
Journal of Internet Technology Vol. 26 No. 1, January 2025 53

*Corresponding Author: Dongcheng Li; E-mail: dl313@humboldt.edu
DOI: https://doi.org/10.70003/160792642025012601005

Learning Based Patch Overfitting Detection: A Survey

Xuanyan Li1, Dongcheng Li2*, Man Zhao1, W. Eric Wong3, Hui Li1

1 School of Computer Science, China University of Geosciences, China
2 Department of Computer Science, California State Polytechnic University - Humboldt, USA

3 Department of Computer Science, University of Texas at Dallas, USA
283735194@qq.com, dl313@humboldt.edu, zhaoman@cug.edu.cn, ewong@utdallas.edu, huili@vip.sina.com

Abstract

As the complexity of software increases, the
requirements for software quality and security continue
to increase. However, automatically generated fix patches
may suffer from patch overfitting issues, leading to
instability and security vulnerabilities. This paper aims
to summarize the application of machine learning in
detecting overfitting problems in automatic program repair
(APR) patches. We review the current state of research
on automatic program repair and overfitting detection,
and we summarize the machine learning techniques
employed. We identified a comprehensive list of available
datasets and metrics commonly used in this research.
Finally, this paper discusses the challenges faced in this
field and systematically summarizes the application of
machine learning in detecting patch overfitting problems in
automatic program repair, providing a useful reference for
future research.

Keywords: Overfitting problem, Automated Patch
Correctness Assessment (ACPA), Patch, Automated
Program Repair (APR), Machine Learning (ML)

1 Introduction

Automated program repair is a highly researched field
in computer software engineering. With the increasing
complexity of industrial and internet software, the
demands for software quality and security have also
risen. Vulnerabilities and errors in software are inevitable,
leading to the flourishing development of automatic
program repair technologies. In recent years, researchers
have proposed various techniques and tools for automated
program repair, including Nopol, Evosuite, Randoop,
Genprog, and others [1-5]. The current techniques for
generating APR patches can be categorized into two main
types: those based on semantic constraints and those based
on heuristic search. There are also approaches based on
constraints, templates, and deep learning [6]. However, the
development of automatic program repair technologies has
raised concerns about overfitting issues in the generated
patches, leading to instability and security vulnerabilities
[7]. This overfitting problem manifests as patches that may

not be sufficiently universal and effective only for specific
inputs. Existing APR technologies commonly exhibit this
overfitting problem [8].

In past research, automated program repair and
overfitting detection have been extensively discussed in
the Automated Patch Correctness Assessment (APCA)
domain. Most studies have focused on using traditional
dynamic and static ACPA techniques, utilizing test cases,
or manually marking patches. Dynamic methods rely on
runtime information to determine patch correctness, which
may result in lower performance. Static methods analyze
patch code fragments to infer patch correctness based on
program syntax, although they have higher efficiency,
their accuracy is comparatively lower [9]. Notably, the
Invalidator method is based on semantics and syntax
to infer and automatically evaluate patch correctness.
It uses a trained model on labeled patches to assess the
correctness based on program syntax, evaluating patches’
correctness that cannot be determined by invariants [10].
The DiffTGen method uses generated new test inputs to
discover semantic differences between the original faulty
program and the patched program, ultimately identifying
whether the generated patch is overfitting. Generating
new inputs using test cases can add them to the test suite
and prevent automatic program repair technologies from
generating similar overfitting patches again. However,
this method may have issues such as result bias and
performance deficiencies when compared to manual
marking methods [11].

Researchers and engineers have also proposed using
machine learning model techniques to continuously
explore how to reduce the risk of patch overfitting in APR.
However, despite significant progress in these studies,
there are still key issues to be addressed, such as how to
more effectively detect and mitigate overfitting issues in
automatic program repair. Recently proposed methods to
address this critical issue are numerous, but there is still
a lack of an in-depth review of the latest developments in
learning-based methods for patch overfitting detection. The
purpose of this paper is to summarize and classify learning-
based patch overfitting detection methods, outline existing
research achievements and methods, and future directions
to better understand and address this issue, assisting
relevant research. We focus on Defects4j, QuixBugs,
Bears, Bugs.jar, ManySStuBs4J and Codeflaws datasets
that have been used recently by relevant researchers,
making it easier for other researchers to start research

54 Journal of Internet Technology Vol. 26 No. 1, January 2025

without having to mix all available datasets. Additionally,
our review outlines some traditional techniques and
popular learning-based methods for patch overfitting
detection, including comparisons of their methods and
detailed analyses of each component of the learning-based
patch overfitting detection process. The contributions of
this paper are as following:

(1) Learning based patch overfitting detection. We
systematically review learning-based patch overfitting
detection, covering the most popular methods based on
convolutional neural networks, generative adversarial
networks, and methods to mitigate overfitting issues
through automat ica l ly genera ted tes t cases for
comprehensive repair techniques.

(2) Technologies and datasets. We provide detailed
insights into the relevant technologies of patch overfitting
detection and popular datasets for patch overfitting
detection.

(3) Metrics. We thoroughly investigate how to
effectively utilize machine learning methods to detect
patch overfitting issues and representative evaluation
metrics for this task.

(4) Outlook and challenges. We propose some
suggestions for future research using learning-based
methods for patch overfitting detection. The main goal
of this paper is to survey and summarize the progress of
these learning methods and related research, providing a
reference for future studies.

The paper is structured as follows:
Firstly, Section 2 introduces the core concepts and most

commonly used strategies of automated program repair
patches, patch overfitting, and machine learning-related
methods. Then, in Section 3, we review past research on
utilizing machine learning methods to detect and mitigate
overfitting issues in automatic program repair patches,
analyzing shortcomings in each study. Subsequently, in
Section 4, we list publicly available datasets and related
evaluation standards. Finally, in Section 5, we outline the
conclusions of the review and provide some promising
directions for further research.

2 Background and Concepts

In this section, we will introduce some background
information and common concepts in the field of patch
overfitting detection based on learning technology in the
rough order in which the background and concepts appear.
The first is automatic program repair and patching, and
the second is the overfitting problem associated with it.
Next, we delve into APCA techniques for solving these
problems, concluding with an introduction to machine
learning and patch overfitting detection.

2.1 Automated Program Repair and Patch
Automated Program Repair (APR) aims to enhance

software quality and security by automatically identifying
and correcting issues in software code. APR techniques
primarily use test cases with faulty inputs to induce
program failures, proving the existence of faults. Patches,

in the context of APR, refer to the software code or
updates generated during the process of repairing,
updating, or improving a software program. Different APR
tools employ various methods and techniques to generate
patches [12].

Automated Program Repair typically consists of three
parts:

Employing existing fault localization techniques
to identify code segments with bugs, modifying these
segments based on a set of transformation rules or
patterns to generate various program variants (candidate
patches) [13], and validating all candidate patches using
the original test suite as an oracle [14]. Patch generation
results are constrained by the effectiveness of the first part,
fault detection, and localization. Accurate detection and
localization of errors are crucial for generating effective
repair patches, ensuring the resolution of issues in the
software [15].

2.2 Overfitting Problem
The overf i t t ing problem emerged in paral le l

with the development of deep learning, discussed in
various research papers and projects [16]. Overfitting
fundamentally involves using models or programs that
violate simplicity, incorporating more terms than necessary
or utilizing more complex methods. Therefore, overfitting
is undesirable for both technology and methods [17].

The patch overfitting problem occurs when automated
program repair systems, attempting to fix errors in
software, generate repair patches that excessively adapt
to specific training data, resulting in poor generalization
performance on other data [18]. In other words, the
repaired program may appear effective for specific defects
but overly accommodates specific test cases used during
the creation process [19]. Specifically, this means that
the generated repair patches may perform well on some
inputs but may fail to function correctly on others. The
patch overfitting problem reflects the instability and lack
of robustness of automated program repair systems [18].
This issue in the context of automatic program repair
applies research concepts from the deep learning and
neural network domains regarding model generalization,
overfitting, and uneven data distribution [6].

The occurrence of the patch overfitting problem is
closely related to multiple factors: Automated Program
Repair systems typically use open-source code from
software repositories or version control systems as training
data. This data often originates from various projects and
code repositories, possessing different code styles and
qualities. In such cases, the distribution of training data
may be uneven, with the volume of data from certain
projects or domains far exceeding others [20]. This can
lead to automated program repair systems performing
well in some domains but exhibiting poor performance in
others.

Training data for automated program repair may
contain noise and errors. These errors may result from
incorrect error reports or faulty repair attempts. When
automated program repair systems learn these errors
from training data, they can contribute to the patch

Learning Based Patch Overfitting Detection: A Survey 55

overfitting problem. Additionally, due to manual labeling
by developers, label errors may exist in the training data,
causing biases in model learning. Automated program
repair systems must search a vast repair space, which is
often extensive. Due to the complexity of the search space,
systems may tend to generate repairs specific to certain
domains while performing poorly in other domains. This
makes automated program repair systems prone to the
patch overfitting problem [21].

Automated program repair systems often rely on a
series of machine learning algorithms and hyperparameter
settings for learning and generating repair patches.
Different algorithm and parameter choices may lead to
different overfitting tendencies [22]. Therefore, algorithm
selection and hyperparameter settings are also factors
contributing to the patch overfitting problem. The patch
overfitting problem significantly impacts the performance
and usability of automated program repair systems.

2.3 APCA (Automated Patch Correctness Assessment)
Automated Patch Correctness Assessment (APCA)

refers to the automated process of evaluating and
determining the correctness of patches generated by
Automated Program Repair (APR) techniques. In the
APR environment, which involves automatically fixing
software errors, APCA plays a crucial role in determining
the accuracy, effectiveness, and alignment with the
expected functionality of the generated patches [23].
Through automated patch correctness assessment, APCA
helps minimize both false positives (misidentifying correct
patches) and false negatives (failing to identify incorrect
patches), which is crucial for enhancing the reliability of
automated patching systems [24]. Researchers address the
challenge of overfitting patches, which are often caused
by insufficient test suites from real-world programs.
Some propose simple methods utilizing automated
test generation tools to check for patch overfitting. If a
seemingly reasonable patch fails in any of these test cases,
it is flagged as overfitting [19]. Current APCA methods
and techniques can be broadly categorized into static and
dynamic approaches:

•Static Techniques
Static techniques operate on static code patterns or

features, using tools like static analyzers or code style
checkers to inspect changes introduced by patches
[15]. Engineering features involve selecting the most
relevant ones, dimensionality reduction to eliminate
less contributive features, and regularization to control
model complexity. Static techniques encompass checking
for common programming errors, adhering to coding
standards, and identifying potential side effects. Avoiding
overly complex models reduces the risk of overfitting on
training data, ensuring patches execute correctly across
various possible execution paths. For example, CapGen
introduces context-aware repair generation technology,
reducing the likelihood of generating incorrect viable
patches, mitigating overfitting [25]. s3 integrates syntax-
guided and semantic-guided approaches, using six features
(AST differencing, Cosine similarity, Locality of variables
and constants, Model counting, Output coverage, Anti-

patterns) to measure the syntactic and semantic distance
between candidate solutions and original error code.
These features determine priority and identify correct
patches [26]. ssFix filters out syntactically redundant and
previously tested patches (generated by other chunks),
ranks patches based on three specified rules regarding
modification types and sizes, and tests and validates to
identify overfitting patches [27].

•Dynamic Techniques
Dynamic techniques require running tests during

program execution, analyzing the behavior of repaired code
on different execution paths [28]. Using dynamic input
generation technology tests the behavior of the repaired
program with diverse input data, ensuring the patch works
correctly and robustly. Monitoring the repaired code
during program runtime captures potential exceptions,
errors, or performance issues. Real-time feedback helps
identify issues that repaired patches may encounter during
runtime. For example, DiffTGen first discovers semantic
differences between original error programs and patch
programs by generating new test inputs. It then tests patch
programs based on these semantic differences, generating
tests to identify whether patch programs are overfitting,
preventing the recurrence of similar overfitting patches by
repair techniques [29]. Opad uses O-measure to determine
whether a patch is overfitting based on validation results,
supplementing G&V technology. If a patch is identified
as overfitting, G&V technology continues searching for
the next candidate patch [30]. TEST-SIM automatically
determines patch correctness based on behavior
similarity between program executions. While useful
in supplementation, TEST-SIM cannot solve the oracle
problem [31].

2.4 Machine Learning and Patch Overfitting Detection
APCA techniques based on machine learning typically

involve extracting code features (e.g., static representations
or dynamic execution traces) and building classifier
models to directly predict patch correctness [15]. Machine
learning techniques in this context encompass decision
trees, neural networks, support vector machines, etc. In
machine learning, supervised and unsupervised learning
are two crucial paradigms. In supervised learning, models
learn from labeled training data, including input features
and corresponding labels. In unsupervised learning, models
attempt to learn patterns and structures from unlabeled
data [32]. The challenge of patch overfitting in automated
program repair often involves supervised learning, as
models need to be constructed based on known repair and
non-repair samples to predict the effectiveness of new
repairs. Feature engineering is a critical step in machine
learning, involving the selection and construction of input
features to aid model understanding and data prediction.
In automated program repair, feature engineering may
include syntax and semantic analysis of code, contextual
information of code, and the version history of code
changes [33]. In machine learning, selecting appropriate
models and evaluation methods is crucial. Model choice
depends on the nature of the task, such as decision trees,
support vector machines, deep neural networks, etc.

56 Journal of Internet Technology Vol. 26 No. 1, January 2025

Evaluation methods include cross-validation, accuracy,
recall, F1 score, etc. In automated program repair, choosing
the right models and evaluation methods can help identify
and address patch overfitting issues, crucial for detecting
and resolving overfitting problems in automated program
repair [34].

3 Ease of Use

In this section, we will discuss the general process of
learning based patch overfitting detection and introduce
some techniques based on the adopted technical features.

3.1 Automated Program Repair and Patch
Based on the learning-based patch overfitting detection,

it can be divided into two phases: the Training Process
and the Inference Phase [34]. Figure 1 shows the overall
process of a learning based patch overfitting detection
method, which consists of two process: the training
process (as shown in the figure) and the inference process
(as shown in the figure).

• Training Process
In the Training Process, data collection and preparation

are essential. This includes gathering a substantial
amount of training data, encompassing both patches
generated by automatic program repair (APR) and non-
repair data. Diverse data covering various projects,
programming languages, and error types enhance the
model’s generalization. Subsequently, data cleaning,
standardization, and feature engineering are conducted
to ensure data quality and consistency. Feature extraction
and engineering steps follow, involving extracting relevant
features from repair patches, such as code syntax, semantic
information, code context, and code change history.
Feature engineering enhances feature quality and diversity
to better capture signs of overfitting.

In the model selection and design phase, choosing
an appropriate machine learning model, such as decision
trees, support vector machines, or deep neural networks,

is crucial for detecting patch overfitting. Designing the
model architecture, including input feature dimensions, the
number of hidden layers, and sizes, is equally important.
Subsequent data partitioning and cross-validation split the
training dataset into training and validation sets, commonly
using cross-validation to assess the model’s performance.
This aids in detecting the model’s generalization ability
and reduces the risk of overfitting. Model training, a
critical step in the training phase, utilizes the training
dataset to teach the model how to distinguish between
repair and non-repair cases. The model learns based on
features and adjusts model parameters during training,
guided by the performance on the validation set. Finally,
the model’s performance is evaluated on the validation set
using metrics like accuracy, recall, F1 score, quantifying
the model’s performance. Analyzing the evaluation results
determines if the model is accurate enough to detect patch
overfitting.

• Inference Process
In the Inference Process, data preparation involves

obtaining the repair patch data to be detected, typically
generated by automatic program repair tools. Similar
feature extraction and preprocessing steps as in the
training phase ensure data consistency and formatting.
Feature extraction from repair patches follows using the
same methods as in training. Ensuring feature engineering
consistency aligns it with the trained model. The trained
model, from the training phase, is then used to predict
new repair patches. The model judges whether a repair
patch exhibits overfitting issues based on features. A
threshold can be set, depending on the application’s
needs and the model’s performance, using the probability
values or classification labels output by the model.
Lastly, interpreting the model’s prediction results helps
developers understand why the model identifies specific
repair patches as having overfitting problems. Generating
reports and marking patches that may need further review
or regeneration concludes the process [15].

Figure 1. Architecture of learning based patch overfitting detection

Learning Based Patch Overfitting Detection: A Survey 57

3.2 Learning Based Patch Overfitting Detection
Techniques
In accordance with the technical characteristics

adopted in the literature on learning-based overfitting
patch detection, as shown in Table 1, they are broadly
categorized into two types: Code Representation
and Engineered Feature. The first column in Table 1
corresponds to Technical Features, the second to Paper, the
third to Language, the fourth to Year, the fifth to Model,
and the sixth to Dataset.

• Code Representation
Viktor Csuvik [35] et al. applied Doc2vec and Bert

embedding methods to study the reliability of using
document/sentence embedding techniques on source code.
Despite these methods inherently focusing on natural
language text, preliminary experiments were conducted
using different representations of source code. The use
of exported similarity lists demonstrated that similarity-
based techniques can effectively identify incorrect patches,
providing a valuable alternative to patch filtering methods
[35]. MIPI (Meaning-based Incorrect Patches Identifier)
[36] serves as an automatic patch assessment tool designed
to heuristically identify incorrect patches generated by
APR tools. The core idea involves leveraging the similarity
between the developer’s intent, expressed in natural text
(such as JavaDoc comments or the names of program
entities), and the semantic meaning of the implemented
code. MIPI utilizes the Code2Vec model to identify the
meaning of code snippets and employs the BERT word
embedding model to measure semantic similarity between
natural language descriptions. MIPI identifies patch
correctness by comparing the semantic meaning between
the names of the already fixed method (embedding the
developer’s intent) and the original and fixed method
bodies. MIPI filters out overfitting patches more than
techniques based on automatic test generation without
Oracle information, achieving higher accuracy in filtering
overfitting patches while retaining more correct patches
[36].

Viktor Csuvik [37] et al. trained a Doc2Vec model on
an open-source JavaScript project to validate the feasibility
of reasonable patches. Existing filtering techniques were
applied to JavaScript, and a thorough analysis of its
usability was conducted. The motivation stemmed from the
assumption that a correct program is more similar to the
original program than other candidate programs. Current
techniques typically involve single-line code modifications,
preserving the majority of the original source code. The
goal is to create simple and readable patches seamlessly
integrated with the original code repository [37]. APPT
(Automated Pretrained model-based Patch correctness
assessment technique) [38] utilizes pre-training and fine-
tuning to overcome limitations in prior work. It adopts
a large pre-trained model as an encoder stack to extract
code representations and employs bidirectional LSTM
layers to capture dependencies between buggy and patched
code snippets. A deep learning classifier predicts patch
overfitting. APPT exclusively uses source code tokens
as input, automatically extracting features with a well-
trained encoder stack, eliminating the need for code-

aware features. Implemented with the BERT model,
APPT outperforms the state-of-the-art CACHE technique,
improving accuracy, precision, recall, F1-score, and AUC.
With different pre-trained models, APPT demonstrates
enhanced performance. APPT contributes a new direction
by utilizing large pre-trained models without complex
feature design [38].

Quatrain (Question Answering for Patch Correctness
Evaluation) [39], a supervised learning approach, utilizes a
deep NLP model to classify the relatedness of bug reports
with patch descriptions. Quatrain is extensively evaluated
on a dataset of 9,135 plausible patches, including those
written by developers or generated by APR tools. The
evaluation compares Quatrain to state-of-the-art dynamic
and static approaches, demonstrating comparable or
superior performance in terms of AUC, F1, +Recall, and
-Recall. The paper analyzes the impact of input quality on
prediction performance, highlighting the potential benefits
of extended research into patch summarization, also
known as commit message generation, for the software
engineering committee.

The authors conduct a preliminary validation study
demonstrating the correlation between bug and patch
descriptions in a dataset of developer-submitted patches.
This initial finding suggests a novel direction for patch
correctness studies utilizing bug artifacts [39]. Patcherizer
[40], a novel approach addressing issues in patch
representation for software engineering tasks. Patcherizer
leverages a combination of context, a novel SeqIntention
representation for sequential patches, and a GraphIntention
representation for patches. This allows the use of powerful
deep learning models like Transformers for sequence
intention and graph-based models like GCN for graph
intention. The model is pre-trained and task-agnostic,
enabling fine-tuning for various downstream tasks. The
authors extensively evaluate Patcherizer on three key
patch representation tasks: generating patch descriptions in
natural language, predicting patch correctness in program
repair, and detecting patch intentions. Patcherizer’s
superiority over carefully-selected baselines and the state
of the art in patch representation learning across multiple
downstream tasks [40]. xTestCluster [41], a novel test-
based patch clustering approach, demonstrates its ability to
create at least two clusters for almost half of the bugs with
multiple patches. This clustering significantly reduces the
median number of patches to review and analyze by 50%,
providing a time-saving advantage for code reviewers and
researchers assessing patches. xTestCluster not only aids in
patch evaluation but also offers valuable inputs, generated
from test cases, showcasing different program behaviors
for distinct patches related to a single bug. Implementation
of xTestCluster for Java patches utilizes popular
automated test-case generation frameworks Evosuite
and Randoop, along with a patch-length-based selection
strategy. The source code for xTestCluster is publicly
available. Evaluation of xTestCluster using patches from
25 APR tools and 1910 plausible patches with all data are
accessible in the provided appendix [41].

• Engineered Feature
Leopard [42], an innovative patch correctness

58 Journal of Internet Technology Vol. 26 No. 1, January 2025

prediction framework, employs learning algorithms to
infer the correctness of patches. Researchers assess the
feasibility of selecting repaired code and the similarity
score between chosen code snippets in the model learning
embeddings. Investigating the discriminative ability of
learned embeddings in Leopard’s classification training
pipeline, they compare it with state-of-the-art methods
through ten cross-validations. To enhance the identification
of correct patches, Leopard integrates learned embeddings
with engineering features and implements an upgraded
version called Panther. This exploratory study is supported
by empirical evidence, providing experiential explanations
for the feature and classifier prediction reasons behind
SHAP, a machine learning technique [42]. The Overfitting
Patch Detection System (ODS) [43] is designed to identify
overfitting patches generated by program repair tools.
ODS relies on static extraction of raw code features from
Abstract Syntax Trees (AST) of buggy programs and
patched programs.

Utilizing three types of features: code description
features, repair pattern features, and contextual syntax
features, ODS employs supervised learning for training
and prediction. ODS’s limitation lies in its lack of
consideration for dynamic code features, relying solely

on static code features, leading to a deficiency in semantic
foundations when determining patch correctness [43]. Crex
[44], a model designed for patch correctness identification
based on learned execution semantics. Crex investigating
the automation of patch correctness identification in
automated program repair of C programs, addressing a
research gap that predominantly focuses on Java programs.
Proposing a novel perspective on patch correctness
identification through micro-executions and transfer
learning of execution semantics, with Crex leveraging
learned embeddings to predict correctness based on
functional changes. Conducting experimental validations
using patches from CoCoNut, demonstrating that Crex
achieves high recall (100%) and F1 (89.0%) when the
classifier is trained on micro-trace-based embeddings with
a Logistic regression learner [44].

As can be seen from Table 1, after Viktor Csuvik
and others proposed using embedded code alternatives
to replace engineering features in 2020, more and more
researchers began to study code representation learning
to solve the problem of patch overfitting detection. There
are far more papers on technical features based on code
representation than on those based on engineering features.

Table 1. A summary of learning based patch overfitting detection studies

Technical
features Paper Language Year Model Dataset

Code
representation

Utilizing source code embeddings to identify
correct patches [35] Java 2020 Doc2vec, BERT QuixBugs

Identifying incorrect patches in program repair
based on meaning of source code [36] Java 2022 Code2Vec, BERT QuixBugs,

Defects4J

Exploring plausible patches using source code
embeddings in Javascript [37] JavaScript 2021 Doc2ve BugsJS

APPT: Boosting automated patch correctness
prediction via pre-trained language model [38] Java 2023 BERT Defects4J

Is this change the answer to that problem?
Correlating descriptions of bug and code
changes for evaluating patch correctness [39]

Java 2022 QA-Model, BERT Defects4j, Bugs.
jar and Bears

Crex: Predicting patch correctness in
automated repair of C programs through
transfer learning of execution semantics [44]

C 2022 Trex Codeflaws

Learning to represent patches [40] Java 2023 GCN-based model,
Patcherizer, BERT

Defects4j, Bugs.
jar and Bears

Test-based patch clustering for automatically-
generated patches assessment [41] Java 2022 Clustering model Defects4J

Engineered
feature

Automated classification of overfitting patches
with statically extracted code features [43] Java 2021 ODS Defects4J,

Bugs.jar, Bears

The best of both worlds: combining learned
embeddings with engineered features for
accurate prediction of correct patches [42]

Java 2023 BERT

Bugs.jar, Bears,
Defects4J,
QuixBugs, and
ManySStuBs4J

Learning Based Patch Overfitting Detection: A Survey 59

4 Dataset and Metric

In this section, we introduce existing datasets widely
used in the field of learning based patch overfitting
detection and discuss common evaluation metrics for
evaluating patch overfitting.

4.1 Dataset
In the study of patch overfitting detection based

on learning, several datasets have been instrumental in
advancing research. These datasets, namely Defects4j,
Quixbugs, Bears, Bugs.jar, Manysstubs4j, and Codeflaws,
play a significant role in understanding and addressing
patch overfitting. Here is a brief summary of each dataset:

Defects4J [3]: Defects4J is one of the most widely
used datasets. Its extensibility allows seamless integration
of new bugs obtained from reported fixes, ensuring
continual growth. Featuring a robust test execution
framework, Defects4J facilitates the implementation of
tools for experiments in software testing research. This
framework encompasses components for fundamental
tasks such as test execution, test generation, and code
coverage or mutation analysis [3].

QuixBugs [45]: QuixBugs comprises of 40 programs
translated into both Python and Java. This unique
characteristic renders each buggy program intriguing, and
collectively, the dataset minimizes potential experimenter
bias [45].

Bugs.jar [46]: Bugs.jar, a new large-scale, diverse
dataset of 1,158 real bugs and patches from 8 large,
popular open-source Java projects, spans 8 distinct and
prominent Java application domains [46].

Bears [47]: Bears is an innovative project that creates
an extensible bug benchmark to evaluate automatic
program repair tools in Java. BEARS stands out for its use
of CI to identify program versions, allowing bug collection
from diverse projects, including those beyond mature
projects with bug tracking systems [47].

ManySStuBs4J [48]: The ManySStuBs4J dataset
comprises of 10,231 and 63,923 instances of single-
statement bugs extracted from 12,598 and 86,771 bug-
fix commits, respectively, focusing on single-statement
changes for each version. The dataset is stored in JSON
files, and comprehensive details are available in the GitHub
repository. Each SStuB instance includes annotations for
the satisfied SStuB pattern, project name, Java file name,
commit hashes, bug start line, and AST subtree location
[48].

Codeflaws [49]: Codeflaws is a pioneering benchmark
comprising of 3902 defects extracted from 7436 programs.
These defects are systematically classified across 39 defect
classes, representing distinct fault types [49].

In our investigation, these datasets were used by
different purposes in different studies. Some studies that
use Defects4j as a training dataset mainly include training
for their models, and some studies use Defects4j as an
evaluation dataset that usually include a test. In Table 2, it
can be observed that the Defects4J dataset is utilized in 8
research papers, showing the highest frequency among the

collected studies. QuixBugs, Bears, and Bugs.jar are also
popular datasets in the domain of learning-based patch
overfitting detection. Codeflaws and Manysstubs4j datasets
have been referenced in only one paper each, with the
literature utilizing the Codeflaws dataset focusing solely on
that particular dataset. Crex, designed for C programs, has
chosen Codeflaws as its benchmark dataset for research.
These datasets collectively enhance the comprehensiveness
and diversity of the research landscape, providing valuable
insights into the challenges and opportunities in patch
overfitting detection suite used to verify the correctness of
patches.

Table 2. Datasets usage information

Dataset Number of paper used
Defects4J 8 [36, 38-43]
QuixBugs 3 [35-36, 42]

 Bears 4 [39-40, 42-43]
Bugs.jar 4 [39-40, 42-43]

ManySStuBs4J 1 [42]
Codeflaws 1 [44]

4.2 Metric
Evaluation metrics play a crucial role in determining

the performance of models in detecting overfitting issues
in automated program repair (APR) patches. Key metrics
include:

TP (True Positives): The number of correctly detected
program defects requiring repair, indicating successful
identification of issues.

FP (False Positives): The number of instances where
the model incorrectly labels non-defective code as requiring
repair, indicating the identification of unnecessary issues.

TN (True Negatives): The number of instances
where the model correctly labels non-defective code as not
requiring repair, representing the correct identification of
issue-free code.

FN (False Negatives): The number of instances where
the model incorrectly labels code requiring repair as not
needing repair, indicating failure to detect existing issues.

These fundamental metrics are used to evaluate
the model’s performance in detecting overfitting
issues in automated program repair patches. However,
individual metrics may not provide a complete picture.
Therefore, additional evaluation metrics are utilized for a
comprehensive assessment:

Precision (PPV): Also called positive predictive value,
the model between true positives and false positives, which
is calculated as formula 1.

.
()

TPPrecision
TP FP

=
+

 (1)

Higher precision indicates fewer unnecessary repairs,
reducing the false-positive rate.

Recall: Recall is divided into +Recall and -Recall.
+Recall is also called TPR (true positive rate), -Recall is
also called TNR (True Negative Rate). +Recall quantifies

60 Journal of Internet Technology Vol. 26 No. 1, January 2025

the percentage of correctly identified patches among
all actual correct patches. In contrast, -Recall gauges
the percentage of incorrectly identified patches that are
successfully filtered out from all actual incorrect patches.
The comprehensive evaluation of recall metrics contributes
to a nuanced understanding of the system’s performance
in correctly recognizing and excluding patches. Where
+Recall is calculated as formula 2.

.
()

TPRecall
TP FN

+ =
+

 (2)

The -Recall is calculated as formula 3.

.
()

TNRecall
TN FP

− =
+

 (3)

Accuracy: Represents the model’s ability to correctly
classify samples overall, which is calculated as formula 4.

.TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (4)

Higher accuracy indicates overall good performance.
CPR (Correct Patch Ratio): The ratio of correctly

generated repair patches to the total generated patches,
which is calculated as formula 5.

.TPCPR
TP FP

=
+

 (5)

A higher CPR indicates more accurate generation of
repair patches.

nDCGp (Normalized Discounted Cumulative Gain)
[37]: DCG measures the usefulness of a document based
on its position in the result list. To address the challenge
of varying similarity list lengths, preventing consistent
performance comparison with DCG, the cumulative gain at
each position is normalized, resulting in the nDCG metric
[49]. Where nDCGp is calculated as formula 6.

.DCGpnDCGp
IDCGp

= (6)

AUC (Area Under Curve): AUC quantifies the
entire two-dimensional area beneath the Receiver
Operating Characteristic (ROC) curve. AUC measures
the probability that a classifier will prioritize a randomly
selected overfitting patch over a randomly chosen correct
patch. The higher the AUC, the more proficient the APCA
techniques are in correctly identifying real overfitting
patches as overfitting and genuine correct patches as
correct. Where AUC is calculated as formula 7.

(,)
.overfitting correctI P P

AUC
M N

=
×

∑ (7)

DestructiveRatio [36]: The Destructive Ratio (DR)
metric assesses the impact of the APCA technique on
Automatic Patch Recognition (APR) tools. A DR greater
than 1 signifies a higher proportion of correct patches
filtered compared to overfitting patches, indicating a risk
outweighing the benefit. Conversely, a DR smaller than 1
implies a smaller risk than the benefit, as the proportion of
correct patches filtered is smaller than overfitting patches
[36]. Where DestructiveRatio is calculated as formula 8.

(1) .TNRDestructiveRatio
TPR
−

= (8)

F1: The F1 score, a widely adopted metric in APCA,
serves as a comprehensive measure that balances
precision and recall. The F1 score offering a single value
that considers both false positives and false negatives.
Higher F1 score signifies a better balance between
accurately identifying correct patches and avoiding the
misclassification of incorrect ones. Where F1 is calculated
as formula 9.

1 .recall
l

PPVF
V r lPP eca
∗

=
+

 (9)

NPV (Negative Predictive Value): NPV represents
the proportion of patches classified as correct by the
assessment technique that are indeed correct. A high
NPV in APCA indicates a robust ability to identify true
negatives, enhancing the reliability of the assessment.
Researchers and practitioners can leverage NPV to
understand how well an APCA technique avoids the
misclassification of correct patches, contributing to the
overall evaluation of its performance. Where NPV is
calculated as formula 10.

.
()

TNNPV
TN FN

=
+

 (10)

BLEU (Bilingual Evaluation Understudy) [50]:
BLEU is a metric commonly used in the evaluation of
machine translation. In the APCA domain, BLEU is
employed to quantify the similarity between the generated
and correct patches. This metric aids in determining how
well the automated system aligns with manually validated
patches. Integrating BLEU into APCA methodologies
enhances the assessment process by offering a standardized
measure of correctness, contributing to the overall
effectiveness of patch evaluation techniques [50]. Where
BLEU is calculated as formula 11.

1
exp(log).N

n nn
BLEU BP w p

=
= × ∑ (11)

In Table 3, +Recall and -Recall are frequently utilized
in the collected literature compared to other metrics.
Their prominence stems from their direct reflection of a
method’s efficacy in identifying patches. Precision and

Learning Based Patch Overfitting Detection: A Survey 61

Accuracy each appear five times in the papers, often
used concurrently. When the positive and negative
sample quantities in the training and experimental
datasets are comparable, Precision and Accuracy serve
as suitable metrics to evaluate method performance. In
studies involving fundamental metrics such as TP, FP,
TN, FN, these indicators are concurrently employed.
TP metric Indicates the model’s capability to accurately
identify positive cases. In comparison to the FN metric,
it neglects false negatives. The FP metric highlights
instances where the model erroneously predicts positive
outcomes. However, it may be influenced by imbalanced
datasets compared to other metrics. In scenarios where
the training and experimental datasets exhibit a relatively
balanced distribution of positive and negative samples,
Precision or Accuracy can be employed to assess the
method’s performance. nDCGp is applicable to patch
ranking scenarios but is rarely used in other contexts,
with only one paper utilizing this metric. The recently
proposed Destructive Ratio combines +Recall and -Recall,
demonstrating heightened consideration for whether
the APCA technique might result in more significant
destructive or adverse impacts compared to alternative
metrics. These evaluation metrics play a crucial role in
machine learning studies addressing overfitting issues in
automated program repair patches. They assist researchers
in assessing model performance, improving algorithms,
reducing false positives and false negatives, and enhancing
the efficiency and effectiveness of automated program
repair.

Table 3. Metrics usage information

Metric Number of paper used
TP 3 [36, 43-44]
FP 3 [36, 43-44]
TN 3 [36, 43-44]
FN 3 [36, 43-44]

Precision (PPV) 5 [35-36, 38, 42-44]
+Recall (TPR) 8 [35-36, 38-40, 42-44]

Accuracy 5 [36, 38, 42-44]
CPR 1 [43]

BLEU 1 [40]
NPV 1 [35]

-Recall (TNR) 4 [36, 39-40, 42]
F1 5 [35, 38-39, 42, 44]

DestructiveRatio 1 [36]
nDCGp 1 [37]
AUC 2 [38-39, 42]

5 Shortcomings and Prospects

This paper has shortcomings in collecting related
technologies. The methodology leans towards bias, as
the systematic review of learning-based patch overfitting
detection primarily explores Defects4J, potentially
overlooking other potential methods. There is a need
for a more comprehensive consideration of different

technologies. Performance evaluation standards: There
is a requirement for a more detailed discussion and
comparison of performance evaluation standards for
machine learning methods detecting patch overfitting
issues. Future research could involve validation across
multiple datasets, expanding the dataset scope to verify the
robustness and applicability of the methods. Consideration
of integrated methods involving different types, including
semantic-based and heuristic search-based, could enhance
the generality and applicability of patch generation.
Developing more comprehensive evaluation metrics is
suggested to more accurately assess the performance of
machine learning methods in automated program repair.

6 Conclusion

This paper provides a review of learning-based
patch overfitting detection, covering the most popular
automated repair techniques, deep neural networks, and
their construction mechanisms. The mentioned change
detection methods indicate that deep learning technology
has successfully propelled the development of change
detection, achieving significant progress. However, due to
the diversity of requirements and the complexity of data,
overfitting detection still faces many challenges. Therefore,
it is strongly recommended to propose several suggestions
for the future research direction of patch detection to pay
more attention to these challenges. First, appropriately
combining static and dynamic code features in research
directions. Second, more effectively utilizing machine
learning methods to detect and alleviate patch overfitting
issues in automated program repair. Third, simultaneously
detecting patch overfitting and more effectively use
machine learning techniques to improve the quality of
patches in automated program repair.

References

[1] G. Fraser, A. Arcuri, Evosuite: automatic test suite
generation for object-oriented software, Proceedings of the
19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering,
Szeged, Hungary, 2011, pp. 416-419.

[2] C. Le Goues, T. V. Nguyen, S. Forrest, W. Weimer,
Genprog: A generic method for automatic software repair,
IEEE transactions on software engineering, Vol. 38, No. 1,
pp. 54-72, January-February, 2012.

[3] R. Just, D. Jalali, M. D. Ernst, Defects4J: A database of
existing faults to enable controlled testing studies for
Java programs, Proceedings of the 2014 international
symposium on software testing and analysis, San Jose, CA,
USA, 2014, pp. 437-440.

[4] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L.
Marcote, T. Durieux, D. L. Berre, M. Monperrus, Nopol:
Automatic repair of conditional statement bugs in java
programs, IEEE Transactions on Software Engineering,
Vol. 43, No. 1, pp. 34-55, January, 2017.

[5] G. Fraser, A. Arcuri, A large-scale evaluation of automated
unit test generation using evosuite, ACM Transactions on
Software Engineering and Methodology (TOSEM), Vol. 24,
No. 2, pp. 1-42, December, 2014.

62 Journal of Internet Technology Vol. 26 No. 1, January 2025

[6] X. B. D. Le, F. Thung, D. Lo, C. Le Goues, Overfitting
in semantics-based automated program repair, Empirical
Software Engineering, Vol. 23, No. 5, pp. 3007-3033,
October, 2018.

[7] C.-H. Lee, C.-Y. Huang, Applying Cluster-based Approach
to Improve the Effectiveness of Test Suite Reduction,
International Journal of Performability Engineering, Vol.
18, No. 1, pp. 1-10, January, 2022.

[8] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao,
H. Jin, Automated patch correctness assessment: How far
are we?, Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, Virtual
Event, Australia, 2020, pp. 968-980.

[9] J. Yang, Y. Wang, Y. Lou, M. Wen, L. Zhang, A Large-
Scale Empirical Review of Patch Correctness Checking
Approaches, Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, San Francisco, CA,
USA, 2023, pp. 1203-1215.

[10] L.-C. Thanh, D.-M. Luong, X. B. D. Le, D. Lo, N.-H.
Tran, Q.-H. Bui, Q.-T. Huynh, Invalidator: Automated
patch correctness assessment via semantic and syntactic
reasoning, IEEE Transactions on Software Engineering,
Vol. 49, No. 6, pp. 3411-3429, June, 2023.

[11] Q. Zhu, Z. Sun, Y. Xiao, W. Zhang, K. Yuan, Y. Xiong, L.
Zhang, A syntax-guided edit decoder for neural program
repair, Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
Athens, Greece, 2021, pp. 341-353.

[12] F. Logozzo, T. Ball, Modular and verified automatic
program repair, ACM SIGPLAN Notices, Vol. 47, No. 10,
pp. 133-146, October, 2012.

[13] C.-E. Lai, C.-Y. Huang, Developing a Modified Fuzzy-GE
Algorithm for Enhanced Test Suite Reduction Effectiveness,
International Journal of Performability Engineering, Vol.
19, No. 4, pp. 223-233, April, 2023.

[14] T. Durieux, M. Monperrus, Dynamoth: dynamic code
synthesis for automatic program repair, Proceedings of the
11th International Workshop on Automation of Software
Test, Austin, TX, USA, 2016, pp. 85-91.

[15] Q. Zhang, C. Fang, Y. Ma, W. Sun, Z. Chen, A Survey of
Learning-based Automated Program Repair, November,
2023. https://arxiv.org/abs/2301.03270

[16] T. Dietterich, Overfitting and undercomputing in machine
learning, ACM computing surveys (CSUR), Vol. 27, No. 3,
pp. 326-327, September, 1995.

[17] D. M. Hawkins, The problem of overfitting, Journal of
chemical information and computer sciences, Vol. 44, No.
1, pp. 1-12, January, 2024.

[18] X. Ying, An overview of overfitting and its solutions,
Journal of physics: Conference series, Vol. 1168, Article
No. 022022, 2019.

[19] E. K. Smith, E. T. Barr, C. Le Goues, Y. Brun, Is the cure
worse than the disease? overfitting in automated program
repair, Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, Bergamo, Italy,
2015, pp. 532-543.

[20] A. Nilizadeh, Automated program repair and test
overfitting: measurements and approaches using formal
methods, 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), Valencia, Spain, 2022,
pp. 480-482.

[21] T. Durieux, F. Madeiral, M. Martinez, R. Abreu, Empirical
review of Java program repair tools: A large-scale
experiment on 2,141 bugs and 23,551 repair attempts,

Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
Tallinn, Estonia, 2019, pp. 302-313.

[22] M. Lim, G. Guizzo, J. Petke, Impact of test suite coverage
on overfitting in genetic improvement of software, 12th
International Symposium on Search-Based Software
Engineering (SSBSE 2020), Bari, Italy, 2020, 188-203.

[23] H. Ye, M. Martinez, M. Monperrus, Automated patch
assessment for program repair at scale, Empirical Software
Engineering, Vol. 26, No. 2, pp. 1-38, March, 2021.

[24] Z. Qi, F. Long, S. Achour, M. Rinard, An analysis of patch
plausibility and correctness for generate-and-validate patch
generation systems, Proceedings of the 2015 International
Symposium on Software Testing and Analysis, Baltimore,
MD, USA, 2015, pp. 24-36.

[25] M. Wen, J. Chen, R. Wu, D. Hao, S.-C. Cheung, Context-
aware patch generation for better automated program
repair, Proceedings of the 40th International Conference
on Software Engineering, Gothenburg, Sweden, 2018, pp.
1-11.

[26] X. B. D. Le, D. H. Chu, D. Lo, C. Le Goues, W. Visser,
S3: syntax-and semantic-guided repair synthesis via
programming by examples, Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
Paderborn, Germany, 2017, pp. 593-604.

[27] Q. Xin, S. P. Reiss, Leveraging syntax-related code for
automated program repair, Proceedings of the 32nd IEEE/
ACM International Conference on Automated Software
Engineering, Urbana, IL, USA, 2017, pp. 660-670.

[28] A. Nilizadeh, G. T. Leavens, X. B. D. Le, C. S. Păsăreanu,
D. R. Cok, Exploring true test overfitting in dynamic
automated program repair using formal methods, 2021 14th
IEEE Conference on Software Testing, Verification and
Validation (ICST), Porto de Galinhas, Brazil, 2021, pp. 229-
240.

[29] Q. Xin, S. P. Reiss, Identifying test-suite-overfitted patches
through test case generation, Proceedings of the 26th ACM
SIGSOFT international symposium on software testing and
analysis, Santa Barbara, CA, USA, 2017, pp. 226-236.

[30] J. Yang, A. Zhikhartsev, Y. Liu, L. Tan, Better test cases for
better automated program repair, Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering,
Paderborn, Germany, 2017, pp. 831-841.

[31] Y. Xiong, X. Liu, M. Zeng, L. Zhang, G. Huang,
Identifying patch correctness in test-based program repair,
Proceedings of the 40th international conference on
software engineering, Gothenburg, Sweden, 2018, pp. 789-
799.

[32] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient
estimation of word representations in vector space,
September, 2013. https://arxiv.org/abs/1301.3781

[33] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A.
Koyuncu, S. Kim, Y. Le Traon, Learning to spot and
refactor inconsistent method names, 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE),
Montreal, QC, Canada, 2019, pp. 1-12.

[34] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein,
T. F. Bissyandé, Evaluating representation learning of
code changes for predicting patch correctness in program
repair, 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Virtual Event,
Australia, 2020, pp. 981-992.

[35] V. Csuvik, D. Horváth, F. Horváth, L. Vidács, Utilizing
source code embeddings to identify correct patches, 2020
IEEE 2nd International Workshop on Intelligent Bug Fixing

Learning Based Patch Overfitting Detection: A Survey 63

(IBF), London, ON, Canada, 2020, pp. 18-25.
[36] Q. N. Phung, M. Kim, E. Lee, Identifying Incorrect Patches

in Program Repair Based on Meaning of Source Code,
IEEE Access, Vol. 10, pp. 12012-12030, January, 2022.

[37] V. Csuvik, D. Horváth, M. Lajkó, L. Vidács, Exploring
plausible patches using source code embeddings in
Javascript, 2021 IEEE/ACM International Workshop on
Automated Program Repair (APR), Madrid, Spain, 2021,
pp. 11-18.

[38] Q. Zhang, C. Fang, W. Sun, Y. Liu, T. He, X. Hao, Z. Chen,
APPT: Boosting Automated Patch Correctness Prediction
via Pre-trained Language Model, January, 2023. https://
arxiv.org/abs/2301.12453

[39] H. Tian, X. Tang, A. Habib, S. Wang, K. Liu, X. Xia, J.
Klein, T. F. Bissyandé, Is this change the answer to that
problem?: Correlating descriptions of bug and code changes
for evaluating patch correctness, Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, Rochester, MI, USA, 2022, pp. 1-13.

[40] X. Tang, H. Tian, Z. Chen, W. Pian, S. Ezzini, A. K.
Kabore, A. Habib, J. Klein, T. F. Bissyande, Learning
to Represent Patches, October, 2023. https://arxiv.org/
abs/2308.16586

[41] M. Martinez, M. Kechagia, A. Perera, J. Petke, F. Sarro,
A. Aleti, Test-based Patch Clustering for Automatically-
Generated Patches Assessment, July, 2022. https://arxiv.
org/abs/2207.11082

[42] H. Tian, K. Liu, Y. Li, A. K. Kaboré, A. Koyuncu, A. Habib,
L. Li, J. Wen, J. Klein, T. F. Bissyandé, The Best of Both
Worlds: Combining Learned Embeddings with Engineered
Features for Accurate Prediction of Correct Patches, ACM
Transactions on Software Engineering and Methodology,
Vol. 32, No. 4, pp. 1-34, July, 2023.

[43] H. Ye, J. Gu, M. Martinez, T. Durieux, M. Monperrus,
Automated classification of overfitting patches with
statically extracted code features, IEEE Transactions on
Software Engineering, Vol. 48, No. 8, pp. 2920-2938,
August, 2022.

[44] D. Yan, K. Liu, Y. Niu, L. Li, Z. Liu, Z. Liu, J. Klein, T. F.
Bissyandé, Crex: Predicting patch correctness in automated
repair of C programs through transfer learning of execution
semantics, Information and Software Technology, Vol. 152,
Article No. 107043, December, 2022.

[45] D. Lin, J. Koppel, A. Chen, A. Solar-Lezama, QuixBugs:
A multi-lingual program repair benchmark set based on
the Quixey Challenge, Proceedings Companion of the
2017 ACM SIGPLAN international conference on systems,
programming, languages, and applications: software for
humanity, Vancouver, BC, Canada, 2017, pp. 55-56.

[46] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, M. R. Prasad,
Bugs. jar: A large-scale, diverse dataset of real-world java
bugs, Proceedings of the 15th international conference on
mining software repositories, Gothenburg, Sweden, 2018,
pp. 10-13.

[47] F. Madeiral, S. Urli, M. Maia, M. Monperrus, Bears: An
extensible java bug benchmark for automatic program
repair studies, 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER),
Hangzhou, China, 2019, 468-478.

[48] R. M. Karampatsis, C. Sutton, How often do single-
statement bugs occur?: the manysstubs4j dataset,
Proceedings of the 17th International Conference on
Mining Software Repositories, Seoul, Republic of Korea,
2020, pp. 573-577.

[49] S. H. Tan, J. Yi, Yulis, S. Mechtaev, A. Roychoudhury,
Codeflaws: a programming competition benchmark

for evaluating automated program repair tools, 2017
IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C) , Buenos Aires,
Argentina, 2017, pp. 180-182.

[50] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu: a
method for automatic evaluation of machine translation,
Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, Philadelphia, Pennsylvania,
2002, pp. 311-318.

Biographies

Xuanyan Li is a graduate student in
computer science at China University
of Geosciences (Wuhan). His research
interests include intelligent algorithms
and software security detection.

Dongcheng Li earned his Ph.D. and
M.S. degrees in Computer Science from
the University of Texas at Dallas and
holds a B.S. in Computer Science from
the University of Illinois Springfield.
Currently, he serves as an Assistant
Professor in the Department of Computer
Science at California State Polytechnic

University, Humboldt. His research is centered on search-
based software engineering, test generation, program
repair, and intelligent optimization algorithms.

Man Zhao is currently an associate
professor a t China Univers i ty of
Geosc iences (Wuhan) . Her main
research directions are computer science
and technology, intelligent computing
and artificial intelligence.

W. Eric Wong received his Ph.D.
in computer science from Purdue
Univers i ty. He was a t Te lcord ia
Technologies (formerly, Bellcore)
as a Senior Research Scientist and
a Project Manager, where he was in
charge of dependable telecom software
development. He is currently a Full

Professor and the Founding Director of the Advanced
Research Center for Software Testing and Quality
Assurance, Computer Science Department, The University
of Texas at Dallas. He also has an appointment as a Guest
Researcher with the National Institute of Standards and
Technology (NIST). His research focuses on software
testing, debugging, risk analysis/metrics, safety, and
reliability. In 2014, he was named as the IEEE Reliability
Society Engineer of the Year.

64 Journal of Internet Technology Vol. 26 No. 1, January 2025

Hui Li is now a professor at China
University of Geosciences (Wuhan).
Her main research direction is to use
intelligent computing theories and
methods to solve various complex
problems in the aerospace field.

