
Journal of Internet Technology Vol. 26 No. 2, March 2025 183

*Corresponding Author: Qing-Hua Luo; E-mail: luoqinghua081519@163.com
DOI: https://doi.org/10.70003/160792642025032602004

A Path Planning Algorithm Based on A Heuristic Method

Xiao-Zhen Yan1, Xin-Yue Zhou1, Ruo-Chen Ding1, Qing-Hua Luo1,2*, Chun-Yu Ju1

1 School of Information Science and Engineering, Harbin Institute of Technology at WeiHai, China
2 Shandong Institute of Shipbuilding Technology, China

yxz_heu@163.com, zxyuelu@163.com, 1015412921@qq.com, luoqinghua081519@163.com, 2410242150@qq.com

Abstract

The path planning algorithm plays a pivotal role in the
field of intelligent robotics. However, in certain scenarios,
the A-star algorithm exhibits drawbacks such as excessive
redundant nodes and prolonged path lengths. Consequently,
this paper introduces a path planning algorithm employing
a heuristic approach, which will be briefly elucidated in
the subsequent sections. If the straight-line path from
the starting point to the destination is unobstructed,
iterative calculations for path planning are unnecessary.
Should the straight-line path intersect obstacles, the
proposed heuristic algorithm is employed for local path
planning to circumvent obstacles, and the obtained path is
subsequently integrated with the overall trajectory. In the
same context, we compare this algorithm with other path
planning algorithms, revealing that the enhanced algorithm
presented in this paper achieves a reduction in path length
ranging from 0.07% to 12.58%. This successfully validates
the effectiveness of the improved algorithm proposed in
this study.

Keywords: A-star algorithm, Path planning algorithm,
Adaptive obstacle size, Heuristic method

1 Introduction

In the field of robotics, the study of path planning
algorithms is of great significance. Intelligent unmanned
equipment, such as unmanned aerial vehicle [1], mobile
robots, self-driving cars [2] and unmanned surfaced
vehicles [3], cannot achieve satisfactory navigation effects
without path planning algorithms. The mobile robot
uses its sensors to map the surrounding environment, a
satisfactory path is produced by a path planning algorithm
on a known map, and then transfer the results planned by
the planner give the control layer to realize autonomous
navigation of the robot. Overall, the application of path
planning technology in intelligent robots has received
much attention in recent years.

The solution to this problem can promote the
application of robots in various scenes. For a mobile robot,
to reach the designated position smoothly, it is necessary
to find a path that is free of obstacles, short in length and
with as few turning points as possible [4]. Domestic and

international experts have conducted many studies on this
issue. Generally, path planning algorithms can be divided
into two main categories. We mainly give a detailed
introduction to the global path planning algorithm [5].

The global path planning algorithms include the
traditional algorithms and the intelligent algorithms.

In the realm of conventional algorithms, the Dijkstra
algorithm, invented by Dutch computer scientist Edsger
Wybe Dijkstra, calculates the shortest distance search by
accumulating path lengths [6]. The algorithm involves
continually inspecting all nodes adjacent to the current
node in the set of nodes that have not yet found the shortest
path [7]. Due to its non-directional search approach,
the efficiency of the Dijkstra algorithm is notably low.
Consequently, in 1968, Nils John Nilsson developed an
enhancement to the Dijkstra algorithm, known as the
A-star algorithm, which evaluates paths through a heuristic
function to reduce the search scope and computational
complexity [8-10]. Anthony Stenz extended the A-star
algorithm in 1994, naming it the D-star algorithm,
applicable to path planning in partially or completely
unknown dynamic environments [11]. However, the D-star
algorithm plans the next step within a finite time, and
each step taken may not necessarily be the optimal path
[12]. Rapidly Exploring Random Trees (RRT) refer to an
algorithm forming a randomly expanding tree, with the
starting point as the root node, adding leaf nodes through
random sampling when overlapping with the endpoint
occurs. The sampling method employed here is the
incremental sampling search method [13]. While RRT is
suitable for path planning problems in high-dimensional
spaces and complex environments, it fails to guarantee
optimal paths, exhibits low path search efficiency, and
produces non-smooth paths [14].

A brief overview of intelligent algorithms follows. In
1992, Marco Dorigo invented the Ant Colony Optimization
algorithm by simulating the foraging behavior of ants [15].
Despite its excellent global optimization capabilities, the
ant colony algorithm tends to fall into local optima due to
its computational intensity [16]. Based on the principles
of birds seeking food, Kennedy and Eberhart proposed
the Particle Swarm Optimization algorithm in 1995 [17].
However, this algorithm suffers from slow convergence
in search depth and weak local search capabilities [18].
Genetic algorithms, introduced by John Holland in
the 1970s, draw inspiration from the law of organized
evolution, providing faster and better optimization results
for more complex combinatorial optimization problems

184 Journal of Internet Technology Vol. 26 No. 2, March 2025

[19]. Nevertheless, genetic algorithms exhibit poor
local search capabilities, premature convergence, slow
convergence speed, and the complexity of operations
such as selection, mutation, and crossover, conducted
probabilistically [20].

In addition to these, novel intelligent algorithms like
the Grey Wolf Algorithm find widespread application
in robot path planning due to their simplicity, few
parameters, easy programming, support for distributed
parallel computing, and robust global search capabilities
[21]. Neural networks optimize AGV path planning and
obstacle avoidance by considering environmental states
and potential obstacles, thereby enhancing computational
efficiency [22]. Reinforcement learning involves the
continuous correction of strategies through the interaction
between an agent and the environment to learn optimal
action strategies [23]. However, it tends to face challenges
in training time and sample efficiency, especially in
complex scenarios. Therefore, combining deep learning
with reinforcement learning addresses decision-making
issues and enables efficient execution of path planning
tasks for mobile robots [24]. Nevertheless, these
methods have their drawbacks, such as the Grey Wolf
Algorithm potentially getting trapped in local optima for
complex problems, neural network path planning facing
computational complexity and requiring substantial labeled
data, reinforcement learning posing challenges in training
time and sample efficiency, and deep reinforcement
learning being susceptible to sample complexity and
overfitting issues. These factors limit their performance
and applicability in certain contexts.

In comparison to the algorithms, the A-star algorithm
not only boasts simplicity in static global planning but
also exhibits fast operation during path search, making
it widely applicable in computer science and robotics
research fields. For instance, in areas like robot navigation,
the A-star algorithm effectively identifies the shortest path.
In game development, the A-star algorithm can generate
intelligent movement paths for NPCs. Furthermore, the
A-star algorithm allows the flexibility to choose different
heuristic functions for specific problems. However, the
A-star algorithm has its drawbacks. The selection of the
heuristic function significantly influences the algorithm’s
performance, and designing an accurate heuristic
function is challenging, requiring domain knowledge
and experience. Additionally, in complex environmental
situations, the traditional A-star algorithm faces issues such
as low search freedom and paths with numerous turning
points during path planning.

Therefore, addressing the issue of excessive planning
nodes and long paths in traditional A-star path planning,
this paper proposes a heuristic-based path planning
algorithm. Firstly, to mitigate the environmental impact
on the algorithm, an adaptive algorithm is employed
to analyze the characteristics of obstacles in the map,
obtaining specific obstacle dimensions. Secondly, to
reduce the iterative computation load and shorten the path
length by minimizing path nodes, this paper connects the
starting point and endpoint with a straight line, checks if
the line intersects with obstacles, and identifies intersection

points. If the straight line does not intersect with obstacles,
it is considered the optimal path, eliminating the need
for further iterative calculations, and the path length is
inherently the shortest. Finally, we introduce search factors
Connecting_distance and β in the A-star algorithm to
enhance the algorithm’s search neighborhood, thereby
addressing the traditional algorithm’s issue of suboptimal
path planning due to low search freedom.

In summary, our proposed heuristic-based path
planning algorithm improves exploration by simplifying
the path calculation process, adapting to obstacle sizes,
and enhancing heuristic functionality, resolving the issue
of excessive path nodes and long paths in traditional
A-star methods. The remaining sections of this paper
are organized as follows. Section two presents relevant
previous research. Section three outlines the overall
concept and specific implementation steps of the algorithm.
Section four evaluates the performance of the proposed
algorithm and conducts a comparative analysis with related
algorithms. Section five provides a summary of the entire
paper and suggests future research directions.

2 Related Research

In recent years, with the continual advancement of
computer technology and artificial intelligence, scholars
across diverse domains have intensified their efforts
in enhancing path planning techniques. For instance,
reference [25] proposes a hybrid path planning algorithm
based on the Membrane Pseudo-Bacterial Potential Field
(MemPBPF), reducing time complexity through the
integration of membrane computation, pseudo-bacterial
genetic algorithm, and Artificial Potential Field (APF)
methods. This achieves improved feasible solutions while
considering minimum path length, collision avoidance, and
path smoothness. Reference [26] introduces an enhanced
Motion-constrained Bidirectional Rapidly Exploring
Random Tree (IKB-RRT) algorithm, incorporating guided
nodes under robot kinematic constraints. It heuristically
guides the growth of the random expansion tree into the
configuration space target, mitigating collisions with
obstacles. To prevent abrupt changes in heading due to
independent tree expansion leading to connection points, a
dual-tree region path smoothing optimization connection
strategy is proposed, enhancing the overall smoothness
of the planned path. Reference [27] combines membrane
computation with genetic algorithms and artificial potential
field methods, seeking parameters to generate feasible and
safe paths. Reference [28] addresses the slow convergence
of Q-learning towards optimal solutions by incorporating
the concept of partially guided Q-learning. It improves
classical Q-learning using the APF method, enhancing
learning speed and final performance.

In the realm of global planning algorithms, the A-star
algorithm stands as a focal point of path planning research,
with numerous scholars and research teams making
significant contributions. They are dedicated to optimizing
the performance of the A-star algorithm, expanding its
applicability, and exploring various improvements and

A Path Planning Algorithm Based on A Heuristic Method 185

extensions related to the A-star algorithm. Reference
[29], building upon the foundation of unit decomposition
and map updating, devises an improved BA algorithm
to address continuity deficiencies and high-precision
environmental modeling challenges. Citing [6], the
enhanced A-star algorithm is combined with Delaunay
triangulation, presenting a dynamic fusion path planning
algorithm. Delaunay triangulation is employed to handle
complex obstacles, and it can also generate Voronoi points.
Reference [4] introduces geometric A-star algorithms.
To enhance the stability of AGV in turning paths, this
paper employs functions to filter nodes in the closed list
and replaces turning points with cubic B-spline curves.
Reference [30] introduces a new heuristic function
to enhance the performance of the A-star algorithm,
incorporating not only distance information but also
obstacle information.

Reference [31] proposes a method that prioritizes the
expansion of adjacent nodes in the direction of endpoints. It
incorporates turning costs into the calculation of the actual
cost and estimated cost of the current node. Reference [32]
improves the A-star algorithm by introducing an L-shaped
path trend. As the A-star algorithm generates many
turning points during path planning, this paper traverses
turning nodes in the path and, in the absence of obstacles,
smoothes the path by replacing the current turning node
with a diagonal node forming a loop.

Reference [33] suggests a fusion approach of A-star
and dynamic window methods, optimizing search angles
and combining them with the path of the dynamic window
method. The improved method exhibits good efficiency
and feasibility. Reference [34] enhances the A-star
algorithm by incorporating the vehicle’s kinematic model
as a constraint in the cost function. The obtained path is
smoother, more rational, and aligns with the vehicle’s
kinematic model. Reference [35] improves the A-star
algorithm by adding environmental information and AGV
position information to the traditional evaluation function.
The algorithm optimizes path points and eliminates
unnecessary turning points.

Reference [36] introduces the guiding principles and
key points of the A-star algorithm to develop a heuristic
function, making it easier to avoid obstacles. Reference
[37] improves the A-star algorithm by considering the
distance factor between obstacles, preventing redundant
nodes caused by being too close to obstacles. Reference
[38] introduces criteria, key points, and a new variable step
size into the A-star algorithm, reducing computation time.

Reference [41] combines the renowned hybrid A-star
search engine with the “visibility map” project to obtain
the optimal path. Reference [39] utilizes jump point
search to optimize the search method and search speed.
Simultaneously, this paper considers angle evaluation
costs, leading to a shorter path. Reference [10] adjusts the
number of directions extending from the current point to
surrounding survey points. Reference [9] designs a novel
heuristic algorithm, where the heuristic function uses
energy consumption to estimate costs.

3 Materials and Methods

This section aims to intricately elucidate the innovative
concepts and specific implementation steps undertaken
to enhance the A-star algorithm. Initially, we provide a
comprehensive overview of each constituent element of
the proposed algorithm, delving into the specific details
of each component. Finally, to present the algorithm’s
workflow more lucidly, we summarize the entire process
and accompany it with a flowchart.

Our improvement approach necessitates, as a primary
step, connecting the starting point and endpoint through
a straight line. Recognizing that obstacles may not lie
directly on this line, our algorithm explicitly considers
the straight line as the optimal path, obviating the need
for iterative calculations. Consequently, our focus here
is specifically on scenarios where at least one obstacle is
present.

3.1 The Overall Process of Our Proposed Algorithm
Figure 1 describes the overall process of the algorithm.

It consists of four main parts: adaptively determine
obstacle size, determine the handover point, improved
the A-star algorithm, and combine local paths. We first
compute the measurement of the obstacle through an
adaptive algorithm, then make a circle with this radius,
determine the handover point, use the improved A-star
algorithm in each segment of the local path, and the local
paths are finally merged.

Adaptively
determine

obstacle size

Determine
the handover

point

Improved
A-star

algorithm

Combine
local paths

Figure 1. The framework of the path planning based on a
heuristic method

(1) Adaptively determine obstacle size: Use an adaptive
algorithm to find the maximum boundary distance of a
given obstacle. For regular graphics such as a rectangle,
the maximum boundary distance is the rectangle diagonal.

(2) Determine the handover point: The straight path,
between the start and the endpoint, will have two points
of intersection with the circle centered on an obstacle.
The handover point can be defined as follows: we draw a
circle, and the circle radius is the size of the obstacle. The
two intersections between the circle and the straight line
are called the handover points.

(3) Improved A-star algorithm: We introduce the
weighted factor β in the heuristic function part and

186 Journal of Internet Technology Vol. 26 No. 2, March 2025

introduce the connection factor Connecting_distance that
describes the direction in which the current point expands
to the surroundings.

(4) Combine local paths: After determining the local
start and the local endpoint, we use the improved A-star
algorithm to generate the local path. And then we combine
the local paths into a global path.

3.2 Adaptively Determine Obstacle Size
We determine the size of the obstacle by using

an adaptive algorithm. And when we improve the
A-star algorithm, we also need to consider the obstacle
measurement.

{ }iM m= (1)

Here, M is the map, divide the map into smaller grids,
each grid is represented by mi , mi value of 1 means that
there is an obstacle at that grid, otherwise, mi value of 0
means that the grid is passable.

We assume a situation where an obstacle is composed
of some grid cells, and the following expressions (2) and
(3) are used to describe the obstacle M .

1

n

j
j

M m
=

= ∑ (2)

{ } 1, 1,2,3,...,im j n= = (3)

Figure 2. shows a square obstacle, each mi of which
is 1. We consider the case when there exists only one
obstacle, and the obstacle is composed of many smaller
obstacles. The specific implementation steps are listed in
Algorithm 1. The input M of the algorithm in Algorithm
1 is an obstacle, and the output Max is the size of the
obstacle.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Figure 2. Representation of the obstacle

The proposed algorithm utilizes an adaptive algorithm
to find the maximum boundary distance of a given
obstacle. For regular graphics (such as rectangles), the
maximum value is the length of the diagonal of the
rectangle.

Algorithm 1. Size of obstacles
1 0Max =
2 for mi in M do
3 if mi=1 then
4 obstacle=[obstacle mi]
5 end if
6 end for
7 n=size(obstacle)
8 for 1i = to n do
9 for 1j = to n do

10 () ()temp obstacle i obstacle j= −

11 if temp Max> and i j≠ do
12 Max temp=
13 end if
14 end for
15 end for
16 return Max

3.3 Determine the Handover Point
In this situation, suppose there only exists one obstacle.

We first plan a straight path from the start to the endpoint
and show it in Figure 3. S is the start and its coordinates
are (,)start startx y , E is the endpoint and its coordinates

are (,)goal goalx y , O is the obstacle and its coordinates are

(,)obstacles obstaclesx y . We draw a circle using O to be the
center and intersect the straight-line SE at points M and N,
the radius of the circle here is r.

Y

X

O

M

N

P

The starting point
The ending point
The handover point

The straight line connecting the
starting point and the ending point

The obstacle

The circle with O as the center
The local path planned by the
improved A-star algorithm

S

E

Figure 3. Simulation diagram of path planning for our
presented algorithm when considering one obstacle

The equation of the straight-line SE is as follows:

start start

goal start goal start

y y x x
y y x x

− −
=

− − (4)

And the equation of the circle using O to be the center
is shown below:

2 2 2() ()obstacle obstaclex x y y r− + − = (5)

A Path Planning Algorithm Based on A Heuristic Method 187

We determined the coordinates of the handover points
M and N by using the joint equations 4 and 5. And the
coordinates are M(xM, yM) and N(xN, yN) respectively.

To bypass the detected obstacle O, we need to plan the
local path by using M and N as the start and the endpoint,
and we determine them by the following method:

M Nx x D− = (6)

If D is larger than 0, which shows that point N is closer
to the starting point. So N is chosen to be the local start
and M is chosen to be the local endpoint. Otherwise, we
make the opposite choice.

3.4 Improved A-star Algorithm
We introduce the weighted factor β in the heuristic

function part to improve the A-star algorithm. It also
introduces the connection factor Connecting_distance to
describe the direction in which the current point expands
to the surroundings.

The A-star algorithm first uses the current point
as a reference point. Then it evaluates the score of the
surrounding points. Finally, we select the point of the
lowest score as the next point.

Therefore, the valuation of the location is very
important, and the cost function is improved by the
following method:

() () ()f n g n h nβ= + (7)

Here n is the current point. f(n) is the valuation function
of point n. g(n) being the minimum path cost between
the start and the present point. β is a constant parameter,
and it will be specifically optimized later. h(n) being the
minimum estimated path cost of the path between the
present point and the endpoint.

We use Euclidean distance in the calculation of the
estimated cost between the present point and the endpoint.

2 2() () ()n goal n goalh n x x y y= − + − (8)

Here xn , xgoal are the horizontal coordinates of the
present point and the endpoint respectively; yn , ygoal are the
vertical coordinates of the present point and the endpoint
respectively.

The standard A-star algorithm will only search eight
surrounding points, which may lead to sub-optimal paths.
We define a parameter as connecting distance, when the
connecting distance takes different values, the improved
A-star algorithm will search for points in different number
of directions.

More specifically, when Connecting_distance = 1, 2, 3
and 4, the algorithm will be 8, 16, 32, and 48 directions to
expand around. To explain more clearly, we have drawn the
diagrams of the Connecting_distance, and represent them
in Figure 4. Table 1 shows how many expansion directions
correspond to different values of the Connecting_distance.

Below, we will give the specific algorithm of the

direction of the surrounding expansion generated by
different Connecting_distance, as shown in Algorithm 2.

Table 1. The choice of options

Connecting_distance Number of directions
1 8
2 16
3 32
4 48

Figure 4. Using different connecting distance to expand
the graph around

Algorithm 2. Path orientation
1 (2 _ 1)NeighboorCheck ones Connecting distance= +

2 2 _ 2Dummy Connecting distance= +

3 _ 1Mid Connecting distance= +

4 for 1i = to _ 1Connecting distance − do

5 (,) 0NeighboorCheck i i =

6 (,) 0NeighboorCheck Dummy i i− =

7 (,) 0NeighboorCheck i Dummy i− =

8 (- ,) 0NeighboorCheck Dummy i Dummy i− =

9 (,) 0NeighboorCheck Mid i =

10 (,) 0NeighboorCheck Mid Dummy i− =

11 (,) 0NeighboorCheck i Mid =

12 (,) 0NeighboorCheck Dummy i Mid− =
13 end for
14 (,) 0NeighboorCheck Mid Mid =

15 [,] (1)row col find NeighboorCheck= ==

16 [,] (_)Neighboors row col Connecting distance= −

17 return Neighboors

Finally, we combine the given weighted factor β in the
heuristic function and path orientation analysis obtained

188 Journal of Internet Technology Vol. 26 No. 2, March 2025

above to better the performance of the A-star algorithm.
And give the flow chart as follows.

3.5 Combine Local Paths
From Figure 3, we can know that the start and the

endpoint of the local path are M and N respectively. Then
we use the presented A-star algorithm in this paper for the
local path and combine it with the straight path to obtain
the complete path [SMPNE].

For the most part, there will be multiple obstacles
in the straight-line SE. Take the example of Figure 5,
which contains two obstacles O1 and O2. Following the
method described in the previous section, we obtain the
path [SM1P1N1M2P2N2E]. However, to further optimize
the path and shorten the path length, we proposed a
method to merge local paths. When the distance between
two obstacles is close, use the start of the previous pair
of handover points as the start, and use the endpoint of
the latter pair of handover points as the endpoint. To
illustrate through Figure 5. is to combine [xM1 , xN1] and
[xM2 , xN2] into [xM2 , xN2]. To ensure that the merged path
length becomes shorter, we will evaluate the threshold to
determine a suitable threshold value later. We draw a circle
with the endpoint of the previous local path as the center
and the threshold as the radius, if the start of the latter
local path is inside the circle, the two paths are combined,
otherwise not merged. Specific ways to achieve as follows.

1 2 1 2

2 2 2() ()
thresholdN M N Mx x y y R− + − ≤ (9)

When the two obstacles in Figure 5. satisfy the
condition, we obtain the path [SM1P3N2E].

Y

X

1O

1M

1N

1P

The starting point
The ending point
The handover point

The straight line connecting the starting
point and the ending point

The obstacle

The circle with O as the center
The local path planned by the improved
A-star algorithm

2O
2M

2N

2P

S

E

3P

The local path after merging the local
starting point and the local ending point

Figure 5. Simulation diagram of path planning for our
presented algorithm when considering two obstacles

3.6 Summary of the Proposed Algorithm
We have described the principle of each part of our

algorithm in the previous sections. Figure 6 illustrates the
basic flow of the A-star algorithm. Figure 7, shows how
they work.

As shown in Figure 7, we first connect the start and
endpoint. If the straight path from the start to the endpoint
does not pass the obstacles. Our proposed algorithm will

not perform iterative calculations. Instead, it will directly
take the straight line as the optimal path.

In this section, we assume that there is at least one
obstacle between the start and endpoint. We first use the
algorithm in Algorithm 1 to determine the size of obstacles
adaptively. Then we determine the handover point. After
that, we introduce the weighted factor β and the connection
factor Connecting_distance for the A-star algorithm. The
algorithm for determining the number of search directions
to the surroundings according to Connecting_distance
is shown in the algorithm in Algorithm 2. Finally, we
combine local paths into global paths.

Start

Put the start into
the openlist

If the adjacent reachable
points in the openlist

Put adjacent reachable points of
this point into the openlist

Use this points as the parent point

Remove this point from the
openlist and add it to the closelise

Calculate the F value of all
adjacent points

If the F value is the smallest

Remove this point from the
openlist and add it to the closelise

If the point is the endpoint

If there is a smaller G
value after recalculation

End

Y

Y

Y

Y

N

N

N

N

Figure 6. The improved A-star algorithm flow chart

To explain the proposed algorithm more clearly,
we give the flowchart of the algorithm in Figure 7.
Furthermore, we next describe the algorithm steps in
detail.

Step 1: We calculate the equation of the straight-line
SE.

Step 2: We check whether the straight-line SE passes
through the obstacle. If not, the optimal path is the straight-
line SE, and exit the algorithm; otherwise, skip to Step 3.

Step 3: There are n obstacles crossed on the straight
line, which is marked as Oi (i = 1, 2, ..., n). Treat each
obstacle as follows:

(a) We regard the obstacle Oi as the center and r as the
radius, then we calculate the equation of the circle.

(b) We calculate the intersections M and N of the circle
in (a) and the straight-line SE, and then determine the start
and the endpoint according to equations 6, denoted as

_ ()local start i and _ ()local goal i .
Step 4: The start and the endpoint of each local line

A Path Planning Algorithm Based on A Heuristic Method 189

segment obtained in Step 3 are optimized as follows:
I f t h e | _ () _ (1) |local goal i local start i ε− + ≤ i s

satisfied, the | _ (), _ () |local goal i local start i and the
| _ (1), _ (1) |local goal i local start i+ + can be merged into
| _ (), _ () |local goal i local start i . Otherwise, it will remain
unchanged.

Step 5: Perform the following operations on each pair
of the start and the endpoint obtained after optimization in
Step 4:

The starting point local_start(i) and the endpoint local_
goal(i) are substituted into the improved A-star algorithm,
a path is generated and recorded as path(j), j=1, 2, 3, ..., n
and j ≤ n.

Step 6: We combine the path generated in Step 5 and
the path of the straight-line SE. The final path point is [S,
path(1), path(2), ... , E], where j=1, 2, 3, ..., n and j ≤ n.

Start

Connect the starting
and ending points

Check whether there are
obstacles in the connection

Adaptively determine
obstacle sizes

Use this points as the
parent point

End

Y N

A-star algorithm with
local start and end points

Local path combined into
global path

The path connects
from the starting

point to the ending
point

Find path

Figure 7. Path planning based on a heuristic algorithm
flow chart

4 Results

In this segment, we endeavor to assess the algorithm
proposed within this manuscr ipt across diverse
experimental scenarios. The considerations encompass the
following instances:

(1) Unimpeded traversal along a direct trajectory from
the initiation point to the terminal point.

(2) The linear path from the commencement to the
conclusion marred by the presence of a mere two obstacles.

(3) The linear trajectory from commencement to
conclusion adorned with an array of more than two
obstacles.

(4) The existence of serendipitous impediments
interspersed between the initiation and terminal points.

Our initial course of action involves the meticulous
configuration of the experimental milieu. Subsequently,
a judicious adjustment of parameters within the proposed
algorithm ensues to optimize outcomes. Finally, we
conduct simulated experiments, thereby garnering
pertinent data for both the proposed methodology and the
benchmark methods.

4.1 Experimental Setup
To rigorously assess the efficacy of the proposed

algorithm, this section orchestrates the setting of the
robot’s path planning map environment. It introduces the
evaluation metrics for algorithm assessment, elucidates the
four comparative algorithms against our refined approach.
4.1.1 Map and Experiment Environment Setting Up

In this segment, we scrutinize the performance of our
proposed algorithm within a static grid environment.

Test 1: Initially, we delineate a grid map measuring
140 units in length and 120 units in width. Grid values of 1
correspond to obstacles, while values of 0 denote obstacle-
free areas. The starting point is set at (20,10), with the
endpoint at (70,110).

Tes t 2 : To val ida te the effec t iveness of our
improvements to the A-star algorithm, we opt for the map
environments utilized in references [42] and [43]. The map
construction, starting point, and endpoint configurations
align with those specified in the aforementioned references.
To enhance the credibility of the enhanced A-star
algorithm, we employ a map environment of dimensions
200×200, introducing randomized dynamic obstacles.
Refer to Table 2 for detailed parameters regarding the
map setup, where a 500×500 scale map represents the
environments described in [42] and [43].

Table 2. Map parameters

Map scale Starting point Endpoint

500×500
(50, 250) (400, 200)
(50, 425) (400, 225)

200×200 (25, 35) (140, 190)

CPU: IntelTM core i7 8750H CPU@2.20GHz, 8G
RAM, Windows 10 64bit.
4.1.2 Evaluation Metric

We propose two evaluation metrics to measure the
algorithms used in the experiments:

proposed reference
length

proposed

length length
R

length
−

= (10)

proposed reference
time

proposed

time time
R

time
−

= (11)

Here referencelength and proposedlength represent the path
length planned by our presented algorithm in this paper

190 Journal of Internet Technology Vol. 26 No. 2, March 2025

and the reference algorithm, respectively. timereference and
timeproposed represent the required time of the path planned
by our presented algorithm and the reference algorithm,
respectively. Rlength and Rtime show the improvement level of
our presented algorithm in path length and required time.

The sign of R here indicates a certain significance. Take
Rtime as an example, if Rtime > 0, we can know that the time
required by our presented algorithm is 100×Rtime% longer
than the reference algorithm, otherwise, the time required
by our presented algorithm is 100×Rtime% shorter than the
reference algorithm.
4.1.3 Reference Algorithm

We employed four reference algorithms, namely
the traditional A-star algorithm (TA-star), the algorithm
proposed in reference [40] (RA-star1), the method
introduced in reference [41] (RA-star2), and the approach
presented in literature [44] (CAPSO). The improved
A-star algorithm in this paper is denoted as PA-star. Both
algorithms from references [40] and [41] have refined
the heuristic function within the A-star algorithm. To
comprehensively assess the superiority of the enhanced
A-star algorithm, we further chose to compare it with the
improved particle swarm optimization algorithm proposed
in literature [44], and meticulously replicated the algorithm
for a fair evaluation. The assessment will be conducted
using the aforementioned evaluation metrics. We will
evaluate them through the evaluation metrics Rlength and
Rtime presented above.

Reference [40] defines a new method to estimate the
cost between the present point and the endpoint.

The heuristic function f(n) represents are as below:

() () ()f n g n H n= + (12)

The function H(n) represents is defined as follows:

() (_ 2 _ min) 2 _ minH n H sum H H= − × + × (13)

{ }_ min min | () (), () () |H x s x e y s y e= − − (14)

_ | () () | | () () |H sum x s x e y s y e= − + − (15)

Here the present point is (x(s), y(s)) and the endpoint
is (x(s), y(s)). H_sum and H_min are the Manhattan
distance and the shortest of the horizontal distances and
vertical distances from the present point to the endpoint
respectively.

Reference [41] improves the idea by proposing an
improvement A-star algorithm, which assigns a weighting
factor β to the heuristic function to obtain a new heuristic
function f(n).

() () ()f n g n h nβ= + (16)

Here β can take a value between 1.5 and 2.
The method proposed in reference [44] introduces a

path planning approach based on cubic spline interpolation.
Selecting several path nodes as control points, cubic spline
interpolation is applied to interpolate the path between the
starting point, control points, and the target point, forming
a complete trajectory. The newly introduced chaotic
adaptive particle swarm optimization algorithm (CAPSO)
is utilized to optimize the control points in the cubic spline
interpolation.

To facilitate a fair comparison of their path planning
performance, we essentially implemented the methods
proposed in the references.

4.2 Parameter Selection
This section is dedicated to evaluating the three

parameters in the algorithm proposed in this paper and the
control points in CAPSO.
4.2.1 Parameter Evaluation

In the static path planning algorithm based on the
heuristic approach proposed in this paper, three parameters
significantly impact the effectiveness of path planning.
These parameters are β in equation (7), the connection
distance parameter Connecting_distance, and the radius
r in equation (5). The parameter optimization method
utilized in this study follows the approach used in
literature [45]. Specifically, a diverse set of parameter
combinations is established within the range of parameter
variations. The optimal combination is then determined
through statistical analysis of experimental results. This
paper adopts the default parameter combination: β = 1,
Connecting_distance = 10, r = 1. Simulation experiments
are conducted in multiple obstacle environments, using
the default parameter combination as a baseline. Each
parameter value is altered individually, and to mitigate
occasional variations, 10 experiments are performed, and
the results are averaged. Through experimental analysis,
the three parameter values that yield the best path planning
performance are selected.

(1) Evaluation of Parameter β
The impact of varying parameter β on the path planning

algorithm based on the heuristic approach proposed in this
paper is assessed. The optimization results for parameter β
are presented in Table 3. Figure 8 illustrates the influence
of parameter β on the path planning algorithm proposed in
this paper.

Table 3. The choice of options

Interval Path length
[0 1.93] 115.76

[1.93,2.41] 116.58
[2.41 3.19] 119.07

[3.19 5] 119.9

From Figure 8 and Table 3, it is evident that, within the
interval [0 1.93], the algorithm’s generated path is shortest,
measuring 115.76. As the value of parameter β increases,
the path length also increases. Considering all factors, the
value of parameter β in this paper is set to 1.

A Path Planning Algorithm Based on A Heuristic Method 191

Figure 8. Influence of Parameter β on the path planning
algorithm

(2) Evaluation of Parameter Connecting_distance
Initially, various values for the connection factor

Connecting_distance are considered, with parameter β set
to 1 and parameter r set to 10. The algorithm’s planned
path lengths are then assessed, and the results are shown in
Figure 9.

Figure 9. Influence of Parameter Connecting_distance on
the path planning algorithm

From Figure 9, i t can be observed that when
Connecting_distance = 1, the path length is 115.76, and
as Connecting_distance increases, the corresponding path
length decreases. However, after Connecting_distance
reaches 2, the path length stabilizes at a constant minimum
value of 114.33. Considering the preference for a shorter
path length, the value of parameter Connecting_distance in
this paper is set to 2.

(3) Evaluation of Parameter r
Different values for the factor r are set, with parameter

β set to 1 and parameter Connecting_distance set to 1. The
algorithm’s planned path lengths are then assessed, and the
results are shown in Figure 10, with corresponding data in
Table 4.

From Figure 10 and Table 4, it is evident that the
shortest length, 115.56, occurs in the interval [1.4 5.0].
Considering the preference for a shorter path length, the
value of 4 is selected for this parameter.

Figure 10. Result of optimizing parameter r

Table 4. Raw data of optimized parameter results

Interval Path length
[1.0 1.3] 117.27
[1.4 5.0] 115.56
[5.1 11.1] 115.76
[11.2 19.9] 115.67
[20.0 31.2] 120.38
[31.3 44.9] 123.6
[45.0 50] 130.06

The different values for the three parameters in this
paper’s algorithm are shown in Table 5.

Table 5. Raw data of optimized parameter results

Parameter Value
β 1.0

Connecting_distance 2.0
r 4.0

4.2.2 Control Point Selection
Literature [44] indicates that the quantity of control

points corresponding to the CAPSO algorithm affects the
path’s effectiveness. Experimental results suggest that three
to six control points are optimal. Therefore, this paper sets
a population size of 30 and iterates 100 times to select
the number of control points. Simulation experiments
are conducted in multiple obstacle environments, and
this experiment is performed 50 times to obtain averaged
results. The results are depicted in Figure 11, where
Subfigure (a) illustrates the paths planned by the CAPSO
algorithm under different control points, and Subfigure
(b) represents the iteration curves under different control
points. The results indicate that the best outcome is
achieved when there are 6 control points.

Hence, this paper sets the number of control points to
6, the population size to 30, the iteration count to 100, and
other parameters consistent with literature [44].

192 Journal of Internet Technology Vol. 26 No. 2, March 2025

(a) Simulation paths under different control points

(b) Iterative curve

Figure 11. Path of different control points in CAPSO

4.3 Comparison of PA-star with Four Reference
Algorithms Regarding Pathways
Simulation is conducted 50 times for each map

scenario in this study. To delve into a more comprehensive
comparative analysis, both parametric and non-parametric
statistical tests are employed. Given the fixed map
scenarios, the paths obtained by each algorithm in each
simulation experiment remain constant, and consequently,
the path lengths are fixed. Thus, this study exclusively
focuses on the statistical analysis of path search times.
4.3.1 Analysis of Unobstructed Paths between the Start
and End Points

Figure 12 illustrates the paths obtained by the five
algorithms in scenarios without obstacles. From Figure
12, it is evident that the paths generated by TA-star, RA-
star1, and RA-star2 are longer than those planned by PA-
star, while CAPSO produces paths identical to PA-star
in obstacle-free environments. As depicted in Table 6,
compared to TA-star, RA-star1, and RA-star2, PA-star
results in a reduction of path lengths by 7.9%, 7.9%, and
7.9%, respectively.

Figure 12. Paths of five algorithms without obstacles

Table 6. Path length without obstacles

Algorithm Path length Rlegth

TA-star 120.7107 -7.9%
RA-star1 120.7107 -7.9%
RA-star2 120.7107 -7.9%
CAPSO 111.8404 0%
PA-star 111.8404 -

4.3.2 Analysis of Two Obstacle Paths on the Line
Connecting the Starting and Ending Points

We assume the straight path from the start to the
endpoint pass only two obstacles. The following two
situations need to be discussed:

When the parameter Rthreshold satisfies formula (9),
we merge the two local paths, otherwise, it remained
unchanged.

We tested in our experiments the effect of different
values on the path length planned by our presented
algorithm. We will illustrate the length of the path in
Figure 13. From Figure 13, when Rthreshold < 13, the path
length is 124. When Rthreshold ≥ 13, the path length is 118.5.

From Figure 14, when Rthreshold < 13, the two obstacles
are not merged; when Rthreshold ≥ 13, the two obstacles are
merged. So, it explains that the path length is shorter when
Rthreshold ≥ 13. This article sets Rthreshold = 13.

Figure 15 depicts the paths obtained by the five
algorithms in scenarios with two obstacles. It is evident
from Figure 15 that all five algorithms successfully find
complete paths. However, paths generated by TA-star, RA-
star1, and RA-star2 are longer than those planned by PA-
star, while CAPSO demonstrates superior path planning
in environments with two obstacles. As shown in Table
7, compared to TA-star, RA-star1, and RA-star2, PA-star
yields path length reductions of 2.81%, 2.81%, and 2.81%,
respectively. Additionally, when compared to CAPSO, PA-
star exhibits a 4.77% increase in path length.

A Path Planning Algorithm Based on A Heuristic Method 193

Figure 13. Result of optimizing parameter Rthreshold

(a) Path planning based on our presented algorithm when
Rthreshold < 13

(b) Path planning based on our presented algorithm when
Rthreshold ≥ 13

Figure 14. The path planned by our presented algorithm
when there are different Rthreshold

Figure 15. Paths of five algorithms under two obstacles

Table 7. Path lengths under two obstacles

Algorithm Path length Rlegth

TA-star 121.83 -2.81%
RA-star1 121.83 -2.81%
RA-star2 121.83 -2.81%
CAPSO 112.85 4.77%
PA-star 118.50 -

4.3.3 Analysis of Multiple Obstacle Paths on the Line
Connecting the Starting and Ending Points

Figure 16 illustrates the paths obtained by the five
algorithms in scenarios with multiple obstacles along the
line between the starting and ending points. It is evident
from Figure 16 that all five algorithms successfully find
complete paths. However, paths generated by TA-star, RA-
star1, and RA-star2 are longer than those planned by PA-
star, while CAPSO demonstrates superior path planning
in environments with multiple obstacles. As shown in
Table 8, compared to TA-star, RA-star1, and RA-star2,
PA-star yields path length reductions of 5.27%, 5.27%,
and 12.58%, respectively. Additionally, when compared
to CAPSO, PA-star exhibits a marginal 0.18% increase in
path length.

Figure 16. Paths of five algorithms under multiple
obstacles

Table 8. Path length under multiple obstacles

Algorithm Path length Rlegth

TA-star 120.71 -5.27%
RA-star1 120.71 -5.27%
RA-star2 129.09 -12.58%
CAPSO 114.46 0.18%
PA-star 114.67 -

4.3.4 500×500 Map Simulation Comparison
Figure 17 illustrates the paths obtained by the five

algorithms in a map scenario of size 500×500. Table 9
presents the path lengths obtained by the five algorithms in
the 500×500 map scenario. From Figure 17, it is evident
that PA-star can obtain specific paths in complex scenarios,
where yellow points represent locally computed starting

194 Journal of Internet Technology Vol. 26 No. 2, March 2025

points by PA-star, blue points represent locally computed
ending points, and the paths between local starting and
ending points are planned using the improved A-star
algorithm, while the other parts of the paths consist of
straight lines. According to the data in Table 9, in scenario
1, compared to TA-star, RA-star1, RA-star2, and CAPSO,
PA-star reduces the path length by 1.7%, 1.03%, 1.24%,
and 2.98%, respectively. In scenario 2, compared to TA-
star, RA-star1, RA-star2, and CAPSO, PA-star reduces
the path length by 2.11%, 2.09%, 3.21%, and 0.53%,
respectively. This demonstrates that PA-star can effectively
obtain excellent paths in complex scenarios.

(a) Scenario 1

(b) Scenario 2

Figure 17. Simulation results in a 500×500 scale scenario

Table 9. Path length in 500×500 scale scenarios

MAP Algorithm Path length Rlegth

Scenario 1

TA-star 377.58 -1.70%
RA-star1 375.11 -1.03%
RA-star2 375.88 -1.24%
CAPSO 382.34 -2.98%
PA-star 371.27 -

Scenario 2

TA-star 434.01 -2.11%
RA-star1 433.94 -2.09%
RA-star2 438.70 -3.21%
CAPSO 427.30 -0.53%
PA-star 425.06 -

4.3.5 200×200 Map Simulation Comparison
Figure 18 represents the paths obtained by the five

algorithms in a map scenario of size 200×200. Table 10
presents the path lengths obtained by the five algorithms
in the 200×200 map scenario. From Figure 18, it can be
observed that PA-star can find a complete path even in a
random obstacle map where there are multiple obstacles
between the starting and ending points. Due to the close
proximity of some obstacles, local starting and ending
points are calculated with a distance smaller than Rthreshold ,
and therefore, the paths are merged. According to the data
in Table 10, in scenario 1, compared to TA-star, RA-star1,
RA-star2, and CAPSO, PA-star reduces the path length by
2.27%, 2.27%, 2.27%, and 0.07%, respectively. In scenario
2, compared to TA-star, RA-star1, RA-star2, and CAPSO,
PA-star reduces the path length by 3.69%, 3.69%, 3.69%,
and 6.68%, respectively.

(a) Scenario 1

(b) Scenario 2

Figure 18. Simulation results in a 200×200 scale scenario

A Path Planning Algorithm Based on A Heuristic Method 195

Table 10. Path length in 200×200 scale scenarios

MAP Algorithm Path length Rlegth

Scenario 1

TA-star 215.52 -2.27%
RA-star1 215.52 -2.27%
RA-star2 215.52 -2.27%
CAPSO 210.89 -0.07%
PA-star 210.74 -

Scenario 2

TA-star 209.07 -3.69%
RA-star1 209.07 -3.69%
RA-star2 209.07 -3.69%
CAPSO 215.09 -6.68%
PA-star 201.63 -

In these scenarios, it is evident that the paths planned
by PA-star are superior to those of TA-star, RA-star1, and
RA-star2. It is worth noting that the CAPSO algorithm
tends to prefer areas with sparse obstacles during path
planning because control points are more likely to be
distributed in those regions. This emphasizes that CAPSO
may not achieve optimal path planning in obstacle-dense
maps. In contrast, PA-star consistently demonstrates
outstanding performance in various map scenarios. While
CAPSO might obtain shorter paths in maps with sparse
obstacles, PA-star consistently achieves superior paths in
obstacle-dense maps. This highlights the consistent quality
of paths generated by PA-star in various map scenarios,
showcasing its comprehensive advantages in path
planning.

4.4 Comparison of Time between PA-star and Four
Reference Algorithms
This study conducted 50 simulation experiments for

each algorithm in different scenarios, recording the path
search time in each iteration. A “Shapiro-Wilk” normality
test was performed on the data, and the results showed a
p-value less than 0.05, indicating a deviation from normal
distribution. Considering the non-normal distribution of
the data, non-parametric methods were chosen for further
analysis. To compare differences between groups, the
Kruskal-Wallis test was applied. The test statistics are
presented in Table 11.

Table 11. Test statistic

MAP Chi-square DF p
No obstacles 241.19 4 5.13e-51

Two obstacles 239.19 4 1.38e-50
Multiple obstacles 239.14 4 1.42e-50

500×500 (1) 233.36 4 2.49e-49
500×500 (2) 230.17 4 1.21e-48
200×200 (1) 231.79 4 5.41e-49
200×200 (2) 239.37 4 1.27e-50

The substantial values of the test statistic (chi-
square) in various scenarios, ranging from 233.36 to
241.19, accompanied by p-values much smaller than the

significance level (all below 0.05), indicate significant
differences in search times among the five algorithms in
different scenarios.

For a more detailed exploration of inter-group
differences, post hoc analysis using Dunn’s method was
conducted. Table 12 to Table 14 display the median search
times (interquartile range) for PA-star compared to other
algorithms, along with Z-values and p-values. According to
the data in Table 12, PA-star exhibits significant differences
in search times compared to the four reference algorithms
in all three map scenarios (p < 0.05). In obstacle-free
scenarios, PA-star achieves almost instantaneous results
due to directly considering the straight line between the
start and end points as the final path. However, in scenarios
with multiple obstacles, the need to determine obstacle
sizes and use the improved A-star algorithm to navigate
around obstacles results in longer algorithm runtimes.
RA-star2 algorithm performs relatively quickly in all
three scenarios, followed by TA-star. Nevertheless, both
RA-star2 and TA-star yield longer path lengths. CAPSO
algorithm, although capable of obtaining shorter paths
in sparse scenarios, requires significant time for path
acquisition. RA-star1 exhibits longer path times compared
to PA-star.

Table 12. Results of the temporal comparative analysis

MAP Algorithm Search time Z p

There
are no

obstacles

TA-star 0.21
(0.2~0.22) 6.94 3.77e-11

RA-star1 0.78
(0.77~0.80) 10.41 2.05e-24

RA-star2 0.037
(0.037~0.041) 3.47 0.0052

CAPSO 4.68
(4.679~4.68) 13.89 7.20e-43

PA-star 0
(0~0) - -

Two
obstacles

TA-star 0.23
(0.21~0.23) 3.45 0.0054

RA-star1 0.89
(0.87~0.89) -3.45 0.0054

RA-star2 0.05
(0.045~0.05) 6.91 4.63e-11

CAPSO 9.26
(9.23~9.31) -6.91 4.63e-11

PA-star 0.66
(0.65~0.66) - -

Multiple
obstacles

TA-star 0.23
(0.22~0.24) 6.91 4.65e-11

RA-star1 0.88
(0.86~0.89) 3.45 0.0054

RA-star2 0.065
(0.061~0.068) 10.37 3.27e-24

CAPSO 9.99
(9.96~9.06) -3.45 0.0054

PA-star 1.07
(1.06~1.09) - -

Table 13 indicates that in the 500×500 map, PA-star
significantly differs in search times compared to the four
reference algorithms (p < 0.05). RA-star2 demonstrates the
fastest search times, followed by PA-star. However, RA-

196 Journal of Internet Technology Vol. 26 No. 2, March 2025

star2 yields relatively longer path lengths, showcasing PA-
star’s superior path search performance.

Table 13. 500×500 map-time comparison

MAP Algorithm Search time Z p

Scenario
1

TA-star 1.55
(1.51~1.61) -3.14 0.016

RA-star1 1.84
(1.82~1.89) -6.47 9.94e-10

RA-star2 0.74
(0.71~0.78) 3.84 1.24e-3

CAPSO 8.78
(8.75~8.86) -9.99 1.66e-22

PA-star 1.31
(1.27~1.36) - -

Scenario
2

TA-star 2.03
(1.91~2.11) -6.06 1.36e-8

RA-star1 1.89
(1.87~1.91) -4.31 1.62e-4

RA-star2 0.83
(0.81~0.84) 3.45 0.0054

CAPSO 8.75
(8.73~8.78) -10.37 3.32e-24

PA-star 1.56
(1.55~1.57) - -

Table 14. 200×200 map-time comparison

MAP Algorithm Search time Z p

Scenario
1

TA-star 0.29
(0.28~0.29) 6.24 4.29e-29

RA-star1 0.94
(0.93~0.94) 2.10 0.349

RA-star2 0.0657
(0.063~0.067) 9.70 2.95e-21

CAPSO 8.92
(8.89~8.96) -4.13 3.56e-4

PA-star 1.04
(1.03~1.07) - -

Scenario
2

TA-star 0.314
(0.31~0.33) 6.91 4.53e-11

RA-star1 1.19
(1.02~1.19) 3.45 0.0054

RA-star2 0.057
(0.055~0.057) 10.37 3.10e-24

CAPSO 8.92
(8.89~8.97) -3.46 0.0054

PA-star 1.76
(1.75~1.78) - -

According to the data in Table 14, in the 200×200
map, in scenario 1, the p-value for search time comparison
between PA-star and RA-star1 is greater than 0.05 (p =
0.349), suggesting no significant difference in search times
in scenario 1. In all other comparisons, PA-star shows
significant differences in search times compared to the
four reference algorithms (p < 0.05). PA-star’s algorithmic
search times in scenario 1 are 1.04 and 1.76, respectively.
It’s worth noting that in Figure 16, with multiple obstacles
between the start and end points, determining obstacle
sizes and using the PA-star algorithm skillfully to navigate
around obstacles is necessary. Although search times

increase for PA-star in this map, they remain smaller than
CAPSO.

In conclusion, in complex environments, PA-star
yields the shortest path lengths. This indicates that
despite potentially requiring more time to handle intricate
terrains, the PA-star algorithm demonstrates outstanding
performance in path optimization, providing robust
support for achieving the shortest paths. Therefore, the PA-
star algorithm presents significant advantages in practical
applications, especially in scenarios demanding precise
and efficient path planning, offering users more accurate
and efficient solutions.

5 Conclusion

In addressing the challenge of robot path planning, this
study holistically considers the real-time and feasibility
demands in practical applications, presenting an enhanced
A-star algorithm. By judiciously integrating environmental
information, this method effectively shortens path lengths.
Simulation results demonstrate that, in terms of reducing
path lengths, the improved A-star algorithm surpasses TA-
star, RA-star1, and RA-star2 algorithms by at least 1.67%,
1.02%, and 1.23%, respectively. In dense scenarios,
compared to the CAPSO algorithm, the enhanced A-star
algorithm enhances path length reduction by at least
0.07%. This provides a compelling solution for effective
robot path planning.

Although the proposed enhanced A-star algorithm
has achieved significant success in robot path planning,
we acknowledge that there is still room for improvement,
warranting further in-depth exploration. Firstly, in
scenarios with multiple obstacles between the start and
end points, the algorithm’s runtime may increase, offering
a potential direction for further optimization. Future
research will focus on refining the algorithm to make it
more adaptable to different types of maps, addressing
the challenges of complex environments. Secondly, we
plan to extend the enhanced A-star algorithm to multi-
robot collaborative path planning, aiming to enhance the
overall system efficiency and coordination. Research in
these two directions will contribute to further improving
the algorithm’s performance, making it more practical and
versatile.

Acknowledgments

This work is partly supported by the National Natural
Science Foundation of China (62271164, 62101158), the
Major Scientific and technological innovation project
of Shandong Province of China (2020CXGC010705,
2 0 2 1 Z L G X - 0 5 a n d 2 0 2 2 Z L G X 0 4) , S h a n d o n g
Provincial Natural Science Foundation (ZR2020MF017,
ZR2022MF255, ZR2023MF051), the engineering research
centre of Shandong province, The joint innovation
centre of Shandong province. Shandong Provincial
Key Laboratory of Marine Electronic Information and
Intelligent Unmanned Systems, Key Laboratory of
Cross-Domain Synergy and Comprehensive Support for

A Path Planning Algorithm Based on A Heuristic Method 197

Unmanned Marine Systems, Ministry of Industry and
Information Technology, Discipline construction fund
(2023SYLHY05).

References

[1] L. Xu, X. B. Cao, W. B. Du, Y. M. Li, Cooperative
path planning optimization for multiple UAVs with
communication constraints, Knowledge-Based Systems,
Vol. 260, Article No. 110164, January, 2023.

[2] E. Malayjerdi, R. Sell, M. Malayjerdi, A. Udal, M. Bellone,
Practical path planning techniques in overtaking for
autonomous shuttles, Journal of Field Robotics, Vol. 39,
No. 4, pp. 410-425, June, 2022.

[3] T. T. Sang, J. C. Xiao, J. F. Xiong, H. Y. Xia, Z. Z. Wang,
Path Planning Method of Unmanned Surface Vehicles
Formation Based on Improved A* Algorithm, Journal of
Marine Science and Engineering, Vol. 11, No. 1, Article
No. 176, January, 2023.

[4] G. Tang, C. Q. Tang, C. Claramunt, X. Hu, P. Zhou,
Geometric A-star algorithm: An improved A-star algorithm
for AGV path planning in a port environment, IEEE Access,
Vol. 9, pp. 59196-59210, March, 2021.

[5] X. F. Yang, Y. L. Shi, W. Liu, H. Ye, W. B. Zhong, Z. G.
Xiang, Global path planning algorithm based on double
DQN for multi-tasks amphibious unmanned surface
vehicle, Ocean Engineering, Vol. 266, Article No. 112809,
December, 2022.

[6] Z. H. Liu, H. B. Liu, Z. G. Lu, Q. L. Zeng, A dynamic
fusion pathfinding algorithm using Delaunay triangulation
and improved A-star for mobile robots, IEEE Access, Vol.
9, pp. 20602-20621, January, 2021.

[7] G. Chen, T. Wu, Z. Zhou, Research on ship meteorological
route based on A-star algorithm, Mathematical Problems in
Engineering, Vol. 2021, pp. 1-8, May, 2021.

[8] S. Sedighi, D. Nguyen, K. Kuhnert, Guided hybrid A-star
path planning algorithm for valet parking applications,
2019 5th international conference on control, automation
and robotics (ICCAR), Beijing, China, 2019, pp. 570-575.

[9] Q. Gu, F. Q. Dou, F. Ma, Energy optimal path planning
of electric vehicle based on improved A* algorithm,
Transactions of the Chinese Society for Agricultural
Machinery, Vol. 46, No. 12, pp. 316-322, December, 2015.

[10] E. S. Ueland, R. Skjetne, A. R. Dahl, Marine autonomous
exploration using a lidar and slam, International
Conference on Offshore Mechanics and Arctic Engineering,
Trondheim, Norway, 2017, Article No. V006T05A029.

[11] A. Stentz, Optimal and efficient path planning for partially-
known environments, Proceedings of the 1994 IEEE
international conference on robotics and automation, San
Diego, CA, USA, 1994, pp. 3310-3317.

[12] W. Y. Yue, J. Franco, W. Cao, H. W. Y, ID* Lite: improved
D* Lite algorithm, Proceedings of the 2011 ACM
Symposium on Applied Computing, TaiChung, Taiwan,
2011, pp. 1364-1369.

[13] C. Huang, H. Huang, J. Z. Zhang, P. Hang, Z. X. Hu, C.
Lv, Human-machine cooperative trajectory planning and
tracking for safe automated driving, IEEE Transactions
on Intelligent Transportation Systems, Vol. 23, No. 8, pp.
12050-12063, August, 2022.

[14] J. C. Zhang, Y. Q. An, J. N. Cao, S. Ouyang, L. Wang,
UAV Trajectory Planning for Complex Open Storage
Environments Based on an Improved RRT Algorithm, IEEE
Access, Vol. 11, pp. 23189-23204, March, 2023.

[15] S. C. Su, X. Ju, C. J. Xu, Y. F. Dai, Collaborative Motion

Planning Based on the Improved Ant Colony Algorithm
for Multiple Autonomous Vehicles, IEEE Transactions on
Intelligent Transportation Systems, pp. 1-11, March, 2023.
DOI: 10.1109/TITS.2023.3250756

[16] Z. Wang, X. Feng, H. D. Qin, H. M. Guo, G. J. Han, An
AUV-Aided Routing Protocol Based on Dynamic Gateway
Nodes for Underwater Wireless Sensor Networks, Journal
of Internet Technology, Vol. 18, No. 2, pp. 333-343, March,
2017.

[17] X. J. Liu, Q. Gu, C. L. Yang, Path planning of multi-
cruise missile based on particle swarm optimization,
2019 International Conference on Sensing, Diagnostics,
Prognostics, and Control (SDPC), Beijing, China, 2019,
pp. 910-912.

[18] W. L. Hao, C. Wu, S. C. Lin, Research on UAV path
planning based on improved particle swarm algorithm with
inertia weight, 2023 IEEE International Conference on
Control, Electronics and Computer Technology (ICCECT),
Jilin China, 2023, pp. 738-741.

[19] J. P. Tu, S. X. Yang, Genetic algorithm based path planning
for a mobile robot, 2003 IEEE International Conference on
Robotics and Automation (Cat. No. 03CH37422), Taipei,
Taiwan, 2003, pp. 1221-1226.

[20] F. Wang, Z. W. Wang, M. J. Lin, Robot Path Planning
Based on Improved Particle Swarm Optimization, 2021
IEEE 2nd International Conference on Big Data, Artificial
Intelligence and Internet of Things Engineering (ICBAIE),
Nanchang, China, 2021, pp. 887-891.

[21] J. Y. Liu, X. X. Wei, H. J. Huang, An improved grey wolf
optimization algorithm and its application in path planning,
IEEE Access, Vol. 9, pp. 121944-121956, August, 2021.

[22] M. Maaz, A. Shaker, H. Cholakkal, S. Khan, S. W.
Zamir, R. M. Anwer, F. S. Khan, Edgenext: efficiently
amalgamated cnn-transformer architecture for mobile
vision applications, European Conference on Computer
Vision, Tel Aviv, Israel, 2022, pp. 3-20.

[23] Y. L. Wei, W. Y. Jin, Intelligent vehicle path planning based
on neural network Q-learning algorithm, Fire Control &
Command Control, Vol. 44, No. 2, pp. 46-49, February,
2019.

[24] Y. X. Long, H. J. He, Robot path planning based on
deep reinforcement learning, 2020 IEEE Conference
on Telecommunications, Optics and Computer Science
(TOCS), Shenyang, China, 2020, pp. 151-154.

[25] U. Orozco-Rosas, K. Picos, O. Montiel, Hybrid path
planning algorithm based on membrane pseudo-bacterial
potential field for autonomous mobile robots, IEEE Access,
Vol. 7, pp. 156787-156803, October, 2019.

[26] L. Ye, F. Y. Wu, X. J. Zou, J. Li, Path planning for mobile
robots in unstructured orchard environments: An improved
kinematically constrained bi-directional RRT approach,
Computers and Electronics in Agriculture, Vol. 215, Article
No. 108453, December, 2023.

[27] U. Orozco-Rosas, O. Montiel, R. Sepúlveda, Mobile robot
path planning using membrane evolutionary artificial
potential field, Applied Soft Computing, Vol. 77, pp. 236-
251, April, 2019.

[28] U. Orozco-Rosas, K. Picos, J . J . Pantrigo, A. S.
Montemayor, A. Cuesta-Infante, Mobile robot path
planning using a QAPF learning algorithm for known and
unknown environments, IEEE Access, Vol. 10, pp. 84648-
84663, August, 2022.

[29] Y. Ma, Y. J. Zhao, Z. X. Li, X. P. Yan, H. X. Bi, G.
Królczyk, A new coverage path planning algorithm for
unmanned surface mapping vehicle based on A-star based
searching, Applied Ocean Research, Vol. 123, Article No.

198 Journal of Internet Technology Vol. 26 No. 2, March 2025

103163, June, 2022.
[30] J. Zhang, J. Wu, X. Shen, Y. S. Li, Autonomous land

vehicle path planning algorithm based on improved
heuristic function of A-Star, International Journal of
Advanced Robotic Systems, Vol. 18, No. 5, Article No.
17298814211042730, September-October, 2021.

[31] C. B. Wang, L. Wang, J. Qin, Z. Z. Wu, L. Duan, Z. Q.
Li, M. Q. Cao, X. C. Ou, X. Su, W. G. Li, Z. Lu, M.
Li, Y. Wang, J. Long, M. Huang, Y. Li, Q. Wang, Path
planning of automated guided vehicles based on improved
A-Star algorithm, 2015 IEEE International Conference
on Information and Automation, Lijiang, China, 2015, pp.
2071-2076.

[32] J. Lin, Improved A* Algorithm for Intelligent Warehouse
Logistics Robot Path Planning, Journal of Sanming
University, Vol. 38, No. 6, pp. 51-58, December, 2021.

[33] Y. Y. Guo, J. Yuan, K. G. Zhao, Robot path planning based
on an improved A* algorithm and an improved dynamic
window method, Computer Science and Engineering, Vol.
44, No. 7, pp. 1273-1281, July, 2022.

[34] X. W. Wang, J. J. Lu, F. Y. Ke, X. Wang, W. Wang,
Research on AGV task path planning based on improved
A* algorithm, Virtual Reality & Intelligent Hardware, Vol.
5, No. 3, pp. 249-265, June, 2023.

[35] W. G. Li, X. Su, AGV path planning based on improved A*
algorithm, Modern Manufacturing Engineering, No. 10, pp.
33-36, October, 2015.

[36] E. Shang, B. Dai, Y. M. Nie, Q. Zhu, L. Xiao, D. W. Zhao,
A guide-line and key-point based A-star path planning
algorithm for autonomous land vehicles, 2020 IEEE 23rd
International Conference on Intelligent Transportation
Systems (ITSC), Rhodes, Greece, 2020, pp.1-7.

[37] J. W. Yu, J. Hou, G. Chen, Improved safety-first A-star
algorithm for autonomous vehicles, 2020 5th International
Conference on Advanced Robotics and Mechatronics
(ICARM), Shenzhen, China, 2020, pp. 706-710.

[38] E. Shang, B. Dai, Y. M. Nie, Q. Zhu, L. Xiao, D. W.
Zhao, An improved A-Star based path planning algorithm
for autonomous land vehicles, International Journal of
Advanced Robotic Systems, Vol. 17, No. 5, Article No.
1729881420962263, September-October, 2020.

[39] T. Zheng, Y. Q. Xu, D. Zheng, AGV path planning based
on improved A-star algorithm, 2019 IEEE 3rd Advanced
Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), Chongqing,
China, 2019, pp. 1534-1538.

[40] X. H. Wang, X. H. Liu, Y. C. Wang, A Research on
Task Scheduling and Path Planning of Mobile Robot in
Warehouse Logistics Based on Improved A* algorithm,
Industrial Engineering Journal, Vol. 22, No. 6, pp. 34-39,
December, 2019.

[41] C. J. Huang, C. H. Wu, Application of improved A*
algorithm in intelligent AGV path planning, Journal of
Putian University, Vol. 22, No. 5, pp. 36-39, October, 2015.

[42] O. A. R. A. Wahhab, A. S. Al-Araji, An Optimal Path
Planning Algorithms for a Mobile Robot, Iraqi Journal
of Computers, Communications, Control & Systems
Engineering (IJCCCE), Vol. 21, No. 2, pp. 44-58, June,
2021.

[43] O. A. R. A. Wahhab, A. S. Al-Araji, Path Planning and
Control Strategy Design for Mobile Robot Based on Hybrid
Swarm Optimization Algorithm, International Journal of
Intelligent Engineering and Systems, Vol. 14, No. 3, pp.
565-579, June, 2021.

[44] J. F. Lian, W. T. Yu, K. Xiao, W. R. Liu, Cubic spline
interpolation-based robot path planning using a chaotic

adaptive part icle swarm optimization algori thm,
Mathematical problems in engineering, Vol. 2020, pp. 1-20,
February, 2020.

[45] C. W. Miao, G. Z. Chen, C. L. Yan, Y. Y. Wu, Path planning
optimization of indoor mobile robot based on adaptive ant
colony algorithm, Computers & Industrial Engineering,
Vol. 156, Article No. 107230, June, 2021.

Biographies

Xiao-Zhen Yan received her bachelor’s,
master ’s and doctor ’s degrees in
Communica t ion and Informat ion
Systems from Harbin Engineering
University in 2005,2008 and 2012. Since
2021, she has been an associate professor
at the School of Information Science
and Engineering at Harbin Institute of

Technology (Weihai). His main research interests include
wireless sensor network, positioning and navigation.

Xin-Yue Zhou graduated from the
University of Jinan in 2021 with a
bachelor ’s degree. He is currently
studying for a master’s degree at Harbin
Institute of Technology in Weihai.
His main research direction is the
multi-unmanned ship path planning
technology.

Ruo-Chen Ding received her bachelor’s
and master ’s degrees from Harbin
Institute of Technology (Weihai) in 2020
and 2022. His main research direction is
intelligent storage path planning.

Qing-Hua Luo received his doctorate
d e g r e e i n C o m m u n i c a t i o n a n d
Information Systems from Harbin
Engineering University in 2005 and
2008, and his doctorate degree in
Instrument Science and Technology from
Harbin Institute of Technology in 2013.
And has served as a professor since

2023. His main research interests include wireless sensor
networks, uncertain data processing and fault diagnosis.

Chun-Yu Ju works as a Planning and
Control Algorithm Engineer at Siasun
Robotics and Automation Co., Ltd. He
obtained a Master’s degree in Control
Science and Engineering from Harbin
Institute of Technology in 2021. His
research interests include path planning
for autonomous driving and mobile

robots.

