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Abstract

As the complexity of software increases,  the 
requirements for software quality and security continue 
to increase. However, automatically generated fix patches 
may suffer from patch overfitting issues, leading to 
instability and security vulnerabilities. This paper aims 
to summarize the application of machine learning in 
detecting overfitting problems in automatic program repair 
(APR) patches. We review the current state of research 
on automatic program repair and overfitting detection, 
and we summarize the machine learning techniques 
employed. We identified a comprehensive list of available 
datasets and metrics commonly used in this research. 
Finally, this paper discusses the challenges faced in this 
field and systematically summarizes the application of 
machine learning in detecting patch overfitting problems in 
automatic program repair, providing a useful reference for 
future research.
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1  Introduction

Automated program repair is a highly researched field 
in computer software engineering. With the increasing 
complexity of industrial and internet software, the 
demands for software quality and security have also 
risen. Vulnerabilities and errors in software are inevitable, 
leading to the flourishing development of automatic 
program repair technologies. In recent years, researchers 
have proposed various techniques and tools for automated 
program repair, including Nopol, Evosuite, Randoop, 
Genprog, and others [1-5]. The current techniques for 
generating APR patches can be categorized into two main 
types: those based on semantic constraints and those based 
on heuristic search. There are also approaches based on 
constraints, templates, and deep learning [6]. However, the 
development of automatic program repair technologies has 
raised concerns about overfitting issues in the generated 
patches, leading to instability and security vulnerabilities 
[7]. This overfitting problem manifests as patches that may 

not be sufficiently universal and effective only for specific 
inputs. Existing APR technologies commonly exhibit this 
overfitting problem [8].

In past research, automated program repair and 
overfitting detection have been extensively discussed in 
the Automated Patch Correctness Assessment (APCA) 
domain. Most studies have focused on using traditional 
dynamic and static ACPA techniques, utilizing test cases, 
or manually marking patches. Dynamic methods rely on 
runtime information to determine patch correctness, which 
may result in lower performance. Static methods analyze 
patch code fragments to infer patch correctness based on 
program syntax, although they have higher efficiency, 
their accuracy is comparatively lower [9]. Notably, the 
Invalidator method is based on semantics and syntax 
to infer and automatically evaluate patch correctness. 
It uses a trained model on labeled patches to assess the 
correctness based on program syntax, evaluating patches’ 
correctness that cannot be determined by invariants [10]. 
The DiffTGen method uses generated new test inputs to 
discover semantic differences between the original faulty 
program and the patched program, ultimately identifying 
whether the generated patch is overfitting. Generating 
new inputs using test cases can add them to the test suite 
and prevent automatic program repair technologies from 
generating similar overfitting patches again. However, 
this method may have issues such as result bias and 
performance deficiencies when compared to manual 
marking methods [11].

Researchers and engineers have also proposed using 
machine learning model techniques to continuously 
explore how to reduce the risk of patch overfitting in APR. 
However, despite significant progress in these studies, 
there are still key issues to be addressed, such as how to 
more effectively detect and mitigate overfitting issues in 
automatic program repair. Recently proposed methods to 
address this critical issue are numerous, but there is still 
a lack of an in-depth review of the latest developments in 
learning-based methods for patch overfitting detection. The 
purpose of this paper is to summarize and classify learning-
based patch overfitting detection methods, outline existing 
research achievements and methods, and future directions 
to better understand and address this issue, assisting 
relevant research. We focus on Defects4j, QuixBugs, 
Bears, Bugs.jar, ManySStuBs4J and Codeflaws datasets 
that have been used recently by relevant researchers, 
making it easier for other researchers to start research 
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without having to mix all available datasets. Additionally, 
our review outlines some traditional techniques and 
popular learning-based methods for patch overfitting 
detection, including comparisons of their methods and 
detailed analyses of each component of the learning-based 
patch overfitting detection process. The contributions of 
this paper are as following:

(1) Learning based patch overfitting detection. We 
systematically review learning-based patch overfitting 
detection, covering the most popular methods based on 
convolutional neural networks, generative adversarial 
networks, and methods to mitigate overfitting issues 
through automat ica l ly  genera ted  tes t  cases  for 
comprehensive repair techniques. 

(2) Technologies and datasets. We provide detailed 
insights into the relevant technologies of patch overfitting 
detection and popular datasets for patch overfitting 
detection.

(3) Metrics. We thoroughly investigate how to 
effectively utilize machine learning methods to detect 
patch overfitting issues and representative evaluation 
metrics for this task. 

(4) Outlook and challenges. We propose some 
suggestions for future research using learning-based 
methods for patch overfitting detection. The main goal 
of this paper is to survey and summarize the progress of 
these learning methods and related research, providing a 
reference for future studies.

The paper is structured as follows: 
Firstly, Section 2 introduces the core concepts and most 

commonly used strategies of automated program repair 
patches, patch overfitting, and machine learning-related 
methods. Then, in Section 3, we review past research on 
utilizing machine learning methods to detect and mitigate 
overfitting issues in automatic program repair patches, 
analyzing shortcomings in each study. Subsequently, in 
Section 4, we list publicly available datasets and related 
evaluation standards. Finally, in Section 5, we outline the 
conclusions of the review and provide some promising 
directions for further research.

2  Background and Concepts

In this section, we will introduce some background 
information and common concepts in the field of patch 
overfitting detection based on learning technology in the 
rough order in which the background and concepts appear. 
The first is automatic program repair and patching, and 
the second is the overfitting problem associated with it. 
Next, we delve into APCA techniques for solving these 
problems, concluding with an introduction to machine 
learning and patch overfitting detection.

2.1 Automated Program Repair and Patch
Automated Program Repair (APR) aims to enhance 

software quality and security by automatically identifying 
and correcting issues in software code. APR techniques 
primarily use test cases with faulty inputs to induce 
program failures, proving the existence of faults. Patches, 

in the context of APR, refer to the software code or 
updates generated during the process of repairing, 
updating, or improving a software program. Different APR 
tools employ various methods and techniques to generate 
patches [12].

Automated Program Repair typically consists of three 
parts:

Employing existing fault localization techniques 
to identify code segments with bugs, modifying these 
segments based on a set of transformation rules or 
patterns to generate various program variants (candidate 
patches) [13], and validating all candidate patches using 
the original test suite as an oracle [14]. Patch generation 
results are constrained by the effectiveness of the first part, 
fault detection, and localization. Accurate detection and 
localization of errors are crucial for generating effective 
repair patches, ensuring the resolution of issues in the 
software [15]. 

2.2 Overfitting Problem
The overf i t t ing problem emerged in  paral le l 

with the development of deep learning, discussed in 
various research papers and projects [16]. Overfitting 
fundamentally involves using models or programs that 
violate simplicity, incorporating more terms than necessary 
or utilizing more complex methods. Therefore, overfitting 
is undesirable for both technology and methods [17].

The patch overfitting problem occurs when automated 
program repair systems, attempting to fix errors in 
software, generate repair patches that excessively adapt 
to specific training data, resulting in poor generalization 
performance on other data [18]. In other words, the 
repaired program may appear effective for specific defects 
but overly accommodates specific test cases used during 
the creation process [19]. Specifically, this means that 
the generated repair patches may perform well on some 
inputs but may fail to function correctly on others. The 
patch overfitting problem reflects the instability and lack 
of robustness of automated program repair systems [18]. 
This issue in the context of automatic program repair 
applies research concepts from the deep learning and 
neural network domains regarding model generalization, 
overfitting, and uneven data distribution [6].

The occurrence of the patch overfitting problem is 
closely related to multiple factors: Automated Program 
Repair systems typically use open-source code from 
software repositories or version control systems as training 
data. This data often originates from various projects and 
code repositories, possessing different code styles and 
qualities. In such cases, the distribution of training data 
may be uneven, with the volume of data from certain 
projects or domains far exceeding others [20]. This can 
lead to automated program repair systems performing 
well in some domains but exhibiting poor performance in 
others.

Training data for automated program repair may 
contain noise and errors. These errors may result from 
incorrect error reports or faulty repair attempts. When 
automated program repair systems learn these errors 
from training data, they can contribute to the patch 
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overfitting problem. Additionally, due to manual labeling 
by developers, label errors may exist in the training data, 
causing biases in model learning. Automated program 
repair systems must search a vast repair space, which is 
often extensive. Due to the complexity of the search space, 
systems may tend to generate repairs specific to certain 
domains while performing poorly in other domains. This 
makes automated program repair systems prone to the 
patch overfitting problem [21].

Automated program repair systems often rely on a 
series of machine learning algorithms and hyperparameter 
settings for learning and generating repair patches. 
Different algorithm and parameter choices may lead to 
different overfitting tendencies [22]. Therefore, algorithm 
selection and hyperparameter settings are also factors 
contributing to the patch overfitting problem. The patch 
overfitting problem significantly impacts the performance 
and usability of automated program repair systems.  

2.3 APCA (Automated Patch Correctness Assessment)
Automated Patch Correctness Assessment (APCA) 

refers to the automated process of evaluating and 
determining the correctness of patches generated by 
Automated Program Repair (APR) techniques. In the 
APR environment, which involves automatically fixing 
software errors, APCA plays a crucial role in determining 
the accuracy, effectiveness, and alignment with the 
expected functionality of the generated patches [23]. 
Through automated patch correctness assessment, APCA 
helps minimize both false positives (misidentifying correct 
patches) and false negatives (failing to identify incorrect 
patches), which is crucial for enhancing the reliability of 
automated patching systems [24]. Researchers address the 
challenge of overfitting patches, which are often caused 
by insufficient test suites from real-world programs. 
Some propose simple methods utilizing automated 
test generation tools to check for patch overfitting. If a 
seemingly reasonable patch fails in any of these test cases, 
it is flagged as overfitting [19]. Current APCA methods 
and techniques can be broadly categorized into static and 
dynamic approaches:

•Static Techniques
Static techniques operate on static code patterns or 

features, using tools like static analyzers or code style 
checkers to inspect changes introduced by patches 
[15]. Engineering features involve selecting the most 
relevant ones, dimensionality reduction to eliminate 
less contributive features, and regularization to control 
model complexity. Static techniques encompass checking 
for common programming errors, adhering to coding 
standards, and identifying potential side effects. Avoiding 
overly complex models reduces the risk of overfitting on 
training data, ensuring patches execute correctly across 
various possible execution paths. For example, CapGen 
introduces context-aware repair generation technology, 
reducing the likelihood of generating incorrect viable 
patches, mitigating overfitting [25]. s3 integrates syntax-
guided and semantic-guided approaches, using six features 
(AST differencing, Cosine similarity, Locality of variables 
and constants, Model counting, Output coverage, Anti-

patterns) to measure the syntactic and semantic distance 
between candidate solutions and original error code. 
These features determine priority and identify correct 
patches [26]. ssFix filters out syntactically redundant and 
previously tested patches (generated by other chunks), 
ranks patches based on three specified rules regarding 
modification types and sizes, and tests and validates to 
identify overfitting patches [27].

•Dynamic Techniques
Dynamic techniques require running tests during 

program execution, analyzing the behavior of repaired code 
on different execution paths [28]. Using dynamic input 
generation technology tests the behavior of the repaired 
program with diverse input data, ensuring the patch works 
correctly and robustly. Monitoring the repaired code 
during program runtime captures potential exceptions, 
errors, or performance issues. Real-time feedback helps 
identify issues that repaired patches may encounter during 
runtime. For example, DiffTGen first discovers semantic 
differences between original error programs and patch 
programs by generating new test inputs. It then tests patch 
programs based on these semantic differences, generating 
tests to identify whether patch programs are overfitting, 
preventing the recurrence of similar overfitting patches by 
repair techniques [29]. Opad uses O-measure to determine 
whether a patch is overfitting based on validation results, 
supplementing G&V technology. If a patch is identified 
as overfitting, G&V technology continues searching for 
the next candidate patch [30]. TEST-SIM automatically 
determines patch correctness based on behavior 
similarity between program executions. While useful 
in supplementation, TEST-SIM cannot solve the oracle 
problem [31].

2.4 Machine Learning and Patch Overfitting Detection
APCA techniques based on machine learning typically 

involve extracting code features (e.g., static representations 
or dynamic execution traces) and building classifier 
models to directly predict patch correctness [15]. Machine 
learning techniques in this context encompass decision 
trees, neural networks, support vector machines, etc. In 
machine learning, supervised and unsupervised learning 
are two crucial paradigms. In supervised learning, models 
learn from labeled training data, including input features 
and corresponding labels. In unsupervised learning, models 
attempt to learn patterns and structures from unlabeled 
data [32]. The challenge of patch overfitting in automated 
program repair often involves supervised learning, as 
models need to be constructed based on known repair and 
non-repair samples to predict the effectiveness of new 
repairs. Feature engineering is a critical step in machine 
learning, involving the selection and construction of input 
features to aid model understanding and data prediction. 
In automated program repair, feature engineering may 
include syntax and semantic analysis of code, contextual 
information of code, and the version history of code 
changes [33]. In machine learning, selecting appropriate 
models and evaluation methods is crucial. Model choice 
depends on the nature of the task, such as decision trees, 
support vector machines, deep neural networks, etc. 
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Evaluation methods include cross-validation, accuracy, 
recall, F1 score, etc. In automated program repair, choosing 
the right models and evaluation methods can help identify 
and address patch overfitting issues, crucial for detecting 
and resolving overfitting problems in automated program 
repair [34].

3  Ease of Use

In this section, we will discuss the general process of 
learning based patch overfitting detection and introduce 
some techniques based on the adopted technical features.

3.1 Automated Program Repair and Patch
Based on the learning-based patch overfitting detection, 

it can be divided into two phases: the Training Process 
and the Inference Phase [34]. Figure 1 shows the overall 
process of a learning based patch overfitting detection 
method, which consists of two process: the training 
process (as shown in the figure) and the inference process 
(as shown in the figure).

• Training Process
In the Training Process, data collection and preparation 

are essential. This includes gathering a substantial 
amount of training data, encompassing both patches 
generated by automatic program repair (APR) and non-
repair data. Diverse data covering various projects, 
programming languages, and error types enhance the 
model’s generalization. Subsequently, data cleaning, 
standardization, and feature engineering are conducted 
to ensure data quality and consistency. Feature extraction 
and engineering steps follow, involving extracting relevant 
features from repair patches, such as code syntax, semantic 
information, code context, and code change history. 
Feature engineering enhances feature quality and diversity 
to better capture signs of overfitting.

In the model selection and design phase, choosing 
an appropriate machine learning model, such as decision 
trees, support vector machines, or deep neural networks, 

is crucial for detecting patch overfitting. Designing the 
model architecture, including input feature dimensions, the 
number of hidden layers, and sizes, is equally important. 
Subsequent data partitioning and cross-validation split the 
training dataset into training and validation sets, commonly 
using cross-validation to assess the model’s performance. 
This aids in detecting the model’s generalization ability 
and reduces the risk of overfitting. Model training, a 
critical step in the training phase, utilizes the training 
dataset to teach the model how to distinguish between 
repair and non-repair cases. The model learns based on 
features and adjusts model parameters during training, 
guided by the performance on the validation set. Finally, 
the model’s performance is evaluated on the validation set 
using metrics like accuracy, recall, F1 score, quantifying 
the model’s performance. Analyzing the evaluation results 
determines if the model is accurate enough to detect patch 
overfitting.

• Inference Process
In the Inference Process, data preparation involves 

obtaining the repair patch data to be detected, typically 
generated by automatic program repair tools. Similar 
feature extraction and preprocessing steps as in the 
training phase ensure data consistency and formatting. 
Feature extraction from repair patches follows using the 
same methods as in training. Ensuring feature engineering 
consistency aligns it with the trained model. The trained 
model, from the training phase, is then used to predict 
new repair patches. The model judges whether a repair 
patch exhibits overfitting issues based on features. A 
threshold can be set, depending on the application’s 
needs and the model’s performance, using the probability 
values or classification labels output by the model. 
Lastly, interpreting the model’s prediction results helps 
developers understand why the model identifies specific 
repair patches as having overfitting problems. Generating 
reports and marking patches that may need further review 
or regeneration concludes the process [15].

Figure 1. Architecture of learning based patch overfitting detection
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3.2 Learning Based Patch Overfitting Detection 
Techniques
In accordance with the technical characteristics 

adopted in the literature on learning-based overfitting 
patch detection, as shown in Table 1, they are broadly 
categorized into two types: Code Representation 
and Engineered Feature. The first column in Table 1 
corresponds to Technical Features, the second to Paper, the 
third to Language, the fourth to Year, the fifth to Model, 
and the sixth to Dataset.

• Code Representation
Viktor Csuvik [35] et al. applied Doc2vec and Bert 

embedding methods to study the reliability of using 
document/sentence embedding techniques on source code. 
Despite these methods inherently focusing on natural 
language text, preliminary experiments were conducted 
using different representations of source code. The use 
of exported similarity lists demonstrated that similarity-
based techniques can effectively identify incorrect patches, 
providing a valuable alternative to patch filtering methods 
[35]. MIPI (Meaning-based Incorrect Patches Identifier) 
[36] serves as an automatic patch assessment tool designed 
to heuristically identify incorrect patches generated by 
APR tools. The core idea involves leveraging the similarity 
between the developer’s intent, expressed in natural text 
(such as JavaDoc comments or the names of program 
entities), and the semantic meaning of the implemented 
code. MIPI utilizes the Code2Vec model to identify the 
meaning of code snippets and employs the BERT word 
embedding model to measure semantic similarity between 
natural language descriptions. MIPI identifies patch 
correctness by comparing the semantic meaning between 
the names of the already fixed method (embedding the 
developer’s intent) and the original and fixed method 
bodies. MIPI filters out overfitting patches more than 
techniques based on automatic test generation without 
Oracle information, achieving higher accuracy in filtering 
overfitting patches while retaining more correct patches 
[36].

Viktor Csuvik [37] et al. trained a Doc2Vec model on 
an open-source JavaScript project to validate the feasibility 
of reasonable patches. Existing filtering techniques were 
applied to JavaScript, and a thorough analysis of its 
usability was conducted. The motivation stemmed from the 
assumption that a correct program is more similar to the 
original program than other candidate programs. Current 
techniques typically involve single-line code modifications, 
preserving the majority of the original source code. The 
goal is to create simple and readable patches seamlessly 
integrated with the original code repository [37]. APPT 
(Automated Pretrained model-based Patch correctness 
assessment technique) [38] utilizes pre-training and fine-
tuning to overcome limitations in prior work. It adopts 
a large pre-trained model as an encoder stack to extract 
code representations and employs bidirectional LSTM 
layers to capture dependencies between buggy and patched 
code snippets. A deep learning classifier predicts patch 
overfitting. APPT exclusively uses source code tokens 
as input, automatically extracting features with a well-
trained encoder stack, eliminating the need for code-

aware features. Implemented with the BERT model, 
APPT outperforms the state-of-the-art CACHE technique, 
improving accuracy, precision, recall, F1-score, and AUC. 
With different pre-trained models, APPT demonstrates 
enhanced performance. APPT contributes a new direction 
by utilizing large pre-trained models without complex 
feature design [38]. 

Quatrain (Question Answering for Patch Correctness 
Evaluation) [39], a supervised learning approach, utilizes a 
deep NLP model to classify the relatedness of bug reports 
with patch descriptions. Quatrain is extensively evaluated 
on a dataset of 9,135 plausible patches, including those 
written by developers or generated by APR tools. The 
evaluation compares Quatrain to state-of-the-art dynamic 
and static approaches, demonstrating comparable or 
superior performance in terms of AUC, F1, +Recall, and 
-Recall. The paper analyzes the impact of input quality on 
prediction performance, highlighting the potential benefits 
of extended research into patch summarization, also 
known as commit message generation, for the software 
engineering committee. 

The authors conduct a preliminary validation study 
demonstrating the correlation between bug and patch 
descriptions in a dataset of developer-submitted patches. 
This initial finding suggests a novel direction for patch 
correctness studies utilizing bug artifacts [39]. Patcherizer 
[40], a novel approach addressing issues in patch 
representation for software engineering tasks. Patcherizer 
leverages a combination of context, a novel SeqIntention 
representation for sequential patches, and a GraphIntention 
representation for patches. This allows the use of powerful 
deep learning models like Transformers for sequence 
intention and graph-based models like GCN for graph 
intention. The model is pre-trained and task-agnostic, 
enabling fine-tuning for various downstream tasks. The 
authors extensively evaluate Patcherizer on three key 
patch representation tasks: generating patch descriptions in 
natural language, predicting patch correctness in program 
repair, and detecting patch intentions. Patcherizer’s 
superiority over carefully-selected baselines and the state 
of the art in patch representation learning across multiple 
downstream tasks [40]. xTestCluster [41], a novel test-
based patch clustering approach, demonstrates its ability to 
create at least two clusters for almost half of the bugs with 
multiple patches. This clustering significantly reduces the 
median number of patches to review and analyze by 50%, 
providing a time-saving advantage for code reviewers and 
researchers assessing patches. xTestCluster not only aids in 
patch evaluation but also offers valuable inputs, generated 
from test cases, showcasing different program behaviors 
for distinct patches related to a single bug. Implementation 
of xTestCluster for Java patches utilizes popular 
automated test-case generation frameworks Evosuite 
and Randoop, along with a patch-length-based selection 
strategy. The source code for xTestCluster is publicly 
available. Evaluation of xTestCluster using patches from 
25 APR tools and 1910 plausible patches with all data are 
accessible in the provided appendix [41].

• Engineered Feature
Leopard [42], an innovative patch correctness 
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prediction framework, employs learning algorithms to 
infer the correctness of patches. Researchers assess the 
feasibility of selecting repaired code and the similarity 
score between chosen code snippets in the model learning 
embeddings. Investigating the discriminative ability of 
learned embeddings in Leopard’s classification training 
pipeline, they compare it with state-of-the-art methods 
through ten cross-validations. To enhance the identification 
of correct patches, Leopard integrates learned embeddings 
with engineering features and implements an upgraded 
version called Panther. This exploratory study is supported 
by empirical evidence, providing experiential explanations 
for the feature and classifier prediction reasons behind 
SHAP, a machine learning technique [42]. The Overfitting 
Patch Detection System (ODS) [43] is designed to identify 
overfitting patches generated by program repair tools. 
ODS relies on static extraction of raw code features from 
Abstract Syntax Trees (AST) of buggy programs and 
patched programs. 

Utilizing three types of features: code description 
features, repair pattern features, and contextual syntax 
features, ODS employs supervised learning for training 
and prediction. ODS’s limitation lies in its lack of 
consideration for dynamic code features, relying solely 

on static code features, leading to a deficiency in semantic 
foundations when determining patch correctness [43]. Crex 
[44], a model designed for patch correctness identification 
based on learned execution semantics. Crex investigating 
the automation of patch correctness identification in 
automated program repair of C programs, addressing a 
research gap that predominantly focuses on Java programs. 
Proposing a novel perspective on patch correctness 
identification through micro-executions and transfer 
learning of execution semantics, with Crex leveraging 
learned embeddings to predict correctness based on 
functional changes. Conducting experimental validations 
using patches from CoCoNut, demonstrating that Crex 
achieves high recall (100%) and F1 (89.0%) when the 
classifier is trained on micro-trace-based embeddings with 
a Logistic regression learner [44]. 

As can be seen from Table 1, after Viktor Csuvik 
and others proposed using embedded code alternatives 
to replace engineering features in 2020, more and more 
researchers began to study code representation learning 
to solve the problem of patch overfitting detection. There 
are far more papers on technical features based on code 
representation than on those based on engineering features.

Table 1. A summary of learning based patch overfitting detection studies

Technical 
features Paper Language Year Model Dataset

Code 
representation

Utilizing source code embeddings to identify 
correct patches [35] Java 2020 Doc2vec, BERT QuixBugs

Identifying incorrect patches in program repair 
based on meaning of source code [36] Java 2022 Code2Vec, BERT QuixBugs, 

Defects4J

Exploring plausible patches using source code 
embeddings in Javascript [37] JavaScript 2021 Doc2ve BugsJS

APPT: Boosting automated patch correctness 
prediction via pre-trained language model [38] Java 2023 BERT Defects4J

Is this change the answer to that problem? 
Correlating descriptions of bug and code 
changes for evaluating patch correctness [39]

Java 2022 QA-Model, BERT Defects4j, Bugs.
jar and Bears

Crex: Predicting patch correctness in 
automated repair of C programs through 
transfer learning of execution semantics [44] 

C 2022 Trex Codeflaws

Learning to represent patches [40] Java 2023 GCN-based model, 
Patcherizer, BERT

Defects4j, Bugs.
jar and Bears

Test-based patch clustering for automatically-
generated patches assessment [41] Java 2022 Clustering model Defects4J

Engineered 
feature

Automated classification of overfitting patches 
with statically extracted code features [43] Java 2021 ODS Defects4J, 

Bugs.jar, Bears

The best of both worlds: combining learned 
embeddings with engineered features for 
accurate prediction of correct patches [42] 

Java 2023 BERT

Bugs.jar, Bears,
Defects4J, 
QuixBugs, and 
ManySStuBs4J 
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4  Dataset and Metric

In this section, we introduce existing datasets widely 
used in the field of learning based patch overfitting 
detection and discuss common evaluation metrics for 
evaluating patch overfitting.

4.1 Dataset
In the study of patch overfitting detection based 

on learning, several datasets have been instrumental in 
advancing research. These datasets, namely Defects4j, 
Quixbugs, Bears, Bugs.jar, Manysstubs4j, and Codeflaws, 
play a significant role in understanding and addressing 
patch overfitting. Here is a brief summary of each dataset:

Defects4J [3]: Defects4J is one of the most widely 
used datasets. Its extensibility allows seamless integration 
of new bugs obtained from reported fixes, ensuring 
continual growth. Featuring a robust test execution 
framework, Defects4J facilitates the implementation of 
tools for experiments in software testing research. This 
framework encompasses components for fundamental 
tasks such as test execution, test generation, and code 
coverage or mutation analysis [3].

QuixBugs [45]: QuixBugs comprises of 40 programs 
translated into both Python and Java. This unique 
characteristic renders each buggy program intriguing, and 
collectively, the dataset minimizes potential experimenter 
bias [45].

Bugs.jar [46]: Bugs.jar, a new large-scale, diverse 
dataset of 1,158 real bugs and patches from 8 large, 
popular open-source Java projects, spans 8 distinct and 
prominent Java application domains [46].

Bears [47]: Bears is an innovative project that creates 
an extensible bug benchmark to evaluate automatic 
program repair tools in Java. BEARS stands out for its use 
of CI to identify program versions, allowing bug collection 
from diverse projects, including those beyond mature 
projects with bug tracking systems [47].

ManySStuBs4J [48]: The ManySStuBs4J dataset 
comprises of 10,231 and 63,923 instances of single-
statement bugs extracted from 12,598 and 86,771 bug-
fix commits, respectively, focusing on single-statement 
changes for each version. The dataset is stored in JSON 
files, and comprehensive details are available in the GitHub 
repository. Each SStuB instance includes annotations for 
the satisfied SStuB pattern, project name, Java file name, 
commit hashes, bug start line, and AST subtree location 
[48].

Codeflaws [49]: Codeflaws is a pioneering benchmark 
comprising of 3902 defects extracted from 7436 programs. 
These defects are systematically classified across 39 defect 
classes, representing distinct fault types [49].

In our investigation, these datasets were used by 
different purposes in different studies. Some studies that 
use Defects4j as a training dataset mainly include training 
for their models, and some studies use Defects4j as an 
evaluation dataset that usually include a test. In Table 2, it 
can be observed that the Defects4J dataset is utilized in 8 
research papers, showing the highest frequency among the 

collected studies. QuixBugs, Bears, and Bugs.jar are also 
popular datasets in the domain of learning-based patch 
overfitting detection. Codeflaws and Manysstubs4j datasets 
have been referenced in only one paper each, with the 
literature utilizing the Codeflaws dataset focusing solely on 
that particular dataset. Crex, designed for C programs, has 
chosen Codeflaws as its benchmark dataset for research. 
These datasets collectively enhance the comprehensiveness 
and diversity of the research landscape, providing valuable 
insights into the challenges and opportunities in patch 
overfitting detection suite used to verify the correctness of 
patches.

Table 2. Datasets usage information

Dataset Number of paper used
Defects4J 8 [36, 38-43]
QuixBugs 3 [35-36, 42]

 Bears 4 [39-40, 42-43]
Bugs.jar 4 [39-40, 42-43]

ManySStuBs4J 1 [42]
Codeflaws 1 [44]

4.2 Metric
Evaluation metrics play a crucial role in determining 

the performance of models in detecting overfitting issues 
in automated program repair (APR) patches. Key metrics 
include:

TP (True Positives): The number of correctly detected 
program defects requiring repair, indicating successful 
identification of issues.

FP (False Positives): The number of instances where 
the model incorrectly labels non-defective code as requiring 
repair, indicating the identification of unnecessary issues.

TN (True Negatives):  The number of instances 
where the model correctly labels non-defective code as not 
requiring repair, representing the correct identification of 
issue-free code.

FN (False Negatives): The number of instances where 
the model incorrectly labels code requiring repair as not 
needing repair, indicating failure to detect existing issues.

These fundamental metrics are used to evaluate 
the model’s performance in detecting overfitting 
issues in automated program repair patches. However, 
individual metrics may not provide a complete picture. 
Therefore, additional evaluation metrics are utilized for a 
comprehensive assessment:

Precision (PPV): Also called positive predictive value, 
the model between true positives and false positives, which 
is calculated as formula 1.

.
( )

TPPrecision
TP FP

=
+

                      (1)

Higher precision indicates fewer unnecessary repairs, 
reducing the false-positive rate.

Recall: Recall is divided into +Recall and -Recall. 
+Recall is also called TPR (true positive rate), -Recall is 
also called TNR (True Negative Rate). +Recall quantifies 
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the percentage of correctly identified patches among 
all actual correct patches. In contrast, -Recall gauges 
the percentage of incorrectly identified patches that are 
successfully filtered out from all actual incorrect patches. 
The comprehensive evaluation of recall metrics contributes 
to a nuanced understanding of the system’s performance 
in correctly recognizing and excluding patches. Where 
+Recall is calculated as formula 2.

.
( )

TPRecall
TP FN

+ =
+

                       (2)

The -Recall is calculated as formula 3.

.
( )

TNRecall
TN FP

− =
+

                       (3)

Accuracy: Represents the model’s ability to correctly 
classify samples overall, which is calculated as formula 4.

.TP TNAccuracy
TP TN FP FN

+
=

+ + +
              (4)

Higher accuracy indicates overall good performance.
CPR (Correct Patch Ratio): The ratio of correctly 

generated repair patches to the total generated patches, 
which is calculated as formula 5.

.TPCPR
TP FP

=
+

                            (5)

A higher CPR indicates more accurate generation of 
repair patches.

nDCGp (Normalized Discounted Cumulative Gain) 
[37]: DCG measures the usefulness of a document based 
on its position in the result list. To address the challenge 
of varying similarity list lengths, preventing consistent 
performance comparison with DCG, the cumulative gain at 
each position is normalized, resulting in the nDCG metric 
[49]. Where nDCGp is calculated as formula 6. 

.DCGpnDCGp
IDCGp

=                           (6)

AUC (Area Under Curve): AUC quantifies the 
entire two-dimensional area beneath the Receiver 
Operating Characteristic (ROC) curve. AUC measures 
the probability that a classifier will prioritize a randomly 
selected overfitting patch over a randomly chosen correct 
patch. The higher the AUC, the more proficient the APCA 
techniques are in correctly identifying real overfitting 
patches as overfitting and genuine correct patches as 
correct. Where AUC is calculated as formula 7.

( , )
.overfitting correctI P P

AUC
M N

=
×

∑                   (7)

DestructiveRatio [36]: The Destructive Ratio (DR) 
metric assesses the impact of the APCA technique on 
Automatic Patch Recognition (APR) tools. A DR greater 
than 1 signifies a higher proportion of correct patches 
filtered compared to overfitting patches, indicating a risk 
outweighing the benefit. Conversely, a DR smaller than 1 
implies a smaller risk than the benefit, as the proportion of 
correct patches filtered is smaller than overfitting patches 
[36]. Where DestructiveRatio is calculated as formula 8.

(1 ) .TNRDestructiveRatio
TPR
−

=                  (8)

F1: The F1 score, a widely adopted metric in APCA, 
serves as a comprehensive measure that balances 
precision and recall. The F1 score offering a single value 
that considers both false positives and false negatives. 
Higher F1 score signifies a better balance between 
accurately identifying correct patches and avoiding the 
misclassification of incorrect ones. Where F1 is calculated 
as formula 9.

1 .recall
l

PPVF
V r lPP eca
∗

=
+

                          (9)

NPV (Negative Predictive Value): NPV represents 
the proportion of patches classified as correct by the 
assessment technique that are indeed correct. A high 
NPV in APCA indicates a robust ability to identify true 
negatives, enhancing the reliability of the assessment. 
Researchers and practitioners can leverage NPV to 
understand how well an APCA technique avoids the 
misclassification of correct patches, contributing to the 
overall evaluation of its performance. Where NPV is 
calculated as formula 10.

.
( )

TNNPV
TN FN

=
+

                       (10)

BLEU (Bilingual Evaluation Understudy) [50]: 
BLEU is a metric commonly used in the evaluation of 
machine translation. In the APCA domain, BLEU is 
employed to quantify the similarity between the generated 
and correct patches. This metric aids in determining how 
well the automated system aligns with manually validated 
patches. Integrating BLEU into APCA methodologies 
enhances the assessment process by offering a standardized 
measure of correctness, contributing to the overall 
effectiveness of patch evaluation techniques [50]. Where 
BLEU is calculated as formula 11.

1
exp( log ).N

n nn
BLEU BP w p

=
= × ∑            (11)

In Table 3, +Recall and -Recall are frequently utilized 
in the collected literature compared to other metrics. 
Their prominence stems from their direct reflection of a 
method’s efficacy in identifying patches. Precision and 
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Accuracy each appear five times in the papers, often 
used concurrently. When the positive and negative 
sample quantities in the training and experimental 
datasets are comparable, Precision and Accuracy serve 
as suitable metrics to evaluate method performance. In 
studies involving fundamental metrics such as TP, FP, 
TN, FN, these indicators are concurrently employed. 
TP metric Indicates the model’s capability to accurately 
identify positive cases. In comparison to the FN metric, 
it neglects false negatives. The FP metric highlights 
instances where the model erroneously predicts positive 
outcomes. However, it may be influenced by imbalanced 
datasets compared to other metrics. In scenarios where 
the training and experimental datasets exhibit a relatively 
balanced distribution of positive and negative samples, 
Precision or Accuracy can be employed to assess the 
method’s performance. nDCGp is applicable to patch 
ranking scenarios but is rarely used in other contexts, 
with only one paper utilizing this metric. The recently 
proposed Destructive Ratio combines +Recall and -Recall, 
demonstrating heightened consideration for whether 
the APCA technique might result in more significant 
destructive or adverse impacts compared to alternative 
metrics. These evaluation metrics play a crucial role in 
machine learning studies addressing overfitting issues in 
automated program repair patches. They assist researchers 
in assessing model performance, improving algorithms, 
reducing false positives and false negatives, and enhancing 
the efficiency and effectiveness of automated program 
repair. 

Table 3. Metrics usage information

Metric Number of paper used
TP 3 [36, 43-44]
FP 3 [36, 43-44]
TN 3 [36, 43-44]
FN 3 [36, 43-44]

Precision (PPV) 5 [35-36, 38, 42-44]
+Recall (TPR) 8 [35-36, 38-40, 42-44]

Accuracy 5 [36, 38, 42-44]
CPR 1 [43]

BLEU 1 [40]
NPV 1 [35]

-Recall (TNR) 4 [36, 39-40, 42]
F1 5 [35, 38-39, 42, 44]

DestructiveRatio 1 [36]
nDCGp 1 [37]
AUC 2 [38-39, 42]

5  Shortcomings and Prospects

This paper has shortcomings in collecting related 
technologies. The methodology leans towards bias, as 
the systematic review of learning-based patch overfitting 
detection primarily explores Defects4J, potentially 
overlooking other potential methods. There is a need 
for a more comprehensive consideration of different 

technologies. Performance evaluation standards: There 
is a requirement for a more detailed discussion and 
comparison of performance evaluation standards for 
machine learning methods detecting patch overfitting 
issues. Future research could involve validation across 
multiple datasets, expanding the dataset scope to verify the 
robustness and applicability of the methods. Consideration 
of integrated methods involving different types, including 
semantic-based and heuristic search-based, could enhance 
the generality and applicability of patch generation. 
Developing more comprehensive evaluation metrics is 
suggested to more accurately assess the performance of 
machine learning methods in automated program repair.

6  Conclusion

This paper provides a review of learning-based 
patch overfitting detection, covering the most popular 
automated repair techniques, deep neural networks, and 
their construction mechanisms. The mentioned change 
detection methods indicate that deep learning technology 
has successfully propelled the development of change 
detection, achieving significant progress. However, due to 
the diversity of requirements and the complexity of data, 
overfitting detection still faces many challenges. Therefore, 
it is strongly recommended to propose several suggestions 
for the future research direction of patch detection to pay 
more attention to these challenges. First, appropriately 
combining static and dynamic code features in research 
directions. Second, more effectively utilizing machine 
learning methods to detect and alleviate patch overfitting 
issues in automated program repair. Third, simultaneously 
detecting patch overfitting and more effectively use 
machine learning techniques to improve the quality of 
patches in automated program repair.
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