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Abstract

According to the World Health Organization (WHO), 
approximately 285 million people worldwide suffer from 
some form of visual impairment, including 39 million 
who are blind and an additional 246 million experiencing 
severe visual impairment. Existing navigation aids often 
fail to provide a user-centric perspective, relying on 
secondary judgment and leading to inconvenience. High-
tech devices, such as smart glasses and robots, offer more 
effective solutions but are frequently cost-prohibitive. 
This study presents an affordable, first-person perspective 
intelligent navigation backpack for the visually impaired, 
utilizing deep learning. The system integrates RGB 
images and depth maps via alignment algorithms, extracts 
obstacle contours through binary image processing, and 
detects obstacles in real-time using the YOLO model. 
Experimental results demonstrate that the navigation depth 
camera significantly outperforms traditional ultrasonic 
and LiDAR sensors, achieving up to 98% measurement 
accuracy.

Keywords:  Assist ive navigat ion system, Image 
recognition, Deep learning, Image morphology

1  Introduction

The World Health Organization (WHO) reports 
that approximately 285 million people worldwide have 
vision impairments, with 39 million being blind and 246 
million experiencing severe visual impairment. In China, 
around 17 million individuals are visually impaired, of 
which about five million are blind, constituting 18% 
of the global blind population [1]. This large number 
of visually impaired people urgently needs support to 
lead normal lives. To meet this need, researchers have 
developed a variety of navigation aids. Simultaneously, the 
rapid advancement of technology, especially in artificial 
intelligence (AI), has brought significant progress in 
speech and visual recognition, offering new possibilities 
for improving the lives of the disabled.

AI’s capabilities in visual recognition have led to the 

creation of innovative technologies that convert visual 
information into auditory signals, benefiting those with 
limited vision. For example, the combination of Raspberry 
Pi 4B and Convolutional Neural Networks (CNNs) has 
been used for object classification and optical character 
recognition (OCR) [2-3]. Google Glass, with Microsoft 
Azure’s customized visual API service, provides real-
time image-to-speech feedback [4]. A system integrating 
wearable gloves and Android smart devices, equipped 
with cameras and tactile feedback, can inform users 
of environmental details like pedestrian crossings [5]. 
Lightweight neural network models such as YOLO and 
MobileNet, SSD also play a crucial role in quickly and 
accurately recognizing objects in real-time [6].

Speech recognition technology, another key area of AI, 
has also evolved significantly. Starting with the traditional 
Continuous-Time Convolution (CTC) model for speech 
transcription, the field has advanced with the adoption 
of deep learning, especially Recurrent Neural Networks 
(RNNs) and end-to-end (E2E) training frameworks, 
greatly improving transcriber performance [7]. Recent 
advancements in vision transformers (ViTs) and self-
supervised learning have further enhanced obstacle 
detection robustness. Models like Swin Transformer 
and DINOv2 demonstrate superior performance in low-
light and occluded scenarios, offering potential for future 
integration with lightweight YOLO architectures [8-9].

Alongside AI’s progress, sensor application research 
has thrived. Ultrasonic sensors, valued for their non-
contact measurement, low cost, and environmental 
adaptability, have found wide use in obstacle detection, 
object localization, and vehicle positioning [10-13]. 
By introducing improved genetic algorithms in path 
planning, novel ultrasonic sensor array designs, and 
advanced positioning algorithms, it seeks to boost system 
performance in obstacle detection, object localization, 
and vehicle positioning, offering more robust solutions 
for practical use [14-17]. Recent work by Lin et al. 
demonstrated a smartphone-based navigation system using 
ultrasonic sensors and GPS, achieving 90% accuracy in 
obstacle avoidance [18]. 

In the domain of assisting the visually impaired, 
ultrasonic sensors are a popular research focus for safe 
navigation. Systems using these sensors can detect 
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obstacles and warn the visually impaired [19-23]. 
However, challenges like signal interference and inaccurate 
positioning remain, calling for further improvement.

The visually impaired community has limited access 
to innovative guide products due to their low per capita 
income, leading to a lack of research and development. 
Consequently, the available products are both limited 
in variety and expensive. Compared to the widely used 
ultrasonic obstacle avoidance method, this intelligent 
navigation system has overcome technical challenges. 
Traditional ultrasonic obstacle avoidance systems often 
face limitations in achieving a larger monitoring range, 
requiring the addition of multiple ultrasonic sensors 
arranged in an array, with distance measurements typically 
limited to 2-3 meters. This hinders effective obstacle 
recognition and environmental assessment, resulting in 
a bulky system structure. The intelligent guide system 
in this study excludes the traditional ultrasonic detection 
scheme and uses the RGB image and depth map alignment 
algorithm to accurately identify obstacles and the current 
environment. The primary innovative contributions of this 
navigation system are as follows:

1. Based on a first-person perspective navigation 
system, it aligns with individuals’ customary habits 
and does not require specialized learning of operational 
methods, ensuring low usage barriers and practicality.

2. Compared to traditional ultrasonic detection 
methods, it uses a depth camera to effectively recognize 
obstacles and the surrounding environment, with a simple 
system structure and high cost-effectiveness.

3. Leveraging the characteristics of a drone’s first-
person perspective, the software workflow of the 
navigation system is designed. Utilizing multi-sensor data 
fusion technology on drones and advanced algorithms used 
in aerial imaging analysis can more accurately identify 
road signs, pedestrian crossings, public transportation 
facilit ies,  and other elements in the surrounding 
environment.

The remaining sections of this paper are structured 
as follows. Section 2 elaborates on the guide system 
structural design. Section 3 details the proposed algorithms 
including depth image alignment algorithm, image 
morphological processing and YOLO deep network model. 
The simulation results are discussed in Section 4. Lastly, 
Section 5 presents concluding remarks summarizing the 
key findings.

2  Guide System Structural Design

To provide a first-person perspective for the blind, we 
have developed a pioneering guide backpack based on 
robotic learning. It includes a standard backpack, a high-
definition camera, a GPS locator, and a high-frequency 
vibrator, as depicted in Figure 1. The hardware circuit 
integrated into the backpack utilizes an STM32F407VGT6 
microcontroller (STMicroelectronics, 32-bit ARM 
Cortex-M4 core, 168 MHz clock speed) as the core 
hardware controller and facilitates data transmission and 

interaction through various communication methods such 
as serial ports and GPRS, as illustrated in Figure 2.

Figure 1. Structure diagram of the smart assistive blind 
backpack

Figure 2. Hardware circuit embedded in the smart assistive 
blind backpack

The first-person perspective guide system is built 
around an embedded real-time operating system (RTOS) 
and incorporates features like voice announcements, 
GPS/IMU positioning, vibration feedback, and remote 
monitoring, as depicted in Figure 3. The hardware system 
diagram (Figure 3) illustrates the integration of key 
components. The STM32F407VGT6 microcontroller 
(STMicroelectronics) serves as the central processing 
unit, coordinating data from the RGB-D camera (Intel 
RealSense D435i), GPS module (U-blox NEO-M8N), 
and vibration feedback module. The RGB-D camera 
captures synchronized color and depth streams at 30 FPS, 
transmitted via USB 3.0 to the microcontroller. The GPS 
module provides real-time location updates through UART 
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communication, while the vibration motor (Precision 
Microdrives 310-101) generates directional tactile 
feedback based on obstacle proximity.

I n i t i a l l y,  t h e  v o i c e  a n n o u n c e m e n t  m o d u l e 
communicates received information to the embedded 
RTOS, which the STM32 then processes. Simultaneously, 
the STM32 receives data from the GPS/IMU, sending it 
to the RTOS for processing. Once processed, the RTOS 
returns the results to the STM32, which controls the buzzer 
or vibration motor to activate corresponding functions 
based on this data. Additionally, the STM32 transmits 
processed data to the server for remote monitoring and 
management. Meanwhile, a mini-program can retrieve 
relevant information from the server and display it on the 
user interface. 

Figure 3. Hardware system diagram

3  Image Processing Algorithm

A navigation system relies on image processing 
algorithms to ensure the safety and environmental 
perception of visually impaired individuals during 
travel. These algorithms can analyze the real-time 
image information captured by cameras or visual 
sensors. Through a series of technical means, including 
environmental recognition, obstacle detection, and 
edge and color analysis, they accurately assess critical 
information such as pedestrian pathways, traffic signs, 
road conditions, and obstacle positions. This helps visually 
impaired users avoid risks and stay on the correct path. 
Additionally, these algorithms can effectively capture and 
interpret motion states for dynamic scenarios like moving 
people or vehicles, providing timely obstacle warnings. 
Furthermore, by combining advanced image processing 
and machine learning technologies, a navigation system 
can achieve augmented reality assistance. This involves 
converting visual information into auditory or tactile 
feedback, allowing users to “hear” road conditions ahead 
or “sense” changes in direction or obstacle distances. Even 
in indoor environments, image processing algorithms can 
assist visually impaired individuals in precise positioning 
and path planning through methods such as landmark 
recognition, QR codes, or RFID tags. Therefore, applying 
image processing algorithms significantly enhances the 
adaptability, response speed, and multi-functionality 
of navigation systems, providing strong support for the 

independent, safe, and efficient mobility needs of visually 
impaired users in various scenarios.

3.1 RGB Image and Depth Image Alignment Algorithm
Given the different spatial coordinate systems 

corresponding to RGB image data and depth image data, 
where the origin coordinates of RGB images are based 
on RGB cameras and those of depth images originate 
from infrared cameras, a certain degree of error exists 
when integrating and processing these two types of data. 
To address this issue, the system employs the RANSAC 
(RANdom SAmple Consensus) point set alignment 
algorithm for calibration and the process is illustrated in 
Figure 4. This algorithm initially converts the 2D points on 
the depth image to 3D space in a unified world coordinate 
system and then accurately projects these 3D points back 
onto the color image, achieving effective alignment and 
fusion of the two types of image data, with the logical 
relationship depicted in Figure 5.

RANSAC point set alignment algorithm
Input: Point set and maximum tolerance distance
Output: Optimal rigid body transformation T(R, t)
     1 Θ ← ∅, cmax ← 0
     2 repeat
     3 Take 3 pairs of matching points to calculate R and t
     4     Inliers ← ∅, ∀ Ui : ci ← 0
     5     forcach 〈pi , qi〉 ∈ {pi}, {qi} do
     6          if || qi − (R ∙ pi  + t) || < dmax

                              AND | zp− zq | < ζ then
     7              Inliers ← Inliers ∪ {i}
     8              cj ← cj + 1, iff pi  ∈ Uj

     9          end
     10    end

     11    C ← min( , )ci
i

η∑
     12    if C > Cmax then
     13        Θ ← Inliers, cmax ← C
     14    end
     15  until (Iteration > maxIterations)

     16  (R, t) ← 
2arg min ( ( ))

,
M q R p ti i

iR t
⋅ − ⋅ +

∈Θ∑
     17 return (R, t)

Figure 4. RANSAC point set alignment algorithm

Figure 5. Mapping relationship between RGB image and 
depth image
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3.2 Image Morphological Processing
Morphological operations are simple yet effective 

image processing techniques based on the shape features 
of images, typically applied to binarized image data. 
When performing such operations, two key parameters 
are required: the original binarized image to be processed 
and the structuring element or kernel, which determines 
the specific operation mode and characteristics. The two 
fundamental operations in morphology are erosion and 
dilation, and these operations can be combined in various 
ways to derive more complex processes such as opening, 
closing, and gradient operations.

After capturing depth information with the depth 
camera, alignment algorithms were used to extract obstacle 
images from the data. Subsequently, morphological 
processing was employed to optimize and stabilize 
the overall contour of the obstacles. This process 
helps determine the central position and overall size 
of the obstacles and removes redundant and irrelevant 
background information, thus accelerating overall 
computation and processing. To achieve this goal, the 
open-source computer vision library OpenCV was utilized. 

Through a series of morphological operations such as 
boundary detection, dilation, and erosion on the real-time 
RGB video stream data, relatively stable and accurate 
obstacle data were effectively extracted.

3.3 YOLO Deep Network Model
In this study, the YOLOv11 algorithm is adopted for 

obstacle detection in the navigation system, leveraging 
its remarkable real-time object detection capabilities. 
YOLOv11 builds upon the YOLO series by integrating 
a hybrid attention mechanism and adaptive feature 
fusion, enabling improved detection accuracy for multi-
scale objects. Compared to YOLOv5, YOLOv11 reduces 
computational complexity by 15% while maintaining 
comparable precision in real-time scenarios [24-26]. 

YOLOv11 can efficiently handle objects of diverse 
scales with both high accuracy and speed. During the 
implementation, the COCO2014 dataset was utilized, 
and the model was trained for 100 epochs with an initial 
learning rate of 0.002, following the online YOLO 
reference framework. The network structure of YOLOv11, 
illustrated in Figure 6.

       

                   Figure 6. YOLOv11 network structure                               Figure 7. The structure of C3K2 module

The model architecture of YOLOv11 consists of three 
parts: the backbone network, the neck architecture, and 
the head network, collaboratively achieving efficient and 
accurate object detection. At the core of YOLOv11’s 
backbone network is the C3k2 module, an evolution 
of the Cross Stage Partial (CSP) bottleneck introduced 
in earlier versions. The C3k2 module optimizes the 

information flow within the network thanks to its smaller 
kernel convolutions, which, while retaining the basic 
image feature processing capabilities, are faster and have 
lower computational costs compared to larger kernel 
convolutions. The neck architecture connects the backbone 
network with the rest of the system, gathering and 
combining information from different parts of the image. 
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YOLOv11’s neck architecture includes components such 
as the C3k2 module, Spatial Pyramid Pooling-Fast (SPPF) 
module, and the C2PSA mechanism. Among these, the 
SPPF module aims to pool features from different areas 
of the image at various scales, enhancing the network’s 
ability to capture objects of different sizes, especially 
small ones. The C2PSA mechanism embeds a multi-head 
attention mechanism inside the C2 framework, increasing 
the model’s sensitivity and accuracy towards features, 
allowing for more precise capturing of the target’s detailed 
characteristics. YOLOv11 employs multi-scale prediction 
heads to detect objects of varying sizes. By inserting two 
DWConv into the classification detection head, YOLOv11 
significantly reduces the number of parameters and 
computations. The detection heads output predictions on 
three feature maps according to different granularity levels 
in the image to ensure that smaller objects are detected 
with finer details. YOLOv11 introduces the innovative 
C3k2 network architecture and optimized loss function, 
ensuring the accurate capture of tiny and morphologically 
diverse targets, making YOLOv11 an ideal choice for real-
time obstacle detection tasks. The structure of C3K2 is 
illustrated in Figure 7.

4  Experimental Results

This study commenced with the experimental design 
and implementation of image contour extraction and 
obstacle recognition analysis. In the initial phase of the 
experiment, advanced RGB image and depth image 
alignment techniques were employed, successfully 
mapping the two-dimensional information from the 
depth image to the corresponding color image through 
precise algorithms. This ensured seamless integration and 
efficient fusion of the two types of image data. During the 
image preprocessing stage, specialized image extraction 
work was conducted on the obstacle parts and image 
morphological methods to finely process the extracted 
obstacle images. This leads to effectively acquiring clear 
and complete contour features of the obstacles. Various 
types of sample data were collected to further validate the 
accuracy and reliability of the image recognition system, 
and rigorous testing was conducted to assess recognition 
accuracy. Additionally, to investigate the detection depth 
capability of the image recognition system, depth data 
collection work was carried out in various complex 
environments, and thorough comparisons were made with 
field measurement values.

4.1 Image Contour Extraction
Firstly, the alignment algorithm between RGB images 

and depth images transformed the two-dimensional 
points on the depth image into the color image in three-
dimensional space, achieving effective alignment 
and fusion of the two types of image data. Secondly, 
obstacle images were extracted and subjected to image 
morphological processing to obtain the overall contour 

of the obstacles, as shown in Figure 8. The depth camera 
(Intel RealSense D435i) provides 1280×720 depth maps 
with a maximum range of 10 meters. Depth accuracy is 
±2% up to 4 meters, validated through structured light 
calibration. Depth data is fused with RGB via RANSAC 
alignment, enabling pixel-wise correspondence between 
color and depth channels. This integration allows precise 
3D obstacle localization within ±5 cm accuracy in 
controlled environments.

Figure 8. Extraction of obstacles by aligning RGB with 
depth images

4.2 Obstacle Recognition Analysis
To assess image recognition accuracy, 150 sample data 

points were collected and divided into three classes, each 
with 50 samples. The results are presented in Table 1 and 
Figure 9, showing an overall recognition accuracy of over 
94%.

Figure 9. Image recognition effect of intelligent guide 
backpack

To understand the depth detection capability of the 
image recognition system, depth data were collected from 
the camera seven times and were compared with actual 
measurement values. 

To understand the depth detection capability of the 
image recognition system, depth data were collected from 
the camera seven times and were compared with actual 
measurement values. The results indicate that image 
recognition detection not only supports measurement 
operations in complex environments but also has a 
significant advantage in measurement area compared to 
ultrasonic ranging and laser radar ranging. The detection 
depth completion rate is over 98%, as shown in Table 2.
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5  Conclusion

This study successfully designed and implemented a 
blind guide depth camera image recognition system based 
on YOLOv11. Through the alignment algorithm between 
RGB and depth images, the system can effectively fuse 
the two types of image data, enhancing the accuracy 
of obstacle detection. The system extracts the overall 
contour of obstacles using binary image morphological 
processing methods. Additionally, applying YOLOv11 
image processing algorithms further enhances the 
recognition capability of objects ahead. Experimental 
results demonstrate the system’s outstanding performance 
in measurement operations within complex environments, 
with an accuracy of up to 98%, surpassing traditional 
ultrasonic and laser radar ranging methods. The system 
also exhibits a high accuracy rate in image recognition, 
achieving an overall recognition accuracy of over 94% by 
testing 150 sample data points. These results demonstrate 
the effectiveness and practicality of this system in 
assisting visually impaired individuals in daily travel and 
environmental perception. Future research may integrate 
GPS and other positioning technologies to develop more 
intelligent navigation and path-planning functionalities, 
providing visually impaired users with more precise and 
personalized travel guidance.
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