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Abstract

The passive and active data missing in data acquisition 
reduces data availability and brings difficulties in 
subsequent data processing. To solve this problem, a data 
reconstruction method based on pontoon bridge diffusion 
model has been proposed. This method transformed the 
missing position into a 0-1 mask tensor. By element-
wise multiplication, missing values were replaced by the 
Gaussian noise to construct new data for model inputting 
according to the mask. And then, the missing data were 
reconstructed under the condition of observed data. 
Compared to other methods that divide the original data 
into missing and observed parts while the data dimensions 
remaining unchanged to make up inputs, this approach 
reduced the dimension of input data and simplified the 
correlation between inputs. Meanwhile, using the original 
parameters of noise strategy as the anchors and adjusting 
the uncertainly coefficients by in-situ replacement, the 
pontoon bridge mode reduced the difference between 
distributions of practical reconstruction and theoretical 
calculation to enhance the relevance of training process 
and generating process. Furthermore, the input data of 
the training process is augmented with various masks 
to simulate data missing modes. Experimental results 
demonstrated that data augmentation techniques enhanced 
the model’s ability to handle missing data, and the pontoon 
bridge diffusion model could effectively improve the 
quality of reconstructed missing data.

Keywords: Diffusion model, Missing data reconstruction, 
Noise schedule adjustment, Targeted training

1  Introduction

Data reconstruction, to reconstruct original data or 
its approximate value from processed data, is one of the 
primary domains of researches in information field [1]. 
It has played important roles in almost every stage of 
data processing, especially when transmitting data or 
encrypting data. Data can be varied while spreading among 
entities for the sake of security or efficiency, or even 
corrupted due to human factors and non-human factors. 

For instance, removing information that is insignificant 
in following processes before sending conserves time 
and resources at the price of impossible 100% recovery. 
Conversely, adding redundant information to overlay raw 
data protects privacy-sensitive information taking the risk 
of misunderstanding. According to the match-up between 
reconstructed data and processed data, data reconstruction 
contains four categories called spatial reconstruction, 
temporal reconstruction, precision reconstruction and 
characteristic reconstruction [2], corresponding to 
difference in spatial structure, temporal dimension, degree 
of precision and characteristic index. During the past 
decades, researchers focused on imputing the missing data 
to reconstruct data. In a sense, image super resolution is a 
kind of missing data processing, in which missing data or 
lost details are imputed based on the remaining data.

In the information age, everything can be described 
with data points consisting of several separate values 
in order. Almost inevitably, data missing will occur 
for the reason of data discretization and environmental 
disturbance. According to the relationship between 
observed values and the probability of missing data, 
missing data are classified into three categories, Missing 
Completely At Random (MCAR), Missing At Random 
(MAR) and Missing Not At Random (MNAR) [3]. In 
this paper, we distinguish missing mechanisms from 
the perspective of missing values’ positions. Missing 
completely at random refers to underlying mechanism 
that missing values’ positions generated by surrounding 
non-human factors which are unrelated to other measured 
variables and the missing values themselves. It is purely 
random and can only be simulated approximately. When 
it comes to data missing not at random, missing values’ 
positions are chosen based on pre-designed strategies to 
meet special requirements, for which the human factor is 
decisive. The missing is organized and the corresponding 
value can be calculated based on exact calculation. 
Besides, lacking of precision can be treated as a special 
case of the generalized MNAR, and improving precision is 
harder to achieve comparing with fitting approximate data 
from individual perspective. Lastly, data missing at random 
when missing values’ positions are in connection with 
other measured variables only, and is not related to the 
missing variables while others have been already observed. 
Missing data reconstruction will obtain new values at those 
missing positions that is inverse to the law of entropy 
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increase, which means extra information is required. The 
source of those extra information can be the surrounding 
data, part of the entire data, the entire data, attributes of the 
object, and additional data empirically. The stronger the 
correlativity between missing data and extra information 
provided, the more the obtained values approximate to the 
ground-truth in theory.

Diffusion probabilistic models (DPM), the shoulders 
of this research, are a kind of generative models proposed 
in recent years, which have been widely used in large-
scale model applications [4]. Originally, this model was 
formed to model probability distributions flexibly but 
tractable to train [5]. Researchers subsequently adjusted 
the model to produce new samples based on the obtained 
distributions and its powerful generalization and creation 
ability have been demonstrated in many domains. One 
crude explanation is that raw data are mapped to a real-
valued random vector of the same size step by step, and 
each data point is corresponding to distribution throughout 
the whole probability space with central value (mean) and 
variance respectively, combining into multivariate normal 
distribution under ideal conditions. Conversely, once 
determined value is assigned to the random vector, reverse 
process will produce sample that is similar to one or more 
raw data points to a certain extent according to probability 
values of respective distributions at that determined value. 
Thus, the model can generate new samples different from 
all data points in the raw dataset, meanwhile it is hard 
to replicate the training data points. Furthermore, the 
implementation of those processes is stepwise, which can 
share the burden and ensures a smooth transition between 
dataset and the random vector.

In this paper, we focus on the situation that missing 
values’ position can be simulated by covering with pseudo 
random mask or fixed mask, which is basically belonged 
to MCAR or MNAR while mask using to simulate MAR is 
conditional and much more complex. Values are generated 
from random by method based on DPMs. DPMs are 
supposed to be complex and hard to train in practice. But 
two genius ideas, series to parallel and parameters sharing, 
increase the utility and feasibility of training. However, 
the piecewise training strategy cause foreseen obstacle that 
connections between segments suffer additional loss of 
log-likelihood for the potential biases. To handle this, we 
propose a model adding ‘sealing gaskets’ at the connection 
points called Pontoon Bridge Denoising Diffusion 
Probabilistic Model (PB-DDPM). We show that our 
model has better performance on data reconstruction and 
get lower value with the same loss function. In addition, 
we discuss about the problem whether anchored points is 
needed and finally recognize its necessity. Moreover, we 
summarize the schedules used to establish the sequence of 
variances. Furthermore, we discovered that results rely on 
the conditions when concatenating conditional entries with 
raw data as the input when reconstructing missing data.

2  Related Work

Missing data was first mentioned while conducting 

questionnaire surveys and investigator found the existence 
of non-response to part of questions [6]. Since the main 
purpose was to collect the samples from which one can 
make inferences or extrapolations to the population, 
the primary approach was re-designing the survey or 
modifying the weight of samples based on the Probability 
Theory [7]. Afterward, researchers found that filling value 
calculated by special methods in the positions of missing 
data got comparable results in the following data analysis 
[8]. Thus, ‘filling in’ became one of the main approaches 
to handle missing data, and can involve either empirical 
strategy, where missing values are calculated using exact 
mathematical functions, or estimation, in which model 
parameters are estimated before generating the missing 
values [9]. As shown in Table 1, the basic features of 
representative methods have been listed, and these methods 
are introduced below. 

Table 1. Summary of related works

Method Type Training Characteristics

Rubin [10] Fixed value No Low 
percentage

Bashir [11] Regression Little Fixed 
position

Ghahramani [12] Expectation 
Maximization Little Global 

optimum

Li [15] CNN-based Much Feature 
reasoning

Zhang [16] LSTM-based Much Sequence-to
-sequence

Kingma [18] AE-based Much Variational 
lower bound

Sønderby [19] AE-based Much Hierarchical 
representation

Rezende [20] Flows-based Much Invertible 
transformations

Ho [21] DDPM Much Simplified 
objective

Song [22] DDPM-based Much Deterministic 
generation

Nichol [23] DDPM-based Much Hybrid 
objective

Kingma [24] DDPM-based Much Learnable 
noise schedule

The empirical strategies contain using fixed values, 
such as zero impute, mean impute, median impute, and 
mode impute, or finding values utilizing special methods, 
for example, previous value impute, subsequent value 
impute, imputing with the average of previous value and 
subsequent value, and most closely resembled point based 
algorithms [10]. Whereas estimation methods are complex 
and including training process, for instance, regression 
model [11] to compute a hyperplane that minimizes the 
sum of squared differences between the true data and the 
hyperplane, and expectation maximization model [12] to 
find maximum likelihood parameters of a model that can 
be used to calculate the missing values.

With the development of neural network and deep 
learning, there are more ways to make full use of entire 
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dataset including the incomplete data, which display 
more implicit correlations between variables to identify 
the missing values [13]. Meanwhile, the positional 
encoding of input embedding makes it tolerant to the 
absence of missing values and can handle complex and 
irregular missing mechanism [14]. Basic components of 
deep learning methods include the Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN). 
Li et al. [15] inpainted images by utilizing a shared feature 
reasoning module to infer intermediate results generated 
by method based on multi-layer CNN in the latent space 
recurrently. And Zhang et al. [16] proposed a sequence 
to sequence imputation model based on Long Short Term 
Memory (LSTM) network with a variable-length sliding 
window algorithm implemented to enrich the potential 
correlations of time series data.

In those methods, missing positions are padded 
with zero value which reduces impact of missing data. 
Furthermore, planned noise has been added to either the 
input or the intermediate result of training process to 
improve generalization performance. As an illustration, 
de-noising auto-encoder [17] is trained to reconstruct 
inputs from partially destroyed data while variational 
auto-encoder [18] attempts to reconstruct each input from 
a series of intermediate points generated from the latent 
variable. When it comes to generative model, the initial 
values of generating process are sampled from random 
noise. Similarly, data reconstruction methods based on 
generative model adopt random noise samples to initialize 
the missing values.

As generative model, Variational Auto-Encoder 
(VAE) generates latent variables with the mean and 
variance calculated in the encoding process of auto-
encoder, from which original data will be regenerated 
in the decoding process. Moreover, its objective is to 
maximize the Evidence Lower Bound (ELBO), which is 
a proxy for maximum likelihood model while minimizing 
the Kullback-Leibler (KL) divergence between the 
approximate posterior distribution and the true posterior 
distribution over latent variables together with the KL 
divergence between the same approximate posterior 
distribution and an identical prior distribution. However, 
it is hard to satisfy those two conditions simultaneously. 

Thus, some researchers [19-20] find a solution that 
stacking multiple encoding-decoding processes to 
sequentially generate multiple latent variables to approach 
the ideal one.

Whereas sequential generation costs more time and 
makes it complex to optimize model parameters, several 
models has been proposed to circumvent piecemeal 
training. Among which the DPM provides basic complete 
model and reserves space for self-design. This model 
regards the latent variables as scaled noisy data with the 
same dimension and the encoding processes are pre-defined 
as linear Gaussian models while the decoding processes is 
designed as a Markov chain. Thus, it is only the decoding 
processes needed to be trained and can be trained in 
parallel over different layers. Based on which, Denoising 
Diffusion Probabilistic Models (DDPM) [21] sets the 
variances of latent variables in reverse process to constants 
and trains the mean only, resembling denoising score 
matching with conditional parameter timestep t to deal 
with multiple noise scales. Moreover, Denoising Diffusion 
Implicit Models (DDIM) [22] generates competitive high 
quality samples within fewer timesteps by adjusting the 
proportion of stochasticity emanating from input noisy 
data in reverse process while training model with the same 
objective used to train DDPM. Besides, Nichol et al. [23] 
constructs a cosine noise schedule and adopts a weighted 
combination method to predict the actual variances of 
arbitrary timesteps to obtain better log-likelihoods called 
Improved Denoising Diffusion Probabilistic Models 
(IDDPM).

Furthermore, to obtain adequate default parameters 
of linear Gaussian models, Variational Diffusion Model 
(VDM) [24] utilizes a monotonic neural network with 
respect to the number of steps, of which the weights are 
restricted to be positive, to learn the noise schedule based 
on the definition of signal-to-noise ratio (SNR) in variance-
preserving diffusion process.

3  Background

Before introducing the model adjusted with pontoon 
bridge strategy, we review the construct of DDPM and 
describe the reconstruction problem and its simulation.

Figure 1. The generative process and forward process of Diffusion Model
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3.1 Denoising Diffusion Probabilistic Model
Diffusion models establish a transition between the 

input data x0 and the deepest latent variables xT, which 
consist of one noise schedule, one bidirectional Markov 
chain and three processes over multi-steps. The noise 
schedule is a vector of the same length as diffusion steps 
T which controls the spacing of each step. Since the noise 
data involved in each step are sampled from independent 
identically normal distributions and the probability of 
output depends only on the input of the same step, the ideal 
distributions of each point in both forward process and 
reverse process can be calculated based on the properties 
of Markov chain. The structure of DDPM is shown in 
Figure 1. 

In the forward process, signal power of input data 
gradually decreases while Gaussian noise power increasing 
according to pre-designed noise schedule α t∈ (0,1]
(t=1,2,…,T) as shown in formula 1:
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where x1, x2, …, xT are latent variables, and q(xt|x0) refers 
to the conditional distribution of corresponding variable 
whereas q(xT|x0) converging to a standard Gaussian 
distribution for all x0. For each step, the output data 
combines two pieces of information, the weighted input 
data with attenuation coefficient αt and the additional 
Gaussian noise data with standard deviation (1−αt). By 
Bayes rule, the reverse process conditioned on x0 can be 
described as formula 2 and formula 3:
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among which 
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of forward process are interchanged with each other 
to establish the input and output of reverse process. 
Moreover, the output data also consist of weighted input 
data and additional noise data. It is necessary to mention 
that each variable in those two processes is a random 
variable, thus those processes are theoretical and cannot 
be implemented with certain algorithm. The last process 
is the generative process that starts at pθ(xT)=N(xT;0,I) to 
approximate the reverse process with trainable parameters 
θ, training to minimize the expectation of negative log 
likelihood on dataset which is described as formula 4:
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This training objective has been simplified by DDPM 
under specify preconditions as shown in formula 5:
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  where 

η~N(0,I) and parameters σt denote the degree of additional 
stochasticity at timestep t, distinguishing from the 
stochasticity inherited from xt. Adjusting the proportion of 
those two items result in new samples. tβ  and (1−αt) are 
empirical values of σ2

t , and the additional stochasticity is 
set to zero when t = 1.

3.2 Missing Data Reconstruction 
In this paper, we focus on the situation that the 

missing position M is already known. Thus, the missing 
data can be described as X M

b and M, corresponding to the 
value and position respectively. In the case of data with 
two dimensions, the value at location i,j of M is 0 if the 
corresponding value in X M

b is observed, otherwise the value 
is 1. The empty spaces in X M

b have been labeled with Not 
a Number (NaN) to retain the structure during collection, 
which must be replaced with real value for further 
calculation.

The mathematical relation between the replaced data 
X M

T and the output data X M
0 is denoted as f, that is to say, 

X M
0 =f(X M

T , M). There are various of ways to combine input 
X M

b and M, such as concatenating on channel, processing 
in specified order or performing specific function. 
Specifically, we treat M as a mask to concentrate on the 
missing data in each step of diffusion model, and the initial 
values of missing data are sampled from standard normal 
distribution and finally converge to a neighborhood around 
the true values. Which means that observed data only need 
to be transformed under linear function while noise of 
different powers is added to the missing position according 
to the noise schedule. The object function is to reduce the 
difference between real data X and output data X M

0 that 
is equivalent to maximizing the probability of missing 
values, and can be written as formula 6.
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where xM
T = (1− M) ∗ x0 + M ∗ η, η ~ N(0,I) and I denotes 

the all-ones matrix with the same size as M. g is a function 
different from f.

As shown in Figure 2 and Figure 3, two kind of masks, 
fixed missing position and random missing position, are 
adopted to simulate the common situations of missing 
mechanisms. The former is proactive caused by the 
sampling strategy while the latter is generated by pseudo-
random sequence. Missing position is regularly under the 
situation of fixed missing position that is diversified in form 
and easy to implement, which can be regarded as special 
case of MNAR. It is the granularity of required data that 
affects the sampling strategy, manifesting itself in sampling 
interval of time series data or alternate acquisition of space 
data. Under the other situation, missing position is random 
and the missing proportion fluctuates around the expected 
value that affects the recovery of each sample. When it 
comes to model training, although some randomness has 
been introduced by data augmentation, the MNAR data 
reconstruction can be treated as regression tasks that the 
probability distribution at fixed missing position is inferred 
from surrounding known data. And it is more plausible 
to assume that the MCAR data reconstruction is a task to 
mine the intrinsic correlation, based on which the missing 
data are estimated according to global consistency.

                                  (a)                                        (b)

Figure 2. Examples of missing regularly
(The black and white grid indicates missing marks, and the black 
patch represents the location of missing data. (a) The upper part 
consists of three sequence data on the same timeline, corresponding 
to the three rows of the lower part. (b) The right part is image data of 
the same size as the left part.)

                                 (a)                                          (b)

Figure 3. Examples of missing completely at random
(The black and white grid indicates missing marks as in Figure 2.)

In order to simplify the problem, we introduce two 
parameters to describe the missing position, missing unit 
and missing rate. The former reflects the quantitative 
relation between minimum missing block and sampling 
resolution while the latter indicate the uniform proportion 
of missing position for each sample. For example, Figure 
2(a) represents the regular missing with unit of one 
sampling point and rate of nearly 50% in time dimension. 
Figure 2(b) represents the alternation missing with unit of 
1×1 and rate of nearly 50% in space dimension. Figure 3(a) 
represents the random missing with unit of two sampling 
points and rate of nearly 1/3 in time dimension while 
Figure 3(b) represents the same kind of missing with unit 
of 8×8 and rate of 1/2 in space dimension. Furthermore, 
it is obvious that the amount of data points of interest 
belonging to MNAR varies in a smaller range compared 
to MCAR while the values of those two parameters are 
changing.
 
4  Model

Diffusion model requires large number of steps to 
ensure the quality of generated samples at the cost of 
tremendous time and resources, which is confined to 
the general application. In this paper, we focus on the 
resources constrained scenario and restrict the amount of 
steps.

4.1 Additional Uncertainty in Generative Process
In reverse process of diffusion model, the conditional 

distribution q(xt−1|xt, x0) is a linear combination of xt and 
x0 together with an additional uncertainly item. Moreover, 
the lower and upper bounds on the coefficient of additional 
uncertainly are (1− α t)(1− 1tα − )/(1− tα ) and (1−α t) 
respectively. Obviously, the difference between those 
bounds decreases with the increasing of αt. Thus, DDPM 
chooses the lower bounds as the variances of conditional 
distribution and selects a large amount of steps to make αt 
close to 1.

Furthermore, the training stage is independent to 
the generating stage under the condition of step-by-step 
instructions in generative process. During the training 
stage, the mean of input data is exact and the variance is 
fixed, model is trained to reveal the variable value added to 
the input data as much as possible. However, the mean of 
input data of current step depends on the output of last step, 
which leads to bias fluctuating around the value designed 
in training stage. The bias decreases with the increasing 
of generating step number, for the reason that the weight 
of underlying value increases and the underlying value x0 
itself takes shape gradually, resulting in better performance 
of denoising model.

Since the purpose is to minimize the KL-divergence 
between conditional distributions q(xt−1|xt, x0) of reverse 
process and conditional distributions pθ(xt−1|xt) of 
generative process at each step, DDPM assumes that  
pθ(xt−1|xt) are Gaussian distributions and fixes the variances 
to train the shared parameters θ to predict tµ  only. In 
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consideration of the objective condition that the difference 
between predicted value and theoretical value always 
exists, the actual distributions in sequential generation 
stage are differ from those presupposed in training stage. 
In addition, lesser amount of steps has a negative effect on 
the validity of utilizing the lower bounds as the variances. 
Adjusting the values of variances can decrease the KL-
divergence and give occasion to reasonable weights of the 
linear combination.

There are two potentially viable approaches to adjust 
those values based on the premise that variances are not 
directly trained in generative process. One approach is to 
introduce a vector to construct new variances by using 
exact calculating formula. As utilized in IDDPM, the new 
variances are the weighted logarithmic mean of the lower 
and upper bounds that converted back to the original scale. 
The other approach is to obtain new variances individually, 
which has been used to build the PB-DDPM.

4.2 PB-DDPM 
Although the domain of each conditional distribution 

covers the entire range of values, the accuracy of means 
and variances affects the quality of generated data. Making 
connection between the input of training stage and output 
of generative stage provides a feasible way for information 
exchange, which is beneficial to handle the local minimum 
problem. The DPMs bridge the gap between exact data 
x0 and random variable xT by dividing one big problem 
into several connected smaller problems. The difference 
between the information entropy of x0 and xT can be 
analogous to elevation inconsistency of ends of the bridge.

Thus, the presupposed parameters in reverse process 
are likened to piers in the middle, and interstices between 
beams upon piers have an impact on the smoothness 
of deck. The PB-DDPM treats the piers as anchors and 

retains the adjustability of connecting points. Besides, it is 
important to notice that anchors are indispensable which 
prevents the model from being washed out. Figure 4 shows 
the flow chart of PB-DDPM.

Two XT denote the final output of forward process 
and the initial input of generative process separately, and 
the means and variances are fixed for both of them. ˆ

tX  
denote the revised input of each step. The solid blue line 
in training stage corresponds to the denoising procedure 
that need to be trained, and the blue dotted line represents 
the underlying restriction to the prospective distribution 
of each output. When it comes to the generative stage, the 
solid black line refers to the execution of trained model 
while the blue dotted line refers to calculation procedure 
used to connect adjacent steps. δ2

t denotes the presupposed 
variances and x0 denotes the inferred complete data while 

t
θ  denotes the noise estimated by denoising procedure of 

step t. ˆ ( , )tx tθµ  and 2ˆ ( , , )t tx tθ σΣ = 2 ( )t
t f θσ +   denotes 

the mean and variance of conditional distribution pθ(xt|xt+1) 
in generative stage. ( )tf θ  refers to fluctuation caused 
by training error of denoising procedure. The mean and 
variance of conditional distribution p̂θ (xt|xt+1,x0) in training 
stage are denoted as μθ(xt,t) and σ2

t . The means are equal 
in value for the reason that they are obtained through the 
same procedures. Thus, the KL-divergence between those 
two conditional distributions can be written as formula 7.
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(a) The training stage of model

(b) The generative stage of model

Figure 4. The flow chart of Pontoon-Bridge-DDPM
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ˆ
θΣ is a statistical magnitude whose value is determined 

by variable ϵ t
θ , thus, f(ϵ t

θ) is a constant function and do 
not perform any arithmetic operation. Under the condition 
that σ2

t is fixed, we need to adjust f(ϵ t
θ) to decrease the 

KL-divergence. The value of the variable depends on the 
input and model of denoising procedure. Modifying the 
model structure introduces new parameters and increases 
the computational complexity, therefore, we choose to 
adjust the input xt by updating the variance to turn this into 
reality, and denote the new variance as γt .

In training stage, the value of complete data x0 is 
known from the beginning, and the means and variances 
of input and target at each step is certain. Thus, the 
presupposed conditional distribution of xt−1 and xT on 
x 0 are  referred to as  1 1 0 1( ; , (1 ) )t t tN x x Iα α− − −−  and 

0( ; , )t t tN x x Iα γ  respectively. ε t
θ is the estimated value to 

the sample point εt acquired in reparameterization of xt  as 
formula 8.

0
t

t t tx xα γ ε= +                           (8)

Hence, the estimated value to the sample xt−1 can be 
calculated with formula 9 derived from formula 3.

                  1
1ˆ t t t t
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 − +
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ˆ t t t t
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t

γ α α α
σ

γ
−− + −

=                      (9)

where η is new sample point of standard normal deviate, 
ˆtσ  is the revised coefficient of additional uncertainty and 

γt is initialized to ( )1 tα− . γ is a new vector of length T 
and we estimate it by algorithm based on Iterative Method 
(IM) and Method of Moments (MoM).

The vector is a parameter of denoising model, and the 
algorithm is an iterative method to find optimal value of 
the vector to minimize the loss function of model. The 
algorithm alternates between performing two steps in each 
iteration, the training step which optimizes parameters 
of diffusion model while γ remains unchanged and the 
estimating step which finds (local) maximum likelihood 
estimates of γ once the loss of model has stabilized.

The loss reflects the denoising performance and 
its stabilization means that the gaussian component of 
inputs are recovered approximately. Based on which, the 
reconstructed input of next step in generative stage can be 
assumed to be a normal deviate, whose mean is directly 
proportional to x0 while the variance γt is at variance 
with the default value. Thus, we attempt to estimate this 
parameter by maximizing a likelihood function to achieve 
that the reconstructed data is most probable.
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As shown in formula 10, Lt denotes the likelihood 
function of reconstructed data xi

t that contains N samples, 
and t ranges from 1 to T−1 for the reason that the 
parameters of xT is fixed. It is noticeable that maximum 
likelihood estimation is equivalent to method of moments 
when the predefined probability density function ft(∙|γt) 
is corresponding to the family of normal distribution. 
Furthermore, there exists bias in the estimation of the 
population variance, and the estimated value calculated 
from samples should be corrected by the Bessel’s 
correction that using N−1 to instead N in the formula. 
Since variance is the only parameter to be estimated for 
each ˆtx  , the mean of normal deviate xt can be shifted to 
0 by making a subtraction to avoid loss of significance in 
calculations, such that the estimator is solved by formula 
11. Vn denotes the nth-order moment about the origin, μ(xt) 
= 0t xα  is the presupposed mean of normal deviate xt  

and N is the amount of samples to estimate variance. The 
estimated value becomes valid for large value of N at the 
cost of vast amount of calculation. Since the denoising 
procedure is trained to deal with series of noise data and 
the deviation of means are restricted, whether subtracting 
the square of first order moment about the origin or not 
does not affect the adjustment of variances.

[ ] 

[ ] 

1
0

1
0

1 0, ,
1

2 2
2 0, ,

1

2
2 1

1ˆ( ) ( ) ( )

1ˆ( ) ( ) ( )

ˆ { ( ) [ ( )] }
1

t

t

N
i

t t t tx
i
N

i
t t t tx

i

t

V t E x x x x
N

V t E x x x x
N

N V t V t
N

ε η

ε η

µ α

µ α

γ

+

+

=

=

 = − ≈ −



= − ≈ −



= −
−

∑

∑  (11)

The estimated parameter γ is supposed to converge 
to a smooth curve close to the original curve under the 
influence of the anchor points. Moreover, the values are 
mostly in the range of 0 to 1, even though them can be 
arbitrary positive number. Besides, a few values near to the 
beginning of generative process can be specially large as 
a result of outliers with small probability when it comes to 
high percentage missing. And the training process and the 
reconstructing process are shown in Algorithm 1.

As designed in DDPM, this model contains two stage, 
and the generative stage is called reconstructing stage since 
the purpose is to recover complete data from the missing. 
Besides, θ is trained by batch gradient descent while γ is 
iterative updated to a convergence result. Hence, we can 
revise formula 6 to formula 12.
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Algorithm 1. Missing data reconstruction based on PB-DDPM
Training stage:

Require: Missing position M; complete data x0; step number 
1 ≤ t ≤ T; sample point of standard normal deviate η ;

the amount of samples N; pre-designed noise schedule tα ;
presupposed variances σ 2

t ;
Ensure: New parameters γt−1 .
1. While Estimated parameters γt−1 do not stabilize do

2.        Initialize parameters; initialize γt−1 to (1− tα );

3.        Train denoising model;
4.        if Revise the parameters γt−1 then
5.              for i = 1; i ≤ N; i + + do
6.                    Random sample x i

0 and t i ;
7.                  Calculate x i

t and obtain the output εθ
t,i ; 

8.                  Calculate 1ˆtx −  and μ(xt−1);

9.                  Calculate the difference and its square;
10.           end for

11.           Calculate 1t̂γ −  and 2ˆtσ  to update γt−1 and σ2
t ;

12.      else if Do not revise the parameters γt−1 then
13.           Train denoising model;
14.      end if
15.end while

Reconstructing stage:
Require: Obtain missing position M and missing data xM

T ;
Ensure: Get the final reconstructed data xM

0 .
1. for  i = T; i ≤ N; i − − do 
2.       Obtain the output εθ

t and calculate the next input xM
T−1 ;

3. end for
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where γ k
t+1 denotes the th approximation of γt+1 and ϵk

θ is the 
corresponding output of denoising model. Pontoon Bridge 
strategy is ‘hot-swappable’ with DDPM, and DDPM-based 
model can be translated into PB-DDPM after making 
changes on partial formulas.

4.3 Noise Schedules
With regard to the implementation of DPM-based 

model, noise schedule is a variable sequence and affects 
the performance of the entire model directly. The only 
constraint on the schedule is that the coefficient of 
uncertainty of ending point (1− Tα ) should approximate to 
1 while the multiplier to complete data x0 is approximate to 
0. Thus, the coefficient of uncertainly adding to each step 
(1−α) is also a sequence and the values can be arbitrary 
positive numbers less than 1. There are three common 
methods to generate this sequence, the first method is 
that the values is inversely proportion to the amount of 
remaining steps which is mainly applied to the scenario 
that the original samples are made up of binary numbers. 
The second method is that the values increase linearly 

as designed in DDPM. The last method is that the values 
are generated based on trigonometric function, and the 
domain of which is the interval [0, π/2] as designed in 
IDDPM, resulting in two sequences α and (1−α) that are 
symmetrical to each other.

In general, (1−ᾱt) is the parameter applied to numerical 
computation while (1−αt) acting as a restriction, and 
arbitrary increasing sequence that starts from value 0 
and ends with value 1 can be regarded as one kind of 
strategy. By scaling the step number to [0,1], the distance 
between adjacent points decrease with the increase of T, 
and the sequence turns into a monotonically increasing 
function satisfying that f(0) =0 and f(1) =1 in the limit 
T→∞ . Conversely, if we design a such function, then 
noise schedule can be generated by taking a series of 
input-output pairs within the function. Influenced by the 
idea put forward in VDM, we use the same factor that 
is the logarithm of the quotient of ᾱt to (1−ᾱt), written 
as LSNR:= ln ᾱt /(1−ᾱt ), to reflect the trend of different 
noise schedules. On account of the situation that (1−
ᾱt) approaches 0 makes the quotient get bigger quickly, 
which affects the numerical value recorded in computer 
system. Thus, there is a truncation exists in the actual 
parameter used in the model. In this paper, we limit 
the range of LSNR to [−7, 7], that is LSNR(1) = 7 and 
LSNR(T) = −7 , and the KL-divergence at step T written 
as DKL(q(xT|x0)∥N(0,I))≈6∗10−4 bits per dimension is a 
very small value under this assumption.

Suppose that LSNR is part of a linear function L(z) =kz 
where k < 0 and z ∈ (−∞, +∞). ᾱt is defined as mz ∈ [0,1], 
then we have ln[mz /(1−mz)]=kz, which is solved by 1− ᾱt 

= 1−mz = 1/(1+ekz)=sigmoid(−kz). If LSNR ∈ [−7, +7], 
we can get that z ∈ [7/k, −7/k], x = t/T(1/14) ∗ (kz+7). In 
particular, (1−ᾱt) is the sigmoid function within a certain 
range when k = −1.

Suppose that LSNR is a convex function, the value 
of ᾱ t /(1−ᾱ t) decreases quickly at the beginning and 
then decreases slowly when t is large. We adopt the 
frequency response of nth-order low-pass Butterworth 
filter f(z)=1/ 21 nz ∗+  to generate noise schedule ᾱt for 
the reason that trend of ᾱt is in accord with the physical 
meaning of low-pass filter. Besides, because of the inherent 
characteristic of f(z), the geometric sequence sampled 
from the frequency response of different order low-pass 
Butterworth filters are the same when the range has been 
determined.

Suppose that LSNR is a concave function, in contrast 
to the trend of convex function, ᾱt /(1−ᾱt ) decreases slowly 
at the beginning and then decreases quickly when t is large. 
Accordingly, we adopt the frequency response of nth-order 
low-pass Bessel filter to generate noise schedule, such 
as the frequency response of 2nd-order low-pass Bessel 
filter f(z)=1/ 2 41 z z+ + . Since the filter focuses on the 
properties of harmonic, we sample points by establishing 
arithmetic sequence within the logarithmic range of the 
independent variable.

Suppose that LSNR contains multiple stages, the 
descending speed is non-monotonic, which is influenced 



PB-DDPM: A Pontoon Bridge Denoising Diffusion Probabilistic Model for Missing Data Reconstruction   97

by both the trend of the source function and the sampling 
strategy. For example, noise schedule ᾱ t and (1−ᾱ t) 
generated by sampling from the trigonometric function 
based on arithmetic sequence lead to two kind of trends, 
that is, tα /(1− tα ) decreases quickly when t is small or 
large but decreases slowly in the middle.

(a) The LSNR of common schedules and their variations

(b) The LSNR corresponding to different filtering schedules

Figure 5. Diffusion strategies comparison

As shown in Figure 5, different schedules correspond 
to different curves. There are 6 schedules in Figure 
5(a), ‘linear’ refers to linear increase (1−αt) schedule 
mentioned before, ‘cosine’ refers to schedule sampled 
from trigonometric function based on arithmetic sequence, 
‘sigmoid’ refers to schedule sampled from linear function 
based on arithmetic sequence when k = −1, and the 
others adopt different sampling modes. ‘cosine-g’ refers 
to schedule sampled from trigonometric function based 
on geometric sequence, ‘sigmoid-l’ refers to schedule 
sampled from linear function based on geometric sequence 
with common ratio less than 1 while ‘sigmoid-r’ refers to 
schedule sampled from linear function based on geometric 
sequence with common ratio greater than 1. In Figure 
5(b), ‘butter4’ refers to schedule sampled from frequency 
response of 4th-order low-pass Butterworth filter based on 
geometric sequence, ‘bessel4’ refers to schedule sampled 
from frequency response of 4th-order low-pass Bessel filter 
based on geometric sequence, ‘butter4-a’ refers to schedule 
sampled from frequency response of 4th-order low-pass 
Bessel filter based on arithmetic sequence and ‘bessel24’ 
refers to schedule sampled from frequency response of 
24th-order low-pass Bessel filter based on geometric 
sequence. Among which, the curve of ‘sigmoid’, ‘butter4’ 

and ‘bessel4’ are linear, convex and concave respectively, 
while the common schedules ‘linear’ and ‘cosine’ are 
multi-stage. Besides, revising the sampling strategy 
changes the trend of curve, and arbitrary function can be 
generated by combining multiple functions. Furthermore, 
cumulative distribution function of any distribution can be 
regarded as a feasible noise schedule, although there is no 
clear physical meaning.

5  Experiments

In this paper, we focus on the situation that resource 
is constrained and set total step T = 20 and maximum 
training epoch Maxepoch = 150 for all experiments. The 
experiments have been conducted on two datasets, called 
the HAC dataset [25] and the CelebA dataset [26]. The 
former records the data acquired by Inertial Measurement 
Unit (IMU) corresponding to 6 human activities performed 
by 30 volunteers. The capture rate is 50Hz and each point 
has 6 dimensions that are 3-axial linear acceleration and 
3-axial angular velocity. Then we obtain samples with a 
sliding window of 128 points and 50% overlap. Besides, 
the samples are reshaped into 2×3×128 and scaled to [-1,1] 
before inputting it into the model. The latter is a common 
dataset of image processing that contains 202 599 face 
images and is resized into 64×64 and scaled to [-1,1] in 
the preprocessing stage. The samples of the HAC dataset 
consist of a series of time series data points, each of which 
is an observation of the target object and has a direct 
relationship with other points within the same sample to 
varying degrees. However, the samples of the CelebA 
dataset comprise foreground and background that are much 
more complex, and the size and position of the foreground 
which is of interest exhibit significant heterogeneity across 
samples. 

The model is designed to reconstruct missing 
data, thus, the difference between complete data and 
reconstructed data must be displayed. With regard to 
models that have the same input and a unified objective 
function, the change of loss reflects the quality of the 
reconstructed data. Therefore, 5 indicators are selected 
to measure the performance of models, which are 
Mean Square Error (MSE) between complete data and 
reconstructed data, Classification Score (CS) obtained by 
predesigned classifier, Loss Result (LR) of the objective 
function, Peak Signal-to-Noise Ratio (PSNR) which is the 
ratio between the maximum possible power of a signal 
and the power of corrupting noise that indicates sensitivity 
to differences, and Structural SIMilarity (SSIM) which 
compares multiple features from different parts of the 
images to measure the similarity. The higher CS (or PSNR, 
SSIM) and lower MSE (or LR) corresponds to higher 
quality of reconstructed samples.

5.1 Effects of the Proposed Model
At first, it is the missing rate that need to be considered 

affects the quality of reconstructed images. Since DPM-
based models generate samples similar to those in the 



98   Journal of Internet Technology Vol. 26 No. 1, January 2025

training set, it is naturally endowed with the ability to 
reconstruct missing data, and the generative procedure 
is equivalent to processing 100% missing data. We score 
on both the HAC and the CelebA dataset evaluated on 
indicators mentioned before. The denoising model for ϵθ 

follows that in [21], which is a U-Net with skip-connection 
based on a revised ResNet revitalized by self-attention. The 
channel of each layer in the encoder of U-Net is increasing 
by a factor of 2 while it is decreasing in the decoder. The 
kernel size of CNN is modified to 3×4 or 3×6 for the HAC 
dataset.

Table 2. Results of handling different rate data missing 
with DDPM

Missing
rate

HAC
MSE↓ CS↑ LR↓

10% 0.0729 0.9751 1.8686
20% 0.0751 0.9746 1.8686
50% 0.1123 0.8547 1.8686
80% 0.3876 0.6433 1.8686

Missing
rate

CelebA
MSE ↓ LR ↓ PSNR ↑ SSIM↑

10% 0.1611 1.326 30.6944 0.9622
20% 0.1875 1.326 26.7207 0.9194
50% 0.3438 1.326 19.5692 0.7264
80% 0.7429 1.326 14.07 0.4394

As shown in Table 2, the indicators for the HAC 
dataset are MSE, CS and LR, among which the CS 
refers to the accuracy of multi-class classifier and LR is 
the product of total steps and unweighted average noise 
recovering loss, and the indicators for the CelebA dataset 
are MSE, LR, PSNR and SSIM. When it comes to different 
missing rates, for example, large-scale missing that lost 
80% data, half-missing that lost 50% data and small-scale 
missing that lost 10% or 20% data, MSE is increasing with 
the missing rate for both dataset while CS is decreasing 
for the HAC and PSNR (or SSIM) is decreasing for the 
CelebA. The change is negligible when missing rate 
increases from 10% to 20%. Moreover, changes on MSE 
(or CS) between 50% and 80% are much more significant 
than that between 20% and 50%, and the difference 
between MSEs are more pronounced. However, changes 
on PSNR (or SSIM) between half-missing and large-scale 
missing is close to that between small-scale missing and 
half-missing, and PSNR changes a lot from 10% missing 
to 20% missing while change on SSIM is minor, for the 
reason that PSNR is inversely proportion to reconstruction 
loss and the numerator and the denominator of SSIM are 
of the same order as reconstruction loss. Since model does 
not change, LR remains consistent despite varying missing 
rates. Results of PB-DDPM are shown in Table 3.

The indicators to measure the performance of PB-
DDPM is the same as those in Table 3, and the total 
training epoch remains 150. The first half of training stage 
is the same for the both models, and PB-DDPM adjusts 
noise schedule in the second half while DDPM serves as 
the control group, continuing with initial noise schedule. 

Table 3. Results of handling different rate data missing 
with PB-DDPM

Missing HAC
rate MSE↓ CS↑ LR ↓
10% 0.0801 0.9763 1.0327
20% 0.0823 0.9748 1.0327
50% 0.1256 0.8574 1.0327
80% 0.4075 0.6472 1.0327

Missing
rate

CelebA
MSE↓ LR↓ PSNR↑ SSIM↑

10% 0.2070 0.8178 30.8451 0.9680
20% 0.2265 0.8178 26.7463 0.9312
50% 0.3696 0.8178 19.6203 0.7544
80% 0.7216 0.8178 14.2905 0.4783

The overall trend of change in all indicators in Table 
3 is roughly the same with those in Table 2. Moreover, 
the value of LR decreases after adjusting noise schedule, 
and there are slight increases in CS and SSIM. Besides, 
we have observed a slight reverse fluctuation in MSE. All 
components of samples in the dataset are treated equally 
when we calculate the MSE, it can gauge the reconstructed 
data’s resemblance to the ground truth, despite its 
limitations in fully reflecting the availability and quality 
of the data. Since the model is utilized to reconstruct data 
identical to the complete data, reconstructed data is similar 
to a newly generated sample when the missing rate is large, 
which is of limited usability, and when the missing rate is 
small, data can be reconstructed with PB-DDPM exactly.

Targeted training conducted by applying data 
augmentation leads to significant improvements in the 
quality of reconstructed data, we employ various strategies 
that training the model with different kind of masks or 
different sizes of missing unit, and testing trained model 
with unmatched missing styles. Taking the CelebA dataset 
as an example, the performance under strategies are 
measured by MSE.

Figure 6 shows MSE for reconstructed data under 
situations that sizes of missing unit are 2×2, 4×4 and 8×8 
respectively. Missing rate is fixed to large-scale missing 
to make the distinctions more prominent. Figure 6(a) 
corresponds to fixed missing 80% data with different 
sizes of missing unit while Figure 6(b) corresponds to 
the random missing. Besides, the blue rectangle refers 
to testing with fixed missing data and the red rectangle 
refers to testing with random missing data. In other words, 
model is trained with fixed missing data but tested with 
both fixed missing and random missing data in Figure 6(a) 
while model is trained with random missing data but tested 
with both fixed missing and random missing data in Figure 
6(b). Comparing the value of MSE corresponding to blue 
rectangle in Figure 6(a) and value of MSE corresponding 
to red rectangle in Figure 6(b) with the value of MSE on 
the CelebA dataset that lost 80% data in Table 2 and Table 
3, the ability to handle large-scale missing is enhanced 
after applying data augmentation. For different sizes of 
missing unit, MSE is increasing with the sizes, and so 
is the task difficulty for the reason that the correlation 
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between missing data and the others is more complex.
Moreover, the values of MSE are close to each other 

for different kind of masks with the same size of missing 
units in Figure 6(a), the results of random missing are 
even better than the fixed missing. Conversely, noticeable 
differences exist between those values in Figure 6(b), and 
the results of random missing are much better than the 
fixed missing. Furthermore, to deal with random missing, 
model trained with random missing data achieves better 
performance, and training model with fixed missing data 
acquires more favorable results when tested with fixed 
missing data. Thus, it is confirmed that reconstructing 
data missing at fixed positions are more difficult than data 
missing at random.

     (a) Data augmentation with fixed missing

    (b) Data augmentation with random missing

Figure 6. The evaluation result of different data augmen-
tation strategies

Figure 7 shows MSE for reconstructed data under 
situations that missing ratios are 30%, 50% and 80%. The 
model is trained with 80% random missing data that the 
size of missing unit is 8×8, and tested with fixed missing 
or random missing data of different missing rates. MSE of 
both fixed missing and random missing are decreasing with 
the decrease of missing rate, and the differences between 
those two kinds of masks are diminishing, although the 
value corresponding to random missing is always smaller 
than the other one. Comparing with the results in Table 

3, training with large-scale missing data improves the 
quality of data reconstructed from large-scale missing and 
the other missing rates, which is effective for both fixed 
missing and random missing. A possible explanation is 
that the applying of large-scale data missing reinforces the 
learning of intrinsic associations of data, and the increase 
in the proportion of true data reduces the difficulty of data 
reconstruction.

Figure 7. The evaluation result of different missing data 
ratios

  

(a)                             (b)                             (c)
Figure 8. Comparison between data reconstructed by 
DDPM and PB-DDPM

Figure 8 shows the samples reconstructed from half-
missing data with a missing unit of 2×2 by vanilla DDPM 
(a) and PB-DDPM (c) trained with large-scale missing 
data, and (b) refers to the ground truth. Whereas DDPM 
produces samples consistent to the ground truth, despite 
distortion in the margin of the missing part and deviation 
in facial features and expressions, data reconstructed by 
PB-DDPM are closer to the complete data and can exactly 
recover the basic characteristics.

Comparing the results of recent models on the CelebA 
dataset in Table 4, the PB-DDPM performs better than the 
other models when reconstructing data with 50% random 
missing after training with 80% random missing data that 
the size of missing unit is 8×8.

Table 4. Comparison of methods on the CelebA dataset

Method MSE↓ PSNR↑ SSIM↑
LVAE [19] 0.2719  15.1153 0.5526
DDPM [21] 0.2543 15.9428 0.5786
DDIM [22] 0.2556 16.0319 0.5806

IDDPM [23] 0.2533 16.1817 0.5941
Ours 0.2517 16.5213 0.6057
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5.2 Results of Different Schedules
Various schedules exhibit varying trends, which may 

cause different results, especially when the amount of 
total steps cannot ensure that the value of  are close to 1. 
Moreover, the changes caused by pontoon bridge strategy 
should be taken into account. The same experiment has 
been conducted on 5 representative schedules mentioned 
before to analyze the impact of pontoon bridge strategy 
and various schedules respectively, are 1) the ‘linear’ 
schedule, 2) the ‘cosine’ schedule, 3) the ‘sigmoid’ 
schedule, 4) the ‘butter4’ schedule and 5) the ‘bessel4’ 
schedule. In order to reduce the probability of extreme 
values in training procedure, models that adopt ‘linear’ or 
‘cosine’ schedule are trained on the CelebA dataset with 
80% random missing data that the size of missing unit is 
8×8, and models that adopt other schedules are trained 
on the HAC dataset with 30% random missing data that 
the size of missing unit is 4×2. In fact, different kind of 
training data together with the same  result in similar γ and 

0x̂ . The convergence of dataset affects the total epoch cost 
for training.

Figure 9 shows the results of loss function and the 
values of the parameter γ before and after the utilizing 
of pontoon bridge strategy. Figure 9(a) and Figure 9(b) 
correspond to the ‘linear’ and ‘cosine’ schedule while 
Figure 9(c) and Figure 9(d) represent the others. The 
x-axis on Figure 9(a) and Figure 9(c) represent the relative 
training step which means the training curve displayed 
in the figure is incomplete in order to demonstrate the 
changes, and the strategy takes effect at the 75th epoch 
for the CelebA dataset but at the 85th epoch for the HAC 
dataset. The x-axis on Figure 9(b) and Figure 9(d) represent 
the relative diffusion step applying a normalization process 
to ensure consistency.

LR re-stabilizes after several fluctuations for the ‘linear’ 
and ‘cosine’ schedules, and the value corresponding to 
the ‘linear’ is always smaller than those belonging to the 
‘cosine’. The trend of stable states after fluctuations are 
approximately consistent. There exists a difference between 
the value of parameter before and after the adjustment, and 
values increase in general, despite the decreasing at few 
points approaching the ending step. Values tend to become 
flat when the number of steps is large while the trend 
remains consistent with the original at the beginning of the 
diffusion process, and values at the junction between those 
two areas have shown a notable increase. 

The curves of LR corresponding to the ‘sigmoid’, 
‘butter4’ and ‘bessel4’ schedules are similar to each 
other, and the value of ‘butter4’ is the smallest while the 
value of ‘bessel4’ is the largest. After the adjustment, 
the values of those three schedules have decreased and 
returned to stability again. Moreover, LR values of the 
adjusted ‘sigmoid’ and ‘bessel4’ schedule are larger than 
those of the un-adjusted ‘butter4’ schedule. The fast-
changing region of the parameters’ values corresponding 
to those three schedules are similar too, and the ‘butter4’ 
takes more steps to increase from 0.8 to 1 while ‘bessel4’ 
takes more steps to increase from 0 to 0.2. As a result, 
the adjusted values are closer to the original values in the 

region that takes more steps, and values also increase in 
general, except for few points. 

(a) The change of LR with the ‘linear’ and ‘cosine’ schedules

(b) The change of the noise parameter with the ‘linear’ and ‘cosine’ 
schedules

(c) The change of LR with other schedules, compared to original 
method with the ‘butter’ schedule

(d) The change of the noise parameter with other schedules

Figure 9. Results of Pontoon Bridge method with different 
noise strategies
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The values of the parameter belonging to ‘linear’ and 
‘cosine’ schedule increase more smoothly than the others, 
resulting in fewer epochs cost to reach a stable state. Thus, 
we are inclined to apply those three schedules in simple 
tasks that are easy to converge. Furthermore, the noise 
schedules with parameters (1− tα ) that takes more steps 
within the narrow range close to 1 and smoothly increase 
from 0 to 1 are supposed to improve the quality of the 
reconstructed data.

6  Conclusion

On the basis of the denoising diffusion probability 
model, we introduced a parameter to establish relationship 
between the training process and the generation process, 
and proposed a DDPM-based model called Pontoon Bridge 
Denoising Diffusion Probabilistic Model to reconstruct 
missing data. At the cost of fewer additional computation, 
some parameters of the noise schedule were adjusted 
to enhance the ability to handle data missing without 
changing the main structure of the model. Meanwhile, 
targeted training has been conducted by applying multiple 
masks to construct missing samples as the input, which 
improved the quality of data reconstructed by the proposed 
model. Moreover, we compared the results of different 
data augmentation strategies, and tested the trained 
model with different kind of missing data to analyze the 
model’s applicability. Furthermore, the results of models 
with different noise schedules have been compared 
and analyzed. The results of experiments proved the 
effectiveness of PB-DDPM, the MSE result has been 
reduced by 0.02 at most, the CS result has increased by 
0.039 at most, the PSNR result has increased by 1.6% 
at most, the SSIM result has increased by 8.9% at most 
while the LR result has reduced by 0.83 at most, and 
training model with 80% random missing data enhanced 
the ability to handle multiple kind of missing data 
whereas trained with fixed missing data would take effect 
in special scenarios. Besides, different schedules could 
be applied to handle different tasks, and schedules with 
special characteristics may improve the quality of the 
reconstructed data. Future works will include seeking out 
more effective noise schedules while increasing the total 
steps of diffusion model and observing the differences 
under various data distributions. Train the model with 
multiple kind of missing data at the same time efficiently 
may enhance the practicality of the model. 
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