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Abstract

With the advancement of technology, more and more 
information equipment appear in people’s lives. Up to 
date, with the improvement of network technology, the 
transmission of information between devices has become 
more convenient and faster, and the worries of information 
security follow. Although discussion of the information 
security of terminal equipment can be an issue, the 
information of terminal equipment will eventually be sent 
back to the server. Therefore, the research of the intrusion 
detection of servers is more fundamental. It is well known 
that the appearance of malicious behavior often means 
that the system may have been attacked by hackers. Thus, 
early detection of malicious behavior plays a vital role 
in preventing hackers from intrusion. However, most of 
the current known researches tend to focus only on how 
the system recognizes the malicious behavior when it is 
occurred, but the system cannot predict the occurrence 
in advance when the malicious behavior has not been 
completed. This research hopes to propose a method 
that can predict the appearance of malicious behavior 
before the malicious behavior is completed. We propose 
a method for predicting malicious behavior, which can 
determine whether the behavior is malicious before it is 
completed. The method of this research is to construct a 
malicious behavior prediction model by GAN (Generative 
Adversarial Network). It is based on the malicious 
behavior detection model established by the LSTM (Long 
Short-Term Memory) model. The experimental results 
show that the prediction accuracy of the model is about 
83%. 
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Short-Term Memory, Generative Adversarial Network

1  Introduction

In recent years, with the advancement of technology, 
people’s lives have become inseparable from the internet. 
The global reliance on the internet has intensified due to 
the impact of the pandemic. According to statistics from 
the International Telecommunication Union (ITU) [1], 
the number of individuals using the internet has rapidly 
increased from 4.1 billion in 2019 to 5.3 billion users in 

the past few years. As society’s dependence on internet 
devices continues to grow, information security issues have 
emerged in tandem.

According to the Check Point Software 2023 Cyber 
Security Report [2], global cyber-attacks increased by 
38% in 2022, with organizations facing an average of 
1168 attacks per week. It is anticipated that the number of 
incidents will continue to rise in 2023.

In the past, most defense approaches involved 
collecting data and analyzing semantic vulnerabilities 
after an attack occurred [3], and then developing various 
anomaly detectors once the dataset was established. Even 
many methods have been proposed to improve detection 
accuracy [4] and to prevent potential future attacks, 
the damage has already been done. Moreover, with the 
gradual maturity of artificial intelligence technologies like 
ChatGPT, hackers will be able to automatically generate 
malicious code and spread it faster on the internet, even 
utilizing botnets for dissemination [5]. As a result, effective 
prevention measures will become more crucial than 
detection.

Traditional Host-Based Intrusion Detection Systems 
(HIDS) or Host-Based Intrusion Prevention Systems 
(HIPS) tend to focus on post-incident defense. The 
difference lies in the fact that traditional HIDS only alerts 
users to the occurrence of malicious behavior without 
actively preventing it, whereas HIPS not only alerts 
users but also takes further action to block the execution 
of malicious behavior. Research in accurately detecting 
whether a behavior is malicious is crucial, but this research 
goes a step further by exploring the accurate prediction 
of whether a behavior will develop into a malicious one 
in the future. This predictive model aims to discover and 
notify users before malicious behavior is completed. 
This research draws inspiration from literature [6], which 
made contributions to intrusion detection systems (IDS) 
regarding dataset imbalances. The referenced method 
utilizes the CIC-IDS2017 dataset, addressing the issue of 
imbalances in training data. However, the experiments 
conducted in [7] with the CIC-IDS2017 dataset often 
yielded suboptimal results due to data imbalance. The 
attacks in this dataset target the Linux operating system. 
To address cross-platform issues, [7] developed an 
Intrusion Detection System that works across both Linux 
and Windows platforms, specifically focusing on detecting 
zero-day attacks.

This research contributes by proposing a Host-Based 
Intrusion Prediction System (HIPRS). The system builds 
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upon host-based intrusion detection and introduces a 
predictive capability for anticipating malicious behavior. 
The architecture of this system is based on Generative 
Adversarial Networks (GAN) and employs Long Short-
Term Memory (LSTM) models to establish a malicious 
behavior detection system. Through dynamic learning and 
training within the GAN framework, the system achieves 
the capability to accurately predict malicious behavior. 
Training and testing were conducted using the ADFA-
LD dataset, resulting in an average prediction accuracy of 
83%.

2  Related Work

2.1 Host-Based Intrusion Detection System (HIDS)
Traditional IDSs are often limited to monitoring and 

recording without the capability of active defense and 
response. IDSs are situated between the attacking end and 
the firewall, enabling monitoring and providing logs for 
review and post-incident tracking but lacking real-time 
defense capabilities.

The Host-Based Intrusion Detection System (HIDS) is 
also a subject of investigation in this research. It primarily 
examines and audits system log files for any malicious 
behavior. Its advantages lie in its ability to confirm whether 
a hacker has intruded and monitor the activities of specific 
host systems. However, HIDS has limitations as it can only 
view information received by the host that is deployed on, 
it is unable to access data from other hosts. Additionally, 
HIDS typically provides post-event notifications and 
actions, it is lacking real-time prevention of malicious 
behavior. It is commonly placed on large hosts within 
network switches to better monitor host performance and 
promptly detect potential intrusions. 

2.2 Australian Defence Force Academy Linux Dataset
ADFA-LD stands for Australian Defence Force 

Academy Linux Dataset, which is a dataset collected 
from the Australian Defence Force Academy based on 
the Linux operating system. This dataset comprises both 
malicious and normal behavior data. It contains a total of 
5950 records, with 746 records representing malicious 
behavior and 5204 records representing normal behavior 
[8]. The malicious behavior data is further categorized 
into six types of malicious activities: Password bruteforce 
FTP by Hydra, Password bruteforce SSH by Hydra, Add 
new superuser, Java Based Meterpreter, Linux Meterpreter 
Payload, and C100 Webshell.

The main purpose of designing ADFA-LD was the 
dissatisfaction of the authors with the existing KDD-99 
dataset and UNM dataset [8-9], leading them to create a 
new dataset. The KDD-99 dataset had several issues that 
have been pointed out in various literature [10-15], with its 
age being the most commonly criticized aspect. KDD-99, 
short for Knowledge Discovery and Data Mining, was the 
dataset used in the 1999 KDD CUP competition, and it was 
pre-processed based on the DARPA 1998 DataSet. This 

dataset was compiled in 1998 and 1999, it is no longer 
adequate to address the current cybersecurity concerns in 
the modern network world. Other criticisms of the KDD-
99 dataset include its lack of realism and unsuitability for 
training artificial intelligence models. On the other hand, 
the UNM dataset’s drawback is its extremely limited 
scope.

2.3 Long Short-Term Memory (LSTM)
The architecture of Long Short-Term Memory (LSTM) 

model is illustrated in Figure 1. LSTM is a training model 
under the umbrella of Deep Learning, commonly used for 
training time-related sequential data. It addresses the issues 
of vanishing gradient and exploding gradient problems that 
occur during the training of Recurrent Neural Networks 
(RNN) with long sequences. LSTM is frequently applied 
in research related to natural language recognition and 
other artificial intelligence fields.

In ADFA-LD, individual actions may appear normal, 
but when various actions are combined to form behaviors, 
potential threats may arise. The use of LSTM is intended 
to detect malicious behaviors that are seemingly harmless 
when combined in specific patterns.

Figure 1. LSTM architecture

2.4 Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN) is a type of 

unsupervised learning method that involves training two 
neural networks in a competitive manner. This approach 
was introduced by Ian Goodfellow and his colleagues 
in 2014. The two networks, namely the generator and 
the discriminator, compete against each other during the 
training process. The generator generates fake samples 
by sampling from noise, imitating real samples. On the 
other hand, the discriminator’s task is to distinguish 
between fake samples generated by the generator and 
real samples. The training process aims to improve both 
models’ accuracy by continuously attempting to deceive 
the discriminator and identify the generated fake samples 
accurately. Eventually, it results in a generator capable of 
creating realistic-looking fake samples and a discriminator 
with the ability to discern between real and generated 
samples. The typical architecture of a GAN is shown in 
Figure 2.
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Figure 2. GAN architecture

3  Host-Based Intrusion Prediction 
System (HIPRS)

3.1 Method
This section provides a macro perspective of how the 

system proceeds from inputting one or multiple behaviors 
to predicting whether they are malicious or normal, as 
shown in Figure 3. The behaviors enter the HIPRS and are 
fed into the pre-trained prediction model. The prediction 
model will then generate a risk level prediction for the 
ongoing behavior, while the behavior is still in progress. 
The predicted risk result is compared to a predefined 
threshold value, and if the risk level is higher than the 
threshold, it will be classified as “high risk,” prompting the 
user to terminate the behavior in advance. If the risk level 
is lower than the threshold, it will be classified as “medium 
risk” or “low risk,” and the behavior will continue until 
it is detected as “high risk” or until the execution is 
completed.

Figure 3. Method workflow

3.2 Structure of the System
In this section, we introduce the architecture of the 

malicious behavior prediction model. The conceptual 
design of this architecture is to first build a model that can 
accurately detect malicious behavior and then establish 
a model that can accurately predict malicious behavior 
based on it. We first use the Long Short-Term Memory 
(LSTM) method to train a malicious behavior detection 
model. Then, we incorporate this detection model into the 
Generative Adversarial Network (GANs) framework to 
establish a malicious behavior prediction model, as shown 
in Figure 4.

Figure 4. Architecture of the Host-Based intrusion 
prediction system

The architecture in Figure 4 is the core framework 
of this research. Data is obtained from ADFA-LD and 
fed into LSTM to build a malicious behavior detection 
model. Using this detection model, danger coefficient 
is continuously generated and passed into the generator 
model. The generation process will be detailed in the next 
section.

After the generator model obtains the danger 
coefficient generated by the LSTM model, it continuously 
generates prediction results using a proposed algorithm. 
These prediction results are then fed into the discriminator 
model. The discriminator model compares the prediction 
results from the generator model with the actual labels of 
ADFA-LD. If the prediction is incorrect, the weights and 
parameters in the model are adjusted and sent back to the 
generator. If the prediction is correct, further detection 
is performed to check if the prediction is earlier than the 
previous one. If it is not, the weights and parameters are 
changed and sent back to the generator. If it is earlier, the 
weights and parameters remain unchanged. It’s essential 
to note that this step is specific to one behavior. When 
the next behavior enters, the process is repeated, and 
the changed weights and parameters will influence the 
subsequent predictions.

The inclusion of the “features” input in the generator 
part of Figure 4 serves a specific purpose in this research. 
It aims to provide an initial understanding of the behavior 
entering this model at the beginning of the model training. 
In this research, setting up this input is intended to help 
the model have a basic awareness of behaviors at the start 
of training, giving it a higher starting point for subsequent 
training. The model will undergo repetitive training, 
continuously improving the generator model’s accuracy in 
predicting malicious behavior, and gradually converging 
the weight parameters of the discriminator model. When 
all behaviors in ADFA-LD have been processed, the 
training will be completed.
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3.3 Train HIDS by LSTM
Before obtaining the malicious behavior prediction 

model, it is necessary to first obtain an accurate malicious 
behavior detection model. The difference between the 
two lies in that the malicious behavior detection model 
needs to run the entire behavior to conclude whether it 
is a malicious behavior, while the malicious behavior 
prediction model can predict whether future behavior 
will form malicious behavior without running the entire 
behavior. The purpose of setting LSTM is to find the 
hidden connections among seemingly unrelated and 
normal actions. LSTM helps us to find the relationships 
between actions that are not visible to the naked eye. 
Inputting a sequence of seemingly unrelated actions, the 
system determines whether this combination of actions 
is dangerous, and then combines these combinations to 
obtain a danger coefficient.

The process of training the malicious behavior 
detection model using LSTM is shown in Figure 5. The 
first step of the process is to read and split the dataset, 
where ADFA-LD is segmented. This research divides 
the dataset into a training set and a testing set, with 1409 
and 4542 data instances, respectively. Among them, the 
training set contains 576 instances of malicious behavior 
and 833 instances of normal behavior, while the testing 
set contains 170 instances of malicious behavior and 
4372 instances of normal behavior. It can be observed 
that the testing set and training set do not have a 2:8 ratio 
in total instances, which was intentionally designed. The 
characteristic of ADFA-LD is to have a small number of 
malicious behavior instances and a large number of normal 
behavior instances. If a 2:8 ratio is used to split the data 
into testing and training sets, the number of malicious 
behavior instances in the training set would be too small, 
significantly affecting the model’s quality. To ensure the 
accuracy of the trained model, it is essential to increase the 
number of malicious behavior instances in the training set. 
Therefore, the ratio of malicious behavior instances in the 
testing set to the training set was chosen to be close to 2:8, 
which was also confirmed by the subsequent results.    

Figure 5. The workflow of train HIDS

The third step in Figure 5 is model building, which 
involves using Multilayer Perceptron (MLP) to assist in 

constructing the training model, and the specific parameter 
settings are shown in Figure 6. An Embedding layer is 
added with 500 neurons in this step, and the output has 
32 neurons. To prevent overfitting, a dropout mechanism 
is specially introduced in this layer, randomly dropping 
20% of neurons in the neural network during each training 
iteration. Next, a LSTM layer with 32 neurons is added, 
connecting to the output of the previous layer. A hidden 
layer with 256 neurons is added, and its activation function 
is defined as Relu. Similarly, to prevent overfitting, a 
dropout mechanism is set in this hidden layer, randomly 
dropping 20% of neurons during each training iteration. 
Finally, an output layer with only one neuron is added, and 
its activation function is defined as Sigmoid.

Figure 6. MLP parameters setting

After configuring the MLP parameters, the data can be 
fed into the model for training. Figure 7 shows the training 
progress at 10 epochs. As seen in the right plot of Figure 7, 
the loss steadily decreases, while the left plot of Figure 7 
shows a steady increase in accuracy.

Figure 7. Trend chart of loss rate and accuracy rate with 
epoch

In summary, we have completed the training of 
Malicious behavior prediction model using LSTM. Next, 
we will proceed to the establishment of the generator 
model, which will continue from the detection model and 
create a predictive model.

3.4 Generator Model
The generator model is the primary contribution of this 
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research. It follows the previous LSTM model training 
to predict whether a behavior is malicious based on the 
danger coefficient output by the detection model.

The reason for incorporating the training of danger 
coefficient on top of the existing LSTM instead of 
solely using LSTM’s predictive ability is twofold. 
Firstly, considering the usage of danger coefficient in 
the prediction model involves incorporating reference 
to feature values, while the discriminator model using 
LSTM does not have this reference. Secondly, the aim is 
to utilize the unique mechanism of mutual reinforcement 
learning between the generator and discriminator models. 
By continuously generating predictions through the 
generator and making judgments and feedback through 
the discriminator, the accuracy of the generator model’s 
predictions can be improved, which cannot be achieved 
with LSTM’s architecture alone.

In this section, three variables alpha (α), beta (β), 
and gamma (γ) will be introduced, known as weight 
parameters. They adjust the mathematical formulation 
of the generator model under the GAN framework to 
improve prediction accuracy. These weight parameters will 
be adjusted in the discriminator and then fed back to the 
generator.

Figure 8 depicts Generator algorithm. This algorithm 
encompasses the entire process of the generator model 
generating predictions, with external algorithm functions 
called in lines 15, 16, 18, and 19. Initially, the model will 
be given alpha (α), beta (β), and gamma (γ) as weight 
parameters. At this point, since the model starts with the 
first behavior, α, β, and γ have not undergone adjustments 
by the discriminator model.

Figure 8. Generator algorithm

Next, based on the length of the behavior, the window 
size is set. The purpose of setting the window is that a 
behavior can be lengthy and needs to be divided into 
smaller parts. By looking at the danger coefficient of a 
specific time point within a window and continuously 
shifting the window along the behavior, we can observe 
the danger coefficient within the next time point’s window. 
This continuous movement of the window allows us 
to observe the variations in the danger coefficient. By 
studying the patterns of these variations, we can predict 
whether a behavior is malicious before it is fully executed.

The design of the window size depends on the size of 
a behavior and is divided into three categories: windows 
with 50 actions, 100 actions and 500 actions. This design 
is based on the statistical findings of ADFA-LD in this 
research. There are 320 behaviors with action counts 
ranging from 1 to 100, 4248 behaviors with action counts 
ranging from 100 to 500, and 1382 behaviors with action 
counts larger than 500. The majority of behaviors have 
action counts between 100 and 500, so a window size of 
100 is designed for this range. The other two ranges, with 
smaller numbers of actions, have window sizes of 50 and 
500.

Once the window sizes are set, the Generator algorithm 
incorporates the danger coefficients obtained by the LSTM 
model from the previous section, as shown in formula 
(1). As the malicious behavior detection model has been 
successfully established in the previous section, the 
Generator algorithm uses the output of the LSTM model at 
this stage.

( )j kD LSTM behavior←                         (1)

In formula (1), it represents the danger coefficient 
at window number j, which refers to the position of the 
window as it moves along the behavior, also known as the 
current execution time, is the k-th behavior that has been 
executed.

Next, we enter a recursive function called Recursive. 
In this function, a variable is passed as an argument in the 
recursive calls and is passed again with each recursive 
generation, as shown in lines 9 to 17 in Figure 8.

The variable represents the cumulative risk level at 
time j, which calculates the sum of past, present, and future 
risk levels. The logic behind this variable is that to predict 
future malicious behavior, we only need to look back at 
past risk level data. By incorporating past risk levels, the 
present risk level at time j, and predictions of future risk 
level trends, along with adjustments and optimizations 
based on features, the model can calculate the current 
risk level, as shown in formulas (2), (3), (4), and (5). By 
comparing the calculated value with a threshold, we can 
predict whether future behavior will evolve into malicious 
behavior. Therefore, the overall implication is that the 
prediction of whether a behavior will evolve into malicious 
behavior in the future is determined by the sum of now risk 
level, past risk level, future risk level and behavior feature.

j jS D+ =                                    (2)
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The first step of the recursive function “Recursive” is 
to detect whether the entered behavior is the first one, as 
shown in line 10 of Figure 8. If it is the first behavior, the 
value is directly assigned because there are no previous 
“past risk level” and “future risk level” at this point, and 
hence we cannot discuss formulas (3), (4), and (5). If it 
is not the first behavior, the value is updated by adding 
the current risk level’s impact on the overall risk level, as 
shown in formula (2).

Next, we add the influence of “past risk level”, as 
detailed in formula (3). It is important to note that in 
formula (3), the past risk level is calculated recursively by 
calling the risk level value at the previous time point, i.e., 
j-1, and so on. At the same time, this value is multiplied 
by the proportion of the current execution time to the total 
behavior length and then further multiplied by the weight 
parameter α, which determines the importance of this value 
in the overall risk level.

1( ) ( 1)j
j

S j
S

n
α − ∗ −

+ = ∗                          (3)

Then, we incorporate the influence of future on the 
mathematical model, as shown in formula (4). The weight 
parameter β determines the importance of considering 
future impact on the current risk level. Future refers to 
whether the latest obtained danger coefficient value in the 
line chart is trending downward or upward. This research 
believes that the latest trend represents the potential 
direction of future danger coefficient development. 
Hence, increasing the weight parameter β can help the 
mathematical model predict the upcoming malicious 
behavior at an earlier stage.

( )( ) ( ( ))j past j
j

D D j Past j
S

n
β

− ∗ −
+ = ∗              (4)

However, increasing the weight parameter β is not 
always better, as excessively raising this weight may lead 
to classifying slightly unusual actions in the behavior as 
malicious behavior, which should be avoided.

Formula (4) calculates the trend by first searching 
for the nearest local maximum or local minimum of the 
current danger coefficient in the danger coefficient curve. 
Local maximum or minimum values refer to the extremum 
values within a limited range, rather than across the entire 
range. The function Past(j) calls the Past algorithm, which 
finds the value and position of the local maximum or 
minimum.

After finding the local maximum and minimum values 
in the region, the algorithm then calculates the difference 
between the current danger coefficient value and the found 
local maximum or minimum, as shown in formula (4) with 
Dj- DPast(j) and j- Past(j) respectively. The result is then 
multiplied by β, the weight parameter.

In formula (4), the total number of windows, n, is 
introduced to calculate the proportion of the difference 
between the position Past(j) of the extremum and the 
current position j in the entire window count. This 

proportion is then multiplied by the difference between the 
extremum value (DPast(j)) and the current danger coefficient 
value (Dj). This approach is similar to formula (3) and is 
intended to limit the influence of attention to trends within 
their respective regions. The rationale behind this is that 
the impact of a trend should be constrained by its duration, 
rather than affecting the overall risk level of the behavior.

After completing the previous steps, the next step is 
to incorporate feature values into the model. During the 
training phase, the research often encounters situations 
where the model’s prediction accuracy curve experiences 
significant fluctuations in the early stages of training. 
Upon investigation, it was found that the model lacked a 
basic understanding of actions within behaviors, leading 
to excessively high or low prediction accuracy values. 
Therefore, this research aims to be vigilant towards actions 
that frequently appear in malicious behaviors from the 
beginning of training, distinguishing their risk levels 
from other actions and avoiding training with similar risk 
levels. The purpose of formula (5) is to help the model 
incorporate such features into the training process.

( )j jS Feature windowγ+ = ∗                       (5)

In formula (5), an external function called Feature 
algorithm is invoked. The Feature algorithm conducts a 
statistical analysis of all actions occurring within malicious 
behaviors based on their frequency of occurrence. When a 
window enters this algorithm, it uses a table-like approach 
to retrieve the number of occurrences for each action 
within the window from the statistical records. Then, 
it calculates the ratio of occurrences for each action by 
dividing the retrieved values by the total number of actions 
in malicious behaviors. By summing up these ratios for all 
actions within the window, it derives a danger coefficient 
for the window.

The calculated danger coefficient is returned and 
then multiplied by the weight parameter γ before being 
added back to the overall risk level. This process enables 
the model to incorporate the risk contribution of actions 
frequently appearing in malicious behaviors during 
the training phase and improves the model’s ability to 
distinguish between different risk levels among actions.

Finally, the Recursive function either proceeds with the 
next recursive calculation or concludes the computation 
by returning a value. If the Recursive function has finished 
its iterations, the Generator algorithm executes line 18, 
normalizing the value to obtain the normalized result as 
indicated in formula (6).

Normalize( )j jN S=                             (6)

Normalization refers to scaling all values to the range 
of floating-point numbers between 0 and 1. This makes it 
easier to set a unified threshold for the risk level because 
the risk level may vary based on the size and length of 
each behavior. To have a consistent comparison, a unified 
threshold is necessary.
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Table 1. Risk level threshold

Level Low Medium High
Normalize danger 0-0.33 0.33-0.66 0.66-1

The Decide algorithm determines whether the 
normalized risk level obtained from the previous normalize 
step corresponds to malicious behavior. Since the risk level 
has been normalized, detection is based on the thresholds 
specified in Table 1. If the normalized risk level is greater 
than 0.66, it is detected as a high-risk behavior. If the 
risk level falls between 0.33 and 0.66, it is classified as 
a moderate threat. If the risk level is less than 0.33, it is 
identified as a low threat.

In the Decide algorithm, the prediction of whether a 
behavior will become malicious is based on whether the 
normalized risk level exceeds the threshold of 0.66. If 
the normalized risk level is higher than 0.66, it will be 
classified as malicious behavior. However, if the risk level 
is below 0.33, it will be considered normal behavior, and 
execution will continue.

It is important to note that if a behavior initially has a 
risk level higher than 0.66 but later decreases below the 
threshold, it will still be classified as normal behavior and 
continue to execute. On the other hand, if a behavior starts 
with a risk level below 0.66 but later increases and crosses 
the threshold of 0.66, it will be considered malicious 
behavior, and the execution will be terminated at the first 
occurrence of such situation.

Since no one can predict how a future behavior will 
unfold, waiting until the end of the behavior to determine 
whether it crossed the threshold of 0.66 would result in 
the loss of predictive capability. True prediction involves 
making judgments before the behavior is completed, not 
after it has already occurred. Waiting until the end of the 
behavior and then determining whether it was malicious 
or not does not qualify as prediction, as there is no 
anticipation involved.

For accurate predictions, the model needs to assess 
the risk and classify the behavior as malicious or normal 
during its execution, based on the evolving risk levels and 
predefined thresholds, rather than relying solely on the 
final outcome. This way, the model can provide timely 
predictions before the behavior is fully executed.

3.5 Discriminator Model
This section introduces the discriminator model, which 

is designed to determine whether the predictions generated 
by the generator model are correct and provide feedback 
to adjust the weight parameters. Additionally, to enhance 
the accuracy of the generator in predicting malicious 
behavior, the discriminator model offers corrections when 
the generator’s predictions are inaccurate or not perfect 
enough.

The internal construction logic of the discriminator 
model is illustrated in the tree structure diagram shown in 
Figure 9. The top-level node, labeled Predict, represents 
the predictions passed in from the generator model. The 
second-level nodes detect whether these predictions 
are correct. If they are correct, the process proceeds to 

the third-level nodes. If the predictions are incorrect, 
the weight parameters are updated. In the second-level 
nodes, the weight parameters are adjusted by increasing 
the β parameter and decreasing the α. The reason for this 
adjustment is that prediction errors can occur due to two 
possibilities: predicting malicious behavior when it is 
actually normal behavior, or predicting normal behavior 
when it is actually malicious behavior. Both cases 
result from errors in detecting future trends. To improve 
prediction accuracy logically, the model needs to prioritize 
future trend predictions more while reducing emphasis on 
past historical behavior.

Figure 9. The structure of discriminator

Figure 10. Discriminator algorithm

The Discriminator algorithm is shown in the Figure 
10. In lines 3 to 5 and 8 to 10, it explains how to increase 
or decrease the α, β, and γ values. Additionally, in line 7, it 
elaborates on the method of comparing the prediction lead 
time of the current prediction with the previous one. This 
comparison is not based on absolute time duration but on 
the relative proportion of the prediction lead time to the 
total behavior duration. Since not all behaviors have the 
same duration, directly comparing the prediction lead time 
of different behaviors would be unfair.

After completing all the aforementioned processes, the 
Discriminator algorithm returns three weight parameters, 
α, β, and γ, to the Generator algorithm for the next round 
of training.
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4  Experimental Results

4.1 Training Process
The malicious behavior prediction model is trained 

using the ADFA-LD dataset. The training results will be 
examined upon completing the last entry of the dataset. 
The training process is demonstrated in a specific 
sequence. Let’s start with the typical process diagram 
where malicious behavior is predicted as malicious, as 
shown in Figure 11.

Figure 11. A typical process diagram for malicious 
behavior prediction

Figure 11 depicts typical process diagrams encountered 
during the training process where malicious behavior is 
predicted as malicious. In the left diagram of Figure 11, 
the risk level continuously and rapidly increases as the 
window j progresses. On the other hand, the right diagram 
of Figure 11 shows a scenario where the risk level starts 
very high, with values close to 1, from the beginning. In 
the left diagram, the behavior’s value exceeds the specified 
threshold of 0.66, leading to its prediction as malicious 
behavior. In the right diagram, the behavior’s value 
consistently remains above the threshold of 0.66, resulting 
in it being predicted as malicious behavior as well.

Figure 12 represents a typical process diagram where 
normal behavior is predicted as normal. Both behaviors 
start with a value of 1 but rapidly decrease over time. 
Afterward, their values remain constant, staying close to 
0. Since they touch the threshold of 0.66 downwards, both 
behaviors are correctly predicted as normal behavior.

Figure 12. A typical process diagram for normal behavior 
prediction

Figure 13 is an atypical training process diagram where 
the prediction is correct, but the curve shape is relatively 
uncommon. The value continuously decreases with the 
increase of j until it falls below the threshold of 0.66. 
Therefore, the model detects it as normal behavior, which 
is confirmed to be correct. However, when the value of j 
is approximately 15, the value rises again to around 0.5, 

indicating that the model detects the behavior executing 
some risky actions. Nonetheless, the increase in value is 
not significant enough to cross the threshold of 0.66 again.

Figure 13. A typical training process diagram

Figure 14 shows a process diagram where behavior 
prediction fails. The values exhibit a relatively large and 
complex fluctuation. At time point A in Figure 14, the 
value crosses the threshold of 0.66, causing the model to 
detect it as normal behavior. However, at time point B, 
the value suddenly rises again, crossing the threshold of 
0.66, and ultimately, this behavior is detected as normal 
behavior. The model captures the first instance of crossing 
the threshold of 0.66 but cannot anticipate the uncertain 
future event of crossing again. However, this behavior 
actually belongs to malicious behavior, as demonstrated 
after time point B. Therefore, this prediction is incorrect. 
In summary, the training process diagram was presented. 
Next, we introduce the overall prediction accuracy when 
the training is completed.

Figure 14. Process diagram of behavior prediction failure

It can be observed that the average accuracy initially 
undergoes significant fluctuations in Figure 15. The reason 
is that the model’s training data is not yet sufficient. When 
there is a prediction error, the average accuracy drops 
significantly, and when there is a correct prediction, the 
average accuracy increases substantially. Therefore, when 
calculating the average accuracy, we only consider the 
accuracy values when there is no significant change, which 
means discarding the accuracy values during the early 
training stages, as shown in Figure 16. At this point, the 
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average accuracy is 83.64%. It can be observed that the 
model’s average accuracy has converged and stabilizes 
around 83%, with a slight upward trend.

Figure 15. Average prediction accuracy

Figure 16. Discard the average accuracy map that has not 
yet converged

4.2 Performance Discussion
This section is to evaluate and test the performance 

of our research method. The metrics involves using the 
Accuracy, Precision, Recall, and F1 score indicators for 
evaluation. Accuracy refers to the proportion of correctly 
detected data in the dataset, including correctly predicting 
normal behavior as normal and malicious behavior as 
malicious. Precision measures the proportion of truly 
malicious data among those detected as malicious. Recall, 
on the other hand, is the complement of Precision. It 
describes the proportion of truly detected malicious data 
among all the malicious data in the dataset. Finally, the F1 
score is a harmonic mean of Precision and Recall. Since 
both Precision and Recall are desirable to be high, a higher 
F1 score indicates better overall performance of the model 
in terms of Precision and Recall.

We calculated the impact of each formula on the 
overall model performance. First, we evaluated the 
contribution of formula (3) to the model’s performance, as 
shown in Table 2. Similarly, effect of adding formulas (4) 
and (5) to the model’s performance are shown in this table. 
We can observe that the Table 2 represents the incremental 
addition of formula (3) to formula (5), and the model’s 
performance gradually improves. Notably, adding formula 
(4) significantly improves the performance compared to 

only having formula (3) in the model. This improvement 
can be attributed to the model incorporating formula (4) 
for predicting future trend. As the primary objective of this 
model is to predict malicious behavior, formula (4) plays 
a crucial role in aiding the model’s predictions of future 
trend.

However, when comparing these results, the overall 
improvement in model performance by adding formula 
(5) is not substantial. This is because formula (5) mainly 
serves to provide guidance to the model in the initial phase 
for predicting the direction of behavior, whether it is more 
inclined towards malicious or normal behavior. From the 
perspective of the entire dataset with all behaviors, the 
impact of this formula on overall predictions is minor. 
Therefore, when assessing the influence of formulas on 
the model’s prediction performance, there is no significant 
increase in the values of the four performance metrics. 
Finally, when considering all the formulas, the overall 
performance values of the model for the four metrics are: 
Accuracy (0.836), Precision (0.963), Recall (0.860), and 
F1 (0.909).

Table 2. Add formulas (3), (4) and (5) performance test

Metrics
Formulas Accuracy Precision Recall F1 

score
Formulas 
(2) and (3) 0.785 0.966 0.781 0.864

Formulas 
(2), (3) and (4) 0.836 0.963 0.860 0.909

Formulas 
(2), (3), (4) 

and (5)
0.836 0.963 0.860 0.909

4.3 Literature Comparison and Analysis
Although a series of performance metrics have been 

obtained, it is through comparison with other methods that 
the effectiveness of this research can be demonstrated. 
In this section, several literatures similar to this research 
were compared, which may involve similar methodologies 
or the use of the same dataset to enhance comparability 
among methods. However, these proposed methods don’t 
touch the prediction issue. Thus, the following discussion 
are based on our method prediction results with comparing 
the detection results from other methods.

[16] proposed a method using Cycle-GAN to augment 
the dataset, and training an intrusion detection system 
with the augmented dataset can increase the accuracy 
of detecting malicious behavior. The similarity between 
[16] and the method proposed in this research lies in the 
use of GAN and the utilization of the ADFA-LD dataset. 
However, the difference is that [16] employed Cycle-
GAN for training and used data augmentation to enhance 
detection accuracy, unlike this research that utilizes 
GAN architecture for training. Additionally, the main 
contribution of [16] is to propose a method to augment 
the dataset size without improving the existing host-
based malicious intrusion detection system. Therefore, 
the accuracy of detecting malicious behavior in [16] 
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is relatively low, at only 64%, which is lower than the 
accuracy achieved in this research, which is 83.64%.

In [17], an improvement approach for host-based 
intrusion detection systems is proposed. The method 
introduced in [17] utilizes semantic analysis to identify 
malicious behavior. It analyzes the semantics of malicious 
and normal behaviors to find their distinctive features, 
which are then stored in a database. When a new behavior 
enters the system, it uses the established semantic feature 
database to perform a table lookup and determine whether 
the behavior is closer to malicious or normal behavior.

In [18], a method utilizing both Generative Adversarial 
Network (GAN) and Variational Auto Encoder (VAE) to 
augment the dataset is proposed to enhance the accuracy 
of detecting malicious behavior. This approach is similar 
to the method in [16], as both use dataset augmentation to 
improve the accuracy of identifying malicious behavior. 
However, the difference lies in the fact that while [16] 
employs Cycle-GAN, [18] uses both GAN and VAE. After 
training the models using GAN and VAE, [18] compares 
the performance of both methods.

Table 3 compares the performance of the GAN method 
in [18] with the performance of this research. It can be 
observed that this research outperforms [18] in terms of 
Precision, indicating that our proposed method is less 
likely to predict normal behavior as malicious behavior. 
This means that our method can effectively protect the 
host system while maintaining system performance. The 
F1 score is similar for both methods, but this research is 
relatively weaker in terms of accuracy. The reason for 
this is that our research is a malicious behavior prediction 
system, and predicting behaviors is inherently more 
challenging, which may lead to lower accuracy.

In [19], a host-based intrusion detection and defense 
system for Android devices was proposed. This system 
utilizes the k-means method to classify behaviors into 
malicious and normal categories. Table 3 shows the 
comparison between the performance of our proposed 
method and the method in [19].

It can be observed that our research performs lower in 
terms of Accuracy compared to [19], which is consistent 
with the comparison with [18] as previously described. 
However, our research outperforms [19] in terms of Recall, 
indicating better ability to recognize malicious behaviors 
compared to [19].

When comparing the performance of our proposed 
method with other researches and summarizing the results 
in Table 3, it is evident that our research achieves the 
best Precision and F1 score. This demonstrates that our 
proposed method outperforms other compared studies 
in overall performance, with F1 score confirming this 
observation. However, it’s worth noting that the other 
researches in the table also highlights specific advantages 
exhibited by other studies, such as higher Recall value 
in [18], indicating its advantage in accurately identifying 
malicious behaviors, which is a crucial indicator for host-
based intrusion detection systems.

Table 3. Comparison between this research and other 
literatures

Metrics
Research Accuracy Precision Recall F1 score

Our research 0.8364 0.9630 0.8607 0.9090
Research [16] 0.64 0.2809 0.8049 0.4164
Research [18] 0.9 0.9 0.9 0.9
Research [19] 0.9087 0.9765 0.8367 0.8938

Nevertheless, these compared literature do not possess 
the ability to predict malicious behavior. Therefore, even 
though they might have relative advantages in some 
performance metrics, they still cannot compare with the 
contribution of our research in early prediction.

5  Conclusions 

This research proposes an effective system for 
predicting malicious behavior attacks. The system focuses 
on host-based intrusion detection and utilizes ADFA-
LD for training and testing. The primary methodology 
employed in this research includes LSTM and GAN. 
LSTM focuses on establishing an accurate model for host-
based intrusion detection, and based on this model, the 
system is developed using the architecture of GAN to 
predict the occurrence of malicious behavior. Experimental 
results demonstrate that the system achieves an impressive 
average prediction accuracy of 83%.
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