increment in rewards 
obtained is maximized.

The agent continues to learn and continuously updates 
the mean of the obtained external rewards. If the current 
evaluated progress is φ = φi +β , there is a need to update 
progress φi to φi+1, where φi+1= φi +β . As the progress 
of task completion φ is continuously updated to φn , the 
shaped reward function is given by:
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                 (5)

This reward function divides the progress of task 
completion φ into n+1 stages, where the rewards obtained 
by the agent from interacting with the environment all 
fall within stage n+1, with the increment in the original 
external reward values increasing from each stage. 
Assuming that the current progress φ of the agent in task 
completion is at φn−1 , the external reward r e

t obtained, 
regardless of how much greater than φn−1 , remains at 
value ω re

t φn−1. After the progress φ is updated to φn, the 
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reward value of sample re
t  ≥ φn at the latest progress φn+1 is 

smaller than the reward value of sample re
t ≥ φn at the latest 

progress φn, even though both samples receive the same 
external reward. Therefore, using progress to dynamically 
shape the reward function can incentivize the agent to 
effectively learn from high-reward samples, increase the 
mean of external rewards, and improve the progress of task 
completion.

In large-scale sparse reward environments, where the 
majority of samples have no rewards, it is challenging to 
effectively promote the learning of the agent. Therefore, 
we need to use intrinsic rewards to guide the agent to 
explore near high-reward samples, thus facilitating the 
learning of the agent.

3.2 Self-Balancing Exploration and Exploitation
Reasonably changing the exploration and exploitation 

strategies can effectively promote the learning of the agent. 
By dynamically shaping the reward function through 
progress φ , the agent is encouraged to learn from high-
reward samples. After an update at progress φ , it can be 
indicated that the agent has achieved certain results in 
learning from high-reward samples, and under the current 
policy, continued interaction with the environment may 
yield even higher-reward samples, thus enhancing the 
progress of task completion φ . Therefore, at this point, 
the agent should lean more towards exploitation under 
the current policy to learn from similarly high-reward 
samples rather than exploring new samples. If there is no 
update in progress φ after a period of time, it can indicate 
that after learning from high-reward samples, the agent is 
in the vicinity of the high-reward samples being learned, 
without substantial progress. Therefore, it is necessary 
to encourage the agent to explore near the high-reward 

samples to prompt the agent to find even higher-reward 
samples. At this point, the agent’s strategy should lean 
towards exploration.

The main idea of this approach is to adjust the 
exploration and exploitation strategies at the appropriate 
time. To this end, we have constructed a dual-trajectory 
exploration network as shown in the figure. The first 
part of the dual-trajectory exploration network employs 
an internal reward mechanism based on the ICM for the 
forward model. This involves predicting the next state 
based on the current state and action, and then comparing 
the predicted value with the actual state to derive the 
difference as the internal reward value. This model is used 
to assign intrinsic reward values to novel states and the 
loss of this model aligns with that of the ICM.

In Figure 3, dual-trajectory exploration network, we 
utilize sibling agents to interact with the environment 
under the same initial state st through the current policy 
πt(a|s), resulting in two sets of trajectories τ1(st … st+k, at 

… at+k, rt … rt+k, st+1… st+k+1) and τ2(st … st+k, at … at+k, rt 

… rt+k, st+1… st+k+1), where k denotes the number of steps 
in which the trajectories interact with the agent. All states 
from the samples are stored in separate lists, and then 
fed into a feature model to obtain φ1(st+1 … st+k+1; θ) and 
φ2(st+1 … st+k+1; θ), respectively. The feature vectors can 
be used to compare the states. Subsequently, we calculate 
the differences between the feature vectors of the two 
trajectories, which is used to evaluate the extent to which 
the current policy π balances exploration and exploitation. 
In conclusion, the dual-trajectory exploration network 
helps the agent calculate the novelty of states and also 
assesses the similarity between trajectories of sibling 
agents to determine the balance between exploration and 
exploitation under the current policy.

Figure 3. Dual-trajectory exploration model

We define the intrinsic reward function as:

  inner inr r sig= ∗                               (6)

where rin denotes the discrepancy value between the 
predicted state and the actual state obtained through 
the forward model, and sig is determined based on the 
progress update. The formula for sig is as follows:
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The variables α and y are hyperparameters, typically 
positive integers. The term distance represents the 
similarity between trajectories of neighboring agents, 
which reflects the balance between exploration and 
exploitation in the current policy. Calculating the similarity 
between two trajectories helps assess the true extent of 
exploration by the current policy. In the given equation, 
when there is an update in variable δ, the current policy 
needs to learn more from high-reward samples. In this 
case, the policy should lean towards exploitation to sample 
more high-reward instances. Therefore, the parameter sig 
is set as a negative value, resulting in negative intrinsic 
rewards within variable r. This indicates that the more 
novel a state is, as reflected by a larger value in variable 
rin, the smaller the intrinsic reward received. This can be 
used during the exploitation phase to discourage the agent 
from accessing new states. On the other hand, when there 
is no update in variable δ, it implies that the current policy 
needs to obtain higher reward samples. In this scenario, 
the policy should lean towards exploration. Therefore, 
we gradually increase the value of sig, when sig becomes 
positive, it indicates that the agent has explored more 
novel states, and the intrinsic reward value is larger, which 
encourages the agent to visit new states.

The difference value between sibling trajectories can 
represent the balance between exploration and exploitation 
in the agent’s current policy. Exploitation allows the agent 
to dynamically adjust its exploration and exploitation 
strategies, aiming to achieve self-balancing exploration 
and exploitation.

In large-scale sparse reward environments, we evaluate 
the agent’s progress in completing tasks using metric δ and 
dynamically shape rewards to encourage the agent to learn 
from high-reward samples. This approach significantly 
reduces the number of interactions between the agent and 
the environment, allowing for more efficient learning from 
valuable data samples. To mitigate the impact of the lack of 
rewards in sparse reward environments on agent learning, 
we employ an intrinsic reward value through a dual-
trajectory exploration network. By leveraging metric δ 
effectively, the agent achieves a self-balancing exploration 
and exploitation, leading to improved performance of the 
DR algorithm.

4  Experimental Results

4.1 Experimental Environment
MuJoCo is a software platform used to achieve 

high-  performance dynamic simulation and control, for 
achieving widely applied in research and development of 
robot learning, RL, and control algorithms. The platform 
provides efficient dynamic simulators and diverse 
physical environments for evaluating and validating the 
performance of various robots and control algorithms. 
MuJoCo is commonly used for training and evaluating 
RL algorithms, particularly for controlling robot motions, 

complex object manipulation, and other tasks requiring 
highly realistic physical simulation. Within the MuJoCo 
environment, one can utilize scenarios such as Ant, 
HalfCheetah, Walker2D, Humanoid, and others. The 
observation spaces and action spaces of these environments 
consist of vectors composed of physical information, with 
the action space typically being a continuous action space 
of size N. As for rewards, corresponding game scores 
are defined based on the specific task, with significant 
variations in the rewards for each specific game. MuJoCo’s 
environments offer a rich variety of scenarios and physical 
parameters, providing an important platform for training 
and evaluating RL algorithms.

4.2 Experimental Reward Setting
The MuJoCo environment is well-known for its fast 

and highly realistic physical simulation, making it suitable 
for simulating various complex physical environments 
and robotic systems. Due to the relatively large state 
space of each environment, agents require more time to 
learn. To better approximate the setting of sparse reward 
environments, we set up the MuJoCo platform so that the 
agent can receive environment rewards when it completes 
every 200 steps or tasks. This adjustment allows the 
agent to more realistically coping with sparse reward 
environments and promotes its learning process.

4.3 Experimental Baseline
The PPO algorithm in RL has demonstrated strong 

solving capabilities in the MuJoCo environment. PPO 
addresses the issue of optimizing sample reuse by 
employing the clip method, enabling rapid learning 
of the optimal policy within a close-range reward. On 
the other hand, the ICM algorithm introduces a novel 
concept by providing intrinsic rewards based on the 
difference between predicted and actual states, effectively 
addressing exploration problems under sparse rewards, 
thereby enabling the agent to learn to complete tasks. 
In this experiment, these two algorithms are used as the 
experimental baselines.

4.4 Experimental Analysis
In the MuJoCo experimental environment, agents 

face a significantly large state space. In dense reward 
environments, agents often find it relatively easy to 
complete tasks; however, in sparse reward environments, 
extensive learning is required to achieve task proficiency. 
Our algorithms have demonstrated excellent performance 
across five experimental environments, enabling the 
exploration of more valuable experiences and resulting in 
higher scores for the agents within the environment.

In the Ant and HalfCheetah environments, the agents’ 
goal is to coordinate their four legs to move forward, and 
the state space is not large. The agents can accomplish 
these tasks after a certain level of learning. However, 
within the MuJoCo setup, agents are prone to losing 
positive rewards due to death, and they only obtain positive 
rewards when they are able to move forward in a healthy 
manner. During the initial stages of training in these two 
environments, our algorithm’s performance is poor due 



Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation   299

to frequent deaths resulting from extensive exploration, 
as shown in Figure 4(a) and Figure 4(b). However, once 
the exploration phase is completed, the agents can easily 
make correct movements in the environment, accomplish 
tasks successfully, and obtain high rewards. In contrast, 
although PPO algorithm tends to be stable but with lower 
average rewards due to inadequate exploration. The ICM 
algorithm focuses on exploration and can surpass PPO 
in terms of average rewards at later stages. However, 
due to its drawbacks, the ICM algorithm fails to properly 
balance between exploration and exploitation, resulting in 
a shortfall in average rewards.

In the Walker2d, Humanoid, and HumanoidStandup 
environments, which mimic human walking and standing, 
each agent has a large number of physically articulated 
connections. This results in an extremely vast state space 

that typically requires extensive training to learn how to 
complete tasks. As shown in Figure 4(c), Figure 4(d), and 
Figure 4(e), the PPO algorithm fails to effectively learn 
information in these three sparse reward environments, 
leading to a continual inability to improve average rewards. 
Due to its exploration capabilities, the ICM algorithm 
exhibits slightly inferior and unstable average rewards and 
even performs lower than PPO in some cases. However, 
our proposed algorithm (using self-balancing exploration 
and exploitation, USEE) effectively utilizes exploration by 
balancing exploration and exploitation strategies in later 
stages. This enables the agents to demonstrate outstanding 
performance with fast learning speed and stability in 
these three environments. As a result, our algorithm can 
fully leverage its capabilities in large-scale sparse reward 
environments for accomplishing the agent’s tasks.

   

                                            (a) Ant                                                                              (b) HalfCheetah

   

                                         (c) Humanoid                                                                (d) HumanoidStandup

(e) Walker2d

Figure 4. Average rewards across different environments
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5  Conclusion and Future Work

The main focus of this study is to address the issue 
of poor learning efficiency of agents in large-scale sparse 
reward environments. Firstly, this work evaluates the 
agent’s progress in environments with vast state spaces and 
shapes rewards based on that progress to guide the agent 
in learning high-reward samples and reduce its interaction 
with the environment. Secondly, to tackle the problem 
of sparse rewards, this work constructs a dual-trajectory 
exploration network. The first part of the network 
calculates the novelty reward value based on the novelty 
of each state, while the second part evaluates the similarity 
between sibling trajectories. By self-balancing exploration 
and exploitation strategies through similarity at opportune 
times for both exploration and exploitation, effective 
exploration near high-reward samples is achieved. In our 
work, enhancing RL algorithms’ performance in large-scale 
sparse reward environments is effectively accomplished by 
learning high-reward samples through shaping the reward 
function and self-balancing exploration and exploitation.

For future work, we will conduct further research 
in the following areas. Firstly, to address the sparse 
reward problem, we will not solely rely on exploration 
to obtain intrinsic rewards, as we will introduce inverse 
RL algorithms to shape more realistic intrinsic rewards 
to facilitate agent learning. Secondly, we plan to utilize 
other neural networks such as convolutional neural 
networks, long short-term memory, and ResNet. Thirdly, 
in the reward function shaping aspect, we intend to use 
more sophisticated approaches to replace the agent’s task 
completion progress.
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