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Abstract

Aiming at the dynamic demand path optimization 
problem of cold chain distribution, this paper combines the 
technical advantages of blockchain with the characteristics 
of cold chain path optimization problem on the basis 
of existing literature research. A multi-objective path 
optimization model with time window considering 
customer satisfaction is established, and then an example 
is designed and genetic algorithm (GA) is used to solve 
the above model. By comparing the indicators before and 
after optimization, it is concluded that the distribution cost 
of the distribution optimization scheme is low. Therefore, 
the combination of blockchain technology and cold chain 
distribution can effectively improve distribution efficiency, 
thereby reducing transportation costs and improving 
customer satisfaction. Finally, we completed the following 
work: 1) Summarized the research literature on vehicle 
routing problem (VRP) and cold chain logistics, and 
pointed out the current research trend. 2) The mathematical 
modeling of the actual logistics distribution problem is 
studied. Through the study of vehicle routing problem 
with time window (VRPTW) modeling method and 
multi-objective optimization theory, a multi-objective 
function is established and unified into cost objectives. The 
modeling elements are determined, and the multi-objective 
vehicle routing optimization model with time window is 
established by combining the objective function. Then 
the GA is determined as the algorithm for solving the 
model in this paper, and the algorithm flow is designed. 3) 
The algorithm parameters are set according to the actual 
distribution data of an enterprise, and then the effectiveness 
and optimization of the algorithm are tested to check the 
mutual constraints between the constraints of the model, as 
well as the optimization of the target value of the algorithm 
to solve the problem. The obtained path optimization 
scheme has more advantages than the original scheme.
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technology, Time window

1  Introduction

China’s meat export trade stimulated cold chain 
logistics. Only 40% of seafood is transported in a 
temperature-controlled environment, 15% of produce, and 
30% of processed meat. The high damage and high wave 
rate caused by poor traceability and improper operation 
in the whole cold chain process is as high as 20% to 30% 
[1]. However, there are too many cold storages in some 
first tier and second tier cities [2]. According to the data 
of China Food Industry Association, about 12 million 
tons of fruits and 130 million tons of vegetables are 
wasted annually in cold chain logistics in China, with a 
total value of 10 billion dollars. At present, the number 
of refrigerated vehicles in China only accounts for 0.3% 
of road freight vehicles, and there is one refrigerated 
vehicle for every 30000 people in China. In the USA, 
there is one refrigerator car for every 500 people [3]. 
With the continuous development of urbanization in 
China, per capita income can meet the conditions for the 
outbreak of cold chain food in developed countries. By 
2025, considering the potential for future development, 
it is expected that the market size of China’s cold chain 
logistics industry will further grow to 897 billion yuan [4]. 
Especially in recent years, with the gradual popularization 
of cold chain e-commerce, this is due to three primary 
factors [5]. As a result, people are becoming increasingly 
comfortable consuming a wide variety of canned, boxed, 
and frozen foods because they know the quality is assured 
[6-8]. With the rapid growth of all kinds of fresh frozen 
and refrigerated food processing industry, cold chain 
product transportation is a key issue, putting huge pressure 
on cold chain logistics enterprises [9]. On the one hand, 
an economical and effective distribution route can reduce 
the number of vehicles used, reduce the distribution time, 
and reduce the loss of cold chain products caused by 
transportation [10]. It cannot only ease public transport 
congestion, but also improve the circulation rate of cold 
chain and prevent the possibility of chain breakage [11]. 
When there is a dynamic demand in the distribution 
process, it is convenient to find a backup distribution 
center to replenish goods along the way [12-13]. Thus, 
while ensuring food safety, supporting the reasonable and 
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healthy high-speed development of the cold chain logistics 
industry to reduce costs, improve efficiency, low-carbon, 
and environmental protection is a pressing issue [14]. 

With this context in mind, this study presents 
blockchain technology as a means to effectively coordinate 
and control the whole distribution process, hence 
increasing product dissemination and decreasing the 
decay rate of new distribution. To successfully connect 
the growth of cold chain logistics with the building 
of an ecological society, researchers have developed 
a framework for optimizing the distribution route of 
intelligent logistics with multiple goals and different time 
frames in a blockchain environment.

2  Related Work

The supply chain system’s cold storage project ensures 
food quality, prevents spoilage, and reduces waste. In order 
to cut down on cold chain logistics expenses, a pricing 
quantity model has been devised [15]. Reference [16] 
considers that cold chain products need to be transported 
at a lower temperature. Reference [17] studied the trading 
mode of perishables in the production and distribution 
system. The variables in the decision model are controlled 
to ensure rapid delivery and avoid product deterioration. 
Reference [18] proposed the green and low-carbon 
location-routing problem (LRP) model in cold chain 
logistics with the minimum total costs as the objective 
function, which includes carbon emission costs. A hybrid 
genetic algorithm with heuristic rules is designed to solve 
the model. Reference [19] points out that VRPTW is a NP 
hard problem, and it is difficult for traditional algorithms 
to find the optimal solution. Since some initial algorithms, 
including two-stage algorithms, transform the VRPTW 
problem into a single objective optimization function with 
penalty terms. Reference [20] uses dynamic programming 
method and column generation method to solve VRPTW 
respectively. Reference [21] analyzed the worst case of 
heuristic and proposed a heuristic algorithm under time 
constraints. Reference [22] applies GA to VRPTW for 
the first time, and adopts the method of arranging routes 
after grouping. Reference [23] proposes a neighborhood 
structure based on the tabu search algorithm, takes a vertex 
from the line containing the nearest neighbor solution and 

places it in another line to construct a new line or eliminate 
the original line. Reference [24] uses multiple colonies 
to optimize VRPTW, and uses ant colony algorithm to 
optimize the total driving route and the total number of 
vehicles used. Extensive study of the third-generation 
AI algorithm may be found in reference [25]. Reference 
[26] proposes a parallel simulated annealing method, and 
verifies the effectiveness of this algorithm. Reference 
[27] popularizes the standard VRP by allowing soft time 
windows and limiting soft travel time. Reference [28] 
constructed two generations of ant colony algorithm for 
multi-objective VRP with soft time window. Reference 
[29] studied the VRP with time windows under fuzzy 
demand. Reference [30] designed cultural gene algorithm 
for VRPTW model. Reference [31] established a trans-
shipment alliance model between enterprises based on 
the fuzzy time window. Reference [32] proposed a hybrid 
multi-objective evolutionary algorithm to solve VRPTW. 
Reference [33] optimizes the number of vehicles and the 
total distance simultaneously by using the non-dominated 
sorting technology in GA and the optimal path crossover 
operator. 

3  Method

3.1 Multi Objective Vehicle Routing Optimization 
Model with Time Window

3.1.1 Vehicle Routing Problem
VRP means that the distribution center has a certain 

number of customers, and the logistics enterprise arranges 
a certain number of vehicles and organizes a driving route 
according to the number of customers and the demand for 
goods to complete the distribution task and meet customer 
needs. The optimization research on VRP is mainly based 
on certain constraints to optimize the vehicle distribution 
route reasonably. 
3.1.2 Vehicle Routing Problem with Time Window

1) VRPTW theory. The time window represents a 
specific time interval. The upper and lower bounds of this 
interval are composed of the earliest start time and the 
latest start time of the distribution service. 

2) Classification of time windows. The types of time 
windows in VRPTW are also different, and they are 
generally divided according to several methods in Table 1.

Table 1. Types of time windows
Classification method Type of time window

By definition Definitive time window/ Uncertain time window
By form Unilateral time window/ Bilateral time window

By customer satisfaction Hard / Soft / Mixing time window

3.1.3 Multi Objective Optimization
1) Multi-objective optimization problem (MOP). MOP 

refers to the comprehensive consideration of the weight 
of multiple indicators under certain constraints in the 
management and design of a problem, so that multiple 
objectives can find a balance point to a certain extent to 
achieve the overall optimization. The mathematical form 
of MOP is described as follows:

1 2min ( )[ ( ), ( ),..., ( )]  ( 1, 2,..., )nZ z x z x z x z x n N= =     (1)   

( ) 0   1, 2,...,ia x i k≤ =                        (2)

( ) 0   1, 2,...,jb x i l= =                        (3)
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1 2[ , ,..., ,..., ]d Dx x x x x=                        (4)

min max    1, 2,...d d dx x x d D− −≤ ≤ =                (5)

where equation (1) represents that the total objective is 
determined by n optimization objectives, and z1(x) is the 
nth objective function. x is the D dimension decision 
vector, z is the objective vector, Z is the objective space 
formed by the objective vector, and N is the total number 
of optimization objectives.

2) MOP solution. MOP is a kind of problem that is 
difficult to solve in various fields. After processing or 
mathematical transformation, MOP method converts sub 
objective functions into single objective functions. 

Hierarchical sequence method: First, the first objective 
is optimized, and the set of all optimal solutions is found 
to be R0. Then, find the optimal solution of the second 
objective in R0. Remember that the optimal solution set at 
this time is R1, and so on until the optimal solution of the 
m-th objective is found. The premise of this method is that 
R0, R1, …, Rm−1 are not empty, and R0, R1, …, Rm−2 cannot 
have only one element, otherwise it is difficult to proceed.

Evaluation function method: The heart of this technique 
is an assessment function that simplifies competing goals 
into a single, more manageable target. 

3.2 Analysis of Modeling Elements of the Model
3.2.1 Modeling Assumptions

Modeling unstable distribution components requires 
appropriate assumptions. 1) The distribution center-to-
target customer route will not be blocked. 2) Distribution 
and rental vehicle distribution will not be delayed due 
to distribution center vehicles failure. 3) Each vehicle’s 
carrying capacity is much greater than a single customer’s 
demand volume, so dividing the order is unnecessary. 4) 
The distribution center has enough goods to meet customer 
demand. 5) The enterprise knows the number, coordinate 
position, and distance between any two target customers. 
6) The target customer’s goods demand will not change 
during vehicle distribution.
3.2.2 Model Constraints

This paper restricts vehicle mileage to reduce traffic 
accidents. 1) Distribution cannot exceed facility capacity. 
2) Only the distribution center’s full fleet of cars can be 
used for distribution. 3) Vehicles cannot be overloaded. 
4) Each vehicle has one route and serves multiple target 
customers. 5) Only one vehicle can deliver each target 
customer’s goods demand at a time. Reducing or repeating 
deliveries is restricted. The distribution facility is the 
vehicle’s origin and destination. 7) Vehicles arriving 
and leaving each customer point should match. 8) After 
reaching the next customer point, goods cannot return to 
the previous customer point. 9) The following customer 
must be served later. 10) Vehicle mileage cannot exceed 
the maximum.

3.3 Construction of Cold Chain Logistics Distribution 
Optimization Model

3.3.1 Multi-Objective VRPTW Model Objective 
Function Analysis

1) Total number of vehicles used. In this model, the 
total number of distribution vehicles is the total number of 
vehicles that the distribution center provides distribution 
services for customers. Therefore, the objective function of 
the minimum number of vehicles is as follows.

0 1 1 0min u n
k j jkZ x= == Σ Σ                          (6)

2) Total delivery mileage. According to the enterprise 
logistics operation process, the last step of cold chain 
products before loading and distribution is that the staff 
needs to carry out standard inspection, and the products 
can be packaged and loaded for delivery only after they 
pass the quality inspection. Therefore, the objective 
function of the shortest total distribution mileage of 
vehicles is as follows.

1 1 0 0min u n n
k i j ij ijkZ d x= = == Σ Σ Σ                     (7)

3) Time penalty cost. Due to market demands for 
cold chain product quality, customers are becoming more 
demanding of logistics distribution timeliness. Delay 
penalty coefficients reflect customer satisfaction loss and 
product deterioration risk. The objective function of the 
minimum time penalty cost is as follows:

2 1 1min {max[( ),0]
max[( ),0] }

n u
i k i ik

e ik i l

Z et t
M t lt M

= == Σ Σ − ×
+ − ×

            (8)

3.3.2 Conversion of Objective Function
VRPTW develops  two opt imiza t ion  models . 

Emergency logistics transportation path planning requires 
a single-objective mathematical model to minimize 
distribution time. Second, model multiple objectives 
mathematically, convert some into cost objectives, and use 
the sum of time costs as the optimization objective. 

1) Number of vehicles used and fixed cost. Fixed cost 
refers to the fixed cost paid by the distribution center. 
Use C0 to represent the fixed cost of a single distribution 
vehicle. The minimum fixed cost is:

0 0 1 1 0min u n
k j jkZ C x= =′ = ×Σ Σ                      (9)

2) Total vehicle distribution mileage and transportation 
consumption cost. The cost of vehicle transportation 
is mainly composed of fuel consumption cost and tire 
loss cost. If C1 is used to represent the transportation 
consumption cost incurred by the vehicle per kilometer, 
the minimum transportation cost is: 
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1 1 1 0 0min u n n
k i j ij ijkZ C d x= = =′ = ×Σ Σ Σ                (10)

The final objective function of the model is:

0 1 2min min min minZ Z Z Z′ ′= + +              (11)

3.3.3 Establishment of Distribution Model
Combined with problem demand and actual constraints, 

the distribution model established in this paper is:

0 1 1 0

1 1 0 0

1 1

min

{max[( ),0]
max[( ),0] }

u n
k j jk

u n n
k i j ij ijk

n u
i k i ik

e ik i l

Z C x

C d x

et t
M t lt M

= =

= = =

= =

= ×Σ Σ

+ ×Σ Σ Σ

+Σ Σ −
× + − ×

          (12)

 

0 0 ,n n
i j ij ijkd x D k K= =Σ Σ ≤ ∈                     (13)

1 ,   n
i i ikq y Q k K=Σ ≤ ∈                        (14)

1
u
k ku K=Σ ≤                                (15)

1 1,   u
k iky i N=Σ = ∈                          (16)

1 ,   n
j ij k ikx y i N=Σ = ∈                        (17)

1 ,   n
i ij k ikx y j N=Σ = ∈                        (18)

1 0 1 0 ,   n n
j j k i i k kx x u k K= =Σ = Σ = ∈                (19)

0 0 , , ,   n n
j jik j ij kx x i j i N k K= =Σ = Σ ≠ ∈ ∈          (20)

1ijk jikx x+ ≤                              (21)

, , ,ij
jk ik ik

d
t t s j N i N k K

V
= + + ∈ ∈ ∈           (22)

(1 ) 0, , ,ijk ijkx x j N i N k K− = ∈ ∈ ∈             (23)

(1 ) 0, ,ik iky y i N k K− = ∈ ∈                   (24)

(1 ) 0,k ku u k K− = ∈                         (25)

where equation (12) is the objective function of the model, 
equation (13) is the maximum distribution mileage limit 
of a single vehicle, equation (14) is the vehicle load 
limit, and the total load of goods delivered by vehicle k 
cannot exceed the maximum load of vehicle k. Equation 
(15) means that the total number of vehicles used does 
not exceed the total number of vehicles owned by the 

distribution center. Eq. (16), Eq. (17) and Eq. (18) indicate 
that the demand of a single target customer cannot be 
split, and each customer can and can only be delivered by 
one vehicle. Equation (19) means that each used vehicle 
must depart from the distribution center and return to the 
distribution center eventually. Equation (20) is the balance 
of the number of vehicles in and out, and the number of 
arriving vehicles at customer point is consistent with the 
number of departing vehicles at customer point. Equation 
(21) indicates that vehicle k cannot return to the previous 
customer after arriving at the next customer. Equation 
(22) indicates that the time of the vehicle arriving at the 
next customer is determined by the time of arriving at 
the previous customer, the unloading time, the distance 
between two customers and the driving speed. Eq. (23), 
Eq. (24) and Eq. (25) indicate the value range of decision 
variables.  

3.4 Principle of Genetic Algorithm
VRPTW is a complex combinatorial optimization 

problem, and GA is very suitable for dealing with complex 
nonlinear problems. The GA has the following advantages: 
1) The initial solution of the GA is set as a population, 
which is not a single point search. 2) GA does not need 
other information to assist operations. 3) GA is a parallel 
algorithm. 4) GA has a strong intelligence advantage, 
which can be used to solve more complex unstructured 
problems. 

The principles of chromosome coding, selection 
operator, crossover operator and mutation operator in GA 
are as follows.

1) Chromosome coding. The coding process refers to 
a specific compilation method for the potential feasible 
solution of the problem. GA does not act on the solution 
itself, but operates on all individuals in the coded 
population. 

2) Select an operator. In the initial population, 
according to the law of survival of the fittest and survival 
of the fittest in nature, the proportion of excellent genes in 
the population is increased through selection operation, and 
high-quality chromosomes are screened for inheritance. 
Common selection operators are as follows. 

Sorting selection method: all individuals are sorted 
according to their fitness after calculating their fitness 
values. According to the probability table designed in 
advance, they are allocated to individuals in order as their 
selection probabilities. 

3) Crossing operator. Since the roulette method was 
used to select the population, only the average fitness value 
of the population was improved, and no new individuals 
were generated. 

4) Mutation operator. After selection and crossover 
operations, mutation operations are performed on 
individuals to expand the population size and search 
scope of the algorithm and reduce premature convergence. 
Generally, the default mutation probability is 0.001~0.1. 

Combined with the VRPTW mathematical model and 
algorithm operation design, the operation flow of the GA 
designed in this paper is shown in Figure 1.
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Problem to be solved

Initialize path matrix
Determine the actual problem parameter set

Chromosome coding

Generate initial population

gen<Maxgen

Calculate the objective function value and 
fitness function

Optimal solution and objective 
function value

Choose

Cross

Generate a new generation of 
population Output the best individual

Variation

No

Yes

Figure 1. GA flow chart of logistics VRP with time window

4  Experiment and Analysis

4.1 Logistics Distribution Data and Parameters
Cold chain logistics company with 30 customers 

and 1 distribution center provides distribution data. 0, 
distribution center; 1-30, customer. Distribution center 
coordinates (12, 10.5) are km.

The distance between any two points can be expressed 
as:

2 2( ) ( )ij i j i jd x x y y= − + −                  (26)

4.2 Simulation Test of Algorithm Effectiveness and 
Optimization

4.2.1 Algorithm Effectiveness Simulation Test
The efficacy of the algorithm on the model and the 

optimization is tested in four ways: with no constraints, 
with the vehicle’s maximum load, with the vehicle’s 
maximum distance, and with the customer ’s time 
requirements.

1) There are no three conditions. Maximum vehicle 
load capacity, customer time window range, and maximum 
mileage prevent the algorithm from being affected. At 
this time, without three conditions, the algorithm iteration 
diagram is shown in Figure 2.
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Figure 2. Iterative graph without restrictions

The running results show that the target value starts to 
converge in about 120 iterations without the restriction of 
the three. 

2) Only the maximum load capacity of the vehicle 
is limited. Set the customer time window range and 
maximum mileage as a maximum value to ensure that 
they cannot affect the model during algorithm operation is 
shown in Figure 3.
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Figure 3. Iteration diagram with maximum load capacity 
limit

It can be seen that the target value starts to converge 
after about 140 iterations. After further testing, the 
enterprise discovered that one vehicle with the maximum 
load capacity could not distribute 30 customers. On the 
premise of minimizing the distribution cost, the enterprise 
uses 8 vehicles to complete the distribution task of 30 
customer points and complete the distribution task. 

3) Only customer time window requirements. The 
maximum load capacity and maximum mileage of the 
vehicle are set as a maximum value to ensure that they 
cannot affect the model during the algorithm operation is 
shown in Figure 4.
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Figure 4. Iteration diagram with time window requirements

It can be seen that the objective value starts to converge 
between 150-160 iterations. On the premise of minimizing 
the distribution cost, the enterprise uses 4 vehicles to 
complete the distribution task of 30 customer points. 

4) Only the maximum mileage limit. Set the maximum 
load capacity of the vehicle and the range of the customer 
time window as a maximum value to ensure that they 
cannot affect the model during the algorithm operation is 
shown in Figure 5.
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Figure 5. Iterative graph with maximum mileage limit

It can be seen that the target value starts to converge 
after about 120 iterations. A company can’t fulfill the 
distribution needs of 30 consumers with a single vehicle if 
that vehicle has reached its maximum mileage. 
4.2.2 Optimization Simulation Test of Algorithm for 

Target
The parameter setting of GA has a great impact on the 

objective function in the solution process, in which the 
population size and the maximum number of iterations will 
limit the search scope and search times of the algorithm. 

1) The influence of population size on model solution. 
Four different population sizes, namely 50, 100, 150 
and 200, were selected in the experiment, and the four 
population sizes were tested for ten times respectively are 
shown in Figure 6.

Figure 6. Operation results at different population sizes

The results show that when the population size is 
small, the search space is small and the operation time is 
short. When the population size is 150, compared with the 
average target value of 200, the difference is only 0.85, and 
the operation time is much shorter. 
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2) To improve GA’s VRPTW solution, this paper 
must set the algorithm’s termination criteria (maximum 
iterations) reasonably. The maximum algorithm iterations 
are 50, 100, 200, and 300, which are run 10 times to 
calculate the average objective function value of the ten 
tests under each value (Figure 7).

Figure 7. Operation results of different iterations

It can be seen from the data that the maximum number 
of iterations in Figure 7 increases from 200 to 300 that the 
algorithm can ensure the optimization of the algorithm 
when it runs 200 times. Therefore, this paper sets the 
maximum number of iterations to 200.

4.3  Optimize Data Analysis
The number of distribution vehicles used in the 

optimized distribution path is 10 in total, and the total 
distribution cost is 1198.55 yuan. The comparative analysis 
of various data before and after optimization is shown in 
Table 2.

Table 2. Data comparison before and after optimization

Data 
comparison

Number of 
vehicles

Delivery 
mileage

Delivery 
cost

Before 
optimization 12 228.56 1512.87

After 
optimization 10 201.76 1198.55

5  Conclusion

In this study, we integrate the technological benefits 
of blockchain technology with the features of the cold 
chain route optimization issue in an effort to solve the 
dynamic demand path optimization problem in cold chain 
distribution. Finally, we completed the following work: 1) 
Summarized the research literature on VRP and cold chain 
logistics, and pointed out the current research trend. 2) The 
mathematical modeling of the actual logistics distribution 
problem is studied. Through the study of VRPTW 
modeling method and multi-objective optimization theory, 
a multi-objective function is established and unified into 

cost objectives. The modeling elements are determined, 
and the multi-objective vehicle routing optimization 
model with time window is established by combining 
the objective function. 3) The algorithm parameters 
are set according to the actual distribution data of an 
enterprise, and then the effectiveness and optimization of 
the algorithm are tested to check the mutual constraints 
between the constraints of the model, as well as the 
optimization of the target value of the algorithm to solve 
the problem. The obtained path optimization scheme has 
more advantages than the original scheme.
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