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Abstract

In long-text classification tasks, the main issue we 
face is that traditional text classification methods lack 
the capability to analyze complex contextual information 
and implicit semantics, resulting in poor classification 
performance. To address the shortcomings of existing 
long-text classification models—such as poor accuracy, 
low efficiency, inadequate dynamic adjustment, and 
poor threshold adaptability—we propose a Transformer-
based sliding window threshold optimization long-
text classification model. We investigate an automatic 
classification and dynamic partitioning method for long-
text semantic analysis. The approach utilizes context-aware 
fusion of semantic information from long texts to improve 
the accuracy of automated long-text classification. Finally, 
we employ an error feedback mechanism to dynamically 
adjust the classification threshold, achieving optimized 
threshold settings for long-text content classification. The 
experiment shows that this model surpasses the baseline 
model in accuracy and F1 performance on the dataset 
and exhibits good convergence speed, validating its 
effectiveness.

Keywords: Text classification, Transformer, Context-
aware fusion, Threshold optimization, Sliding window

1  Introduction

In the digital age, the volume of text data on the 
internet is exploding, including a vast amount of long-
text information such as news articles, blog posts, forum 
discussions, and comments. These texts may contain 
specific content, such as targeted information or negative 
remarks, which, if not controlled, can have detrimental 
effects on society and individuals. Therefore, effectively 
identifying and classifying specific content from a large 
volume of text has become increasingly important.

Traditional text classification methods mainly rely on 
simple keyword matching or shallow machine learning 
models. While these methods work reasonably well 
for short texts, they often perform poorly with long 

texts, especially those containing complex context and 
implicit semantics. Long texts typically include richer 
information and more complex structures, making it 
difficult to capture deep meanings with keyword matching 
alone. Traditional machine learning models struggle 
with long-distance dependencies and complex contextual 
information. Deep learning methods address issues such 
as intricate feature engineering in traditional algorithms by 
extracting effective low-dimensional dense features from 
high-dimensional sparse text representations, thus better 
handling various complex and challenging tasks [1-2]. 
Deep learning has become one of the primary methods for 
solving complex problems, with algorithms like Recurrent 
Neural Networks (RNNs) [3-5], Long Short-Term 
Memory networks (LSTMs) [6], Self-Attention Networks 
(SANs) [7], Transformers [8], and Bidirectional Encoder 
Representations from Transformers (BERT) [9] widely 
used in natural language processing.

Compared to short text classification, classifying long 
texts such as scientific resources, media articles, web 
information, and literature is more complex. Such texts 
are often composed of multiple sentences or paragraphs, 
containing a large number of words that reflect the text’s 
category features. As the length of the text increases, 
traditional machine learning algorithms and memory-
based models like RNNs struggle to maintain contextual 
information over very long texts. Consequently, some text 
classification models handle long texts by only considering 
fixed-length segments to represent the global text features. 
While this approach is simpler, it overlooks the remaining 
contextual information and cannot extract complete 
semantic features from long texts with uneven distribution 
of meaningful information. To address the issue of long-
distance dependencies and to mine comprehensive 
information from long texts, two classic architectures 
have evolved in long text classification: the Transformer 
architecture and the hierarchical architecture. The core 
of the Transformer architecture is the self-attention 
mechanism [10], which has a time and space complexity 
of O(n2), meaning that as the input sequence length 
increases, the complexity grows geometrically. As a result, 
some Transformer variants focus on optimizing the self-
attention mechanism to reduce the complexity of attention 
calculations for handling long text inputs.
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2  Related Works

Recent advancements in deep learning technology have 
rapidly progressed in text classification. Deng et al. [11] 
proposed an attention-based BiLSTM model that integrates 
CNN and gating mechanisms (ABLG-CNN) for text 
classification. To address sentences that may involve other 
topic information in long texts, they introduced a gating 
mechanism to weight the features output by BiLSTM 
and CNN, aiming to obtain fusion features beneficial for 
classification. Li et al. [12] constructed an LSTM_CNN 
hybrid model for news text classification. It first uses 
LSTM to learn the long-term dependencies of the text, then 
designs a shallow convolutional structure to further extract 
semantic features of the text, and finally applies max-
pooling to filter important features for classification. Mao 
et al. [13] proposed a text classification model based on 
multi-level semantic features. Initially, they incorporated 
category-related coefficients into TF-IDF and frequency 
concentration coefficients into CHI, using an improved 
algorithm to extract keyword semantic features. They then 
used TextCNN to extract local semantic features from 
BiLSTM and pay attention to symmetric channels and 
global semantic information. Finally, they integrated three 
semantic features for text category prediction. Ai et al. 
[14] introduced a heterogeneous attention network method 
based on a multi-semantic transmission framework. They 
designed a flexible heterogeneous information graph to 
model long texts by extracting information, and a multi-
semantic transmission framework capable of extracting 
semantic and structural information from the constructed 
heterogeneous information graph through specific 
structural semantic degrees. Wang et al. [15] proposed 
a domain-specific long-text classification model based 
on knowledge graphs and graph convolutional neural 
networks, which further improves classification accuracy 
by integrating knowledge features and data features. Piao 
et al. [16] proposed a novel GNN-based sparse structure 
learning model for inductive document classification. The 
proposed model outperformed most existing models and 
revealed the necessity of learning sparse structures for 
long text. Jin et al. [17] introduced a new multi-element 
hypergraph gated attention network that achieves accurate 
document classification by capturing word positions and 
multi-element information.

In 2017, A. Vaswani [8] introduced the Transformer 
model to the field of natural language processing, 
achieving better performance than previous models. In 
recent years, a large number of researchers have conducted 
studies on the Transformer model. Wang et al. [18] in 2020 
demonstrated that the random matrices generated by the 
self-attention mechanism can be approximated as low-
rank matrices, leading to a new self-attention mechanism 
with linear time and space complexity. In the same 
year, Beltagy et al. [19] introduced Longformer, which 
designs a dilated sliding window to sparsify the attention 
matrix. Longformer employs a hierarchical architecture, 
performing local attention before global attention, and 
showed excellent performance in text classification. 

Zheng et al. [20] in 2020 proposed a hierarchical network 
structure using Bidirectional Gating Recurrent Units 
(BiGRU), replacing the Transformer structure to model 
local text segment features and extract more expressive 
global text features. The algorithm achieved outstanding 
results in sentiment classification tasks. Khandve et 
al. [21] in 2022 proposed a new hierarchical long-text 
classification algorithm, utilizing LSTM networks to fuse 
BERT output word vectors and extract text features, further 
reducing model parameters. Zhang et al. [22] propose 
a sentiment classification model based on the proposed 
Sliced Bidirectional Gated Recurrent Unit (Sliced Bi-
GRU), Multi-head Self-Attention mechanism, and 
Bidirectional Encoder Representations from Transformers 
embedding. Dai et al. [23] investigated the roles of 
different components in Transformer-based long text 
classification models, applying the pre-training and fine-
tuning paradigm to long text classification. They improved 
sparse attention and hierarchical approaches to optimize 
long text classification. Their proposed model was tested 
on public datasets, demonstrating significant performance 
improvements in long text classification. 

With the advancement of deep learning technology, 
significant progress has been made in text classification 
methods based on deep neural networks. However, 
despite the success of these models in understanding 
text semantics, directly applying them to the automatic 
classification of long texts with specific content still poses 
challenges. On one hand, efficiently processing large-
scale long text data, optimizing the use of computational 
resources, and improving processing speed remain 
technical difficulties. On the other hand, flexibly adjusting 
classification thresholds based on the characteristics of 
long texts to adapt to different text features and improve 
classification accuracy is also an urgent issue that existing 
technologies need to address. Therefore, there is a need 
for an automatic classification and threshold optimization 
method for specific content in long texts that is capable 
of accurate classification, high efficiency, dynamic 
adjustment, and strong threshold adaptability.

3  The Proposed Approach

To address the deficiencies of existing long text 
processing methods, such as poor classification accuracy, 
low efficiency, inadequate dynamic adjustment, and poor 
threshold adaptability, this paper proposes a Transformer-
based sliding window threshold optimization long text 
classification model. The approach utilizes context-aware 
fusion of semantic information from long texts to improve 
the accuracy of automated long-text classification. This 
model builds upon the Transformer framework by adding 
a dedicated classification layer and fine-tuning using 
the cross-entropy loss function. To mitigate the impact 
of noise words in long texts on classification results, a 
semantic purification broadcasting algorithm is introduced. 
Additionally, a sliding window processing algorithm is 
employed to handle long texts in segmented regions. 
To enhance classification accuracy, various influencing 
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factors are considered, and the classification threshold 
is dynamically adjusted. An adaptive error feedback 
mechanism continuously optimizes the adjustment 
factors, allowing the classification threshold to better 
adapt to the actual data distribution and thereby reduce 
the misclassification rate. The framework of the proposed 
approach is shown in Figure 1.

Figure 1. The framework of the proposed approach

3.1 Deep Learning-Based Long Text Semantic Analysis 
Model
To address the complex semantic relationships in 

long texts, we have developed a deep learning-based long 
text semantic analysis model for automatic classification 
of preprocessed long text information data, enabling the 
automatic classification of specific content within long 
texts. This model framework is based on the Transformer 
architecture, serving as the deep learning-based long text 
semantic analysis model.

Initially, existing web scraping tools are used to 
automatically collect long text information data, resulting 
in raw long text information. The raw data is then 
preprocessed to obtain preprocessed long text information 
data. The preprocessing of long text data includes text 
cleaning using regular expressions to obtain cleaned long 
text information data. Subsequently, existing automatic 
language detection technologies are employed to detect 
and filter the language of the cleaned long text information 
data, resulting in filtered long text information data. Using 
current technologies, the data undergoes tokenization, 
stop-word removal, stemming, lemmatization, and 
text vectorization to produce a data format suitable for 
subsequent processing, namely, the preprocessed long text 
information data.

The Transformer model is widely used in text analysis 
tasks due to its ability to capture long-range dependencies. 
It learns general language representations from large 
volumes of text data through pretraining, and then fine-
tunes these representations for specific tasks to obtain a 

deep learning-based long text semantic analysis model. 
The fine-tuning process involves adding a classification 
layer to the Transformer model, where the number of nodes 
in this layer matches the number of categories. A loss 
function, such as cross-entropy loss, is used to generate 
prediction probabilities for each category. These prediction 
probabilities are then compared to thresholds set according 
to expert knowledge and predefined rules. Each text 
sample is automatically classified into the most probable 
category, thereby enabling automatic classification of long 
text information. The transformer model architecture is 
shown in Figure 2.

Figure 2. The transformer-model architecture

To address the issue of noise interference in long texts, 
the Semantic Purification Wave Algorithm is introduced. 
This algorithm dynamically adjusts the weight distribution 
of text data to reduce the impact of noisy data on the final 
classification results. For each text paragraph pi in the 
long text data to be processed, initialize the weight Wi = 1. 
Each paragraph is then evaluated for noise, using regular 
expressions and Natural Language Processing (NLP) tools 
to identify potential noise patterns in the current paragraph. 
Weighted coefficients based on word frequency and word 
position are introduced, and Gaussian kernel density 
estimation is used to calculate the distribution density of 
noise words within the paragraph, which is part of the 
noise scoring ni index calculation:

2

2
1

( )
log(1 exp )

2

M
j

i j
jj

x
n f dx

µ

σ

∞

−∞
=

 −
 = + −
 
 

∑∫            (1)

Here, ni represents the noise score index of text 
paragraph pi ; M is the total number of detected noise 
words in text paragraph pi ; fj denotes the frequency of 
the j-th noise word, indicating the number of occurrences 
of the current noise word in text paragraph pi ; x is a 
positional variable representing the relative position of 
the current noise word within text paragraph pi ; μj is the 
position of noise word j in text paragraph pi ; and σ2

j is the 
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variance used to control the influence range of noise word 
j, thereby affecting the rate at which the weight of noise 
word j changes with its position.

Dynamic weight adjustment of noise words is 
performed. To dynamically adjust the weights while 
considering the information entropy of the paragraph, the 
Beta function is used to combine the noise score index 
with the information entropy, thereby adjusting the weight 
of the current text paragraph:

( )( )' ,

1 i

i i
i n

B n H p
w

e−
=

+
                             (2)

Where w'i is the adjusted weight of text paragraph pi; 
B(x, y) is the Beta function, which combines the noise 
score index ni and the information entropy H(pi) to balance 
the impact of noise and information content; H(pi) is the 
information entropy of text paragraph pi , used to measure 
the uncertainty and diversity of word distribution within 
pi ; and ni is the noise score index, derived from Gaussian 
kernel density estimation.

Reweight the text paragraph data by transforming the 
feature vectors using a polynomial kernel function and 
applying matrix multiplication for weighting:

( ) ( )' '( ) ,T
i i i iv B w V K V V= ⋅ × ⋅                      (3)

Where v'i is the weighted feature vector of text 
paragraph pi , used as input for the deep learning model; 
B is the transformation matrix learned from the data, used 
to extract and emphasize important features; w'i is the 
weight of text paragraph pi ; Vi is the original feature vector 
of text paragraph pi ; K(Vi , V) is the polynomial kernel 
function, used to enhance the relationship between Vi and 
the entire feature set V ; K(Vi, V) = (Vi ∙ V + c)d, where c is 
the free parameter of the polynomial kernel, used to adjust 
the bias of the kernel function; and d is the degree of the 
polynomial, used to control the complexity of the kernel 
function.

This paper effectively captures subtle contextual 
relationships and long-distance dependencies in long 
texts using Transformer-based deep learning models, 
improving the accuracy of automatic classification for 
specific content. By adding a classification layer to the 
Transformer model and fine-tuning it using a cross-entropy 
loss function, the model can flexibly adapt to various 
types and structures of long text data. It performs well 
across different domains and languages. Additionally, the 
introduction of the Semantic Purification Wave Algorithm 
effectively addresses noise issues in long text data. This 
algorithm uses Gaussian kernel density estimation to 
dynamically assess and adjust the impact of noisy words 
within text paragraphs, significantly reducing the negative 
impact of noise on classification accuracy.

3.2 Real-Time Data Stream Processing Algorithm with 
Sliding Window
In the process of automatic classification of specific 

content in long texts, a real-time data stream dynamic 
processing algorithm based on sliding windows is used 
for dynamic regional processing of long text information. 
Additionally, by incorporating a deep context-aware 
attention mechanism, the model enhances its ability to 
understand contextual information in long texts. This 
combination aims to optimize both the efficiency and 
accuracy of the deep learning-based semantic analysis 
model for long text content classification.

In the automatic classification of specific content in 
long texts, a real-time data stream dynamic processing 
algorithm based on sliding windows is used for dynamic 
segmentation of long text information, optimizing the 
efficiency of automatic content classification. First, the 
size and step S of the sliding window W are defined, which 
affect the coverage and overlap of the information data as 
well as the computational load of subsequent processing. 
The size and step S of the sliding window W are adaptively 
adjusted based on the average paragraph length Lavg of the 
text.

avgW Lα= ×                                   (4)

S Wβ= ×                                     (5)

Where α  and  β  are adjustment parameters set 
empirically, used to control the ratio between window size, 
step size, and the average length of the text.

After dynamically adjusting the sliding window W and 
step size S, for a given long text T with length L, the text 
is segmented using the sliding window W with step size 
S to obtain a series of sub-texts Ti. For each segmentation 
point i, a weighting function f(i) is introduced, which 
considers sentence boundaries near the end of the window 
and dynamically adjusts the starting point of the sliding 
window W to reduce cases where sentences are split 
between two windows. The formulas for the starting point 
Pstart(i) and ending point Pend(i) of the i-th sub-text are as 
follows:

( ) ( )startP i i S f i= × +                            (6)

( ) ( )end startP i P i W= +                            (7)

( ) ( )arg min
b B

f i b i S W
∈

= − × +                     (8)

where B is the set of all sentence boundary positions in the 
text; b denotes the positions of all sentence boundaries in 
the text.

3.3 Context-Aware Fusion and Classification Threshold 
Optimization Method Based on Long Texts
The deep context-aware attention mechanism is 

introduced to enhance the ability of deep learning-
based long text semantic analysis models to understand 
contextual information in long texts, optimizing the 
accuracy of automatic classification of specific content 
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within the text. The deep context-aware attention 
mechanism improves the accuracy of long text automatic 
classification by enhancing the model’s understanding 
of contextual information in different parts of the text. 
First, a weighting mechanism based on part-of-speech 
and dependency analysis is introduced to dynamically 
adjust the contextual weight of each word. Then, context-
enhanced embeddings are computed, allowing the model 
to capture fine-grained contextual information. For each 
word wi in the text, with its original embedding represented 
as vi , the context-enhanced embedding Ci is computed as 
follows:

k
i i j i jj k

C v vα +=−
= + ⋅∑                           (9)
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where k is the size of the context window; α∙
j is the 

attention weight of the word at position j in the context, 
reflecting the importance of that word to the current 
word; score(j) is the weighted score calculated based on 
position, part-of-speech, and dependency relations, used 
to dynamically adjust attention weights, enabling the 
model to more accurately capture linguistic features and 
structural information; distance(j) is the relative positional 
distance between the word wi and the word at position j in 
the context; ϵ is a small positive number used to prevent 
division by zero, ensuring stability; and POSweight(j) and 
Dependencyweight(j) are adjustments based on part-of-speech 
and dependency relations, respectively, to enhance the 
model’s perception of grammatical structure.

Introduce a context-sensitive dynamic adjustment 
matrix D, so that the self-attention mechanism can more 
accurately reflect the contextual relationships between 
words when computing attention weights. Specifically, for 
each pair of words (i, j) in the context-sensitive dynamic 
adjustment matrix D, the calculation of dij considers the 
similarity of the contextual embedding representations 
between word i and word j:

( )tanh context T
ij i jd C W C=                        (12)

where dij is the additional attention adjustment amount 
for the i-th word with respect to the j-th word in a specific 
context, and is a context-sensitive dynamic adjustment 
factor; W context is a learnable weight matrix used to adjust 
the similarity calculation between contextual embedding 
representations; Ci and Cj represent the context-enhanced 
embedding representations of the i-th and j-th words, 
respectively.

Furthermore, based on the context-sensitive dynamic 
adjustment matrix D, calculate the dynamic self-attention 
weights as follows:
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

       (13)

where Attention′(∙) represents the deep context-aware 
attention mechanism; Q represents the Query matrix, 
which provides the representation of the current word (or 
subsequence) and is used to match with Keys (K). In self-
attention mechanisms, the role of Q is to find the words (or 
subsequences) that are most relevant to the current word 
(or subsequence). K represents the Key matrix, which 
provides the representation of all words (or subsequences) 
and is used for matching with Queries Q. The purpose of 
K is to provide a searchable representation for each word 
(or subsequence) so that Q can find the most relevant 
content. V represents the Value matrix, which provides the 
representation of all words (or subsequences). When the 
most relevant K is found, the corresponding V will be used 
to compute the final attention output. The presence of V 
allows the model to extract the most useful information 
once relevance has been determined. D is the Dynamic 
Adjustment Matrix; dk represents the dimension of the K 
vector, used to compute the scaling factor kd . The purpose 
of this scaling factor is to control the gradient vanishing 
problem caused by the growing inner product, ensuring the 
stability of training. The softmax normalization function 
is used to convert attention scores into a probability 
distribution. The softmax function outputs a vector of the 
same dimension, with values between 0 and 1, where the 
sum of all components equals 1.

After a layer of self-attention computation, in addition 
to applying the standard LayerNorm normalization and the 
feed-forward network (FFN), an additional context-aware 
fusion layer is introduced:

CAF(Layer) = Layer + γ ∙ Contextual_Enhance(Layer)
(14)

In this, CAF(Layer) is the output of the context-aware 
fusion layer, which combines the original layer’s output 
with context-enhanced representations to strengthen the 
model’s contextual understanding. Layer is the output 
of the current layer, Contextual_Enhance is a function 
defined empirically to enhance context representation 
based on the current layer’s output, and γ is a learnable 
fusion coefficient.

3.4 Adaptive Dynamic Classification Threshold 
Optimization Method
This paper addresses the challenges of processing 

long texts using a dynamic sliding window processing 
algorithm. By segmenting the text into regions, the 
algorithm reduces the computational resources required 
for processing large amounts of data all at once, thereby 
enhancing the efficiency of long text handling. The 
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introduced deep context-aware attention mechanism 
allows the model to more accurately understand complex 
contextual information and details within long texts. 
This is particularly effective in capturing subtle semantic 
differences, thereby improving classification accuracy. The 
Transformer-based model architecture, combined with the 
deep context-aware attention mechanism, enhances the 
model’s ability to capture long-distance dependencies.

In the process of automatically classifying specific 
content in long texts, an adaptive error feedback 
mechanism is used to dynamically adjust the classification 
threshold based on multidimensional influencing factors, 
optimizing the threshold for automatic classification 
of specific content in long texts. The multidimensional 
influencing factors are defined as follows: confidence score 
s, text length L, topic diversity M, sentiment polarity P, 
and text complexity N. The confidence score represents 
the model’s confidence in the presence of specific content 
in the text; text length refers to the number of words or 
characters in the text; topic diversity denotes the number 
or breadth of different topics in the text; sentiment polarity 
indicates the text’s emotional orientation, such as positive 
or negative sentiment; and text complexity reflects the 
structural or content complexity of the text.

Next, the multidimensional influencing factors are 
quantified to obtain the quantitative representation of the 
aforementioned factors:

( ) ( )log 1Lf L L= +                             (15)

( ) ( )logMf M M ε= − +                         (16)

( ) ( )Pf P Pσ=                                 (17)

( )Nf N N=                                (18)

Where, ε is to prevent the small positive number that 
the logarithm function is not defined when M is 0; fL(L) 
represents the quantitative representation of text length L, 
fM(M) represents the quantitative representation of topic 
diversity M, fP(P) represents the quantitative representation 
of emotion polarity P, and fN(N) represents the quantitative 
representation of text complexity N.

According to the quantized representations, define the 
threshold adjustment function T(s, L, D, P, C): 

( ) ( ) ( )
( ) ( )

ˆ, , , ˆ,
ˆˆ

L D

P C

T s L D P C s f L f D

f P f C

α β

γ δ

= + ⋅ + ⋅

+ ⋅ + ⋅
       (19)

where α^ , β^ , γ^, and δ^ are adjustment factors. α^  represents 
the adjustment factor for text length, β^ represents the 
adjustment factor for topic diversity, γ^ represents the 
adjustment factor for sentiment polarity, and δ^ represents 
the adjustment factor for text complexity. These should 
be adjusted according to the specific application scenario. 
Further adaptive adjustments are made through an 

error feedback mechanism. Define the error feedback 
mechanism to dynamically update the aforementioned 
adjustment factors:

ˆˆ
ˆαα η
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∆ = −
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ˆˆ
ˆγγ η
γ
ε∂

∆ = −
∂

                                 (22)
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ˆ

ˆδδ η
δ
ε∂

∆ = −
∂

                                 (23)

where ∆α^ represents the adjustment factor for text length 
after dynamic updating, ∆β^ represents the adjustment factor 
for topic diversity after dynamic updating, ∆γ^ represents 
the adjustment factor for sentiment polarity after dynamic 
updating, and ∆δ^ represents the adjustment factor for text 
complexity after dynamic updating. ηα̂ , ηβ̂  , ηγ̂ , and ηδ̂ are 
the learning rates for each adjustment factor, respectively. 
ε is the classification error rate.

The final dynamic adjustment threshold θ′ is calculated 
as follows:

( ), , , ,T s L D P Cθ θ= +′                         (24)

where θ is the initial threshold, and θ′ is the threshold 
dynamically adjusted after considering multidimensional 
influencing factors.

Through the implementation process described, 
the paper achieves optimization of thresholds in the 
automatic classification of specific content within long 
texts. By considering multiple influencing factors, the 
dynamic adjustment of thresholds allows for more 
precise classification decisions based on the specific 
characteristics of different texts. This enhances the 
flexibility and adaptability of the classification process, 
especially when handling long texts. The adaptive error 
feedback mechanism enables the dynamic updating of 
adjustment factors, achieving continuous optimization of 
classification thresholds. This approach ensures that the 
classification process aligns more closely with the actual 
data distribution, thereby reducing misclassification rates. 
The dynamic adjustment of thresholds based on multi-
dimensional influencing factors helps in more accurately 
identifying specific content, particularly in boundary cases, 
by minimizing false positives and false negatives through 
detailed adjustments.

4  Experiment Analysis

4.1 Dataset
In this paper, three benchmark datasets are used to 
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evaluate the model, namely the 20NG (20newsgroups) 
dataset [24], the MR dataset [25] and Amazon dataset. 
The 20NG dataset is an news dataset consisting of 
approximately 15076 news articles, categorized into 20 
different classes. The MR dataset is a collection of movie 
reviews designed for sentiment binary classification. It 
consists of 10,662 documentst. The Amazon dataset has 
34,657 pieces of product review data, divided into five 
categories. In the experiment, the dataset was divided into 
three groups with an 8:1:1 ratio, where 80% of the data 
was used for training, 10% for validation, and 10% for 
testing.

4.2 Experimental Environment and Parameter 
Configuration
The model in this article is implemented using Python 

3.9 and the PyTorch deep learning framework. During the 
training process, the AdamW optimizer is used for training, 
with a batch size of 8 and a learning rate of 2 × 10-5. The 
early stop strategy has a patch value of 3. The specific 
environment configuration used on the experimental 
platform is shown in Table 1. 

Table 1. Experimental platform configuration

Hardware information Related configuration
Operating system Ubuntu

CPU  Intel Xeon Gold 6240C 
GPU RTX4090
Cuda 12.0

Python 3.9
Pytorch 2.0.1

4.3 Evaluation Metric
This paper uses accuracy and F1 score to measure 

classification performance. Accuracy is a commonly used 
metric in deep learning research, while the F1 score is a 
standard measure for classification tasks. In single-label 
classification results, the outcomes can be categorized into 
True Positives (TP), False Positives (FP), False Negatives 
(FN), and True Negatives (TN). Using these four types of 
results, evaluation metrics for each class can be computed. 
Assume the confusion matrix is shown in Figure 3.

Figure 3. The confusion matrix

This section uses the following common metrics to 
evaluate the model’s performance:

Average Accuracy (avg-Accuracy): In the performance 
evaluation of classification models, accuracy is the most 
common, fundamental, and intuitive metric. Accuracy 
refers to the ratio of the number of correctly classified 
samples to the total number of samples in a binary 
classification problem. For multi-label problems with a 
total of (K) classes, the avg-Accuracy is used to calculate 
the average accuracy across all classes. It is computed 
using the following formula:

1

1 K
i i

i i i ii

TP TN
avg Accuracy

n TP FP TN FN
=

+
− =

+ + +∑        (25)

Average Recall (avg-Recall): In the performance 
evaluation of classification models, recall is an important 
metric that complements accuracy. Recall is used to assess 
the model’s ability to identify TP samples. For multi-label 
problems, avg-Recall is used to compute the average recall 
across all classes. The avg-Recall for a total of (K) classes 
is calculated using the following formula:

1

1 K
i

i ii

TP
avg Recall

n TP FN
=

− =
+∑                   (26)

avg-F1: Higher accuracy and recall generally indicate 
better classification performance, but accuracy and recall 
often present a trade-off in practice. Therefore, neither 
metric alone can fully reflect the model’s classification 
effectiveness. The F1 Score addresses this by combining 
accuracy and recall into a single metric, providing a 
comprehensive measure of model performance. The F1 
Score is the harmonic mean of precision and recall, with 
a higher value indicating better model performance. For 
multi-label problems, avg-F1 is used to compute the 
average F1 Score across all classes. The avg-F1 for a total 
of K classes is calculated using the following formula:

21 micro P micro Pavg F
micro P micro P
× − × −

− =
− + −

              (27)

Here, micro-P represents the average precision, which 
evaluates the proportion of correctly predicted positive 
samples among all positive samples. It is calculated using 
the following formula:

1

1 K
i

i ii

TP
micro P

n TP FP
=

− =
+∑                       (28)

4.4 Experimental Results
4.4.1 Accuracy of Different Algorithms

To evaluate the performance of the proposed model, 
we conducted comparative experiments with other 
models. The comparison included four main types of 
models: (1) word embedding-based models, such as PV-
DBOW and FastText; (2) sequence deep learning models, 
including CNN and BiLSTM; (3) graph neural network-
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based models, including TextSSL [20] and MHGAT [21]; 
and (4) Transformer-based models, including Sliced Bi-
GRU [22] and TrLDC [23]. The benchmark models were 
comprehensively evaluated using the benchmark dataset to 
thoroughly assess the performance and effectiveness of the 
proposed model.

The results in Table 2 indicate that our proposed 
model outperforms other models on 20NG and Amazon 
datasets, and also achieves high accuracy on MR 
Datasets, which further proves the effectiveness and 
robustness of our proposed model in text classification. 
The “-” in the table represents no data. The bold in the 
table indicates the best results of the model. Specifically, 
word embedding models like FastText and PV-DBOW, 
which rely on word embeddings to capture semantic 
similarity, have shown some effectiveness as baseline 
methods. However, our analysis reveals that they have 
limitations in comprehensively capturing the complexity 
and contextual nuances of diverse datasets, as reflected in 
their performance. Sequence deep learning models, such 
as CNN and BiLSTM, demonstrated better performance 
by leveraging the sequential nature of text, particularly 
in capturing context and long-range dependencies within 
text sequences. These findings highlight the importance of 
sequence modeling in text classification tasks. The model 
based on Graph Neural Networks utilizes graph structures 
to capture relationships and contextual information 
between words, demonstrating good performance in 
certain scenarios. However, graph structures may not 
accurately reflect semantic relationships in text data, 
and the generalization ability of Graph Neural Network-
based models might be limited by the graph structure. In 
contrast, Transformer models can more directly capture 
long-distance dependencies and contextual relationships 
through self-attention mechanisms, exhibiting better 
generalization capabilities. Our proposed model shows 
superior performance in capturing the complexity and 
subtle nuances of datasets, indicating its potential in text 
classification tasks.

Table 2. Test accuracy (%) comparison with baselines on 
benchmark datasets

Model 20NG MR Amazon
FastText 50.53 74.15 61.32

PV-DBOW 73.58 60.84 62.08
BiLSTM 71.18 76.21 62.34

CNN 52.34 76.82 63.68
TextSSL 89.50 76.12 -
MHGAT 90.18 77.11 -

Sliced Bi-GRU 87.23 80.48 62.85
TrLDC 85.68 86.14 -

Our 90.61 84.62 65.83

Table 3 shows that our proposed model is effective 
across multiple datasets. It also highlights the model’s 
ability to accurately understand complex contextual 
information and details in long texts, effectively capture 

and utilize key information, and reduce misjudgments 
and missed judgments through careful adjustment of 
classification thresholds.

Table 3. Test avg-F1 score (%) comparison with baselines 
on benchmark datasets

Model 20NG MR Amazon
FastText 52.95 78.12 60.82

PV-DBOW 71.32 58.57 61.88
BiLSTM 75.18 76.18 62.19

CNN 79.85 76.47 62.27
TextSSL 82.87 75.12 -
MHGAT 84.21 78.18 -
Sliced Bi-

GRU 86.83 79.88 62.45

TrLDC 84.90 85.63 -
Our 90.43 84.07 64.41

4.4.2 Optimization of Sliding Window and Step Size for 
Real-Time Data Stream Processing

To find the optimal sliding window and step size 
for the real-time data stream processing algorithm, we 
conducted experiments on the Amazon dataset. The results 
showed that when the sliding window is set to 256 and 
the step size is set to 128, the proposed model achieved 
the best performance. The optimal window and step size 
are illustrated in Table 4. This configuration effectively 
captures key information in the data stream while avoiding 
excessive computation and information loss, thereby 
enhancing the model’s accuracy and efficiency in long text 
classification tasks.

Table 4. Test optimal sliding window and step size on the 
Amazon dataset

Sliding window_step 
size Accuracy (%) avg-F1 (%) 

512_256 63.65 63.87
512_128 62.23 62.14
256_128 65.83 64.41
256_64 62.91 61.30
128_64 62.23 61.93

4.4.3 Convergence Experiment of the Model
To validate the convergence of the proposed model 

during training, one model from each of four types was 
selected and experiments were conducted using the 20NG 
dataset. The model made 10 epochs during training, and 
the loss values were recorded. It is compared with four 
baseline models of FastText, BiLSTM, TextSSL, and 
Sliced Bi-GRU.

As shown in Figure 4, although this model converges 
more slowly than the Sliced Bi-GRU model, its loss value 
is lower than the other four models as the number of 
epochs increases. During the first four epochs, the Sliced 
Bi-GRU baseline model converges the fastest. The model 
used in this study achieves its lowest loss value by the 6th 
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epoch and maintains the lowest loss in subsequent epochs. 
Therefore, after a certain number of epochs, this model 
will demonstrate its advantages.

Figure 4. Loss curves of different models on the training 
set

5  Conclusion

In this paper, we propose a Transformer-based long 
text classification model with sliding window threshold 
optimization. This model incorporates a classification layer 
into the Transformer architecture and fine-tunes it using a 
cross-entropy loss function. We address the impact of noise 
words in paragraphs through the Semantic Purification 
Wave algorithm and process long texts regionally using a 
sliding window approach. Additionally, we dynamically 
adjust the classification threshold considering various 
influencing factors through an adaptive error feedback 
mechanism, which continuously updates the adjustment 
factors. This results in a sustained optimization of the 
classification threshold, making the classification process 
more aligned with the actual data distribution and reducing 
misclassification rates. The model has been validated on 
datasets and compared with existing text classification 
methods. In long text classification tasks, this model 
demonstrates significantly superior performance by 
accurately understanding complex contextual information 
and details in long texts, effectively capturing and utilizing 
key information, and reducing false positives and false 
negatives through precise threshold adjustments.

References

[1]	 M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, U. R. 
Acharya, ABCDM: An attention-based bidirectional CNN-
RNN deep model for sentiment analysis, Future Generation 
Computer Systems, Vol. 115, No. 1, pp. 279-294, February, 
2021.

[2]	 M. G. Huddar, S. S. Sannakki, V. S. Rajpurohit, Correction 
to: Attention-based multimodal contextual fusion for 
sentiment and emotion classification using bidirectional 
LSTM, Multimedia Tools and Applications, Vol. 80, No. 9, 
pp. 13059-13076, April, 2021.

[3]	 I. Sutskever, J. Martens, G. E. Hinton, Generating text 
with recurrent neural networks, Proceedings of the 28th 
international conference on machine learning (ICML-11), 

Bellevue, Washington, 2011, pp. 1017-1024.
[4]	 V. Diaz, W. E. Wong, Z. Chen, Enhancing Deception 

Detection with Exclusive Visual Features using Deep 
Learning, International Journal of Performability 
Engineering, Vol. 19, No. 8, pp. 547-558, August, 2023. 

[5]	 V. Sudha, A. S. Vijendran, OSD-DNN: Oil Spill Detection 
using Deep Neural Networks, International Journal of 
Performability Engineering, Vol. 20, No. 2, pp. 57-67, 
February, 2024. 

[6]	 S. Hochreiter, J. Schmidhuber, Long short-term memory, 
Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 
November, 1997.

[7]	 D. Bahdanau, K. Cho, Y. Bengio, Neural machine 
translation by jointly learning to align and translate, arXiv 
preprint arXiv: 1409.0473, March, 2015. https://arxiv.org/
abs/1409.0473v5

[8]	 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, 
A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you 
need, 31st Conference on Neural Information Processing 
Systems (NIPS 2017), Long Beach, USA, 2017, pp. 30-41.

[9]	 J. Devlin, M. W. Chang, K. Lee, Kristina Toutanova, Bert: 
Pre-training of deep bidirectional transformers for language 
understanding, arXiv preprint arXiv: 1810.04805, May, 
2019. https://arxiv.org/abs/1810.04805v2

[10]	 R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, 
H. Zhang, Y. Lan, L. Wang, T. Liu, On layer normalization 
in the transformer architecture, International Conference 
on Machine Learning, Vienna, Austria, 2020, pp. 10524-
10533.

[11]	 J. Deng, L. Cheng, Z. Wang, Attention-based BiLSTM 
fused CNN with gating mechanism model for Chinese long 
text classification, Computer Speech & Language, Vol. 68, 
Article No. 101182, July, 2021.

[12]	 X. Li, H. Ning, Chinese text classification based on 
hybrid model of CNN and LSTM, Proceedings of the 3rd 
international conference on data science and information 
technology, Xiamen, China, 2020, pp. 129-134.

[13]	 K. Mao, J. Xu, X. Yao, J. Qiu, K. Chi, G. Dai, A text 
classification model via multi-level semantic features, 
Symmetry, Vol. 14, No. 9, Article No. 1938, September, 
2022.

[14]	 W. Ai, Z. Wang, H. Shao, T. Meng, K. Li, A multi-
semantic passing framework for semi-supervised long text 
classification, Applied Intelligence, Vol. 53, No. 17, pp. 
20174-20190, September, 2023.

[15]	 Y. Wang, Y. Wang, H. Hu, S. Zhou, Q. Wang, Knowledge-
Graph-and GCN-Based Domain Chinese Long Text 
Classification Method, Applied Sciences, Vol. 13, No. 13, 
Article No. 7915, July, 2023.

[16]	 Y. Piao, S. Lee, D. Lee, S. Kim, Sparse structure learning 
via graph neural networks for inductive document 
classification, Proceedings of the AAAI conference on 
artificial intelligence, Virtual Event, 2022, pp. 11165-
11173.

[17]	 Y. Jin, W. Yin, H. Wang, F. He, Capturing word positions 
does help: A multi-element hypergraph gated attention 
network for document classification, Expert Systems with 
Applications, Vol. 251, Article No. 124002, October, 2024.

[18]	 S. Wang, B. Z. Li, M. Khabsa, H. Fang, H. Ma, Linformer: 
Self-attention with linear complexity, arXiv preprint arXiv: 
2006.04768, June, 2020. https://arxiv.org/abs/2006.04768

[19]	 I. Beltagy, M. E. Peters, A. Cohan, Longformer: The long-
document transformer, arXiv preprint arXiv: 2004.05150, 
December, 2020. https://arxiv.org/abs/20 04 .05150

[20]	 J. Zheng, J. Wang, Y. Ren, Z. Yang, Chinese Sentiment 
Analysis of Online Education and Internet Buzzwords 



240   Journal of Internet Technology Vol. 26 No. 2, March 2025

Based on BERT, Journal of Physics: Conference Series, 
Vol. 1631, No. 1, Article No. 012034, 2020.

[21]	 S. I. Khandve, V. K. Wagh, A. D. Wani, I. M. Joshi, R. B. 
Joshi, Hierarchical neural network approaches for long 
document classification, 14th International Conference 
on Machine Learning and Computing (ICMLC2022), 
Guangzhou, China, 2022, pp. 115-119.

[22]	 X. Zhang, Z. Wu, K. Liu, Z. Zhao, J. Wang, C. Wu, Text 
sentiment classification based on BERT embedding and 
sliced multi-head self-attention Bi-GRU, Sensors, Vol. 23, 
No. 3, Article No. 1481, February, 2023.

[23]	 X. Dai, I. Chalkidis, S. Darkner, D. Elliott, Revisiting 
Transformer-based  Models  fo r  Long  Document 
Class i f ica t ion ,  Findings  o f  the  Assoc ia t ion  for 
Computational Linguistics: EMNLP 2022, Abu Dhabi, 
United Arab Emirates, 2022, pp. 7212-7230.

[24]	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. 
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, 
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. 
Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine 
learning in python, The Journal of Machine Learning 
Research, Vol. 12, No. 85, pp. 2825-2830, December, 2011.

[25]	 B. Pang, L. Lee, Seeing stars: Exploiting class relationships 
for sentiment categorization with respect to rating scales, 
arXiv preprint arXiv: cs/0506075, June, 2005. https://arxiv.
org/abs/cs/0506075

Biographies

Jin Pan received M.D. degree from 
Be i j ing  Unive r s i ty  o f  Pos t s  and 
Telecommunications (BUPT) in 2011. 
He is currently a senior engineer in 
National Computer Network Emergency 
Response Technical Team/ Coordination 
Center of China (CNCERT/CC). His 
research interests include network 

security and blockchain.

Yang Chen received the Ph.D. degree 
in computer science and technology 
from the Beijing University of Posts 
and Telecommunications (BUPT) in 
2020. He is currently an engineer in the 
National Computer Network Emergency 
Response Technical Team/Coordination 
Center of China (CNCERT/CC). His 

research interests include cryptography, cloud computing 
and information security.

Chunlu Zhao received M.D. degree from Beijing 
University of Posts and Telecommunications (BUPT) 
in 2013. He is currently a senior engineer in National 
Computer Network Emergency Response Technical 
Team/ Coordination Center of China (CNCERT/CC). His 
research interests include cloud computing and artificial 
intelligence.

Yang Liu  r ece ived  M.D.  degree 
from Beijing University of Posts and 
Telecommunications (BUPT) in 2009. 
She is currently a senior engineer in 
National Computer Network Emergency 
Response Technical Team/ Coordination 
Center of China (CNCERT/CC). Her 
research interests include network 

security and information security.

Jie Chu graduated from Shandong 
Technology and Business University. 
He is currently the assistant director 
of Institute of Network Technology 
(Yantai). His main research interests 
include artificial  intell igence and 
information security.


