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Abstract

3D LIDAR point clouds are extensively utilized 
in various domains, and data augmentation techniques 
for these point clouds can enhance network model 
convergence during training while also reducing the 
requisite data volume. Notably, PolarMix represents a 
seminal contribution to data enhancement in the realm 
of 3D LIDAR point Clouds Semantic Segmentation. It 
markedly augments the number of instances per class 
through swapping and rotate-paste mechanisms. Rotate-
paste involves rotating and pasting selected class instances 
around the Z-axis multiple times. However, when 
capturing real-world scenarios using LiDAR point clouds, 
a pronounced class imbalance is observed, wherein certain 
classes dominate in sample numbers, while others are 
sparsely represented. Regrettably, PolarMix overlooks 
this class imbalance, leading to unequal treatment of all 
classes. To rectify this, we introduce the Class-Balanced 
PolarMix (CB-PolarMix), which operates in a cascading 
manner to diversify the training distribution and further 
optimize data augmentation outcomes. The cornerstone 
of CB-PolarMix lies in its adaptive reinforcement of 
foreground classes based on their distribution patterns. 
More specifically, our approach tweaks the pasting process 
for each class contingent upon its historical prediction 
accuracy. Experimental results from the SemanticPOSS 
and SemanticKitti datasets, utilizing the MinkowskiNet 
and SPVCNN models respectively, underscore the efficacy 
of the proposed CB-PolarMix.

Keywords: 3D LIDAR point cloud, Data augmentation, 
PolarMix, Class-Balanced, Semantic segmentation

1   Introduction

3D LIDAR point cloud refers to a set of three-
dimensional data points captured by lidar sensors, which 
are used to represent objects and their surroundings in a 
virtual environment. 3D LIDAR point clouds are generated 
through a process called lidar detection, which emits radio 
waves and captures the reflections of these waves off 

objects in the environment. The reflected signals are then 
processed to determine the distance, speed, and direction 
of the objects, creating a point cloud of three-dimensional 
data. This data can be collected using various types of lidar 
sensors which can capture high-resolution point clouds 
with accuracy and precision. The organizational structure 
of 3D LIDAR point clouds typically consists of a large 
number of individual data points, each with its own set of 
coordinates in a three-dimensional space. Additionally, 
various algorithms and techniques can be applied to the 
point cloud data to extract meaningful information, such as 
object classification, segmentation, and tracking.

Effective data augmentation techniques play a 
crucial role in enhancing the performance of semantic 
segmentation tasks for 3D point clouds. These methods 
have the potential to increase the accuracy, robustness, 
and overall performance of the segmentation model. The 
method commonly used now is still global augmentation, 
which cannot operate across samples and cannot focus on 
augmenting local areas. The recently emerged Polarmix 
[1] approach stands out as a significant milestone in the 
field of data enhancement for 3D LIDAR point Clouds 
Semantic Segmentation. This technique boosts the count 
of each instance by employing swap and rotate-paste 
operations, thereby achieving notable outcomes. The rotate-
paste procedure involves rotating and pasting selected class 
instances multiple times around the Z-axis. However, the 
Polarmix method faces challenges due to the significant 
class imbalance evident in semantic segmentation tasks. 
Consequently, the accuracy of semantic segmentation 
varies considerably among different classes. For instance, 
certain classes may exhibit an accuracy exceeding 90%, 
while others struggle with accuracy levels below 10%. One 
limitation of the Polarix method is its uniform application 
of rotate-paste for class instances, which does not account 
for class imbalance. 

To address this limitation and account for class 
imbalance, we introduce the CB-PolarMix method. This 
approach is designed as a cascade cycle method, aiming 
to mitigate the issues associated with class imbalance 
in semantic segmentation tasks. By considering the 
disproportionate distribution of instances among different 
classes, the CB-PolarMix method offers a more equitable 
and effective way to enhance the accuracy of semantic 
segmentation across all classes. In essence, the CB-
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PolarMix method represents an advancement in data 
augmentation [2-3] techniques for 3D point clouds, 
particularly in addressing class imbalance challenges. 
Through its cascade cycle approach, it offers a promising 
avenue to improve the overall performance of semantic 
segmentation tasks.  Figure 1 shows our general 
improvement idea, which is to introduce a class balance 
strategy into the traditional PolarMix method.

The main contributions of this research are three-fold:
(1) Unbalanced class distribution issue in recent 

PolarMix: Regarding the task of semantic segmentation 
for 3D point clouds, we have observed the presence of an 
unbalanced class distribution issue in the recent PolarMix 
approach. Consequently, we have initiated a study to 
address and progressively resolve this problem.

(2) CB-PolarMix Method: We propose a novel strategy 
called CB-PolarMix. Upon examining the semantic 
segmentation results from the original PolarMix, we 
observed a significant fluctuation in precision across 
different classes. Based on these findings and leveraging 
the original PolarMix, we propose to paste a higher number 
of instances for classes exhibiting lower segmentation 
precision. This approach is intended to enhance the model’s 
learning capacity by providing an increased volume of 
learning samples.

(3)  Performance improvement:  Based on the 
MinkowskiNet [4] and SPVCNN [5] models,  we 
performed experiments on both the semanticKitti [6] and 
semanticPOSS [7] datasets. The experimental results show 
that the CB-PolarMix method we proposed performs better 
than the original PolarMix method in all the experiments 
conducted. 

Rotate and paste 
the selected class 

of instances 
around the Z axis

Rotate and paste 
the selected class 

of instances 
around the Z axis

Segmentation 
model

Select the low
performance class

Select the low
performance class
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Figure 1. Schematic diagram of CB-PolarMix based on 
cyclic cascade way 
(The process begins with applying segmentation model 
(such as a model with the original PolarMix data 
augmentation) followed by a class balancing strategy. 
Classes with low semantic segmentation performance are 
selected for further processing. This cyclical process of 
rotating and pasting underperforming classes continues 
until optimal results are achieved, thus improving the 
overall semantic segmentation performance.) 

2  Related Work

3D LIDAR point cloud datasets. The field of 3D 
point cloud technology has been rapidly advancing, with 

numerous 3D LIDAR point cloud datasets emerging. 
Particularly noteworthy is the swift development of 
datasets specifically designed for semantic segmentation 
tasks.

In 2019, Jens Behley et al. made a significant 
contribution with the SemanticKITTI dataset. This large-
scale point cloud dataset was designed with the goal of 
facilitating semantic segmentation and scene understanding 
tasks. It was derived from the KITTI [8] Vision Benchmark 
Suite and provides granular semantic annotations for 
each point in the point clouds. With 28 diverse semantic 
classes such as car, building, person, vehicle, bicycle, and 
more, the dataset provides a comprehensive resource for 
researchers. The SemanticKITTI dataset, gathered from 
real-world traffic scenes in Germany, employs a Velodyne 
HDL-64E S3 LIDAR mounted on a vehicle to collect data.

Following this, in 2020, Yancheng Pan et al. introduced 
the SemanticPOSS dataset. This dataset was collected 
at Peking University in China and offers instance-level 
annotations. It comprises 6 road sequences, labelled from 
00 to 05, and includes a total of 2988 diverse LIDAR scans 
with point-wise labeling across 14 classes. The campus 
scenes captured in the SemanticPOSS dataset showcase a 
wide variety of features, including pedestrians, riders, cars, 
and more, providing a rich resource for research.

In the same year, Holger Caesar et al. presented the 
nuScenes [9] dataset, further expanding the available 
resources .  This  comprehens ive  and la rge-sca le 
dataset, designed for autonomous driving research and 
development, encapsulates data from various weather 
conditions, lighting conditions, and different times of the 
day, captured across multiple cities. The nuScenes lidarseg 
dataset, focusing specifically on semantic segmentation, 
assigns semantic labels to individual points in the 3D 
point cloud with predefined semantic classes such as car, 
pedestrian, cyclist, road, sidewalk, and more. The dataset 
provides more than 1,000 scenes, each containing multiple 
sweeps of a LiDAR sensor mounted on a moving vehicle, 
synchronized with other sensor modalities including 
cameras and lidars for multimodal analysis and fusion.

I n  2 0 2 2 ,  A o r a n  X i a o  e t  a l .  i n t r o d u c e d  t h e 
SemanticLiDAR [10] dataset, a robust synthetic LiDAR 
dataset. This dataset, rich in detail and scope, features 
point-wise annotated point clouds which are accurately 
shaped geometrically and comprehensively categorized 
into semantic classes. The SemanticLiDAR dataset, 
collected from a variety of virtual environments with 
diverse scenes and layouts, boasts over 19 billion points 
distributed across 32 semantic classes. The richness and 
diversity of this dataset make it a crucial resource in the 
field of LiDAR technology.

Further enriching the field in 2023, Aoran Xiao et al. 
proposed the SemanticSTF [11] dataset. This adverse-
weather point cloud dataset features dense point-level 
annotations, and is designed to facilitate the study of 3D 
Semantic Segmentation under various adverse weather 
conditions. The SemanticSTF dataset extends the STF [12] 
Detection Benchmark by providing point-wise annotations 
of 21 semantic classes under four typical adverse weather 
conditions frequently encountered in autonomous driving: 
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dense fog, light fog, snow, and rain.
Semantic segmentation network model for 3D 

LIDAR point cloud. 3D semantic segmentation, a process 
that assigns point-wise semantic labels to point clouds, 
has been gaining significant attention. This is largely due 
to the rapid advancements in artificial neural networks in 
recent years. As a result, we have witnessed a surge in the 
emergence of abundant and diverse models specifically 
designed for 3D semantic segmentation.

PointNet [13] is a pioneering deep learning architecture 
designed specifically for processing point clouds, which 
are sets of points in a 3D coordinate system. These point 
clouds are commonly used in the field of computer vision 
and are particularly relevant in robotics and 3D object 
recognition. The groundbreaking aspect of PointNet is its 
ability to directly consume raw point cloud data, while 
preserving the distinctive properties of points in the 3D 
space, such as invariance to ordering and transformations. 
The architecture of PointNet consists of a series of layers 
of multi-layer perceptrons (MLPs) and max-pooling layers. 
The MLPs are used to extract local features from each 
point, and the max-pooling layers are used to capture the 
most prominent feature across the point cloud, effectively 
providing a form of global information.

PointNet++ [14] is an extension of the original 
PointNet architecture. It was developed to address some 
of the limitations of PointNet, specifically its inability to 
capture local structures induced by the metric space points 
live in, and to model fine-grained patterns.PointNet++ 
introduces hierarchical neural networks that apply 
PointNet recursively on nested partitions of the input point 
set. In simpler terms, it breaks down the original point 
cloud into smaller subsets (clusters of points), applies the 
PointNet architecture to each subset, and then aggregates 
the results. This approach allows PointNet++ to capture 
both local and global features more effectively, leading to 
improved performance in tasks like object classification, 
part segmentation, and semantic segmentation.

SplatNet [15] is a versatile and powerful tool for point 
cloud processing, offering a unique approach to encoding 
spatial information and handling varying point cloud 
densities. What sets SplatNet apart from other point cloud 
processing methods is its unique approach to encoding 
spatial information. Rather than directly consuming the 
raw point cloud data, SplatNet first projects the 3D points 
onto a learned high-dimensional lattice, splatting each 
point’s features onto the lattice vertices. This process, 
known as “splatting”, allows for more efficient and 
effective encoding of the spatial relationships between 
points. Once the data is splatted onto the lattice, SplatNet 
applies a series of convolutional and pooling layers to 
extract features from the data. This is similar to the process 
used by convolutional neural networks (CNNs) for image 
processing, but adapted for the high-dimensional lattice 
structure. Finally, the features are “de-splatted” back onto 
the original points, ensuring that the output of the network 
is a function of the input point cloud. One of the key 
benefits of SplatNet is its ability to handle point clouds of 
varying density. Because the splatting process effectively 
normalizes the density of the point cloud, SplatNet can 

process sparse and dense point clouds equally well.
The PointSeg [16] model is specifically designed to 

handle this segmentation task. It uses a PointNet-based 
architecture to learn features from the raw point cloud 
data, and then applies a series of convolutional and fully 
connected layers to perform the segmentation. One of 
the key features of PointSeg is its ability to handle large-
scale point clouds. It does this by dividing the input point 
cloud into smaller, manageable blocks, processing each 
block separately, and then aggregating the results. This 
makes PointSeg particularly suitable for processing the 
large, complex point clouds typically encountered in real-
world scenarios.Another notable feature of PointSeg 
is its use of an auxiliary loss function to help guide the 
learning process. This auxiliary loss function is based on 
the distances between the points and their corresponding 
segment centers, which encourages the model to learn 
meaningful segmentations of the point cloud.

The architecture of SqueezeSeg [17] is inspired by 
the SqueezeNet model for image classification, which 
is known for its small model size and fast processing 
speed. SqueezeSeg leverages these benefits while 
adapting the model for point cloud data. To do this, 
SqueezeSeg first projects the 3D point cloud into a 2D 
spherical surface, similar to an image. Each point in 
the point cloud is transformed into a pixel in this 2D 
image, with the pixel’s intensity representing the point’s 
features. This transformation allows SqueezeSeg to 
use standard 2D convolutions, which are more efficient 
than 3D convolutions. Once the data is transformed, 
SqueezeSeg applies a series of convolutional and pooling 
layers to extract features from the data and perform the 
segmentation. It also uses a technique known as “squeeze-
and-excitation” to recalibrate the channel-wise feature 
responses, improving the model’s ability to focus on the 
most relevant features. A key advantage of SqueezeSeg 
is its efficiency. The model is small and fast, making it 
suitable for real-time applications, such as autonomous 
driving, where quick processing of point cloud data is 
crucial.

Considering the typically low quality of point cloud 
data acquired from different LiDAR systems in real-
world scenarios, which often includes unwanted noise 
and irrelevant data points, a robust multi-task learning 
network [18] is introduced to preprocess LiDAR data. 
Moreover, point cloud classification has become a crucial 
field of research in various emerging applications such 
as robotics and autonomous driving. To address this, a 
novel hierarchical local-global framework [19] is proposed 
specifically designed for processing 3D point clouds.

Data augmentation for 3D point clouds. In recent 
years, there has been a surge in the development of 
data augmentation techniques for 3D point clouds. An 
abundance of data augmentation strategies for 3D point 
clouds have emerged in recent years, each bringing 
unique methodologies to enrich the training data. For 
instance, PointMixUp [20] method extends the concept of 
“mixup” from image data to point cloud data. The “mixup” 
technique was originally proposed for image data, and it 
involves creating new training samples by taking convex 
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combinations of pairs of images and their labels. The 
PointMixup technique adapts this concept for point cloud 
data.Specifically, PointMixup generates new point clouds 
by interpolating between pairs of point clouds. Each point 
in the new point cloud is a weighted combination of points 
from two original point clouds, with the weights randomly 
sampled from a beta distribution. In addition to the point 
coordinates, PointMixup also interpolates the associated 
features and labels of the points. This ensures that the new 
point cloud has meaningful features and labels, consistent 
with the interpolated points. By generating new training 
samples in this way, PointMixup helps to increase the 
diversity of the training data, which can help to improve 
the performance of the model. It also provides a form of 
regularization, which can help to prevent overfitting.

PointCutMix [21] is an adaptation of the CutMix data 
augmentation technique, originally developed for image 
data, specifically for point cloud data. The original CutMix 
technique works by cutting and pasting regions between 
two images and their labels to generate new images and 
labels. PointCutMix extends this concept to point clouds. 
In the PointCutMix technique, a random portion of a point 
cloud is replaced with a portion from another point cloud. 
The replaced portion (or “cut”) can be a random sample of 
the points, a spherical region, or any other defined shape. 
The points in the cut region are then replaced with points 
from another point cloud (the “mix”). The labels for the 
new point cloud are also mixed accordingly. If a point is 
from the first point cloud, it retains its original label, and 
if it is from the second point cloud, it takes the label from 
that cloud. By generating new training samples in this way, 
PointCutMix helps to increase the diversity of the training 
data and improve the robustness of the model. It can 
also provide a form of regularization, helping to prevent 
overfitting.

GT-Aug [22-23] introduces a different approach by 
cutting instances and integrating them into other LiDAR 
scans. This technique is particularly designed for object 
detection tasks, requiring 3D bounding boxes for object 
cutting.

The Mix3D [24] technique works by creating new 
3D samples by mixing two existing samples. Unlike 
traditional blending methods, Mix3D not only mixes the 
features (such as the coordinates and other attributes of the 
points) but also the labels associated with each point or 
3D object. Specifically, Mix3D generates a new 3D data 
sample by taking a convex combination of two existing 
samples. Each point (or voxel, in the case of volumetric 
data) in the new sample is a weighted average of the 
corresponding points in the two original samples. The 
weights are usually randomly chosen from a distribution, 
such as the beta distribution. The labels of the new sample 
are also generated as a weighted combination of the labels 
of the original samples. This ensures that the new samples 
have meaningful labels, consistent with the mixed data. 
By generating new training samples in this way, Mix3D 
helps to increase the diversity of the training data, which 
can lead to improved model performance. Furthermore, the 

mixing process introduces a form of regularization, which 
can help to prevent overfitting.

In essence, these various techniques underscore the 
continued growth and innovation in data augmentation 
methods for 3D point clouds, each contributing uniquely to 
the enrichment of training data.

3  The Proposed Method: CB-PolarMix

Our proposed CB-PolarMix method is built on the 
basis of the original Polarmix and is a supplement or 
improvement to Polarmix. The key improvement strategy 
is to perform class balancing for several classes that 
have lower precision after semantic segmentation using 
the original Polarmix, that is, to paste instances of these 
classes more times.

3.1 Preliminaries
A 3D LIDAR point cloud is a refined data structure 

that encapsulates discrete points in a three-dimensional 
space. This structure comprises a multitude of points, 
each itemized with its coordinates in this 3D space. These 
points are typically sourced from techniques such as laser 
scanning, cameras, or other sensory devices. Every point 
in the point cloud possesses distinct attributes, which 
often include color, intensity, normals, and more. These 
attributes grant additional insights about the objects 
encapsulated in the point cloud. Figure 2 presents a 
visualization of a point cloud, from this vantage point, 
we can observe a traffic road scene with cars and the 
silhouettes of buildings, punctuated by trees. When we 
apply color-coding based on semantic segmentation labels 
to different classes, the results of semantic segmentation 
become intuitively visible, then we can clearly discern the 
green grassland, the brown tree trunks, and the blue cars. 

Figure 2. The visualization of a 3D point cloud

PolarMix is a data augmentation method specifically 
designed for 3D LIDAR point cloud data, employing the 
concept of mixing. It enhances point cloud distributions 
and preserves their fidelity through two cross-scan 
augmentation strategies that involve cutting, editing, and 
mixing point clouds along the scanning direction. The 
first step, known as scene-level swapping, involves the 
exchange of point cloud sectors between two LiDAR 
scans. These scans are divided along the azimuth axis, 
allowing for the swapping of corresponding sectors. This 
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process generates new variations of the point cloud data 
while preserving their spatial distribution. The second step, 
referred to as instance-level rotation and paste, involves 
selecting specific point instances from one LiDAR scan, 
rotating them at various angles (resulting in multiple 
copies), and subsequently pasting these rotated instances 
into other scans. This approach effectively creates new 
point cloud instances with minimal distortions to their 
original spatial structure. By combining these two 
strategies, PolarMix enhances the quality and diversity 
of 3D LIDAR point cloud data, leading to improved 
performance in semantic segmentation tasks. The resulting 
models are more robust and accurate, making PolarMix an 
essential tool for advancing the field of 3D point clouds 
semantic segmentation.

Algorithm 1. Class-balanced PolarMix method
Input: Point cloud data
Output: Point cloud data after data augmentation
Initialize instance_classes0, instance_classes1, Omega0 and 
Omega1. Here, instance_classes0 and Omega0 refer to the 
object instances and rotation angles required for operations 
in the original polarmix, while instance_classes1 and Omega1 
represent the object instances and rotation angles that need 
further operations in the class-balanced polarmix that we 
propose.

1: Procedure PolarMix(pts1, labels1, pts2, labels2, alpha, beta, 
instance_classes0, instance_classes1, Omega0, Omega1):

2: /*Initialize output points and labels as pts1, labels1*/
3: pts_out, labels_out=pts1, labels1
4: /*Swapping*/
5: If random number is less than 0.5 then
6:   Swap pts_out and labels_out with parts of pts2 and 

lebels2 between angles alpha and beta
7: /*Ratate-Pasting*/
8: If random number is less than 1.0 then
9:   Rotate-copy pts2 and labels2 with instance_classes0 

and Omega0 to get pts_copy and labels_copy
10: Append pts_copy and labels_copy to pts_out and 

labels_out
11:
12: /*Keep on Ratate-Pasting based on the output of the 

original polarmix*/
13: Rotate-copy pts2 and labels2 with instance_classes1 

and Omega1 to get pts_copy1 and labels_copy1
14: Append pts_copy1 and labels_copy1 to pts_out and 

labels_out
15:
16: /*Return the enhanced point cloud data*/
17: return pts_out, labels_out
18:
19: End Procedure

In the PolarMix approach, rotation and pasting 
operations for selected object instances are applied 
uniformly; all chosen instances experience an identical 
number of rotations and pastes. Theoretically, repeated 

rotation and pasting can amplify the instance count within 
a single lidar scan frame, thereby enriching the model’s 
learning dataset. Nonetheless, we assert that this consistent 
application of rotation and pasting does not optimally 
enhance the accuracy of semantic segmentation.

Upon observing the original PolarMix’s semantic 
segmentation results, we noticed a significant variance 
in precision across different classes. For instance, using 
MinkowskiNet on the SemanticKITTI dataset, we found 
that the precision of semantic segmentation for classes 
such as car, bicyclist, road, and building could reach 80% 
or even over 90%. However, for classes like motorcyclist 
and other-ground, the precision was merely around 10%. 
This stark disparity in semantic segmentation precision 
across different classes prompted our idea to adjust the 
original PolarMix. Consequently, we propose to paste more 
instances for classes with lower segmentation precision, 
thereby providing more learning samples for the model. 
This approach can improve the semantic segmentation 
precision of these classes, thereby enhancing the overall 
model’s precision for semantic segmentation on a particular 
dataset. 

3.2 The Algorithm of CB-PolarMix
The CB-PolarMix algorithm is built on the foundation 

of the original PolarMix algorithm, and it needs to be 
cascaded with the original PolarMix to fully realize the true 
potential of the CB-PolarMix algorithm. The basic idea of 
the CB-PolarMix algorithm is to select several classes with 
low semantic segmentation performance from the output 
results of the original PolarMix algorithm and further rotate 
and paste them. The purpose of doing this is to increase 
the number of instances of these underperforming classes, 
thereby providing the model with more learning samples. 
As for the specific algorithm of CB-PolarMix, we provide 
a detailed explanation with the pseudocode below. In this 
pseudocode, the code from line 1 to line 10 represents 
the original PolarMix operations, which roughly means 
to perform swapping or rotation and pasting operations 
on any point on the point cloud. On this basis, we further 
carry out CB-PolarMix. lines 13 and 14 indicate that the 
class instances in the instance_classes1 array are rotated 
and pasted according to the angles in the Omega1 array. 
And the classes in the instance_classes1 array are selected 
from the output results of the original PolarMix algorithm, 
specifically selecting several classes that have low semantic 
segmentation performance. 

4  Experiments

4.1  Datasets Preprocessing
We conducted experiments uti l izing both the 

SemanticKITTI and SemanticPOSS datasets.  For 
SemanticKITTI, we followed the prevalent approach of 
using 19 semantic classes from the dataset for evaluation, 
in alignment with procedures adopted by other researchers. 
SemanticKITTI comprises 22 road sequences, labeled from 
sequence 00 to sequence 21. In accordance with common 
practices, sequence 08 was designated as the validation set, 
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while sequences 00, 01, 02, 03, 04, 05, 06, 07, 09, and 10 
formed the training set.

The SemanticPOSS dataset, amassed at Peking 
University, encompasses 6 road sequences, labeled as 00 
to 05, and includes a total of 2988 diverse LIDAR scans in 
the same data format as SemanticKITTI. Consistent with 
standard practices, sequence 03 served as the validation 
set, while sequences 00, 01, 02, 04, and 05 composed the 
training set. This dataset involves 17 classes in total. In 
our experiments, we remapped these 17 classes to 14, as 
detailed in Table 1. The “unlabeled” class was excluded 
from our experiments, and we concentrated on the 
evaluation of the remaining 13 classes.

Table 1.  Mapping relationship for remapping the 
SemanticPOSS dataset from 17 classes to 14 classes 

Class numbers 
(old)

Class numbers 
(new)

Labels

0 0 1 person
4 0 2+ person
5 1 Rider
6 2 Car
7 3 Trunk
8 4 Plants
9 5 Traffic sign 1

(standing sign)
10 5 Traffic sign 2

(hanging sign)
11 5 Traffic sign

(high/big hanging sign)
12 6 Pole
13 7 Trashcan
14 8 Building
15 9 Cone/Stone
16 10 Fence
17 11 Bike
21 12 Ground
22 23 Unlabeled

In relation to the SemanticPOSS dataset, initially, 
we opted for the original PolarMix approach, selecting 
instances from classes 0, 1, 2, 5, 6, 7, 9 and 11 for rotation 
and pasting, with each class receiving equal pasting 
instances. We then implemented class balancing, selecting 
classes 3, 5, 6 and 7 for additional rotations and pasting 
operations.

Regarding the SemanticKITTI dataset, in accordance 
with the original PolarMix paper, we initially selected 
instances from classes 0, 1, 2, 3, 4, 5, 6 and 7 for rotation 
and pasting, with an equal number of pastes applied across 
all classes. Subsequently, we implemented class balancing, 
selecting classes 7 and 11 for further rotations and pasting 
operations.

4.2  Visualization Settings
In order to offer a vivid visualization of our 

experimental outcomes, we have allocated unique colors 
to each class within the SemanticPOSS and SemanticKitti 

datasets. These color designations are aligned with the 
official guidelines stipulated by the respective datasets. 
Such color codings allow for an intuitive visual comparison 
between the predicted point cloud and the actual ground 
truth during the 3D point cloud data visualization process.

The color of each point serves as a straightforward 
indicator for assessing the accuracy of semantic 
segmentation predictions. For instance, consider Figure 3, 
which is a screenshot from a 3D point cloud scan within 
the SemanticKitti dataset. The color annotations enable 
us to distinctly discern entities in the scene, such as green 
plants, blue cars, and the brown tree trunk, among others. 
This use of color, therefore, not only enhances the visual 
appeal but also facilitates an easier understanding of the 
segmentation results.

Figure 3. Illustration of color labels

4.3 Hyperparameter Setting and Training
Regarding the settings for rotation angles and pasting 

times, in the initial rotation and pasting, we maintained the 
settings from the original PolarMix paper, which were as 
follows:

0

2. . () ,
3=

2( . . () 1)
3

np random random

np random random

π

ω
π

 × 
 
 + ×  

           (1)

For subsequent class balancing, our settings for 
rotation and pasting were as follows:

1
3, ,

4 2 4
π π πω  =   

                            (2)

Table 2 shows the experimental environment and 
parameter configurations. The training procedure was 
executed on an NVIDIA Tesla V100-16G GPU, utilizing 
CUDA version 10.2, Python version 3.8, and PyTorch 
version 1.6.0 for the model’s training. Stochastic Gradient 
Descent (SGD) was employed as the optimizer during the 
training process, operating at a learning rate of 2.4e-1. To 
mitigate potential overfitting, we incorporated a weight 
decay of 1.0e-4. Additionally, faster convergence was 
promoted through the use of a momentum value set at 0.9. 
Nesterov momentum was also harnessed to expedite the 
optimization process. We implemented a cosine warmup 
scheduler to dynamically adjust the learning rate. This 
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scheduler gradually amplifies the learning rate in the 
initial stages and adheres to a cosine annealing schedule 
thereafter, optimizing the training process effectively. 

Table 2. Experimental environment and parameter 
configurations 

Item Version
Python 3.8

PyTorch 1.6.0
Optimizer Stochastic Gradient Descent (SGD)

Learning rate 0.24
Momentum 0.9

Weight decay 0.0001

4.4  Segmentation Model
MinkowskiNet is a type of neural network that 

is specifically designed for processing sparse, high-
dimensional data, such as point clouds, which are often 
encountered in fields like robotics, autonomous vehicles, 
and 3D vision. It’s named after the Minkowski space, a 
mathematical framework used for describing space-time 
in physics, but in the context of neural networks, it refers 
to the Minkowski Engine — a key component that enables 
efficient processing of sparse tensor inputs. MinkowskiNet 
uses a generalized form of convolution suitable for high-
dimensional sparse data. Unlike traditional convolutional 
neural networks (CNNs) that assume data is dense (like 
pixels in an image), MinkowskiNet is designed to work 
with data where most of the space is empty, which is 
typical for point clouds. By focusing on non-empty data 
points, MinkowskiNet avoids unnecessary computations 
on empty regions of space, which greatly improves 
computational efficiency and memory usage.

SPVCNN, or Sparse Voxel Convolutional Neural 
Networks, is also a type of 3D convolutional neural 
network (CNN) designed to process point cloud data. 
What sets SPVCNN apart is its efficient handling of sparse 
3D data. Traditional 3D CNNs often struggle with the 
computational and memory demands of handling 3D data, 
as a large portion of this data can be empty or irrelevant 
space. SPVCNN tackles this issue by using voxelization 
to divide the 3D space into a set of 3D pixels, or voxels. It 
then only processes the voxels that contain relevant data, 
greatly reducing the computational resources required. 

5  Experiment Results and Discussion

5.1  Evaluation Metrics
Intersection over Union (IoU) is a common metric 

used for the evaluation of semantic segmentation tasks, 
including 3D point cloud data. The formula for IoU for a 
single class is as follows:

(   )
(   )
Area of OverlapIoU
Area of Union

=                     (3)

The “Area of Overlap” is the intersection of the 
predicted segmentation and the ground truth (i.e., the 

correctly predicted points), while the “Area of Union” is 
the union of the predicted segmentation and the ground 
truth (i.e., all points that were predicted to be a part of this 
class plus all points that should be a part of this class).

In essence, the IoU score reflects the overlap between 
the predicted segmentation and the ground truth. An IoU 
of 1 indicates a perfect match (complete overlap), while an 
IoU of 0 indicates no overlap.

Mean Intersection over Union (mIoU) is an extension 
of IoU, which averages the IoU scores across all classes. 
The formula for mIoU is as follows:

(    )
  

Sum IoU of each classmIoU
number of classes

=               (4)

mIoU takes into account the performance of the model 
across all classes, providing a more holistic view of the 
model’s performance. This makes it particularly useful for 
datasets with multiple classes, as it ensures that the model 
performs well not just on a single class, but across all 
classes. 

5.2  Comparison with State-of-the-art

Table 3. Comparison of results based on SemanticPOSS 
dataset and MinkowskiNet model

MinkowskiNet model+SemanticPOSS dataset
Method

Class
+PolarMix +CN-PolarMix 

(Ours)
Person 61.6 60.9
Rider 65.6 66.0
Car 77.3 72.3

Truck 33.1 40.7
Trunk 78.5 80.9

Traffic sign 47.5 55.5
Pole 41.2 37.3

Trashcan 39.0 44.6
Building 79.6 83.3

Cone/Stone 42.2 41.1
Fence 63.3 63.2
Bike 54.8 56.2

Ground 80.6 81.2
mIoU 58.8 60.2

Table 3 presents the findings of a comparative study 
between PolarMix and our proposed CB-PolarMix, 
utilizing SemanticPOSS as the dataset and MinkowskiNet 
as the model. The experiment initially involved rotation 
and pasting operations on classes 0, 1, 2, 5, 6, 7, 9, and 11. 
The results obtained from training with the MinkowskiNet 
model are shown in the +PolarMix column. Upon 
examination, it is evident that the semantic segmentation 
accuracy for classes 3, 5, 6, and 7 is notably low. The IoUs 
for these classes stand at 33.1%, 47.5%, 41.2%, and 39.0% 
respectively, which negatively impacts the overall mIoU. 
To enhance the mIoU, classes 3, 5, 6, and 7 were subjected 
to additional rotation and pasting based on the algorithmic 
principles of CB-PolarMix, using the previously mentioned 
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parameter settings of Omega1. The subsequent results, 
obtained after training with the MinkowskiNet model, are 
displayed in the +CB-PolarMix column. It can be observed 
that the mIoU has improved from 58.8% to 60.2%.

Table 4 showcases another comparative experiment 
between PolarMix and our proposed CB-PolarMix, 
employing SemanticPOSS as the dataset and SPVCNN as 
the model. Similar to the first experiment, initial rotation 
and pasting operations were conducted on classes 0, 1, 2, 5, 
6, 7, 9, and 11. The outcomes derived from training with the 
SPVCNN model are presented in the +PolarMix column. A 
closer look reveals that the semantic segmentation accuracy 
for classes 3, 5, 6, and 7 remains suboptimal. Following 
the algorithmic tenets of CB-PolarMix, classes 3, 5, 6, 
and 7 underwent additional rotation and pasting based on 
the earlier defined parameter settings of Omega1. The test 
results, achieved after training with the SPVCNN model, 
are depicted in the +CB-PolarMix column. Notably, the 
mIoU has risen from 57.7% to 58.3%. In light of these 
experiments, given the IoU of the 9th class is only 39.8%, 
it may be beneficial to incorporate the 9th class into CB-
PolarMix to augment the number of rotations and pastings. 

Table 5 presents the experiment results from the 
SemantiKitti dataset. The CB-PolarMix results were 
obtained through our experiments, while other methods’ 
results are cited from reference [1]. The table is divided 
into two sections: the top half shows results from the 
MinkowskiNet model and the bottom half displays results 
from the SPVCNN model. Initially, rotation and pasting 
operations were performed on classes 0 to 7. Results 
after training with the MinkowskiNet model are shown 
in the +PolarMix row. It was observed that the semantic 
segmentation accuracy for classes 7 and 11 was low, with 
IoUs of only 4.9% and 1.4% respectively, which lowered 
the overall mIoU. To improve this, classes 7 and 11 
were rotated and pasted again according to the Omega1 
parameter settings, based on the algorithmic concept of 

CB-PolarMix. After training with the MinkowskiNet 
model, test results are displayed in the +CB-PolarMix 
row. It can be seen that the mIoU increased from 65.0% to 
67.7%. Similarly, for the SPVCNN model, initial rotation 
and pasting operations were performed on classes 0 to 7. 
Test results after training with the SPVCNN model are 
shown in the +PolarMix row. Once again, it was observed 
that the semantic segmentation accuracy for classes 7 and 
11 was low. Therefore, classes 7 and 11 were rotated and 
pasted again according to the Omega1 parameter settings, 
based on the algorithmic concept of CB-PolarMix. After 
training with the SPVCNN model, test results are displayed 
in the +CB-PolarMix row. It was observed that the mIoU 
increased from 66.2% to 67.6%.

Table 4. Comparison of experimental results based on 
SemanticPOSS dataset and SPVCNN model

SPVCNN model+SemanticPOSS dataset
Method

Class
+PolarMix +CN-PolarMix 

(Ours)
Person 59.0 59.6
Rider 63.9 64.1
Car 66.2 67.3

Truck 31.1 34.4
Trunk 76.5 77.1

Traffic sign 54.2 51.2
Pole 45.8 43.6

Trashcan 43.3 44.5
Building 76.8 76.3

Cone/Stone 39.8 44.0
Fence 61.2 60.9
Bike 52.5 54.5

Ground 79.9 80.4
mIoU 57.7 58.3

Table 5. Comparison of experimental results based on SemanticKitti dataset

Methods

MinkNet 95.9 3.7 44.9 53.2 42.1 53.7 68.9 0.0 92.8 43.0 80.0 1.8 90.5 60.0 87.4 64.5 73.3 62.1 43.7 55.9
+CGA 96.3 8.7 52.3 63.2 51.6 63.5 74.4 0.1 93.3 46.6 80.4 0.8 90.3 60.0 88.0 65.1 74.5 62.8 46.8 58.9

+CutMix 96.0 10.2 59.3 78.7 52.1 63.4 79.4 0.0 93.5 47.8 80.7 1.6 90.3 61.0 87.5 66.2 73.3 64.0 46.8 60.6
+CopyPaste 96.6 18.4 62.8 76.3 64.6 68.9 82.8 1.0 93.1 45.3 80.2 1.4 90.5 60.7 88.1 67.8 74.6 63.7 49.1 62.4

+Mix3D 96.3 29.6 61.8 68.5 55.4 72.7 77.7 1.0 94.3 52.9 81.7 0.9 89.1 55.5 88.3 69.3 74.6 65.2 50.3 62.4
+PolarMix 96.3 51.2 75.6 63.4 63.9 71.9 85.6 4.9 93.6 45.8 81.4 1.4 91.0 62.8 88.4 68.5 75.0 64.6 49.9 65.0

+CB-PolarMix (Ours) 96.8 53.7 76.5 79.8 67.8 74.1 88.4 13.6 93.7 48.9 81.7 11.2 91.1 63.5 88.2 66.8 74.1 65.4 51.2 67.7

SPVCNN 94.9 9.1 55.8 66.5 33.7 61.8 75.9 0.2 93.1 45.3 79.6 0.4 91.4 62.7 87.5 66.2 72.9 62.8 42.7 58.0
+CGA 96.1 21.8 57.8 69.2 49.8 66.7 80.8 0.0 93.4 44.8 80.1 0.2 90.9 62.9 88.5 64.8 75.7 63.6 46.2 60.7

+CutMix 96.1 21.4 59.6 71.2 54.2 66.8 81.8 0.0 93.5 49.6 81.1 2.2 90.9 63.1 87.9 66.9 74.1 63.8 49.8 61.7
+CopyPaste 96.0 32.4 66.4 67.1 52.9 74.8 84.3 3.6 93.3 46.9 80.2 2.5 91.1 64.1 88.1 67.0 73.9 64.0 51.6 63.2

+Mix3D 96.5 35.9 65.0 66.6 60.2 75.3 83.3 0.0 93.8 49.0 81.1 1.4 90.6 60.0 89.2 70.2 76.4 64.8 50.5 63.7
+PolarMix 96.5 53.9 79.7 68.5 64.9 75.6 87.8 7.5 93.5 47.3 81.2 1.1 91.2 63.8 88.2 68.2 74.2 64.5 49.4 66.2

+CB-PolarMix (Ours) 97.1 54.5 79.7 78.1 74.9 72.2 87.4 4.7 93.7 49.1 81.8 12.9 91.2 63.5 87.6 68.3 72.8 64.6 50.9 67.6
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Figure 4 displays the experimental results obtained from 
running the MinkowskiNet model on the SemanticPOSS 
dataset. Two sets of visualized data were selected: the 
first from sequence 000405 of the third sequence in the 
SemanticPOSS dataset, and the second from sequence 
000205 of the third sequence in the SemanticPOSS dataset. 
Each set of visualized data forms a column for convenient 
comparison and observation, with each row corresponding 
to the visualized results of PolarMix, CB-PolarMix, and 
Ground truth. In the first column, it is evident that compared 

to Ground truth, PolarMix misclassified the building on 
the right (outlined in red dashed lines) as green vegetation, 
while CB-PolarMix correctly identified most of the 
building. In the second column, compared to Ground truth, 
PolarMix misclassified the traffic sign (outlined in blue 
dashed lines) as green vegetation, and also misclassified 
the tree trunk (outlined in blue-red dashed lines) as green 
vegetation. These visualization results visually demonstrate 
the effectiveness of CB-PolarMix. 

Figure 4. Visualization of comparative experiment results (The content within the dashed line box demonstrates the 
various performances of semantic segmentation.) 

Polarmix

CB-PolarMix

Ground truth

5.3  Analysis and Discussion
In fact, we conducted additional experiments in the 

process of obtaining the above results, with the aim of 
achieving better outcomes. Table 6 and Table 7 display 
the results with different times of paste operations. The 
right column in Table 6 and Table 7 represent instances 
underwent Rotate-paste operations following

1
2 4 5, , , , , 2

3 3 3 3
π π π πϕ π π =   

                  (5)

It’s clear that the times of Rotate-paste operations 
is six. The left column in Table 6 and Table 7 represent 
instances underwent Rotate-paste operations following

2
2 4, , 2
3 3
π πϕ π =   

                          (6)

Here, the times of Rotate-paste operations is obviously 
three. We can clearly see that the results on the left are 
better, indicating that the outcomes are better when the 
number of Rotate-paste operations is three. The reason 
for this outcome is that as the number of Rotate-paste 
operations increases, many instances become mixed 
together, which is not conducive to effective differentiation 
and learning. The experiments revealed that a lower times 
of Rotate-paste operations resulted in superior learning 
outcomes due to less instance blending and enhanced 
distinguishability. 
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Table 6. Comparison results with different Rotate-paste 
operation times based on MinkowskiNet model and 
SemanticPOSS dataset

SemanticPOSS
Paste times

Class
3 6

Person 60.9 60.9
Rider 66.0 66.1
Car 72.3 75.8

Truck 40.7 42.2
Trunk 80.9 78.8

Traffic sign 55.5 51.5
Pole 37.3 38.0

Trashcan 44.6 46.8
Building 83.3 78.9

Cone/Stone 41.1 36.5
Fence 63.2 62.2
Bike 56.2 57.1

Ground 81.2 80.9
mIoU 60.2 59.7

Table 7. Comparison results with different rotate-paste 
operation times based on MinkowskiNet model and 
SemanticKitti dataset

SemanticKitti
Paste times

Class
3 6

Car 96.8 96.7
Bicycle 53.7 53.4

Motorcycle 76.5 78.4
Truck 79.8 80.7

Other-vehicle 67.8 67.9
Person 74.1 72.4

Bicyclist 88.4 86.9
Motorcyclist 13.6 13.4

Road 93.7 93.5
Parking 48.9 47.5

Sidewalk 81.7 80.7
Other-ground 11.2 6.8

Building 91.1 91.1
Fence 63.5 64.9

Vegetation 88.2 89.3
Trunk 66.8 68.1
Terrain 74.1 76.7

Pole 65.4 64.8
Traffic-sign 51.2 50.3

mIoU 67.7 67.6

6  Conclusion

In this paper,  we introduce an advanced data 
augmentation technique designed for the semantic 
segmentation of 3D point clouds. Our approach builds 
upon the existing PolarMix method by incorporating a 
two-stage sequential process to improve segmentation 

accuracy. During the first stage, we implement the original 
PolarMix technique and then integrate a class balancing 
strategy. In the second stage, classes that exhibited lower 
segmentation accuracy in the first stage are subjected to 
rotation and replication. This action effectively increases 
the sample size for these classes, leading to enhanced 
overall segmentation accuracy. We refer to this refined 
approach, which incorporates a class balancing strategy 
based on a sequential methodology, as CB-PolarMix. We 
tested our method on two datasets, SemanticPOSS and 
SemanticKitti, using two distinct models: MinkowskiNet 
and SPVCNN. The experimental outcomes underscore 
the effectiveness of our method in improving the accuracy 
of semantic segmentation, particularly for classes with 
initially lower accuracy, thereby elevating the average 
segmentation accuracy across all classes.

The primary contributions of this study are twofold: 
firstly, the introduction of an efficient data augmentation 
technique, CB-PolarMix, tailored for enhancing the 
accuracy of semantic segmentation in 3D point clouds; 
secondly, the demonstration of its efficacy through 
experiments conducted on two datasets using different 
models, offering a valuable strategy for improving 
semantic segmentation tasks involving 3D point clouds.
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