
Journal of Internet Technology Vol. 26 No. 2, March 2025 219

*Corresponding Author: Yu-Yi Chen; E-mail: chenyuyi@nchu.edu.tw
DOI: https://doi.org/10.70003/160792642025032602007

An Artificial Intelligence Method to Predict Malicious Behavior

Der-Chen Huang1, Chun-Fang Hsiao1, Bo-Kai Liu1, Yu-Yi Chen2*

1 Department of Computer Science and Engineering, National Chung Hsing University, Taiwan
2 Department of Management Information Systems, National Chung-Hsing University, Taiwan

huangdc@nchu.edu.tw, {d108056003, g108056161}@mail.nchu.edu.tw, chenyuyi@nchu.edu.tw

Abstract

With the advancement of technology, more and more
information equipment appear in people’s lives. Up to
date, with the improvement of network technology, the
transmission of information between devices has become
more convenient and faster, and the worries of information
security follow. Although discussion of the information
security of terminal equipment can be an issue, the
information of terminal equipment will eventually be sent
back to the server. Therefore, the research of the intrusion
detection of servers is more fundamental. It is well known
that the appearance of malicious behavior often means
that the system may have been attacked by hackers. Thus,
early detection of malicious behavior plays a vital role
in preventing hackers from intrusion. However, most of
the current known researches tend to focus only on how
the system recognizes the malicious behavior when it is
occurred, but the system cannot predict the occurrence
in advance when the malicious behavior has not been
completed. This research hopes to propose a method
that can predict the appearance of malicious behavior
before the malicious behavior is completed. We propose
a method for predicting malicious behavior, which can
determine whether the behavior is malicious before it is
completed. The method of this research is to construct a
malicious behavior prediction model by GAN (Generative
Adversarial Network). It is based on the malicious
behavior detection model established by the LSTM (Long
Short-Term Memory) model. The experimental results
show that the prediction accuracy of the model is about
83%.

Keywords: Host-Based Intrusion Detection System, Long
Short-Term Memory, Generative Adversarial Network

1 Introduction

In recent years, with the advancement of technology,
people’s lives have become inseparable from the internet.
The global reliance on the internet has intensified due to
the impact of the pandemic. According to statistics from
the International Telecommunication Union (ITU) [1],
the number of individuals using the internet has rapidly
increased from 4.1 billion in 2019 to 5.3 billion users in

the past few years. As society’s dependence on internet
devices continues to grow, information security issues have
emerged in tandem.

According to the Check Point Software 2023 Cyber
Security Report [2], global cyber-attacks increased by
38% in 2022, with organizations facing an average of
1168 attacks per week. It is anticipated that the number of
incidents will continue to rise in 2023.

In the past, most defense approaches involved
collecting data and analyzing semantic vulnerabilities
after an attack occurred [3], and then developing various
anomaly detectors once the dataset was established. Even
many methods have been proposed to improve detection
accuracy [4] and to prevent potential future attacks,
the damage has already been done. Moreover, with the
gradual maturity of artificial intelligence technologies like
ChatGPT, hackers will be able to automatically generate
malicious code and spread it faster on the internet, even
utilizing botnets for dissemination [5]. As a result, effective
prevention measures will become more crucial than
detection.

Traditional Host-Based Intrusion Detection Systems
(HIDS) or Host-Based Intrusion Prevention Systems
(HIPS) tend to focus on post-incident defense. The
difference lies in the fact that traditional HIDS only alerts
users to the occurrence of malicious behavior without
actively preventing it, whereas HIPS not only alerts
users but also takes further action to block the execution
of malicious behavior. Research in accurately detecting
whether a behavior is malicious is crucial, but this research
goes a step further by exploring the accurate prediction
of whether a behavior will develop into a malicious one
in the future. This predictive model aims to discover and
notify users before malicious behavior is completed.
This research draws inspiration from literature [6], which
made contributions to intrusion detection systems (IDS)
regarding dataset imbalances. The referenced method
utilizes the CIC-IDS2017 dataset, addressing the issue of
imbalances in training data. However, the experiments
conducted in [7] with the CIC-IDS2017 dataset often
yielded suboptimal results due to data imbalance. The
attacks in this dataset target the Linux operating system.
To address cross-platform issues, [7] developed an
Intrusion Detection System that works across both Linux
and Windows platforms, specifically focusing on detecting
zero-day attacks.

This research contributes by proposing a Host-Based
Intrusion Prediction System (HIPRS). The system builds

220 Journal of Internet Technology Vol. 26 No. 2, March 2025

upon host-based intrusion detection and introduces a
predictive capability for anticipating malicious behavior.
The architecture of this system is based on Generative
Adversarial Networks (GAN) and employs Long Short-
Term Memory (LSTM) models to establish a malicious
behavior detection system. Through dynamic learning and
training within the GAN framework, the system achieves
the capability to accurately predict malicious behavior.
Training and testing were conducted using the ADFA-
LD dataset, resulting in an average prediction accuracy of
83%.

2 Related Work

2.1 Host-Based Intrusion Detection System (HIDS)
Traditional IDSs are often limited to monitoring and

recording without the capability of active defense and
response. IDSs are situated between the attacking end and
the firewall, enabling monitoring and providing logs for
review and post-incident tracking but lacking real-time
defense capabilities.

The Host-Based Intrusion Detection System (HIDS) is
also a subject of investigation in this research. It primarily
examines and audits system log files for any malicious
behavior. Its advantages lie in its ability to confirm whether
a hacker has intruded and monitor the activities of specific
host systems. However, HIDS has limitations as it can only
view information received by the host that is deployed on,
it is unable to access data from other hosts. Additionally,
HIDS typically provides post-event notifications and
actions, it is lacking real-time prevention of malicious
behavior. It is commonly placed on large hosts within
network switches to better monitor host performance and
promptly detect potential intrusions.

2.2 Australian Defence Force Academy Linux Dataset
ADFA-LD stands for Australian Defence Force

Academy Linux Dataset, which is a dataset collected
from the Australian Defence Force Academy based on
the Linux operating system. This dataset comprises both
malicious and normal behavior data. It contains a total of
5950 records, with 746 records representing malicious
behavior and 5204 records representing normal behavior
[8]. The malicious behavior data is further categorized
into six types of malicious activities: Password bruteforce
FTP by Hydra, Password bruteforce SSH by Hydra, Add
new superuser, Java Based Meterpreter, Linux Meterpreter
Payload, and C100 Webshell.

The main purpose of designing ADFA-LD was the
dissatisfaction of the authors with the existing KDD-99
dataset and UNM dataset [8-9], leading them to create a
new dataset. The KDD-99 dataset had several issues that
have been pointed out in various literature [10-15], with its
age being the most commonly criticized aspect. KDD-99,
short for Knowledge Discovery and Data Mining, was the
dataset used in the 1999 KDD CUP competition, and it was
pre-processed based on the DARPA 1998 DataSet. This

dataset was compiled in 1998 and 1999, it is no longer
adequate to address the current cybersecurity concerns in
the modern network world. Other criticisms of the KDD-
99 dataset include its lack of realism and unsuitability for
training artificial intelligence models. On the other hand,
the UNM dataset’s drawback is its extremely limited
scope.

2.3 Long Short-Term Memory (LSTM)
The architecture of Long Short-Term Memory (LSTM)

model is illustrated in Figure 1. LSTM is a training model
under the umbrella of Deep Learning, commonly used for
training time-related sequential data. It addresses the issues
of vanishing gradient and exploding gradient problems that
occur during the training of Recurrent Neural Networks
(RNN) with long sequences. LSTM is frequently applied
in research related to natural language recognition and
other artificial intelligence fields.

In ADFA-LD, individual actions may appear normal,
but when various actions are combined to form behaviors,
potential threats may arise. The use of LSTM is intended
to detect malicious behaviors that are seemingly harmless
when combined in specific patterns.

Figure 1. LSTM architecture

2.4 Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN) is a type of

unsupervised learning method that involves training two
neural networks in a competitive manner. This approach
was introduced by Ian Goodfellow and his colleagues
in 2014. The two networks, namely the generator and
the discriminator, compete against each other during the
training process. The generator generates fake samples
by sampling from noise, imitating real samples. On the
other hand, the discriminator’s task is to distinguish
between fake samples generated by the generator and
real samples. The training process aims to improve both
models’ accuracy by continuously attempting to deceive
the discriminator and identify the generated fake samples
accurately. Eventually, it results in a generator capable of
creating realistic-looking fake samples and a discriminator
with the ability to discern between real and generated
samples. The typical architecture of a GAN is shown in
Figure 2.

An Artificial Intelligence Method to Predict Malicious Behavior 221

Figure 2. GAN architecture

3 Host-Based Intrusion Prediction
System (HIPRS)

3.1 Method
This section provides a macro perspective of how the

system proceeds from inputting one or multiple behaviors
to predicting whether they are malicious or normal, as
shown in Figure 3. The behaviors enter the HIPRS and are
fed into the pre-trained prediction model. The prediction
model will then generate a risk level prediction for the
ongoing behavior, while the behavior is still in progress.
The predicted risk result is compared to a predefined
threshold value, and if the risk level is higher than the
threshold, it will be classified as “high risk,” prompting the
user to terminate the behavior in advance. If the risk level
is lower than the threshold, it will be classified as “medium
risk” or “low risk,” and the behavior will continue until
it is detected as “high risk” or until the execution is
completed.

Figure 3. Method workflow

3.2 Structure of the System
In this section, we introduce the architecture of the

malicious behavior prediction model. The conceptual
design of this architecture is to first build a model that can
accurately detect malicious behavior and then establish
a model that can accurately predict malicious behavior
based on it. We first use the Long Short-Term Memory
(LSTM) method to train a malicious behavior detection
model. Then, we incorporate this detection model into the
Generative Adversarial Network (GANs) framework to
establish a malicious behavior prediction model, as shown
in Figure 4.

Figure 4. Architecture of the Host-Based intrusion
prediction system

The architecture in Figure 4 is the core framework
of this research. Data is obtained from ADFA-LD and
fed into LSTM to build a malicious behavior detection
model. Using this detection model, danger coefficient
is continuously generated and passed into the generator
model. The generation process will be detailed in the next
section.

After the generator model obtains the danger
coefficient generated by the LSTM model, it continuously
generates prediction results using a proposed algorithm.
These prediction results are then fed into the discriminator
model. The discriminator model compares the prediction
results from the generator model with the actual labels of
ADFA-LD. If the prediction is incorrect, the weights and
parameters in the model are adjusted and sent back to the
generator. If the prediction is correct, further detection
is performed to check if the prediction is earlier than the
previous one. If it is not, the weights and parameters are
changed and sent back to the generator. If it is earlier, the
weights and parameters remain unchanged. It’s essential
to note that this step is specific to one behavior. When
the next behavior enters, the process is repeated, and
the changed weights and parameters will influence the
subsequent predictions.

The inclusion of the “features” input in the generator
part of Figure 4 serves a specific purpose in this research.
It aims to provide an initial understanding of the behavior
entering this model at the beginning of the model training.
In this research, setting up this input is intended to help
the model have a basic awareness of behaviors at the start
of training, giving it a higher starting point for subsequent
training. The model will undergo repetitive training,
continuously improving the generator model’s accuracy in
predicting malicious behavior, and gradually converging
the weight parameters of the discriminator model. When
all behaviors in ADFA-LD have been processed, the
training will be completed.

222 Journal of Internet Technology Vol. 26 No. 2, March 2025

3.3 Train HIDS by LSTM
Before obtaining the malicious behavior prediction

model, it is necessary to first obtain an accurate malicious
behavior detection model. The difference between the
two lies in that the malicious behavior detection model
needs to run the entire behavior to conclude whether it
is a malicious behavior, while the malicious behavior
prediction model can predict whether future behavior
will form malicious behavior without running the entire
behavior. The purpose of setting LSTM is to find the
hidden connections among seemingly unrelated and
normal actions. LSTM helps us to find the relationships
between actions that are not visible to the naked eye.
Inputting a sequence of seemingly unrelated actions, the
system determines whether this combination of actions
is dangerous, and then combines these combinations to
obtain a danger coefficient.

The process of training the malicious behavior
detection model using LSTM is shown in Figure 5. The
first step of the process is to read and split the dataset,
where ADFA-LD is segmented. This research divides
the dataset into a training set and a testing set, with 1409
and 4542 data instances, respectively. Among them, the
training set contains 576 instances of malicious behavior
and 833 instances of normal behavior, while the testing
set contains 170 instances of malicious behavior and
4372 instances of normal behavior. It can be observed
that the testing set and training set do not have a 2:8 ratio
in total instances, which was intentionally designed. The
characteristic of ADFA-LD is to have a small number of
malicious behavior instances and a large number of normal
behavior instances. If a 2:8 ratio is used to split the data
into testing and training sets, the number of malicious
behavior instances in the training set would be too small,
significantly affecting the model’s quality. To ensure the
accuracy of the trained model, it is essential to increase the
number of malicious behavior instances in the training set.
Therefore, the ratio of malicious behavior instances in the
testing set to the training set was chosen to be close to 2:8,
which was also confirmed by the subsequent results.

Figure 5. The workflow of train HIDS

The third step in Figure 5 is model building, which
involves using Multilayer Perceptron (MLP) to assist in

constructing the training model, and the specific parameter
settings are shown in Figure 6. An Embedding layer is
added with 500 neurons in this step, and the output has
32 neurons. To prevent overfitting, a dropout mechanism
is specially introduced in this layer, randomly dropping
20% of neurons in the neural network during each training
iteration. Next, a LSTM layer with 32 neurons is added,
connecting to the output of the previous layer. A hidden
layer with 256 neurons is added, and its activation function
is defined as Relu. Similarly, to prevent overfitting, a
dropout mechanism is set in this hidden layer, randomly
dropping 20% of neurons during each training iteration.
Finally, an output layer with only one neuron is added, and
its activation function is defined as Sigmoid.

Figure 6. MLP parameters setting

After configuring the MLP parameters, the data can be
fed into the model for training. Figure 7 shows the training
progress at 10 epochs. As seen in the right plot of Figure 7,
the loss steadily decreases, while the left plot of Figure 7
shows a steady increase in accuracy.

Figure 7. Trend chart of loss rate and accuracy rate with
epoch

In summary, we have completed the training of
Malicious behavior prediction model using LSTM. Next,
we will proceed to the establishment of the generator
model, which will continue from the detection model and
create a predictive model.

3.4 Generator Model
The generator model is the primary contribution of this

An Artificial Intelligence Method to Predict Malicious Behavior 223

research. It follows the previous LSTM model training
to predict whether a behavior is malicious based on the
danger coefficient output by the detection model.

The reason for incorporating the training of danger
coefficient on top of the existing LSTM instead of
solely using LSTM’s predictive ability is twofold.
Firstly, considering the usage of danger coefficient in
the prediction model involves incorporating reference
to feature values, while the discriminator model using
LSTM does not have this reference. Secondly, the aim is
to utilize the unique mechanism of mutual reinforcement
learning between the generator and discriminator models.
By continuously generating predictions through the
generator and making judgments and feedback through
the discriminator, the accuracy of the generator model’s
predictions can be improved, which cannot be achieved
with LSTM’s architecture alone.

In this section, three variables alpha (α), beta (β),
and gamma (γ) will be introduced, known as weight
parameters. They adjust the mathematical formulation
of the generator model under the GAN framework to
improve prediction accuracy. These weight parameters will
be adjusted in the discriminator and then fed back to the
generator.

Figure 8 depicts Generator algorithm. This algorithm
encompasses the entire process of the generator model
generating predictions, with external algorithm functions
called in lines 15, 16, 18, and 19. Initially, the model will
be given alpha (α), beta (β), and gamma (γ) as weight
parameters. At this point, since the model starts with the
first behavior, α, β, and γ have not undergone adjustments
by the discriminator model.

Figure 8. Generator algorithm

Next, based on the length of the behavior, the window
size is set. The purpose of setting the window is that a
behavior can be lengthy and needs to be divided into
smaller parts. By looking at the danger coefficient of a
specific time point within a window and continuously
shifting the window along the behavior, we can observe
the danger coefficient within the next time point’s window.
This continuous movement of the window allows us
to observe the variations in the danger coefficient. By
studying the patterns of these variations, we can predict
whether a behavior is malicious before it is fully executed.

The design of the window size depends on the size of
a behavior and is divided into three categories: windows
with 50 actions, 100 actions and 500 actions. This design
is based on the statistical findings of ADFA-LD in this
research. There are 320 behaviors with action counts
ranging from 1 to 100, 4248 behaviors with action counts
ranging from 100 to 500, and 1382 behaviors with action
counts larger than 500. The majority of behaviors have
action counts between 100 and 500, so a window size of
100 is designed for this range. The other two ranges, with
smaller numbers of actions, have window sizes of 50 and
500.

Once the window sizes are set, the Generator algorithm
incorporates the danger coefficients obtained by the LSTM
model from the previous section, as shown in formula
(1). As the malicious behavior detection model has been
successfully established in the previous section, the
Generator algorithm uses the output of the LSTM model at
this stage.

()j kD LSTM behavior← (1)

In formula (1), it represents the danger coefficient
at window number j, which refers to the position of the
window as it moves along the behavior, also known as the
current execution time, is the k-th behavior that has been
executed.

Next, we enter a recursive function called Recursive.
In this function, a variable is passed as an argument in the
recursive calls and is passed again with each recursive
generation, as shown in lines 9 to 17 in Figure 8.

The variable represents the cumulative risk level at
time j, which calculates the sum of past, present, and future
risk levels. The logic behind this variable is that to predict
future malicious behavior, we only need to look back at
past risk level data. By incorporating past risk levels, the
present risk level at time j, and predictions of future risk
level trends, along with adjustments and optimizations
based on features, the model can calculate the current
risk level, as shown in formulas (2), (3), (4), and (5). By
comparing the calculated value with a threshold, we can
predict whether future behavior will evolve into malicious
behavior. Therefore, the overall implication is that the
prediction of whether a behavior will evolve into malicious
behavior in the future is determined by the sum of now risk
level, past risk level, future risk level and behavior feature.

j jS D+ = (2)

224 Journal of Internet Technology Vol. 26 No. 2, March 2025

The first step of the recursive function “Recursive” is
to detect whether the entered behavior is the first one, as
shown in line 10 of Figure 8. If it is the first behavior, the
value is directly assigned because there are no previous
“past risk level” and “future risk level” at this point, and
hence we cannot discuss formulas (3), (4), and (5). If it
is not the first behavior, the value is updated by adding
the current risk level’s impact on the overall risk level, as
shown in formula (2).

Next, we add the influence of “past risk level”, as
detailed in formula (3). It is important to note that in
formula (3), the past risk level is calculated recursively by
calling the risk level value at the previous time point, i.e.,
j-1, and so on. At the same time, this value is multiplied
by the proportion of the current execution time to the total
behavior length and then further multiplied by the weight
parameter α, which determines the importance of this value
in the overall risk level.

1() (1)j
j

S j
S

n
α − ∗ −

+ = ∗ (3)

Then, we incorporate the influence of future on the
mathematical model, as shown in formula (4). The weight
parameter β determines the importance of considering
future impact on the current risk level. Future refers to
whether the latest obtained danger coefficient value in the
line chart is trending downward or upward. This research
believes that the latest trend represents the potential
direction of future danger coefficient development.
Hence, increasing the weight parameter β can help the
mathematical model predict the upcoming malicious
behavior at an earlier stage.

()() (())j past j
j

D D j Past j
S

n
β

− ∗ −
+ = ∗ (4)

However, increasing the weight parameter β is not
always better, as excessively raising this weight may lead
to classifying slightly unusual actions in the behavior as
malicious behavior, which should be avoided.

Formula (4) calculates the trend by first searching
for the nearest local maximum or local minimum of the
current danger coefficient in the danger coefficient curve.
Local maximum or minimum values refer to the extremum
values within a limited range, rather than across the entire
range. The function Past(j) calls the Past algorithm, which
finds the value and position of the local maximum or
minimum.

After finding the local maximum and minimum values
in the region, the algorithm then calculates the difference
between the current danger coefficient value and the found
local maximum or minimum, as shown in formula (4) with
Dj- DPast(j) and j- Past(j) respectively. The result is then
multiplied by β, the weight parameter.

In formula (4), the total number of windows, n, is
introduced to calculate the proportion of the difference
between the position Past(j) of the extremum and the
current position j in the entire window count. This

proportion is then multiplied by the difference between the
extremum value (DPast(j)) and the current danger coefficient
value (Dj). This approach is similar to formula (3) and is
intended to limit the influence of attention to trends within
their respective regions. The rationale behind this is that
the impact of a trend should be constrained by its duration,
rather than affecting the overall risk level of the behavior.

After completing the previous steps, the next step is
to incorporate feature values into the model. During the
training phase, the research often encounters situations
where the model’s prediction accuracy curve experiences
significant fluctuations in the early stages of training.
Upon investigation, it was found that the model lacked a
basic understanding of actions within behaviors, leading
to excessively high or low prediction accuracy values.
Therefore, this research aims to be vigilant towards actions
that frequently appear in malicious behaviors from the
beginning of training, distinguishing their risk levels
from other actions and avoiding training with similar risk
levels. The purpose of formula (5) is to help the model
incorporate such features into the training process.

()j jS Feature windowγ+ = ∗ (5)

In formula (5), an external function called Feature
algorithm is invoked. The Feature algorithm conducts a
statistical analysis of all actions occurring within malicious
behaviors based on their frequency of occurrence. When a
window enters this algorithm, it uses a table-like approach
to retrieve the number of occurrences for each action
within the window from the statistical records. Then,
it calculates the ratio of occurrences for each action by
dividing the retrieved values by the total number of actions
in malicious behaviors. By summing up these ratios for all
actions within the window, it derives a danger coefficient
for the window.

The calculated danger coefficient is returned and
then multiplied by the weight parameter γ before being
added back to the overall risk level. This process enables
the model to incorporate the risk contribution of actions
frequently appearing in malicious behaviors during
the training phase and improves the model’s ability to
distinguish between different risk levels among actions.

Finally, the Recursive function either proceeds with the
next recursive calculation or concludes the computation
by returning a value. If the Recursive function has finished
its iterations, the Generator algorithm executes line 18,
normalizing the value to obtain the normalized result as
indicated in formula (6).

Normalize()j jN S= (6)

Normalization refers to scaling all values to the range
of floating-point numbers between 0 and 1. This makes it
easier to set a unified threshold for the risk level because
the risk level may vary based on the size and length of
each behavior. To have a consistent comparison, a unified
threshold is necessary.

An Artificial Intelligence Method to Predict Malicious Behavior 225

Table 1. Risk level threshold

Level Low Medium High
Normalize danger 0-0.33 0.33-0.66 0.66-1

The Decide algorithm determines whether the
normalized risk level obtained from the previous normalize
step corresponds to malicious behavior. Since the risk level
has been normalized, detection is based on the thresholds
specified in Table 1. If the normalized risk level is greater
than 0.66, it is detected as a high-risk behavior. If the
risk level falls between 0.33 and 0.66, it is classified as
a moderate threat. If the risk level is less than 0.33, it is
identified as a low threat.

In the Decide algorithm, the prediction of whether a
behavior will become malicious is based on whether the
normalized risk level exceeds the threshold of 0.66. If
the normalized risk level is higher than 0.66, it will be
classified as malicious behavior. However, if the risk level
is below 0.33, it will be considered normal behavior, and
execution will continue.

It is important to note that if a behavior initially has a
risk level higher than 0.66 but later decreases below the
threshold, it will still be classified as normal behavior and
continue to execute. On the other hand, if a behavior starts
with a risk level below 0.66 but later increases and crosses
the threshold of 0.66, it will be considered malicious
behavior, and the execution will be terminated at the first
occurrence of such situation.

Since no one can predict how a future behavior will
unfold, waiting until the end of the behavior to determine
whether it crossed the threshold of 0.66 would result in
the loss of predictive capability. True prediction involves
making judgments before the behavior is completed, not
after it has already occurred. Waiting until the end of the
behavior and then determining whether it was malicious
or not does not qualify as prediction, as there is no
anticipation involved.

For accurate predictions, the model needs to assess
the risk and classify the behavior as malicious or normal
during its execution, based on the evolving risk levels and
predefined thresholds, rather than relying solely on the
final outcome. This way, the model can provide timely
predictions before the behavior is fully executed.

3.5 Discriminator Model
This section introduces the discriminator model, which

is designed to determine whether the predictions generated
by the generator model are correct and provide feedback
to adjust the weight parameters. Additionally, to enhance
the accuracy of the generator in predicting malicious
behavior, the discriminator model offers corrections when
the generator’s predictions are inaccurate or not perfect
enough.

The internal construction logic of the discriminator
model is illustrated in the tree structure diagram shown in
Figure 9. The top-level node, labeled Predict, represents
the predictions passed in from the generator model. The
second-level nodes detect whether these predictions
are correct. If they are correct, the process proceeds to

the third-level nodes. If the predictions are incorrect,
the weight parameters are updated. In the second-level
nodes, the weight parameters are adjusted by increasing
the β parameter and decreasing the α. The reason for this
adjustment is that prediction errors can occur due to two
possibilities: predicting malicious behavior when it is
actually normal behavior, or predicting normal behavior
when it is actually malicious behavior. Both cases
result from errors in detecting future trends. To improve
prediction accuracy logically, the model needs to prioritize
future trend predictions more while reducing emphasis on
past historical behavior.

Figure 9. The structure of discriminator

Figure 10. Discriminator algorithm

The Discriminator algorithm is shown in the Figure
10. In lines 3 to 5 and 8 to 10, it explains how to increase
or decrease the α, β, and γ values. Additionally, in line 7, it
elaborates on the method of comparing the prediction lead
time of the current prediction with the previous one. This
comparison is not based on absolute time duration but on
the relative proportion of the prediction lead time to the
total behavior duration. Since not all behaviors have the
same duration, directly comparing the prediction lead time
of different behaviors would be unfair.

After completing all the aforementioned processes, the
Discriminator algorithm returns three weight parameters,
α, β, and γ, to the Generator algorithm for the next round
of training.

226 Journal of Internet Technology Vol. 26 No. 2, March 2025

4 Experimental Results

4.1 Training Process
The malicious behavior prediction model is trained

using the ADFA-LD dataset. The training results will be
examined upon completing the last entry of the dataset.
The training process is demonstrated in a specific
sequence. Let’s start with the typical process diagram
where malicious behavior is predicted as malicious, as
shown in Figure 11.

Figure 11. A typical process diagram for malicious
behavior prediction

Figure 11 depicts typical process diagrams encountered
during the training process where malicious behavior is
predicted as malicious. In the left diagram of Figure 11,
the risk level continuously and rapidly increases as the
window j progresses. On the other hand, the right diagram
of Figure 11 shows a scenario where the risk level starts
very high, with values close to 1, from the beginning. In
the left diagram, the behavior’s value exceeds the specified
threshold of 0.66, leading to its prediction as malicious
behavior. In the right diagram, the behavior’s value
consistently remains above the threshold of 0.66, resulting
in it being predicted as malicious behavior as well.

Figure 12 represents a typical process diagram where
normal behavior is predicted as normal. Both behaviors
start with a value of 1 but rapidly decrease over time.
Afterward, their values remain constant, staying close to
0. Since they touch the threshold of 0.66 downwards, both
behaviors are correctly predicted as normal behavior.

Figure 12. A typical process diagram for normal behavior
prediction

Figure 13 is an atypical training process diagram where
the prediction is correct, but the curve shape is relatively
uncommon. The value continuously decreases with the
increase of j until it falls below the threshold of 0.66.
Therefore, the model detects it as normal behavior, which
is confirmed to be correct. However, when the value of j
is approximately 15, the value rises again to around 0.5,

indicating that the model detects the behavior executing
some risky actions. Nonetheless, the increase in value is
not significant enough to cross the threshold of 0.66 again.

Figure 13. A typical training process diagram

Figure 14 shows a process diagram where behavior
prediction fails. The values exhibit a relatively large and
complex fluctuation. At time point A in Figure 14, the
value crosses the threshold of 0.66, causing the model to
detect it as normal behavior. However, at time point B,
the value suddenly rises again, crossing the threshold of
0.66, and ultimately, this behavior is detected as normal
behavior. The model captures the first instance of crossing
the threshold of 0.66 but cannot anticipate the uncertain
future event of crossing again. However, this behavior
actually belongs to malicious behavior, as demonstrated
after time point B. Therefore, this prediction is incorrect.
In summary, the training process diagram was presented.
Next, we introduce the overall prediction accuracy when
the training is completed.

Figure 14. Process diagram of behavior prediction failure

It can be observed that the average accuracy initially
undergoes significant fluctuations in Figure 15. The reason
is that the model’s training data is not yet sufficient. When
there is a prediction error, the average accuracy drops
significantly, and when there is a correct prediction, the
average accuracy increases substantially. Therefore, when
calculating the average accuracy, we only consider the
accuracy values when there is no significant change, which
means discarding the accuracy values during the early
training stages, as shown in Figure 16. At this point, the

An Artificial Intelligence Method to Predict Malicious Behavior 227

average accuracy is 83.64%. It can be observed that the
model’s average accuracy has converged and stabilizes
around 83%, with a slight upward trend.

Figure 15. Average prediction accuracy

Figure 16. Discard the average accuracy map that has not
yet converged

4.2 Performance Discussion
This section is to evaluate and test the performance

of our research method. The metrics involves using the
Accuracy, Precision, Recall, and F1 score indicators for
evaluation. Accuracy refers to the proportion of correctly
detected data in the dataset, including correctly predicting
normal behavior as normal and malicious behavior as
malicious. Precision measures the proportion of truly
malicious data among those detected as malicious. Recall,
on the other hand, is the complement of Precision. It
describes the proportion of truly detected malicious data
among all the malicious data in the dataset. Finally, the F1
score is a harmonic mean of Precision and Recall. Since
both Precision and Recall are desirable to be high, a higher
F1 score indicates better overall performance of the model
in terms of Precision and Recall.

We calculated the impact of each formula on the
overall model performance. First, we evaluated the
contribution of formula (3) to the model’s performance, as
shown in Table 2. Similarly, effect of adding formulas (4)
and (5) to the model’s performance are shown in this table.
We can observe that the Table 2 represents the incremental
addition of formula (3) to formula (5), and the model’s
performance gradually improves. Notably, adding formula
(4) significantly improves the performance compared to

only having formula (3) in the model. This improvement
can be attributed to the model incorporating formula (4)
for predicting future trend. As the primary objective of this
model is to predict malicious behavior, formula (4) plays
a crucial role in aiding the model’s predictions of future
trend.

However, when comparing these results, the overall
improvement in model performance by adding formula
(5) is not substantial. This is because formula (5) mainly
serves to provide guidance to the model in the initial phase
for predicting the direction of behavior, whether it is more
inclined towards malicious or normal behavior. From the
perspective of the entire dataset with all behaviors, the
impact of this formula on overall predictions is minor.
Therefore, when assessing the influence of formulas on
the model’s prediction performance, there is no significant
increase in the values of the four performance metrics.
Finally, when considering all the formulas, the overall
performance values of the model for the four metrics are:
Accuracy (0.836), Precision (0.963), Recall (0.860), and
F1 (0.909).

Table 2. Add formulas (3), (4) and (5) performance test

Metrics
Formulas Accuracy Precision Recall F1

score
Formulas
(2) and (3) 0.785 0.966 0.781 0.864

Formulas
(2), (3) and (4) 0.836 0.963 0.860 0.909

Formulas
(2), (3), (4)

and (5)
0.836 0.963 0.860 0.909

4.3 Literature Comparison and Analysis
Although a series of performance metrics have been

obtained, it is through comparison with other methods that
the effectiveness of this research can be demonstrated.
In this section, several literatures similar to this research
were compared, which may involve similar methodologies
or the use of the same dataset to enhance comparability
among methods. However, these proposed methods don’t
touch the prediction issue. Thus, the following discussion
are based on our method prediction results with comparing
the detection results from other methods.

[16] proposed a method using Cycle-GAN to augment
the dataset, and training an intrusion detection system
with the augmented dataset can increase the accuracy
of detecting malicious behavior. The similarity between
[16] and the method proposed in this research lies in the
use of GAN and the utilization of the ADFA-LD dataset.
However, the difference is that [16] employed Cycle-
GAN for training and used data augmentation to enhance
detection accuracy, unlike this research that utilizes
GAN architecture for training. Additionally, the main
contribution of [16] is to propose a method to augment
the dataset size without improving the existing host-
based malicious intrusion detection system. Therefore,
the accuracy of detecting malicious behavior in [16]

228 Journal of Internet Technology Vol. 26 No. 2, March 2025

is relatively low, at only 64%, which is lower than the
accuracy achieved in this research, which is 83.64%.

In [17], an improvement approach for host-based
intrusion detection systems is proposed. The method
introduced in [17] utilizes semantic analysis to identify
malicious behavior. It analyzes the semantics of malicious
and normal behaviors to find their distinctive features,
which are then stored in a database. When a new behavior
enters the system, it uses the established semantic feature
database to perform a table lookup and determine whether
the behavior is closer to malicious or normal behavior.

In [18], a method utilizing both Generative Adversarial
Network (GAN) and Variational Auto Encoder (VAE) to
augment the dataset is proposed to enhance the accuracy
of detecting malicious behavior. This approach is similar
to the method in [16], as both use dataset augmentation to
improve the accuracy of identifying malicious behavior.
However, the difference lies in the fact that while [16]
employs Cycle-GAN, [18] uses both GAN and VAE. After
training the models using GAN and VAE, [18] compares
the performance of both methods.

Table 3 compares the performance of the GAN method
in [18] with the performance of this research. It can be
observed that this research outperforms [18] in terms of
Precision, indicating that our proposed method is less
likely to predict normal behavior as malicious behavior.
This means that our method can effectively protect the
host system while maintaining system performance. The
F1 score is similar for both methods, but this research is
relatively weaker in terms of accuracy. The reason for
this is that our research is a malicious behavior prediction
system, and predicting behaviors is inherently more
challenging, which may lead to lower accuracy.

In [19], a host-based intrusion detection and defense
system for Android devices was proposed. This system
utilizes the k-means method to classify behaviors into
malicious and normal categories. Table 3 shows the
comparison between the performance of our proposed
method and the method in [19].

It can be observed that our research performs lower in
terms of Accuracy compared to [19], which is consistent
with the comparison with [18] as previously described.
However, our research outperforms [19] in terms of Recall,
indicating better ability to recognize malicious behaviors
compared to [19].

When comparing the performance of our proposed
method with other researches and summarizing the results
in Table 3, it is evident that our research achieves the
best Precision and F1 score. This demonstrates that our
proposed method outperforms other compared studies
in overall performance, with F1 score confirming this
observation. However, it’s worth noting that the other
researches in the table also highlights specific advantages
exhibited by other studies, such as higher Recall value
in [18], indicating its advantage in accurately identifying
malicious behaviors, which is a crucial indicator for host-
based intrusion detection systems.

Table 3. Comparison between this research and other
literatures

Metrics
Research Accuracy Precision Recall F1 score

Our research 0.8364 0.9630 0.8607 0.9090
Research [16] 0.64 0.2809 0.8049 0.4164
Research [18] 0.9 0.9 0.9 0.9
Research [19] 0.9087 0.9765 0.8367 0.8938

Nevertheless, these compared literature do not possess
the ability to predict malicious behavior. Therefore, even
though they might have relative advantages in some
performance metrics, they still cannot compare with the
contribution of our research in early prediction.

5 Conclusions

This research proposes an effective system for
predicting malicious behavior attacks. The system focuses
on host-based intrusion detection and utilizes ADFA-
LD for training and testing. The primary methodology
employed in this research includes LSTM and GAN.
LSTM focuses on establishing an accurate model for host-
based intrusion detection, and based on this model, the
system is developed using the architecture of GAN to
predict the occurrence of malicious behavior. Experimental
results demonstrate that the system achieves an impressive
average prediction accuracy of 83%.

References

[1] International Telecommunication Union, ITU-D ICT
Statistics, ITU Statistics, https://www.itu.int/en/ITU-D/
Statistics/Pages/stat /default.aspx.

[2] Check Point Research Team, 2023 Cyber Security Report,
February, 2023.

[3] S.-T. Ha, S.-S. Hong, M.-M. Han, Malware Detection
Using Semantic Features and Improved Chi-square, Journal
of Internet Technology, Vol. 19, No. 3, pp. 879-887, May,
2018.

[4] L. Zheng, J. Li, H. Wang, X. Zeng, Improving Accuracy
and Automation of Anomaly Detectors Based on Self-
Correlation, Journal of Internet Technology, Vol. 17, No. 1,
pp. 39-51, January, 2016.

[5] Z. Wang, M. Tian, X. Zhang, J. Wang, Z. Liu, C. Jia, I. You,
A hybrid learning system to mitigate botnet concept drift
attacks, Journal of Internet Technology, Vol. 18, No. 6, pp.
1419-1428, November, 2017.

[6] I. Sharafaldin, A.-H. Lashkari, A.-A. Ghorbani, Toward
generating a new intrusion detection dataset and intrusion
traffic characterization, Proceedings of the 4th International
Conference on Information Systems Security and Privacy
ICISSp, Funchal Madeira, Portugal, 2018, pp. 108-116.

[7] G. Creech, Developing a high-accuracy cross platform
Host-Based Intrusion Detection System capable of reliably
detecting zero-day attacks, Ph. D. Thesis, The University of
New South Wales, Sydney, Australia, 2014.

[8] G. Creech, J. Hu, Generation of a new IDS test dataset:
Time to retire the KDD collection, 2013 IEEE wireless
communications and networking conference (WCNC),
Shanghai, P.R. China, 2013, pp. 4487-4492.

An Artificial Intelligence Method to Predict Malicious Behavior 229

[9] G. Creech, J. Hu, A semantic approach to host-based
intrusion detection systems using contiguousand
discontiguous system call patterns, IEEE Transactions on
Computers, Vol. 64, No. 4, pp. 807-819, April, 2014.

[10] C. Brown, A. Cowperthwaite, A. Hijazi, A. Somayaji,
Analysis of the 1999 darpa/lincoln laboratory ids
evaluation data with netadhict, 2009 IEEE Symposium
on Computational Intelligence for Security and Defense
Applications, Ottawa, Canada, 2009, pp. 1-7.

[11] P. Owezarski, A database of anomalous traffic for assessing
profile based IDS, Traffic Monitoring and Analysis: Second
International Workshop, TMA 2010, Zurich, Switzerland,
April 7, 2010. Proceedings 2, Switzerland, Zurich, 2010,
pp. 59-72.

[12] V. Engen, J. Vincent, K. Phalp, Exploring discrepancies in
findings obtained with the KDD Cup’99 data set, Intelligent
Data Analysis, Vol. 15, No. 2, pp. 251-276, April, 2011.

[13] S. Petrovic, G. Alvarez, A. Orfila, J. Carbo, Labelling
clusters in an intrusion detection system using a
combination of clustering evaluation techniques,
Proceedings of the 39th Annual Hawaii International
Conference on System Sciences (HICSS’06), Kauai, Hawaii,
USA, 2006, pp. 129b-129b.

[14] M.-V. Mahoney, P.-K. Chan, An analysis of the 1999
DARPA/Lincoln Laboratory evaluation data for network
anomaly detection, International Workshop on Recent
Advances in Intrusion Detection, Pittsburgh, PA, USA,
2003, pp. 220-237.

[15] J. McHugh, Testing intrusion detection systems: a critique
of the 1998 and 1999 darpa intrusion detection system
evaluations as performed by lincoln laboratory, ACM
Transactions on Information and System Security (TISSEC),
Vol. 3, No. 4, pp. 262-294, November, 2000.

[16] M. Salem, S. Taheri, J.-S. Yuan, Anomaly generation using
generative adversarial networks in host-based intrusion
detection, 2018 9th IEEE Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference
(UEMCON), New York, USA, 2018, pp. 683-687.

[17] M. Anandapriya, B. Lakshmanan, Anomaly based host
intrusion detection system using semantic based system
call patterns, 2015 IEEE 9th International Conference on
Intelligent Systems and Control (ISCO), Coimbatore, India,
2015, pp. 1-4.

[18] Y. Lu, J. Li, Generative adversarial network for improving
deep learning based malware classification, 2019 Winter
Simulation Conference (WSC), National Harbor, MD, USA,
2019, pp. 584-593.

[19] J. Ribeiro, F.-B. Saghezchi, G. Mantas, J. Rodriguez, R.-
A. Abd-Alhameed, Hidroid: prototyping a behavioral
host-based intrusion detection and prevention system for
android, IEEE Access, Vol. 8, pp. 23154-23168, January,
2020.

Biographies

Der-Chen Huang received the BS
degree in e lec t ronic engineer ing
from Fung Chia University, Taiwan,
in 1983, the MS degree in computer
engineering from Florida Institute of
Technology, U.S.A., in 1991, and the
PhD degree in computer engineering
from the Department of Computer

Science and Information Engineering, Chung- Cheng

University, Chiayi, Taiwan, R.O.C. in 2000. From 1983 to
1989, he worked as a design engineer with the Computer
Communication Lab. (CCL)/Industrial Technology
Research Institute (ITRI) and Chung-Shan Institute and
Science of Technology (CSIST) when he was assigned to
a partnership project at General Dynamics, Fort Worth,
Texas, U.S.A. He was an associate professor with the
Department of Electronic Engineering, National Chinyi
Institute of Technology, Taichung, Taiwan, R.O.C. from
1991 to 2004. In 2004, he joined the Department of
Computer Science and Engineering, National Chung
Hsing University, Taichung, Taiwan, R.O.C. He was a
director of Computer and Information Center of Chung
Hsing University from 2007 to 2011. Currently, he is a
professor of Chung Hsing University. Dr. Huang served as
a reviewer for various technical journal and conferences
and a member of editorial board of Journal of Internet
Technology. He received the Best Paper Award from
the 5th International Conference on Future Information
Technology, Korea, in 2010. His research interests include
VLSI design for testability and diagnosis, Artificial
Intelligence, Communication and Medical Image.

Chun-Fang Hsiao received the M.S.
degree in Computer Science and
Engineering from National Chung Hsing
University, Taichung, Taiwan, in 2018.
He is currently pursuing the Ph.D. degree
in Computer Science and Engineering
at National Chung Hsing University,
Taichung, Taiwan. Mr. Hsiao currently

works as an engineer at the Computer Network Center of
National Chung Hsing University, Taichung, Taiwan. His
research interests include Artificial Intelligence, network
security, and embedded system.

Bo-Kai Liu received B.S. degree in
Department of Computer Science
from National Taichung University
of Education, Taichung, Taiwan, and
M.S. degree in Computer Science and
Engineering from National Chung
Hsing University, Taichung, Taiwan, in
2021. Mr. Liu currently work as an IT

manager at Taiwan Judicial Yuan. His research interests
include network security, machine learning and Artificial
Intelligence.

Yu-Yi Chen was born in Kaohsiung,
Taiwan, in 1969. He received the B.S.,
M.S., and Ph.D. in Applied Mathematics
f rom the Na t iona l Chung Hs ing
University in 1991, 1993, and 1998,
respectively. He is presently a professor
of the Department of Management
Information Systems, National Chung

Hsing University. From 2015 to 2023, he was the Director
of the Computer and Information Network Center, National
Chung Hsing University. He is the principal investigator
of the project “Information Security Certification Body”

230 Journal of Internet Technology Vol. 26 No. 2, March 2025

supported from the Ministry of Education, Taiwan. His
research interests include computer cryptography, network
security, and e-commerce.

