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Abstract

In the manufacturing process involving grinding 
wheels, challenges in fine-tuning grinding machines 
are typically addressed by craftsmen through subjective 
observations of sparks and sounds. However, most 
current anomaly detection methods mainly aim at a 
single modality, whereas existing multimodal methods 
cannot effectively cope with a common issue. To address 
this, this paper introduces an innovative mechanism, 
AI-Based Multimodal Anomaly Detection (AMAD), 
designed to optimize the efficiency and accuracy of 
grinding wheel production lines. The proposed AMAD 
includes data preprocessing and multimodal anomaly 
detection, accurately identifying anomalies in grinding 
wheel operation videos. In the data preprocessing phase, 
the proposed AMAD utilizes Mel Frequency Cepstral 
Coefficients (MFCC) and AutoEncoder for audio 
processing and segmentation for video processing. In the 
multimodal anomaly detection phase, the proposed AMAD 
employs Convolutional Neural Networks (CNN) for audio 
analysis and Convolutional Long Short-Term Memory 
(ConvLSTM) for video analysis. By combining both audio 
and video modalities, the proposed AMAD effectively 
predicts whether the input video represents normal or 
abnormal grinding wheel operations. This multimodal 
approach not only improves the accuracy of anomaly 
detection but also enhances the robustness of the system. 
Simulation results demonstrate that the proposed AMAD 
significantly improves performance in anomaly detection 
in terms of precision, recall, and F1-Score.

Keywords:  MFCC, ConvLSTM, CNN, Anomaly 
Detection

1  Introduction

Anomaly detection in industrial processes is crucial 
for maintaining operational efficiency, safety, and cost-
effectiveness. The detection of abnormal events in 
manufacturing systems, such as grinding wheel operations, 

can prevent significant downtime and equipment damage, 
ensuring the seamless flow of production. Traditionally, 
anomaly detection has relied heavily on manual inspections 
and simple threshold-based methods, which often fail to 
capture complex, nuanced abnormalities within industrial 
environments.

In recent years, the advent of machine learning [1-
3] and deep learning [4-7] techniques have provided 
promising alternatives for automated anomaly detection. 
These methods have demonstrated remarkable capabilities 
in identifying irregularities across various domains by 
analyzing large datasets, extracting relevant features, and 
learning intricate patterns that might indicate abnormal 
behavior. However, many existing approaches [1-7] are 
limited by their reliance on unimodal data, which may 
not fully capture the multi-faceted nature of industrial 
processes, especially in environments where both audio 
and visual signals are informative.

To address these limitations, this paper introduces an 
innovative anomaly detection mechanism for grinding 
wheel operations, called, AMAD. AMAD leverages 
multimodal data by integrating both audio and video 
information to enhance the detection accuracy of abnormal 
operations. It utilizes MFCC [8] and AutoEncoder [9] for 
audio preprocessing and segmentation techniques for video 
preprocessing. It employs CNN [10] for audio analysis 
and ConvLSTM [11-12] for video analysis, combining 
both modalities to accurately classify grinding wheel 
operations as normal or abnormal. This multimodal fusion 
provides a robust solution, significantly outperforming 
traditional methods. The main contributions of the paper 
are summarized as follows:

(1) Utilizing MFC and AutoEncoder to extract 
features of audio: the proposed AMAD utilizes MFCC 
for audio feature extraction and employs AutoEncoder 
for feature learning and dimensionality reduction. This 
advanced audio processing method effectively captures 
key information in the audio data, providing a reliable 
foundation for subsequent anomaly detection.

(2) Integrating both audio and video modalities 
to improve the accuracy of anomaly detection: 
the proposed AMAD combines both audio and video 
modalities, using CNN for audio analysis and ConvLSTM 
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for video analysis. This comprehensive monitoring and 
anomaly detection of grinding wheel operations through 
multimodal data fusion not only improves the accuracy 
of anomaly detection but also enhances the robustness, 
significantly increasing the efficiency and precision of the 
grinding wheel production line.

(3) Dynamically adjusting weights for joint loss 
functions: the proposed AMAD utilizes an adaptive 
training strategy that involves joint optimization of audio 
and video loss functions with dynamic adjustment of 
weight parameters. This approach not only accelerates the 
model’s convergence but also strengthens its adaptability 
and generalization ability to various anomalous situations. 

The remainder of the paper is organized as follows. 
Section 2 reviews and contrasts previous relevant work, 
while Section 3 outlines the assumptions and problem 
descriptions. Section 4 details the proposed AMAD 
mechanism, and Section 5 focuses on the performance 
study. Finally, Section 6 concludes with a summary and 
discussion of future work.

2  Related Work

Recent research in anomaly detection has focused 
on ensuring system reliability, with solutions generally 
categorized into single-modality and multimodal detection.

2.1 Single-Modality Anomaly Detection
Single-modality anomaly detection primarily extracts 

features from a single data source, such as audio or video, 
to identify anomalies [1-7]. These approaches are divided 
into traditional machine learning methods [1-3, 18-19] 
and deep learning techniques [4-7]. Machine learning-
based methods, such as Scudo et al. [1] for audio anomaly 
detection and Wu et al. [3] for unsupervised industrial 
audio detection, often struggle with complex, high-
dimensional data and fail to capture spatial and temporal 
dependencies.

To overcome these limitations, deep learning methods 
have been used to automatically extract spatial features 
via CNNs and model temporal dependencies with LSTMs. 
For example, Jagadeeshwar et al. [4] applied CNN-based 
emotion recognition to audio, while Zou et al. [5] used 
few-shot learning for mechanical anomaly detection. 
Other notable contributions include Kulkarni et al. [6] 
for respiratory anomaly detection and Wang et al. [7] for 
machine sound detection. Despite the notable success of 

these single-modality anomaly detection methods, they 
still face challenges when dealing with complex, multi-
source data environments. Therefore, the proposed AMAD 
explores multimodal anomaly detection methods that 
integrate audio and visual data, aiming to achieve better 
performance across different application scenarios.

2.2 Multimodal Anomaly Detection
While single-modal anomaly detection methods have 

been proven effective, Lee et al. [13] noted that relying on 
a single data source may miss certain anomalies detectable 
through multimodal analysis. Multimodal approaches 
address this by combining data from multiple sources for 
a more comprehensive understanding. For example, Wang 
et al. [14] used multimodal data in microservice systems to 
enhance detection accuracy, though distinguishing between 
normal hard samples and anomalies remained challenging. 
Liu et al. [15] tackled this issue with contrastive learning 
and adversarial training to separate hard samples from 
anomalies, but these methods require extensive labeled 
data, limiting their scalability.

In audio-visual applications, Feng et al. [16] introduced 
a self-supervised video forensics method leveraging 
audio-visual anomaly detection, showcasing the potential 
of multimedia data. Similarly, Gao et al. [17] utilized 
audio-visual representation learning for crowd anomaly 
detection, offering a more holistic solution.

Despite advancements in multimodal approaches, 
challenges remain due to the complexity and heterogeneity 
of multimodal data, including issues with data alignment 
and inter-modal fusion. To overcome these challenges, the 
proposed AMAD employs MFCC and AutoEncoder for 
audio preprocessing and segmentation techniques for video 
alignment. This preprocessing strategy facilitates seamless 
multimodal fusion, ultimately enhancing the accuracy and 
reliability of anomaly detection.

Table 1 compares the proposed AMAD with related 
work. The ‘Method’ column indicates the type of 
mechanism used, while the ‘Modality’ column specifies 
whether the mechanism handles single or multimodal data. 
The ‘Spatial’, ‘Temporal’, and ‘Audio Feature Generation’ 
columns denote whether the mechanism accounts for 
these aspects in its analysis. Compared to related work, 
the proposed AMAD leverages deep learning to process 
multimodal data effectively, integrating spatial and 
temporal features and employing advanced audio feature 
processing techniques for superior anomaly detection.

Table 1. The comparisons of the proposed AMAD and related work

Mechanism Method Modality Spatial Temporal Audio feature generation
[1-3] Machine learning Single ✖ ✖ ✖
[19] Machine learning Single ○ ✖ ✖
[4-5] Machine/ Deep learning Single ○ ✖ ○
[6] Machine/ Deep learning Single ✖ ○ ✖
[7] Machine/ Deep learning Single ○ ○ ✖
[16] Deep learning Multimodal ○ ○ ✖
[17] Deep learning Multimodal ○ ○ ✖
[18] Deep learning Multimodal ○ ○ ✖

AMAD (Ours) Deep learning Multimodal ○ ○ ○
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3  Notations, Assumptions and Problem 
Descriptions

This section introduces the notations, assumptions, 
problem descriptions, and an objective of this paper.

3.1 Notations and Assumptions
Assume that there is a set of n operational videos of 

grinding wheels, denoted by V = {V1, V2, …, Vn}. Each 
video Vi ∈V is divided into two tracks: the image track and 
the audio track, denoted by Ii and Ai, respectively. Let I = 
{I1, I2, …, In} denote a set of images, which capture visual 
information about the grinding process. These images 
are extracted at regular intervals to provide a sequence of 
frames that can be analyzed to detect visual anomalies in 
the grinding operation. 

Similarly, let A = {A1, A2, …, An} denote a set of 
n audios, which records the sound associated with the 
grinding process. By analyzing both the visual and 
auditory data, it becomes possible to accurately identify 
anomalies in the grinding wheel operations.

3.2 Problem Descriptions
This paper leverages a confusion matrix to assess 

the effectiveness of anomaly detection in grinding wheel 
operations. Let I

iy  be a Boolean variable representing the 
ground truth of whether the anomaly can be detected from 
the track Ii. Let ˆ I

iy  denote the prediction of the image track 

Ii by applying mechanism M. The values of I
iy  and ˆ I

iy  can 
be derived by Eqs. (1) and (2), respectively.
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Let A
iy  denote the ground truth of whether the anomaly 

can be detected from the audio track Ai . Let ˆ A
iy  denote the 

prediction of the audio track Ai . The values of A
iy  and ˆ A
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can be derived by Eqs. (3) and (4), respectively.
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Let TP M
i  denote the true positive of the result predicted 

by the mechanism M. That is, for Vi ∈V, the predictions 
of ˆ I

iy  and ˆ A
iy  are both correct. The value of TP M

i can be 
derived by Eq. (5).
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Similarly, let FP M
i and FN M

i denote false positive and 
false negative of the prediction result for the i-th video Vi , 
respectively. The values of FP M

i and FN M
i can be calculated 

by Eqs. (6) and (7), respectively. 
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Let TPM, FPM, and FN M denote true positive, false 
positive, and false negative by applying mechanism M 
for anomaly detection of V, respectively. The values of 
TPM , FPM, and FN M can be calculated by Eqs. (8) to (10), 
respectively.  
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The precision and recall of all Vi∈V, denoted by M  

and M  respectively, can be calculated as follows:

            
M

M
M M
TP

TP FP
=

+


1

 
n

M
i

i

TP
=

=∑
1 1

/
n n

M M
i i

i i

TP FP
= =

 
+  

 
∑ ∑ ,           (11)

            
M

M
M M
TP

TP FN
=

+
  

1

 
n

M
i

i

TP
=

=∑
1 1

/
nn

M M
i i

i i

TP FN
= =

 
 +
 
 
∑ ∑ .           (12)

Let F1M denote F1-score of all Vi ∈  V. The value of 
F1M can be denoted by Exp. (13).
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3.3 Objective
Let Ω denote a set of all possible mechanisms for 

abnormal detection in grinding wheel operations. The 
primary objective of the proposed AMAD is to find the 
best mechanism Mbest which satisfies the Exp. (14).

Objective Function: 

max 1M
best M

M arg F
∈Ω

= .                         (14)

4  The Proposed SMART Mechanism

This paper introduces an innovative anomaly detection 
mechanism for grinding wheel operations, called AMAD. 
AMAD accurately identify abnormal operations in 
grinding wheel operation videos. As illustrated in Figure 1, 
the proposed AMAD consists of two key phases: data pre- 
processing and multimodal anomaly detection.

Figure 1. The architecture of the AMAD mechanism

In the data preprocessing phase, MFCC and an 
AutoEncoder are used for audio processing, while 
segmentation handles video processing, ensuring the data 
is well-prepared for analysis. In the multimodal anomaly 
detection phase, the proposed AMAD employs CNN 
for audio analysis and ConvLSTM for video analysis. 
By combining these two modalities, AMAD effectively 
predicts whether the input video represents normal or 
abnormal grinding wheel operations.

4.1 Data Preprocessing
Given a set of n videos V = {V1, V2, …, Vn}, this phase 

aims to split each grinding wheel operation video Vi∈  V 
into the audio track Ai and image track Ii , followed by 
preprocessing of both tracks. This phase consists of two 
tasks: Audio Preprocessing and Video Preprocessing. The 
Audio Preprocessing utilizes MFCC, and AutoEncoder 
to process the audio data while the Video Preprocessing 
segments each video Ii into fixed-period clips, preparing 
the visual data for further analysis.
4.1.1 The Task of Audio Preprocessing and Feature 
Extraction

This task aims to apply MFCC extraction followed 
by AutoEncoder processing to each audio sample. It 
consists of two steps: MFCC extraction and AutoEncoder 
processing.

(1) MFCC Extraction Step
Let Ai denote the output of MFCC extraction for Ai . 

The value of Ai can be calculated by Eq. (15).

( )( )( ) 2

,logi P M M K K L L N L iD H F w f P Aα× × ×
 

=  
 

⋅ ⋅ A ,

(15)

where Pα(∙) denotes pre-emphasis operation with coefficient 
α. The notation fN,L denotes framing operation, segmenting 
the Ai into N overlapping frames of length L. The wL is 
hamming window function of length L. The FKL(∙) denotes 
Discrete Fourier Transform, converting L time-domain 
samples to K frequency-domain coefficients. Finally, the 
HMK denotes Mel filter bank matrix, containing M filters 
and the DPM denotes Discrete Cosine Transform, used to 
extract P MFCC coefficients.

(2) AutoEncoder Processing Step
Following MFCC extraction, each feature A i is 

further processed through an AutoEncoder model for 
dimensionality reduction and feature learning. Let E(∙) 
and D(∙) denote the encoder and decoder functions of the 
AutoEncoder model, respectively. Let εi denote the output 
of the encoder function, defined as:

( ) ( )·i i e i eE W bσ= = + A A ,                     (16) 

where σ(∙) is a non-linear activation function, We is the 
encoding weight matrix, and be is the encoding bias vector. 
Let Di denote the output of the decoder function. That is 

( ) ( )·i i d i dD W bσ= = +D   ,                (17)
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where Wd is the decoding weight matrix, and bd is the 
decoding bias vector. Let LA (∙) denote the loss function 
of the AutoEncoder, which uses mean squared error. The 
value of LA (∙) can be calculated by Eq. (18).

( ) ( )2
1

1,
n

A i i i i
in
=

= −∑L D A D A ,                  (18)

where n denotes the number of audio tracks. This loss 
function guides the training of the AutoEncoder, ensuring 
that the encoder effectively extracts meaningful features. 
The output Di serves as the input for subsequent audio 
anomaly detection task.
4.1.2 The Task of Video Preprocessing

This task outlines the preprocessing steps applied to 
each video sample, focusing on segmentation processing 
and frame extraction. These procedures ensure uniformity 
across all video samples in the dataset. Recall that I = {I1, 
I2, …, In} denotes a set of video samples. Each video Ii ∈  I 
is processed to a standardized length Lv . The value of Lv is 
determined by the longest video in the dataset, as defined 
in Eq. (19).

( )max
i

v iI
L L I

∀ ∈
=

I ,                              (19)

where L(∙) is a function that returns the length of a given 
video.

For video Ii ∈  I with lengths less than Lv , padding is 
applied to reach the standardized length. Let Vi denote the 
padded version of Ii . The padded video Vi can be expressed 
by Eq. (20).

( )( ),  i i v iI Pad L L I = − V ,                    (20)

where Pad(∙) is a padding function that generates the 
required number of frames to achieve the standardized 
length.

For each standardized video Vi , frames are extracted at 
a constant rate of Nv per second. This process yields a set 
of frames, denoted by Fi = {fi,1, fi,2, …, fi,Lv.Nv}, where each 

frame fi,j ∈Fi is captured at 
v

j
N  seconds into the video Vi . 

That is 

,i j i
v

jf
N

 
=  

 
V .                               (21)

This can ensure uniform sampling across all videos in 
the dataset, facilitating consistent feature extraction and 
subsequent analysis.

4.2 Multimodal Anomaly Detection
This phase aims to utilize CNN and ConvLSTM 

models for detecting anomalies in audio and video 
anomaly, respectively. It is divided into three tasks: audio 

anomaly detection using CNN, video anomaly detection 
using ConvLSTM, and combined multimodal anomaly 
detection.
4.2.1 Task of Audio Anomaly Detection Using CNN

This task aims to detect audio anomalies using CNN. 
Recall that Di is the preprocessed audio features for the 
i-th sample. The CNN model for audio can be represented 
by the function Faudio. That is

( ) ( )( )( )( )1audio i k iFC Conv Pool Conv= …F D D ,    (22)

where Convk(∙) denotes the k-th convolutional layer, Pool(∙) 
denotes the pooling layer, and FC(∙) denotes the fully 
connected layer. Recall that 2A

iy ∈  and 2ˆ A
iy ∈  denote 

the ground truth and prediction for the audio track Ai , 
respectively. This task is mainly for binary classification, 
including normal and abnormal classes. Let Laudio denote 
the loss function for the audio anomaly detection. The 
Laudio is represented by 

( ) ( )
1

1, ogˆ l ˆ
n

A A A A
audio i i i i

i

y y y y
n

=

= − ∑L ,              (23)

where n is the number of audio samples.
4.2.2 Task of Video Anomaly Detection Using 
ConvLSTM

This task aims to utilize ConvLSTM to detect video 
anomalies. Recall that Fi = {fi,1, fi,2, …, fi,Lv.Nv} represents 
the preprocessed video frames for the i-th video Ii . Let 
Fvideo denote the function of the ConvLSTM model for 
video. That is 

( )
( )( )( )( )2 1

video i

k i

F

FC ConvLSTM ConvLSTM ConvLSTM F= …

F
, (24)

where ConvLSTMk(∙) denotes the k-th ConvLSTM layer. 
Recall that 2I

iy ∈  and 2ˆ I
iy ∈  denote the ground truth 

and prediction of the video track Ii , respectively. Let Lvideo 
denote the loss function for the video anomaly detection. 
That is 

( ) ( )
1

1, ogˆ l ˆ
n

I I I I
video i i i i

i

y y y y
n

=

= − ∑L ,                (25)

where n is the number of video samples.
4.2.3 Task of Integrated Multimodal Anomaly Detection

To improve the overall detection performance, this 
task employs integrated multimodal anomaly detection 
by fusing the features or detection results from the audio 
and video models. The final outputs of the audio and video 
models are combined as follows. 

( ) ( )( )·c
i A audio i I video iW W Fσ ⋅= + F D F ,            (26)
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where WA and WI are the weights for the audio and video 
outputs, respectively, and σ is the activation function.

Let 2c
iy ∈  and 2ˆc

iy ∈  denote the ground truth and 
prediction of the integrated audio and video, respectively. 
The predicted label of ˆc

iy  can be derived from Eq. (27).

( )ˆ ·c c
i B i By softmax W b= + ,                      (27)

where WB is the weight for the combined outputs, and bB 
is the bias. Let Lintegrated denote the loss function for the 
combined modal. The value of Lcombined can be derived from 
Eq. (28).

( )
1

1, logˆ
n

c c c
integrated i i i

i

y y y
n

=

= − ∑L ( )ˆc
iy .              (28)

The total loss function Ltotal for training the multimodal 
anomaly detection system is a weighted sum of the 
individual loss functions:

( )1total audio video combinedβ γ β γ= ⋅ + ⋅ + − − ⋅L L L L ,     (29)

where β, and γ are weight coefficients used to balance the 
contributions of the audio and video losses. The objective 
of optimization is to minimize the total loss function. That 
is

min totali∀
L .                                   (30)

Table 2 describes the algorithm of the proposed 
AMAD, consisting of two phases: data preprocessing and 
multimodal anomaly detection. In the data preprocessing 
phase, input videos are separated into audio and image 
tracks. Audio data is feature-extracted using MFCC and 
AutoEncoder, while video data is normalized, and frames 
are extracted. In the multimodal anomaly detection 
phase, CNN processes the audio data, and ConvLSTM 
processes the video data. Theie results are integrated 
for comprehensive detection. The algorithm optimizes 
model parameters by minimizing the total loss function, 
outputting trained audio and video anomaly detection 
models (Fvideo and Faudio ). The proposed AMAD effectively 
combines audio and video information to improve the 
accuracy and robustness of anomaly detection.

Table 2. The algorithm of the proposed AMAD mechanism

Input: V = {V1, V2, …, Vn} 
Output: Fvideo and Faudio 
1. # Data Preprocessing Phase
2. for each video Vi ∈V:
3. Split Vi into audio track Ai and image track Ii .

4. ( )( )( ) 2

,logi P M M K K L L N L iD H F w f P Aα× × ×
 

=  
 

⋅ ⋅ A  # Process Ai using MFCC

5. Di = σ (Wd ∙ σ (We ∙ Ai  + be) + bd)

6. ( )max
i

v iI
L L I

∀ ∈
=

I

7. ( )( ),i i v iI ad L IP L = − V

8. , ,{ , [1, ]}vii i j i j v
v

jF f f j L N
N

 
= = ∈ ⋅ 

 
V

9. end for
10. # Multimodal Anomaly Detection Phase
11. for each pair (Di, Fi):

12. ( ) ( )( )( )( )1ˆ A
i audio i k iy FC Conv Pool Conv= = …F D D  # Audio anomaly detection

13. ( ) ( )( )( )( )2 1ˆ I
i video i k iy F FC ConvLSTM ConvLSTM ConvLSTM F= = …F  # Video anomaly detection

14. ( ) ( )( )( )ˆc
i B A audio i I video i By softmax W W W F bσ= ⋅ ⋅ + ⋅ +F D F  # Integrated detection

15. ( )( )1total audio video combinedi i
min min β γ β γ
∀ ∀

= ⋅ + ⋅ + − − ⋅L L L L  # Minimization total loss

16. end for
17. return Fvideo and Faudio .
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5  Performance Evaluation

This section evaluates the proposed AMAD against 
single-modal methods, such as using CNN for audio and 
ConvLSTM for image recognition in detecting abnormal 
operations of grinding wheels. Relying solely on CNN 
for audio is vulnerable to environmental noise, while 
single-modal data fails to fully capture the characteristics 
of abnormal operations. Similarly, 3DCNN-based image 
recognition overlooks audio features and struggles with 
lighting variations and occlusions. The proposed AMAD 
addresses these issues by integrating both audio and video 
modalities, providing a comprehensive a comprehensive 
understanding of abnormalities and improving detection 
accuracy and robustness. This multimodal fusion approach 
outperforms single-modal methods, especially in complex 
environments.

5.1 Dataset
The evaluation utilizes a custom dataset known as the 

Grinding Wheels dataset, developed in collaboration with 
this study. Figure 2 shows the sample videos from the 
Grinding Wheels dataset. This dataset includes 328 video 
clips, with 175 normal and 153 abnormal operations. The 
dataset is split into 80% for training and 20% for testing.

5.2 Simulation Results
Figure 3 compares the training and validation losses 

across epochs, ranging from 0 to 50. Both the training 
and validation losses decrease and approach stable values 

as the number of epochs increases. This indicates that 
when the number of epochs increases, the model becomes 
more proficient at learning from the training data, leading 
to stabilized performance on the validation data. The 
initial rapid decrease in losses suggests efficient early 
learning, while the later stabilization reflects the model’s 
convergence to an optimal state.

Figure 4 shows the training and validation accuracy 
across 50 epochs, demonstrating significant improvements 
as epochs increase, highlighting the effectiveness of 
AMAD in learning and parameter optimization.

Figure 5(a), Figure 5(b), and Figure 5(c) compare the 
proposed AMAD, video using 3DCNN, and audio using 
CNN in terms of precision, recall, and F1-Score across 
epochs (5–25) and dataset sizes (50–200). All models 
show a common trend that the precision, recall, and F1-
Score increase with the number of epochs. The reason is 
that a higher number of epochs allows the models more 
opportunities to learn and refine their parameters, leading 
to better performance. Additionally, the precision, recall, 
and F1-score also improve as the size of the dataset 
increases. This is because a larger amount of training data 
enhances the models’ learning capacities and enables them 
to more effectively capture the inherent features within the 
dataset. In comparison, the proposed AMAD outperforms 
the other methods due to its use of MFCC for precise 
audio preprocessing and multimodal fusion of audio and 
video data. This approach effectively detects anomalies in 
grinding wheel operations, achieving higher accuracy than 
single-modal methods.

Figure 2. Sample videos from the Grinding Wheels dataset

        

                      Figure 3. The loss of training and validation      Figure 4. The accuracy of training and validation   
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Additionally, to emphasize the effectiveness of the 
proposed AMAD mechanism, Figure 6 employs the 
Friedman Test statistical analysis method to compare 
it with video using 3DCNN and audio using CNN 
mechanisms. The y-axis represents the F1-Score, while 
the x-axis lists these three mechanisms. The results are 
depicted as box plots for each mechanism, facilitating 
a comparison of their performance distributions. The 
Friedman Test yielded a chi-square value of 10.00 and a 
p-value of 0.00674. The p-value is below the conventional 
significance threshold of 0.05, indicating statistically 
significant differences among the three mechanisms. 
As shown in Figure 6, the proposed AMAD mechanism 
outperforms the other two mechanisms, demonstrating 
higher median and overall F1-Score, thus highlighting its 
superior performance in detecting anomalies. 

Figure 6. The results of the Friedman test using different 
mechanisms

Table 3 presents an ablation study on the Grinding 
Wheels dataset to evaluate the effectiveness of each 
module in AMAD, measured by F1-Score. The baseline, 
using only Audio with CNN, achieves an F1-Score 
of 0.561. Adding MFCC improves performance to 
0.652, demonstrating efficient audio feature extraction. 
Incorporating Video with ConvLSTM raises the score to 
0.729, and adding video preprocessing further increases it 
to 0.765. Combining audio and video modalities achieves 
the highest F1-Score of 0.836, highlighting the significant 
advantage of multimodal detection for improved anomaly 
detection accuracy.

Table 3. The ablation study of the proposed AMAD on the 
self-collected dataset

Modules F1-Score
Audio using CNN 0.561

+ MFCC 0.652
+ Video using ConvLSTM 0.729

+ Video preprocessing 0.765
+ Combined multimodal 

detection
0.836

6  Conclusion

This paper presents AMAD, an anomaly detection 
mechanism for grinding wheel operations that leverages 
multimodal data to accurately identify abnormalities 
in operation videos. AMAD preprocesses audio using 
MFCC and AutoEncoder and video through segmentation 
techniques to ensure data readiness. It then analyzes audio 
with CNN and video with ConvLSTM, integrating both 
modalities to effectively classify operations as normal or 
abnormal. The results demonstrate the potential of the 
proposed AMAD to significantly improve the detection of 
abnormalities in industrial processes, offering a promising 
solution for enhancing operational efficiency and safety. 
Future work will focus on optimizing computational 
efficiency for faster processing and enabling real-time 
detection capabilities.
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