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Abstract

The path planning algorithm plays a pivotal role in the 
field of intelligent robotics. However, in certain scenarios, 
the A-star algorithm exhibits drawbacks such as excessive 
redundant nodes and prolonged path lengths. Consequently, 
this paper introduces a path planning algorithm employing 
a heuristic approach, which will be briefly elucidated in 
the subsequent sections. If the straight-line path from 
the starting point to the destination is unobstructed, 
iterative calculations for path planning are unnecessary. 
Should the straight-line path intersect obstacles, the 
proposed heuristic algorithm is employed for local path 
planning to circumvent obstacles, and the obtained path is 
subsequently integrated with the overall trajectory. In the 
same context, we compare this algorithm with other path 
planning algorithms, revealing that the enhanced algorithm 
presented in this paper achieves a reduction in path length 
ranging from 0.07% to 12.58%. This successfully validates 
the effectiveness of the improved algorithm proposed in 
this study.
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1  Introduction

In the field of robotics, the study of path planning 
algorithms is of great significance. Intelligent unmanned 
equipment, such as unmanned aerial vehicle [1], mobile 
robots, self-driving cars [2] and unmanned surfaced 
vehicles [3], cannot achieve satisfactory navigation effects 
without path planning algorithms. The mobile robot 
uses its sensors to map the surrounding environment, a 
satisfactory path is produced by a path planning algorithm 
on a known map, and then transfer the results planned by 
the planner give the control layer to realize autonomous 
navigation of the robot. Overall, the application of path 
planning technology in intelligent robots has received 
much attention in recent years.

The solution to this problem can promote the 
application of robots in various scenes. For a mobile robot, 
to reach the designated position smoothly, it is necessary 
to find a path that is free of obstacles, short in length and 
with as few turning points as possible [4]. Domestic and 

international experts have conducted many studies on this 
issue. Generally, path planning algorithms can be divided 
into two main categories. We mainly give a detailed 
introduction to the global path planning algorithm [5].

The global path planning algorithms include the 
traditional algorithms and the intelligent algorithms.

In the realm of conventional algorithms, the Dijkstra 
algorithm, invented by Dutch computer scientist Edsger 
Wybe Dijkstra, calculates the shortest distance search by 
accumulating path lengths [6]. The algorithm involves 
continually inspecting all nodes adjacent to the current 
node in the set of nodes that have not yet found the shortest 
path [7]. Due to its non-directional search approach, 
the efficiency of the Dijkstra algorithm is notably low. 
Consequently, in 1968, Nils John Nilsson developed an 
enhancement to the Dijkstra algorithm, known as the 
A-star algorithm, which evaluates paths through a heuristic 
function to reduce the search scope and computational 
complexity [8-10]. Anthony Stenz extended the A-star 
algorithm in 1994, naming it the D-star algorithm, 
applicable to path planning in partially or completely 
unknown dynamic environments [11]. However, the D-star 
algorithm plans the next step within a finite time, and 
each step taken may not necessarily be the optimal path 
[12]. Rapidly Exploring Random Trees (RRT) refer to an 
algorithm forming a randomly expanding tree, with the 
starting point as the root node, adding leaf nodes through 
random sampling when overlapping with the endpoint 
occurs. The sampling method employed here is the 
incremental sampling search method [13]. While RRT is 
suitable for path planning problems in high-dimensional 
spaces and complex environments, it fails to guarantee 
optimal paths, exhibits low path search efficiency, and 
produces non-smooth paths [14].

A brief overview of intelligent algorithms follows. In 
1992, Marco Dorigo invented the Ant Colony Optimization 
algorithm by simulating the foraging behavior of ants [15]. 
Despite its excellent global optimization capabilities, the 
ant colony algorithm tends to fall into local optima due to 
its computational intensity [16]. Based on the principles 
of birds seeking food, Kennedy and Eberhart proposed 
the Particle Swarm Optimization algorithm in 1995 [17]. 
However, this algorithm suffers from slow convergence 
in search depth and weak local search capabilities [18]. 
Genetic algorithms, introduced by John Holland in 
the 1970s, draw inspiration from the law of organized 
evolution, providing faster and better optimization results 
for more complex combinatorial optimization problems 
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[19]. Nevertheless, genetic algorithms exhibit poor 
local search capabilities, premature convergence, slow 
convergence speed, and the complexity of operations 
such as selection, mutation, and crossover, conducted 
probabilistically [20].

In addition to these, novel intelligent algorithms like 
the Grey Wolf Algorithm find widespread application 
in robot path planning due to their simplicity, few 
parameters, easy programming, support for distributed 
parallel computing, and robust global search capabilities 
[21]. Neural networks optimize AGV path planning and 
obstacle avoidance by considering environmental states 
and potential obstacles, thereby enhancing computational 
efficiency [22]. Reinforcement learning involves the 
continuous correction of strategies through the interaction 
between an agent and the environment to learn optimal 
action strategies [23]. However, it tends to face challenges 
in training time and sample efficiency, especially in 
complex scenarios. Therefore, combining deep learning 
with reinforcement learning addresses decision-making 
issues and enables efficient execution of path planning 
tasks for mobile robots [24]. Nevertheless, these 
methods have their drawbacks, such as the Grey Wolf 
Algorithm potentially getting trapped in local optima for 
complex problems, neural network path planning facing 
computational complexity and requiring substantial labeled 
data, reinforcement learning posing challenges in training 
time and sample efficiency, and deep reinforcement 
learning being susceptible to sample complexity and 
overfitting issues. These factors limit their performance 
and applicability in certain contexts.

In comparison to the algorithms, the A-star algorithm 
not only boasts simplicity in static global planning but 
also exhibits fast operation during path search, making 
it widely applicable in computer science and robotics 
research fields. For instance, in areas like robot navigation, 
the A-star algorithm effectively identifies the shortest path. 
In game development, the A-star algorithm can generate 
intelligent movement paths for NPCs. Furthermore, the 
A-star algorithm allows the flexibility to choose different 
heuristic functions for specific problems. However, the 
A-star algorithm has its drawbacks. The selection of the 
heuristic function significantly influences the algorithm’s 
performance, and designing an accurate heuristic 
function is challenging, requiring domain knowledge 
and experience. Additionally, in complex environmental 
situations, the traditional A-star algorithm faces issues such 
as low search freedom and paths with numerous turning 
points during path planning.

Therefore, addressing the issue of excessive planning 
nodes and long paths in traditional A-star path planning, 
this paper proposes a heuristic-based path planning 
algorithm. Firstly, to mitigate the environmental impact 
on the algorithm, an adaptive algorithm is employed 
to analyze the characteristics of obstacles in the map, 
obtaining specific obstacle dimensions. Secondly, to 
reduce the iterative computation load and shorten the path 
length by minimizing path nodes, this paper connects the 
starting point and endpoint with a straight line, checks if 
the line intersects with obstacles, and identifies intersection 

points. If the straight line does not intersect with obstacles, 
it is considered the optimal path, eliminating the need 
for further iterative calculations, and the path length is 
inherently the shortest. Finally, we introduce search factors 
Connecting_distance and β in the A-star algorithm to 
enhance the algorithm’s search neighborhood, thereby 
addressing the traditional algorithm’s issue of suboptimal 
path planning due to low search freedom.

In summary, our proposed heuristic-based path 
planning algorithm improves exploration by simplifying 
the path calculation process, adapting to obstacle sizes, 
and enhancing heuristic functionality, resolving the issue 
of excessive path nodes and long paths in traditional 
A-star methods. The remaining sections of this paper 
are organized as follows. Section two presents relevant 
previous research. Section three outlines the overall 
concept and specific implementation steps of the algorithm. 
Section four evaluates the performance of the proposed 
algorithm and conducts a comparative analysis with related 
algorithms. Section five provides a summary of the entire 
paper and suggests future research directions.

2  Related Research

In recent years, with the continual advancement of 
computer technology and artificial intelligence, scholars 
across diverse domains have intensified their efforts 
in enhancing path planning techniques. For instance, 
reference [25] proposes a hybrid path planning algorithm 
based on the Membrane Pseudo-Bacterial Potential Field 
(MemPBPF), reducing time complexity through the 
integration of membrane computation, pseudo-bacterial 
genetic algorithm, and Artificial Potential Field (APF) 
methods. This achieves improved feasible solutions while 
considering minimum path length, collision avoidance, and 
path smoothness. Reference [26] introduces an enhanced 
Motion-constrained Bidirectional Rapidly Exploring 
Random Tree (IKB-RRT) algorithm, incorporating guided 
nodes under robot kinematic constraints. It heuristically 
guides the growth of the random expansion tree into the 
configuration space target, mitigating collisions with 
obstacles. To prevent abrupt changes in heading due to 
independent tree expansion leading to connection points, a 
dual-tree region path smoothing optimization connection 
strategy is proposed, enhancing the overall smoothness 
of the planned path. Reference [27] combines membrane 
computation with genetic algorithms and artificial potential 
field methods, seeking parameters to generate feasible and 
safe paths. Reference [28] addresses the slow convergence 
of Q-learning towards optimal solutions by incorporating 
the concept of partially guided Q-learning. It improves 
classical Q-learning using the APF method, enhancing 
learning speed and final performance.

In the realm of global planning algorithms, the A-star 
algorithm stands as a focal point of path planning research, 
with numerous scholars and research teams making 
significant contributions. They are dedicated to optimizing 
the performance of the A-star algorithm, expanding its 
applicability, and exploring various improvements and 
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extensions related to the A-star algorithm. Reference 
[29], building upon the foundation of unit decomposition 
and map updating, devises an improved BA algorithm 
to address continuity deficiencies and high-precision 
environmental modeling challenges. Citing [6], the 
enhanced A-star algorithm is combined with Delaunay 
triangulation, presenting a dynamic fusion path planning 
algorithm. Delaunay triangulation is employed to handle 
complex obstacles, and it can also generate Voronoi points. 
Reference [4] introduces geometric A-star algorithms. 
To enhance the stability of AGV in turning paths, this 
paper employs functions to filter nodes in the closed list 
and replaces turning points with cubic B-spline curves. 
Reference [30] introduces a new heuristic function 
to enhance the performance of the A-star algorithm, 
incorporating not only distance information but also 
obstacle information.

Reference [31] proposes a method that prioritizes the 
expansion of adjacent nodes in the direction of endpoints. It 
incorporates turning costs into the calculation of the actual 
cost and estimated cost of the current node. Reference [32] 
improves the A-star algorithm by introducing an L-shaped 
path trend. As the A-star algorithm generates many 
turning points during path planning, this paper traverses 
turning nodes in the path and, in the absence of obstacles, 
smoothes the path by replacing the current turning node 
with a diagonal node forming a loop.

Reference [33] suggests a fusion approach of A-star 
and dynamic window methods, optimizing search angles 
and combining them with the path of the dynamic window 
method. The improved method exhibits good efficiency 
and feasibility. Reference [34] enhances the A-star 
algorithm by incorporating the vehicle’s kinematic model 
as a constraint in the cost function. The obtained path is 
smoother, more rational, and aligns with the vehicle’s 
kinematic model. Reference [35] improves the A-star 
algorithm by adding environmental information and AGV 
position information to the traditional evaluation function. 
The algorithm optimizes path points and eliminates 
unnecessary turning points.

Reference [36] introduces the guiding principles and 
key points of the A-star algorithm to develop a heuristic 
function, making it easier to avoid obstacles. Reference 
[37] improves the A-star algorithm by considering the 
distance factor between obstacles, preventing redundant 
nodes caused by being too close to obstacles. Reference 
[38] introduces criteria, key points, and a new variable step 
size into the A-star algorithm, reducing computation time.

Reference [41] combines the renowned hybrid A-star 
search engine with the “visibility map” project to obtain 
the optimal path. Reference [39] utilizes jump point 
search to optimize the search method and search speed. 
Simultaneously, this paper considers angle evaluation 
costs, leading to a shorter path. Reference [10] adjusts the 
number of directions extending from the current point to 
surrounding survey points. Reference [9] designs a novel 
heuristic algorithm, where the heuristic function uses 
energy consumption to estimate costs.

3  Materials and Methods

This section aims to intricately elucidate the innovative 
concepts and specific implementation steps undertaken 
to enhance the A-star algorithm. Initially, we provide a 
comprehensive overview of each constituent element of 
the proposed algorithm, delving into the specific details 
of each component. Finally, to present the algorithm’s 
workflow more lucidly, we summarize the entire process 
and accompany it with a flowchart.

Our improvement approach necessitates, as a primary 
step, connecting the starting point and endpoint through 
a straight line. Recognizing that obstacles may not lie 
directly on this line, our algorithm explicitly considers 
the straight line as the optimal path, obviating the need 
for iterative calculations. Consequently, our focus here 
is specifically on scenarios where at least one obstacle is 
present.

3.1 The Overall Process of Our Proposed Algorithm
Figure 1 describes the overall process of the algorithm. 

It consists of four main parts: adaptively determine 
obstacle size, determine the handover point, improved 
the A-star algorithm, and combine local paths. We first 
compute the measurement of the obstacle through an 
adaptive algorithm, then make a circle with this radius, 
determine the handover point, use the improved A-star 
algorithm in each segment of the local path, and the local 
paths are finally merged.

Adaptively 
determine 

obstacle size

Determine 
the handover 

point

Improved 
A-star 

algorithm

Combine 
local paths

Figure 1. The framework of the path planning based on a 
heuristic method

(1) Adaptively determine obstacle size: Use an adaptive 
algorithm to find the maximum boundary distance of a 
given obstacle. For regular graphics such as a rectangle, 
the maximum boundary distance is the rectangle diagonal.

(2) Determine the handover point: The straight path, 
between the start and the endpoint, will have two points 
of intersection with the circle centered on an obstacle. 
The handover point can be defined as follows: we draw a 
circle, and the circle radius is the size of the obstacle. The 
two intersections between the circle and the straight line 
are called the handover points.

(3) Improved A-star algorithm: We introduce the 
weighted factor β in the heuristic function part and 
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introduce the connection factor Connecting_distance that 
describes the direction in which the current point expands 
to the surroundings.

(4) Combine local paths: After determining the local 
start and the local endpoint, we use the improved A-star 
algorithm to generate the local path. And then we combine 
the local paths into a global path.

3.2 Adaptively Determine Obstacle Size
We determine the size of the obstacle by using 

an adaptive algorithm. And when we improve the 
A-star algorithm, we also need to consider the obstacle 
measurement. 

{ }iM m=                                 (1)

Here, M is the map, divide the map into smaller grids, 
each grid is represented by mi , mi value of 1 means that 
there is an obstacle at that grid, otherwise, mi value of 0 
means that the grid is passable.

We assume a situation where an obstacle is composed 
of some grid cells, and the following expressions (2) and 
(3) are used to describe the obstacle M .

1

n

j
j

M m
=

= ∑                                  (2)

{ } 1, 1,2,3,...,im j n= =                         (3)

Figure 2. shows a square obstacle, each mi of which 
is 1. We consider the case when there exists only one 
obstacle, and the obstacle is composed of many smaller 
obstacles. The specific implementation steps are listed in 
Algorithm 1. The input M of the algorithm in Algorithm 
1 is an obstacle, and the output Max is the size of the 
obstacle.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Figure 2. Representation of the obstacle

The proposed algorithm utilizes an adaptive algorithm 
to find the maximum boundary distance of a given 
obstacle. For regular graphics (such as rectangles), the 
maximum value is the length of the diagonal of the 
rectangle.

Algorithm 1. Size of obstacles
1 0Max =
2 for mi in M do
3  if mi=1 then
4      obstacle=[obstacle mi]
5  end if
6 end for
7 n=size(obstacle)
8 for 1i =  to n do
9  for 1j =  to n do

10    ( ) ( )temp obstacle i obstacle j= −

11     if temp Max>  and i j≠  do
12         Max temp=  
13     end if 
14  end for
15 end for
16 return Max

3.3 Determine the Handover Point
In this situation, suppose there only exists one obstacle. 

We first plan a straight path from the start to the endpoint 
and show it in Figure 3. S is the start and its coordinates 
are ( , )start startx y , E is the endpoint and its coordinates 

are ( , )goal goalx y , O is the obstacle and its coordinates are 

( , )obstacles obstaclesx y . We draw a circle using O to be the 
center and intersect the straight-line SE at points M and N, 
the radius of the circle here is r.  

 

Y

X

O

M

N

P

The starting point
The ending point
The handover point

The straight line connecting the 
starting point and the ending point

The obstacle

The circle with O as the center
The local path planned by the 
improved A-star algorithm 

S

E

 

Figure 3. Simulation diagram of path planning for our 
presented algorithm when considering one obstacle

The equation of the straight-line SE is as follows:

start start

goal start goal start

y y x x
y y x x

− −
=

− −                       (4)

And the equation of the circle using O to be the center 
is shown below:

2 2 2( ) ( )obstacle obstaclex x y y r− + − =                (5)
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We determined the coordinates of the handover points 
M and N by using the joint equations 4 and 5. And the 
coordinates are M(xM, yM) and N(xN, yN) respectively.

To bypass the detected obstacle O, we need to plan the 
local path by using M and N as the start and the endpoint, 
and we determine them by the following method:

M Nx x D− =                             (6)

If D is larger than 0, which shows that point N is closer 
to the starting point. So N is chosen to be the local start 
and M is chosen to be the local endpoint. Otherwise, we 
make the opposite choice.

3.4 Improved A-star Algorithm
We introduce the weighted factor β in the heuristic 

function part to improve the A-star algorithm. It also 
introduces the connection factor Connecting_distance to 
describe the direction in which the current point expands 
to the surroundings.

The A-star algorithm first uses the current point 
as a reference point. Then it evaluates the score of the 
surrounding points. Finally, we select the point of the 
lowest score as the next point.

Therefore, the valuation of the location is very 
important, and the cost function is improved by the 
following method: 

( ) ( ) ( )f n g n h nβ= +                          (7)

Here n is the current point. f(n) is the valuation function 
of point n. g(n) being the minimum path cost between 
the start and the present point. β is a constant parameter, 
and it will be specifically optimized later. h(n) being the 
minimum estimated path cost of the path between the 
present point and the endpoint.

We use Euclidean distance in the calculation of the 
estimated cost between the present point and the endpoint.

2 2( ) ( ) ( )n goal n goalh n x x y y= − + −              (8)

Here xn , xgoal are the horizontal coordinates of the 
present point and the endpoint respectively; yn , ygoal are the 
vertical coordinates of the present point and the endpoint 
respectively.

The standard A-star algorithm will only search eight 
surrounding points, which may lead to sub-optimal paths. 
We define a parameter as connecting distance, when the 
connecting distance takes different values, the improved 
A-star algorithm will search for points in different number 
of directions.

More specifically, when Connecting_distance = 1, 2, 3 
and 4, the algorithm will be 8, 16, 32, and 48 directions to 
expand around. To explain more clearly, we have drawn the 
diagrams of the Connecting_distance, and represent them 
in Figure 4. Table 1 shows how many expansion directions 
correspond to different values of the Connecting_distance.

Below, we will give the specific algorithm of the 

direction of the surrounding expansion generated by 
different Connecting_distance, as shown in Algorithm 2.

Table 1. The choice of options

Connecting_distance Number of directions
1 8
2 16
3 32
4 48

 

Figure 4. Using different connecting distance to expand 
the graph around

Algorithm 2. Path orientation
1 (2 _ 1)NeighboorCheck ones Connecting distance= +

2 2 _ 2Dummy Connecting distance= +

3 _ 1Mid Connecting distance= +

4 for 1i =  to _ 1Connecting distance −  do

5     ( , ) 0NeighboorCheck i i =

6      ( , ) 0NeighboorCheck Dummy i i− =

7      ( , ) 0NeighboorCheck i Dummy i− =

8      ( - , ) 0NeighboorCheck Dummy i Dummy i− =

9      ( , ) 0NeighboorCheck Mid i =

10     ( , ) 0NeighboorCheck Mid Dummy i− =

11     ( , ) 0NeighboorCheck i Mid =

12     ( , ) 0NeighboorCheck Dummy i Mid− =
13 end for
14 ( , ) 0NeighboorCheck Mid Mid =

15 [ , ] ( 1)row col find NeighboorCheck= ==

16 [ , ] ( _ )Neighboors row col Connecting distance= −

17 return Neighboors

Finally, we combine the given weighted factor β in the 
heuristic function and path orientation analysis obtained 
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above to better the performance of the A-star algorithm. 
And give the flow chart as follows.

3.5 Combine Local Paths
From Figure 3, we can know that the start and the 

endpoint of the local path are M and N respectively. Then 
we use the presented A-star algorithm in this paper for the 
local path and combine it with the straight path to obtain 
the complete path [SMPNE]. 

For the most part, there will be multiple obstacles 
in the straight-line SE. Take the example of Figure 5, 
which contains two obstacles O1 and O2. Following the 
method described in the previous section, we obtain the 
path [SM1P1N1M2P2N2E]. However, to further optimize 
the path and shorten the path length, we proposed a 
method to merge local paths. When the distance between 
two obstacles is close, use the start of the previous pair 
of handover points as the start, and use the endpoint of 
the latter pair of handover points as the endpoint. To 
illustrate through Figure 5. is to combine [xM1 , xN1] and 
[xM2 , xN2] into [xM2 , xN2]. To ensure that the merged path 
length becomes shorter, we will evaluate the threshold to 
determine a suitable threshold value later. We draw a circle 
with the endpoint of the previous local path as the center 
and the threshold as the radius, if the start of the latter 
local path is inside the circle, the two paths are combined, 
otherwise not merged. Specific ways to achieve as follows.

1 2 1 2

2 2 2( ) ( )
thresholdN M N Mx x y y R− + − ≤              (9)

When the two obstacles in Figure 5. satisfy the 
condition, we obtain the path [SM1P3N2E]. 

 

Y

X

1O

1M

1N

1P

The starting point
The ending point
The handover point

The straight line connecting the starting 
point and the ending point

The obstacle

The circle with O as the center
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A-star algorithm 
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Figure 5. Simulation diagram of path planning for our 
presented algorithm when considering two obstacles

3.6 Summary of the Proposed Algorithm
We have described the principle of each part of our 

algorithm in the previous sections. Figure 6 illustrates the 
basic flow of the A-star algorithm. Figure 7, shows how 
they work.

As shown in Figure 7, we first connect the start and 
endpoint. If the straight path from the start to the endpoint 
does not pass the obstacles. Our proposed algorithm will 

not perform iterative calculations. Instead, it will directly 
take the straight line as the optimal path.

In this section, we assume that there is at least one 
obstacle between the start and endpoint. We first use the 
algorithm in Algorithm 1 to determine the size of obstacles 
adaptively. Then we determine the handover point. After 
that, we introduce the weighted factor β and the connection 
factor Connecting_distance for the A-star algorithm. The 
algorithm for determining the number of search directions 
to the surroundings according to Connecting_distance 
is shown in the algorithm in Algorithm 2. Finally, we 
combine local paths into global paths.

Start

Put the start into 
the openlist

If the adjacent reachable 
points in the openlist

Put adjacent reachable points of 
this point into the openlist

Use this points as the parent point

Remove this point from the 
openlist and add it to the closelise

Calculate the F value of all 
adjacent points

If the F value is the smallest

Remove this point from the 
openlist and add it to the closelise

If the point is the endpoint

If there is a smaller G 
value after recalculation

End

Y

Y

Y

Y

N

N

N

N

Figure 6. The improved A-star algorithm flow chart

To explain the proposed algorithm more clearly, 
we give the flowchart of the algorithm in Figure 7. 
Furthermore, we next describe the algorithm steps in 
detail.

Step 1: We calculate the equation of the straight-line 
SE.

Step 2: We check whether the straight-line SE passes 
through the obstacle. If not, the optimal path is the straight-
line SE, and exit the algorithm; otherwise, skip to Step 3.

Step 3: There are n obstacles crossed on the straight 
line, which is marked as Oi (i = 1, 2, ..., n). Treat each 
obstacle as follows:

(a) We regard the obstacle Oi as the center and r as the 
radius, then we calculate the equation of the circle.

(b) We calculate the intersections M and N of the circle 
in (a) and the straight-line SE, and then determine the start 
and the endpoint according to equations 6, denoted as 

_ ( )local start i  and _ ( )local goal i .
Step 4: The start and the endpoint of each local line 
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segment obtained in Step 3 are optimized as follows:
I f  t h e  | _ ( ) _ ( 1) |local goal i local start i ε− + ≤  i s 

satisfied, the | _ ( ), _ ( ) |local goal i local start i  and the 
| _ ( 1), _ ( 1) |local goal i local start i+ +  can be merged into 
| _ ( ), _ ( ) |local goal i local start i . Otherwise, it will remain 
unchanged.

Step 5: Perform the following operations on each pair 
of the start and the endpoint obtained after optimization in 
Step 4:

The starting point local_start(i) and the endpoint local_
goal(i) are substituted into the improved A-star algorithm, 
a path is generated and recorded as path(j), j=1, 2, 3, ..., n  
and j ≤ n.

Step 6: We combine the path generated in Step 5 and 
the path of the straight-line SE. The final path point is [S, 
path(1), path(2), ... , E], where j=1, 2, 3, ..., n and j ≤ n.

Start

Connect the starting 
and ending points

Check whether there are 
obstacles in the connection

Adaptively determine 
obstacle sizes

Use this points as the 
parent point

End

Y N

A-star algorithm with 
local start and end points

Local path combined into 
global path

The path connects 
from the starting 

point to the ending 
point

Find path

Figure 7. Path planning based on a heuristic algorithm 
flow chart

4  Results

In this segment, we endeavor to assess the algorithm 
proposed within this  manuscr ipt  across  diverse 
experimental scenarios. The considerations encompass the 
following instances:

(1) Unimpeded traversal along a direct trajectory from 
the initiation point to the terminal point.

(2) The linear path from the commencement to the 
conclusion marred by the presence of a mere two obstacles.

(3) The linear trajectory from commencement to 
conclusion adorned with an array of more than two 
obstacles.

(4) The existence of serendipitous impediments 
interspersed between the initiation and terminal points.

Our initial course of action involves the meticulous 
configuration of the experimental milieu. Subsequently, 
a judicious adjustment of parameters within the proposed 
algorithm ensues to optimize outcomes. Finally, we 
conduct simulated experiments, thereby garnering 
pertinent data for both the proposed methodology and the 
benchmark methods.

4.1 Experimental Setup
To rigorously assess the efficacy of the proposed 

algorithm, this section orchestrates the setting of the 
robot’s path planning map environment. It introduces the 
evaluation metrics for algorithm assessment, elucidates the 
four comparative algorithms against our refined approach.
4.1.1 Map and Experiment Environment Setting Up 

In this segment, we scrutinize the performance of our 
proposed algorithm within a static grid environment.

Test 1: Initially, we delineate a grid map measuring 
140 units in length and 120 units in width. Grid values of 1 
correspond to obstacles, while values of 0 denote obstacle-
free areas. The starting point is set at (20,10), with the 
endpoint at (70,110).

Tes t  2 :  To val ida te  the  effec t iveness  of  our 
improvements to the A-star algorithm, we opt for the map 
environments utilized in references [42] and [43]. The map 
construction, starting point, and endpoint configurations 
align with those specified in the aforementioned references. 
To enhance the credibility of the enhanced A-star 
algorithm, we employ a map environment of dimensions 
200×200, introducing randomized dynamic obstacles. 
Refer to Table 2 for detailed parameters regarding the 
map setup, where a 500×500 scale map represents the 
environments described in [42] and [43].

Table 2. Map parameters

Map scale Starting point Endpoint

500×500
(50, 250) (400, 200)
(50, 425) (400, 225)

200×200 (25, 35) (140, 190)

CPU: IntelTM core i7 8750H CPU@2.20GHz, 8G 
RAM, Windows 10 64bit.
4.1.2 Evaluation Metric 

We propose two evaluation metrics to measure the 
algorithms used in the experiments:

proposed reference
length

proposed

length length
R

length
−

=            (10)

proposed reference
time

proposed

time time
R

time
−

=                (11)

Here referencelength  and proposedlength  represent the path 
length planned by our presented algorithm in this paper 
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and the reference algorithm, respectively. timereference and 
timeproposed represent the required time of the path planned 
by our presented algorithm and the reference algorithm, 
respectively. Rlength and Rtime show the improvement level of 
our presented algorithm in path length and required time.

The sign of R here indicates a certain significance. Take 
Rtime as an example, if Rtime > 0, we can know that the time 
required by our presented algorithm is 100×Rtime% longer 
than the reference algorithm, otherwise, the time required 
by our presented algorithm is 100×Rtime% shorter than the 
reference algorithm.
4.1.3 Reference Algorithm 

We employed four reference algorithms, namely 
the traditional A-star algorithm (TA-star), the algorithm 
proposed in reference [40] (RA-star1), the method 
introduced in reference [41] (RA-star2), and the approach 
presented in literature [44] (CAPSO). The improved 
A-star algorithm in this paper is denoted as PA-star. Both 
algorithms from references [40] and [41] have refined 
the heuristic function within the A-star algorithm. To 
comprehensively assess the superiority of the enhanced 
A-star algorithm, we further chose to compare it with the 
improved particle swarm optimization algorithm proposed 
in literature [44], and meticulously replicated the algorithm 
for a fair evaluation. The assessment will be conducted 
using the aforementioned evaluation metrics. We will 
evaluate them through the evaluation metrics Rlength and 
Rtime presented above.

Reference [40] defines a new method to estimate the 
cost between the present point and the endpoint.

The heuristic function f(n) represents are as below:

( ) ( ) ( )f n g n H n= +                         (12)

The function H(n) represents is defined as follows:

( ) ( _ 2 _ min) 2 _ minH n H sum H H= − × + ×  (13)

{ }_ min min | ( ) ( ), ( ) ( ) |H x s x e y s y e= − −       (14)

_ | ( ) ( ) | | ( ) ( ) |H sum x s x e y s y e= − + −          (15)

Here the present point is (x(s), y(s)) and the endpoint 
is (x(s), y(s)). H_sum and H_min are the Manhattan 
distance and the shortest of the horizontal distances and 
vertical distances from the present point to the endpoint 
respectively.

Reference [41] improves the idea by proposing an 
improvement A-star algorithm, which assigns a weighting 
factor β to the heuristic function to obtain a new heuristic 
function f(n).

( ) ( ) ( )f n g n h nβ= +                        (16)

Here β can take a value between 1.5 and 2.
The method proposed in reference [44] introduces a 

path planning approach based on cubic spline interpolation. 
Selecting several path nodes as control points, cubic spline 
interpolation is applied to interpolate the path between the 
starting point, control points, and the target point, forming 
a complete trajectory. The newly introduced chaotic 
adaptive particle swarm optimization algorithm (CAPSO) 
is utilized to optimize the control points in the cubic spline 
interpolation.

To facilitate a fair comparison of their path planning 
performance, we essentially implemented the methods 
proposed in the references.

4.2 Parameter Selection
This section is dedicated to evaluating the three 

parameters in the algorithm proposed in this paper and the 
control points in CAPSO.
4.2.1 Parameter Evaluation

In the static path planning algorithm based on the 
heuristic approach proposed in this paper, three parameters 
significantly impact the effectiveness of path planning. 
These parameters are β in equation (7), the connection 
distance parameter Connecting_distance, and the radius 
r in equation (5). The parameter optimization method 
utilized in this study follows the approach used in 
literature [45]. Specifically, a diverse set of parameter 
combinations is established within the range of parameter 
variations. The optimal combination is then determined 
through statistical analysis of experimental results. This 
paper adopts the default parameter combination: β = 1, 
Connecting_distance = 10, r = 1. Simulation experiments 
are conducted in multiple obstacle environments, using 
the default parameter combination as a baseline. Each 
parameter value is altered individually, and to mitigate 
occasional variations, 10 experiments are performed, and 
the results are averaged. Through experimental analysis, 
the three parameter values that yield the best path planning 
performance are selected.

(1) Evaluation of Parameter β
The impact of varying parameter β on the path planning 

algorithm based on the heuristic approach proposed in this 
paper is assessed. The optimization results for parameter β 
are presented in Table 3. Figure 8 illustrates the influence 
of parameter β on the path planning algorithm proposed in 
this paper.

Table 3. The choice of options

Interval Path length
[0 1.93] 115.76

[1.93,2.41] 116.58
[2.41 3.19] 119.07

[3.19 5] 119.9

From Figure 8 and Table 3, it is evident that, within the 
interval [0 1.93], the algorithm’s generated path is shortest, 
measuring 115.76. As the value of parameter β increases, 
the path length also increases. Considering all factors, the 
value of parameter β in this paper is set to 1.
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Figure 8. Influence of Parameter β on the path planning 
algorithm

(2) Evaluation of Parameter Connecting_distance
Initially, various values for the connection factor 

Connecting_distance are considered, with parameter β set 
to 1 and parameter r set to 10. The algorithm’s planned 
path lengths are then assessed, and the results are shown in 
Figure 9.

 

 

 
Figure 9. Influence of Parameter Connecting_distance on 
the path planning algorithm

From Figure 9,  i t  can be observed that  when 
Connecting_distance = 1, the path length is 115.76, and 
as Connecting_distance increases, the corresponding path 
length decreases. However, after Connecting_distance 
reaches 2, the path length stabilizes at a constant minimum 
value of 114.33. Considering the preference for a shorter 
path length, the value of parameter Connecting_distance in 
this paper is set to 2.

(3) Evaluation of Parameter r
Different values for the factor r are set, with parameter 

β set to 1 and parameter Connecting_distance set to 1. The 
algorithm’s planned path lengths are then assessed, and the 
results are shown in Figure 10, with corresponding data in 
Table 4.

From Figure 10 and Table 4, it is evident that the 
shortest length, 115.56, occurs in the interval [1.4 5.0]. 
Considering the preference for a shorter path length, the 
value of 4 is selected for this parameter.

 

 

 

Figure 10. Result of optimizing parameter r

Table 4. Raw data of optimized parameter results

Interval Path length
[1.0 1.3] 117.27
[1.4 5.0] 115.56
[5.1 11.1] 115.76
[11.2 19.9] 115.67
[20.0 31.2] 120.38
[31.3 44.9] 123.6
[45.0 50] 130.06

The different values for the three parameters in this 
paper’s algorithm are shown in Table 5.

Table 5. Raw data of optimized parameter results

Parameter Value
β 1.0

Connecting_distance 2.0
r 4.0

4.2.2 Control Point Selection
Literature [44] indicates that the quantity of control 

points corresponding to the CAPSO algorithm affects the 
path’s effectiveness. Experimental results suggest that three 
to six control points are optimal. Therefore, this paper sets 
a population size of 30 and iterates 100 times to select 
the number of control points. Simulation experiments 
are conducted in multiple obstacle environments, and 
this experiment is performed 50 times to obtain averaged 
results. The results are depicted in Figure 11, where 
Subfigure (a) illustrates the paths planned by the CAPSO 
algorithm under different control points, and Subfigure 
(b) represents the iteration curves under different control 
points. The results indicate that the best outcome is 
achieved when there are 6 control points.

Hence, this paper sets the number of control points to 
6, the population size to 30, the iteration count to 100, and 
other parameters consistent with literature [44].
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(a) Simulation paths under different control points

 

 

 

(b) Iterative curve

Figure 11. Path of different control points in CAPSO

4.3 Comparison of PA-star with Four Reference 
Algorithms Regarding Pathways
Simulation is conducted 50 times for each map 

scenario in this study. To delve into a more comprehensive 
comparative analysis, both parametric and non-parametric 
statistical tests are employed. Given the fixed map 
scenarios, the paths obtained by each algorithm in each 
simulation experiment remain constant, and consequently, 
the path lengths are fixed. Thus, this study exclusively 
focuses on the statistical analysis of path search times.
4.3.1 Analysis of Unobstructed Paths between the Start 
and End Points

Figure 12 illustrates the paths obtained by the five 
algorithms in scenarios without obstacles. From Figure 
12, it is evident that the paths generated by TA-star, RA-
star1, and RA-star2 are longer than those planned by PA-
star, while CAPSO produces paths identical to PA-star 
in obstacle-free environments. As depicted in Table 6, 
compared to TA-star, RA-star1, and RA-star2, PA-star 
results in a reduction of path lengths by 7.9%, 7.9%, and 
7.9%, respectively.

 

 

 
Figure 12. Paths of five algorithms without obstacles

Table 6. Path length without obstacles

Algorithm Path length Rlegth

TA-star 120.7107 -7.9%
RA-star1 120.7107 -7.9%
RA-star2 120.7107 -7.9%
CAPSO 111.8404 0%
PA-star 111.8404 -

4.3.2 Analysis of Two Obstacle Paths on the Line 
Connecting the Starting and Ending Points

We assume the straight path from the start to the 
endpoint pass only two obstacles. The following two 
situations need to be discussed:

When the parameter Rthreshold satisfies formula (9), 
we merge the two local paths, otherwise, it remained 
unchanged.

We tested in our experiments the effect of different   
values on the path length planned by our presented 
algorithm. We will illustrate the length of the path in 
Figure 13. From Figure 13, when Rthreshold  < 13, the path 
length is 124. When Rthreshold  ≥ 13, the path length is 118.5.

From Figure 14, when Rthreshold  < 13, the two obstacles 
are not merged; when Rthreshold  ≥ 13, the two obstacles are 
merged. So, it explains that the path length is shorter when 
Rthreshold  ≥ 13. This article sets Rthreshold  = 13.

Figure 15 depicts the paths obtained by the five 
algorithms in scenarios with two obstacles. It is evident 
from Figure 15 that all five algorithms successfully find 
complete paths. However, paths generated by TA-star, RA-
star1, and RA-star2 are longer than those planned by PA-
star, while CAPSO demonstrates superior path planning 
in environments with two obstacles. As shown in Table 
7, compared to TA-star, RA-star1, and RA-star2, PA-star 
yields path length reductions of 2.81%, 2.81%, and 2.81%, 
respectively. Additionally, when compared to CAPSO, PA-
star exhibits a 4.77% increase in path length. 
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Figure 13. Result of optimizing parameter Rthreshold

 

 

 
(a) Path planning based on our presented algorithm when 
Rthreshold < 13

 

 

 

(b) Path planning based on our presented algorithm when 
Rthreshold  ≥ 13

Figure 14. The path planned by our presented algorithm 
when there are different Rthreshold 

 

 

 
Figure 15. Paths of five algorithms under two obstacles

Table 7. Path lengths under two obstacles

Algorithm Path length Rlegth

TA-star 121.83 -2.81%
RA-star1 121.83 -2.81%
RA-star2 121.83 -2.81%
CAPSO 112.85 4.77%
PA-star 118.50 -

4.3.3 Analysis of Multiple Obstacle Paths on the Line 
Connecting the Starting and Ending Points

Figure 16 illustrates the paths obtained by the five 
algorithms in scenarios with multiple obstacles along the 
line between the starting and ending points. It is evident 
from Figure 16 that all five algorithms successfully find 
complete paths. However, paths generated by TA-star, RA-
star1, and RA-star2 are longer than those planned by PA-
star, while CAPSO demonstrates superior path planning 
in environments with multiple obstacles. As shown in 
Table 8, compared to TA-star, RA-star1, and RA-star2, 
PA-star yields path length reductions of 5.27%, 5.27%, 
and 12.58%, respectively. Additionally, when compared 
to CAPSO, PA-star exhibits a marginal 0.18% increase in 
path length.

 

 

 
Figure 16. Paths of five algorithms under multiple 
obstacles

Table 8. Path length under multiple obstacles

Algorithm Path length Rlegth

TA-star 120.71 -5.27%
RA-star1 120.71 -5.27%
RA-star2 129.09 -12.58%
CAPSO 114.46 0.18%
PA-star 114.67 -

4.3.4 500×500 Map Simulation Comparison
Figure 17 illustrates the paths obtained by the five 

algorithms in a map scenario of size 500×500. Table 9 
presents the path lengths obtained by the five algorithms in 
the 500×500 map scenario. From Figure 17, it is evident 
that PA-star can obtain specific paths in complex scenarios, 
where yellow points represent locally computed starting 
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points by PA-star, blue points represent locally computed 
ending points, and the paths between local starting and 
ending points are planned using the improved A-star 
algorithm, while the other parts of the paths consist of 
straight lines. According to the data in Table 9, in scenario 
1, compared to TA-star, RA-star1, RA-star2, and CAPSO, 
PA-star reduces the path length by 1.7%, 1.03%, 1.24%, 
and 2.98%, respectively. In scenario 2, compared to TA-
star, RA-star1, RA-star2, and CAPSO, PA-star reduces 
the path length by 2.11%, 2.09%, 3.21%, and 0.53%, 
respectively. This demonstrates that PA-star can effectively 
obtain excellent paths in complex scenarios.

 

 

 
(a) Scenario 1

 

 

 
(b) Scenario 2

Figure 17. Simulation results in a 500×500 scale scenario

Table 9. Path length in 500×500 scale scenarios

MAP Algorithm Path length Rlegth

Scenario 1

TA-star 377.58 -1.70%
RA-star1 375.11 -1.03%
RA-star2 375.88 -1.24%
CAPSO 382.34 -2.98%
PA-star 371.27 -

Scenario 2

TA-star 434.01 -2.11%
RA-star1 433.94 -2.09%
RA-star2 438.70 -3.21%
CAPSO 427.30 -0.53%
PA-star 425.06 -

4.3.5 200×200 Map Simulation Comparison
Figure 18 represents the paths obtained by the five 

algorithms in a map scenario of size 200×200. Table 10 
presents the path lengths obtained by the five algorithms 
in the 200×200 map scenario. From Figure 18, it can be 
observed that PA-star can find a complete path even in a 
random obstacle map where there are multiple obstacles 
between the starting and ending points. Due to the close 
proximity of some obstacles, local starting and ending 
points are calculated with a distance smaller than Rthreshold , 
and therefore, the paths are merged. According to the data 
in Table 10, in scenario 1, compared to TA-star, RA-star1, 
RA-star2, and CAPSO, PA-star reduces the path length by 
2.27%, 2.27%, 2.27%, and 0.07%, respectively. In scenario 
2, compared to TA-star, RA-star1, RA-star2, and CAPSO, 
PA-star reduces the path length by 3.69%, 3.69%, 3.69%, 
and 6.68%, respectively.
 

 

 
(a) Scenario 1

 

 

 
(b) Scenario 2

Figure 18. Simulation results in a 200×200 scale scenario
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Table 10. Path length in 200×200 scale scenarios

MAP Algorithm Path length Rlegth

Scenario 1

TA-star 215.52 -2.27%
RA-star1 215.52 -2.27%
RA-star2 215.52 -2.27%
CAPSO 210.89 -0.07%
PA-star 210.74 -

Scenario 2

TA-star 209.07 -3.69%
RA-star1 209.07 -3.69%
RA-star2 209.07 -3.69%
CAPSO 215.09 -6.68%
PA-star 201.63 -

In these scenarios, it is evident that the paths planned 
by PA-star are superior to those of TA-star, RA-star1, and 
RA-star2. It is worth noting that the CAPSO algorithm 
tends to prefer areas with sparse obstacles during path 
planning because control points are more likely to be 
distributed in those regions. This emphasizes that CAPSO 
may not achieve optimal path planning in obstacle-dense 
maps. In contrast, PA-star consistently demonstrates 
outstanding performance in various map scenarios. While 
CAPSO might obtain shorter paths in maps with sparse 
obstacles, PA-star consistently achieves superior paths in 
obstacle-dense maps. This highlights the consistent quality 
of paths generated by PA-star in various map scenarios, 
showcasing its comprehensive advantages in path 
planning.

4.4 Comparison of Time between PA-star and Four 
Reference Algorithms
This study conducted 50 simulation experiments for 

each algorithm in different scenarios, recording the path 
search time in each iteration. A “Shapiro-Wilk” normality 
test was performed on the data, and the results showed a 
p-value less than 0.05, indicating a deviation from normal 
distribution. Considering the non-normal distribution of 
the data, non-parametric methods were chosen for further 
analysis. To compare differences between groups, the 
Kruskal-Wallis test was applied. The test statistics are 
presented in Table 11.

Table 11. Test statistic 

MAP Chi-square DF p
No obstacles 241.19 4 5.13e-51

Two obstacles 239.19 4 1.38e-50
Multiple obstacles 239.14 4 1.42e-50

500×500 (1) 233.36 4 2.49e-49
500×500 (2) 230.17 4 1.21e-48
200×200 (1) 231.79 4 5.41e-49
200×200 (2) 239.37 4 1.27e-50

The substantial values of the test statistic (chi-
square) in various scenarios, ranging from 233.36 to 
241.19, accompanied by p-values much smaller than the 

significance level (all below 0.05), indicate significant 
differences in search times among the five algorithms in 
different scenarios.

For a more detailed exploration of inter-group 
differences, post hoc analysis using Dunn’s method was 
conducted. Table 12 to Table 14 display the median search 
times (interquartile range) for PA-star compared to other 
algorithms, along with Z-values and p-values. According to 
the data in Table 12, PA-star exhibits significant differences 
in search times compared to the four reference algorithms 
in all three map scenarios (p < 0.05). In obstacle-free 
scenarios, PA-star achieves almost instantaneous results 
due to directly considering the straight line between the 
start and end points as the final path. However, in scenarios 
with multiple obstacles, the need to determine obstacle 
sizes and use the improved A-star algorithm to navigate 
around obstacles results in longer algorithm runtimes. 
RA-star2 algorithm performs relatively quickly in all 
three scenarios, followed by TA-star. Nevertheless, both 
RA-star2 and TA-star yield longer path lengths. CAPSO 
algorithm, although capable of obtaining shorter paths 
in sparse scenarios, requires significant time for path 
acquisition. RA-star1 exhibits longer path times compared 
to PA-star.

Table 12. Results of the temporal comparative analysis

MAP Algorithm  Search time Z p

There 
are no 

obstacles

TA-star 0.21
(0.2~0.22) 6.94 3.77e-11

RA-star1 0.78
(0.77~0.80) 10.41 2.05e-24

RA-star2 0.037
(0.037~0.041) 3.47 0.0052

CAPSO 4.68
(4.679~4.68) 13.89 7.20e-43

PA-star 0
(0~0) - -

Two 
obstacles

TA-star 0.23
(0.21~0.23) 3.45 0.0054

RA-star1 0.89
(0.87~0.89) -3.45 0.0054

RA-star2 0.05
(0.045~0.05) 6.91 4.63e-11

CAPSO 9.26
(9.23~9.31) -6.91 4.63e-11

PA-star 0.66
(0.65~0.66) - -

Multiple 
obstacles

TA-star 0.23
(0.22~0.24) 6.91 4.65e-11

RA-star1 0.88
(0.86~0.89) 3.45 0.0054

RA-star2 0.065
(0.061~0.068) 10.37 3.27e-24

CAPSO 9.99
(9.96~9.06) -3.45 0.0054

PA-star 1.07
(1.06~1.09) - -

Table 13 indicates that in the 500×500 map, PA-star 
significantly differs in search times compared to the four 
reference algorithms (p < 0.05). RA-star2 demonstrates the 
fastest search times, followed by PA-star. However, RA-
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star2 yields relatively longer path lengths, showcasing PA-
star’s superior path search performance.

Table 13. 500×500 map-time comparison

MAP Algorithm  Search time Z p

Scenario
1 

TA-star 1.55
(1.51~1.61) -3.14 0.016

RA-star1 1.84
(1.82~1.89) -6.47 9.94e-10

RA-star2 0.74
(0.71~0.78) 3.84 1.24e-3

CAPSO 8.78
(8.75~8.86) -9.99 1.66e-22

PA-star 1.31
(1.27~1.36) - -

Scenario
2 

TA-star 2.03
(1.91~2.11) -6.06 1.36e-8

RA-star1 1.89
(1.87~1.91) -4.31 1.62e-4

RA-star2 0.83
(0.81~0.84) 3.45 0.0054

CAPSO 8.75
(8.73~8.78) -10.37 3.32e-24

PA-star 1.56
(1.55~1.57) - -

Table 14. 200×200 map-time comparison

MAP Algorithm  Search time Z p

Scenario
1 

TA-star 0.29
(0.28~0.29) 6.24 4.29e-29

RA-star1 0.94
(0.93~0.94) 2.10 0.349

RA-star2 0.0657
(0.063~0.067) 9.70 2.95e-21

CAPSO 8.92
(8.89~8.96) -4.13 3.56e-4

PA-star 1.04
(1.03~1.07) - -

Scenario
2 

TA-star 0.314
(0.31~0.33) 6.91 4.53e-11

RA-star1 1.19
(1.02~1.19) 3.45 0.0054

RA-star2 0.057
(0.055~0.057) 10.37 3.10e-24

CAPSO 8.92
(8.89~8.97) -3.46 0.0054

PA-star 1.76
(1.75~1.78) - -

According to the data in Table 14, in the 200×200 
map, in scenario 1, the p-value for search time comparison 
between PA-star and RA-star1 is greater than 0.05 (p = 
0.349), suggesting no significant difference in search times 
in scenario 1. In all other comparisons, PA-star shows 
significant differences in search times compared to the 
four reference algorithms (p < 0.05). PA-star’s algorithmic 
search times in scenario 1 are 1.04 and 1.76, respectively. 
It’s worth noting that in Figure 16, with multiple obstacles 
between the start and end points, determining obstacle 
sizes and using the PA-star algorithm skillfully to navigate 
around obstacles is necessary. Although search times 

increase for PA-star in this map, they remain smaller than 
CAPSO.

In conclusion, in complex environments, PA-star 
yields the shortest path lengths. This indicates that 
despite potentially requiring more time to handle intricate 
terrains, the PA-star algorithm demonstrates outstanding 
performance in path optimization, providing robust 
support for achieving the shortest paths. Therefore, the PA-
star algorithm presents significant advantages in practical 
applications, especially in scenarios demanding precise 
and efficient path planning, offering users more accurate 
and efficient solutions.

5  Conclusion

In addressing the challenge of robot path planning, this 
study holistically considers the real-time and feasibility 
demands in practical applications, presenting an enhanced 
A-star algorithm. By judiciously integrating environmental 
information, this method effectively shortens path lengths. 
Simulation results demonstrate that, in terms of reducing 
path lengths, the improved A-star algorithm surpasses TA-
star, RA-star1, and RA-star2 algorithms by at least 1.67%, 
1.02%, and 1.23%, respectively. In dense scenarios, 
compared to the CAPSO algorithm, the enhanced A-star 
algorithm enhances path length reduction by at least 
0.07%. This provides a compelling solution for effective 
robot path planning.

Although the proposed enhanced A-star algorithm 
has achieved significant success in robot path planning, 
we acknowledge that there is still room for improvement, 
warranting further in-depth exploration. Firstly, in 
scenarios with multiple obstacles between the start and 
end points, the algorithm’s runtime may increase, offering 
a potential direction for further optimization. Future 
research will focus on refining the algorithm to make it 
more adaptable to different types of maps, addressing 
the challenges of complex environments. Secondly, we 
plan to extend the enhanced A-star algorithm to multi-
robot collaborative path planning, aiming to enhance the 
overall system efficiency and coordination. Research in 
these two directions will contribute to further improving 
the algorithm’s performance, making it more practical and 
versatile.
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