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Abstract

Phasmatodea Population Evolution Algorithm (PPE) 
is an optimization algorithm based on insect behavior. 
It excels in solving tasks in continuous space. Standard 
PPE is not suitable for addressing binary problems such 
as path selection problems, neural network training, and 
feature selection problems. However, real-world binary 
problems cannot be solved by the original PPE algorithm. 
Because binary solutions can only have values of 0 or 1, 
while the solution space of standard PPE is continuous. To 
address these issues, we propose the Binary Phasmatodea 
Population Evolution (BPPE) algorithm and Time-Varying 
Binary Phasmatodea Population Evolution  (TV-BPPE) 
for dealing with issues with binary properties and study 
the effect of different transfer functions on the algorithm’s 
performance.

Keywords: Phasmatodea population evolution algorithm, 
Swarm intelligence, Transfer function, 0-1 Knapsack 
problem

1  Introduction

Meta-heuristic optimization algorithms are commonly 
utilized to tackle optimization problems [1].  They can be 
applied to engineering, business, economics, and finance. 
Particle swarm optimization (PSO) is the earliest-used 
meta-heuristic algorithm. Some scholars have applied 
differential Evolution [2], salient object detection [3], 
Communication Strategies [4], Pattern Recognition [5-6], 
and Dynamic regional splitting planning [7].

The Gray Wolf Optimizer (GWO), locust algorithm, 
and other algorithms are bionic algorithms that simulate 
the behavior of animals in nature. They are all members of 
the population-based meta-heuristic method, and their ease 
of use has drawn a lot of interest from scholars.

The 0-1 knapsack is a typical NP-hard problem. There 
are N items, and item i (i starts with 1) has quantity n[i], 
weight w[i], and value v[i]. As long as the total weight 
does not exceed the upper limit of the backpack W. Find 
the maximum value that can fit in the backpack. Due to the 
complexity of the actual situation, many researchers have 
to introduce various approximation algorithms to obtain 

near-optimal solutions.
Swarm intelligence is a part of the meta-heuristic 

which can solve 0-1 knapsack problems. PSO is a typical 
algorithm to simulate biological behavior. It simulates 
bird foraging and uses its behavior as a guide to finding 
the optimal solution. The Crow Search Algorithm (CSA) 
mimics crow foraging behavior [8-10]. GWO algorithm 
simulates the hunting behavior of wolves [11]. The Ant 
Colony Optimization (ACO) simulates the process of ants 
foraging [12-16]. The Cat Swarm Optimization (CSO) 
algorithm simulates cats searching for prey [17-20]. The 
Artificial Fish Swarm Algorithm (AFSA) simulates fish 
swimming [21-24]. Phasmatodea Population Evolution 
(PPE) [25-27] is an optimization algorithm based on 
Phasmatodea population evolution and predation behavior.  

PPE is a new population intelligence algorithm 
proposed recently. In real society, PPE is mainly used 
to deal with continuity problems, and there are many 
areas of optimization, such as image segmentation, 
elevator group control, application offloading decision, 
and transportation planning. However, many real-world 
situations are discrete, such as the path planning problem, 
the 0-1 knapsack problem [28-30], and the traveling 
salesman problem. Because meta-heuristic algorithms are 
typically only capable of solving continuous problems, 
corresponding binary versions are required to address these 
discrete difficulties [31-42]. The combination of the time-
varying function and transfer function has been proved in 
several papers to improve the performance of the transfer 
function effectively [43-47].

In this paper, we mainly study the ability of plane 
binary phasmatodea population evolution (BPPE) to find 
the optimal solution and its application. The process of 
finding the optimal solution is divided into two stages: 
exploration and exploitation. In the exploration stage, the 
algorithm will explore to find a new space as possible. In 
the exploitation stage, the PPE proposes to first search for 
local optimal solutions in multiple domains. Multiple local 
optimal solutions are compared to determine the optimal 
solution. This proposal effectively solves the problem of 
the PPE repeating the search during the search. 

The output of an object with binary properties and 
the input of an object with continuous properties are 
represented by a function called the binary transfer 
function. If x is the evolutionary trend of the population. 
The binary transfer function is the function that determines 
the range of x values. It maps the value of x to [0,1]. The 
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binary transfer function can map the solution x from the 
continuous space to the binary space. Because the transfer 
function transformation equation is related to the growing 
trend of parameter population. Therefore, the transfer 
function also has an important effect on the performance of 
the binary optimization algorithm in the process of binary 
conversion.

We add a transfer function to the standard PPE to 
transform it into a binary version. The impact of four 
different transfer functions on the improvement of the 
binary algorithm is examined in this work. The proposed 
BPPE’s performance is evaluated using 23 benchmark 
functions. According to experiment results, the BPPE 
algorithm is more capable of global optimization. BPPE is 
further enhanced by incorporating time-varying functions, 
and a Time-Varying Binary Phasmatodea Population 
Evolution algorithm (TV-BPPE) is proposed. Then, we 
apply TV-BPPE to solve the 0-1 knapsack selection 
problem and compare the solutions for the problems in 
20 dimensions, 40 dimensions, 50 dimensions, and 100 
dimensions. The experimental results show that TV-BPPE 
performs well when dealing with high-dimensional binary 
situations.

To find a high-performance transfer function to 
improve the quality of the solution. This paper attempts 
to optimize the binary transfer function by using a time-
varying function. 

The main contributions of this paper are as follows:
(1) Proposed binary version of PPE (BPPE).
(2) The experimental effects of the four transfer 

functions are analyzed through the benchmark function.
(3) Based on the result of (2), the time-varying function 

is added to form a Time-Varying BPPE (TV-BPPE).
(4) The 0-1 knapsack application is implemented based 

on BPPE and TV-BPPE.

Figure 1. Population evolution trend

2  Related Works

This section introduces the standard PPE and the 
evolution process of PPE. 

The  a lgor i thm imi ta tes  the  l iv ing  hab i t s  o f 
phasmatodea. The PPE algorithm approximates each 
problem to be solved as a virtual population. The virtual 
population has two properties: population size and 
growth rate. Population size is affected during algorithm 
development and exploration. This algorithm consists of 

two conceptual models, namely, the similarity evolution 
model and the competition model. The competition model 
is affected by two factors, the size of the population and 
the migration of the population. In terms of population 
space size, larger populations tend to be able to explore 
more space and have the potential to explore harsher 
environments. But populations can explore harsh 
environments. In terms of population migration, the 
process of population migration has an impact on the 
population growth rate. If the population moves to a better 
environment, the population growth rate will increase and 
vice versa. The similarity evolution model is to show that 
because the population is geographically close and living 
in a similar environment, they have also undergone similar 
changes. So populations evolve as they explore new 
environments.

The population growth of this algorithm is closely 
related to population size. As the population increases, 
the growth rate k gradually decreases until it no longer 
increases. In addition, the effects of competition and 
mutation are considered. Under the competition condition, 
the population determines whether to increase according 
to the development condition and the size of the critical 
value. 

During the evolution process, different influencing 
factors will lead to the evolution of the population in 
different development directions. Both population size 
and growth rate have guiding effects on population 
development. This evolution mode has better performance 
in obtaining optimal solutions.

In the initialization stage of the population, In the PPE 
algorithm, x represents the solution of the problem and 
represents a virtual Phasmatodea population. Initialize 
the population size to Np, A total of Np solutions are 
generated. Use Equation (1) to initialize the population 
size.

1
ip

Np
=                                    (1)

There are three factors affecting the population growth 
trend, which are respectively natural growth factors, 
population competition factors, and mutation factors.

In Equation (2), a represents the growth rate. During 
the development of the population, certain boundary 
constraints will be imposed on the value of a. After the 
population grows to a certain level. If the growth trend 
of the population is too large or too small, the PPE will 
be recalculated. The updated population growth rate is 
1.1, and the population growth trend ev is updated to 
0. A represents the value obtained by multiplying the 
local optimal solution by the specified coefficient in 
the environment of natural growth. When the value of 
population growth trend A is less than 0.1 or greater than 4, 
Equation (2) will be used to update the population instead 
of the original solution. The value of a is between 0 and 
4. When a exceeds the interval [0-4], it has no meaning. 
If a > 3, the population will become unstable and go into 
chaos. If a<1, it means that the population p gradually 
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decreases. Eventually, the population will decrease to 0 
and the population will disappear. If 1<a<3, the population 
will slowly converge to a stable value p=(a−1)a. So the 
value range of a is (0, 4). The pseudo-code of PPE is 
presented in Algorithm 1.

1 (1 )t t tp ap p+ = −                             (2)

Algorithm 1. PPE
Initialize Np solutions; 
Initialize ev, p, k, and a use Equations (1)-(3);
Calculate fitness f(x), set gbest and Ho; 
for t = 2 to Maxgen do 

Update each x to newx using Equation (4);
Calculate new fitness newx, update gbest and Ho;
for i = 1 to Np do

if f (newx) ≤ f (x) then
Update x = newx, update f (x);
Update pi use Equation (5);
Update evi use Equation (6) and (8);

else
If rd < pi then

Update x = newx, update f (x);
Update pi use Equation (5);
Update evi use Equation (7);

Randomly choose a solution xj , ( j ≠ i);
if dist(xj , xi ) < G then

Update pi use Equation (9), 
Update evi use Equation (10);

The algorithm starts iterating after initialization. k is 
used to store the number of historical optimal solutions. 
If a total of Np solutions are generated, the number of k is 
calculated by Equation (3). Ho is used to represent the set 
of locally optimal solutions. Ho makes the set of optimal 
solutions Ho=[xh1,...,xhi,...,xhk], as shown in Figure 1. where 
xhi is the i-th optimal solution that has appeared, and xh1 is 
the optimal solution of all existing solutions. The optimal 
solution is found according to the local optimal method. 
The new solution can exist in a variety of circumstances. 
So, there are three kinds of population update situations for 
the PPE.

The first case converges the population to the nearest 
optimum. The location update formula uses Equations (4) 
- (5) to update the population number and uses Equation 
(6) to update the species evolution trend. t is the current 
iteration number. m represents the growth trend under the 
competition state.

log( ) 1k Np= +                              (3)

1t tx x ev+ = +                               (4)

1 1 (1 )t t t tp a p p+ += −                          (5)

1 1 1(1 ) ( )t t t tev p A p ev m+ + += − + +                (6)

The second case is that after the population has moved, 
the fitness of the moving population is worse than before. 
The evolutionary trend is calculated using Equation (7). 
A1 represents the degree of closeness to the closest optimal 
value. B represents an n-dimensional random vector 
generated using the standard normal distribution. st is 
initially set to (Ub−Lb)×0.1. A1 represents the degree of 
approach to the nearest optimal as shown in Equation (8). 
s(Ho, xt) is used to find the historical optimal solution that 
is closest to xt in Ho. c is the coefficient of the influence 
degree of the nearest optimal solution on the current 
population, usually less than 1.

1tev rand A st B+ = ⋅ + ⋅                        (7)

1 ( ( , ) )t tA s Ho x x c= − ⋅                        (8)

The third case is the renewal mode of Phasmatodea 
population under a simulated competitive state. The 
population number is calculated using Equation (9). 
pi and pj represent the populations of two competing 
populations. ai represents the population growth rate of the 
current population. Equation (10) is used to calculate the 
population evolution trend under the competitive state.

( )
(1 )

( )
j

i i i i i j
i

f x
p p a p p p

f x
= + − −                 (9)

1 1 ( ) ( )
( )

( )
j it t

j i
j

f x f x
ev ev x x

f x
+ + −
= + −           (10)

In Algorithm 1, gbest is the global optimal solution. 
Maxgen is the maximum number of iterations. newx is the 
updated position information of x. dist(xj, xi) represents the 
distance between two competing populations.

3  The Proposed Algorithm   

The standard PPE algorithm only can solve continuous 
problems well. However, BPPE can solve discrete 
optimization problems with binary characteristics.  For 
example, whether to take 1 or not can be used to indicate 
the connection of the neural network. 1 indicates that it is 
connected to the last two nodes and 0 indicates that it is 
disconnected from the last two nodes. Therefore, the BPPE 
algorithm can be used to optimize the neural network 
structure. In standard PPE, it is located at any point in 
continuous space. Therefore, the modified equation is easy 
to implement. 

In particle swarm optimization, the velocity of a 
particle is usually used to determine the probability of a 
particle being in position 0 or 1. Think of the search space 
as a hypercube where the position of particles is limited 
to 0 or 1 on each dimension of the search space. So the 
standard PPE equation does not satisfy this condition. 
We propose a binary phasmatodea population evolution 
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algorithm (BPPE) to solve the binary problem and describe 
the algorithmic structure of BPPE in detail.

3.1 PPE Algorithm for Binary (BPPE)
Similar to PPE, the initial population growth rate 

in BPPE is set as k. Using Equation (1), Equation (2) 
generates the initial population. The different development 
cases are resolved and divided into three cases. In the 
first case, the population converges and gets a good value 
after the position update, and evolves towards the nearest 
optimal. The value of x is updated using Equation (4). If 
the new optimal solution is worse than the last optimal 
solution, Equation (5) was used to update the method of 
obtaining pi, and Equation (7) was used to update the 
method of solving evi. The calculation method of A can 
be obtained from Equation (8). With the development of 
search space competition and optimization behavior, the 
position of the optimal solution will change. If competition 
occurs and dist value is less than G, pi and evi are updated 
with Equations (9) and (10). The pseudo-code of BPPE is 
presented in Algorithm 2.

0       () 0.5
1     () 0.5

if rand
x

else rand
≤

=  >
                   (11)

1      0
0      0

if ev
x

if ev
>

=  ≤
                         (12)

Algorithm 2. BPPE
Initialize Np solutions using Equation (11)
Initialize ev, p, k, and a use Equation (1)-(3);
Calculate fitness f(x), set gbest and Ho; 
for t = 2 to Maxgen do 

Update each x to newx using Equation (12);
Calculate new fitness newx, update gbest and Ho;

for i = 1 to Np do
if f (newx) ≤ f (x) then
Update x = newx, update f (x);
Update pi using Equation (5);
Update evi use Equation (6) and (8);

else
if rd < pi then

Update x = newx, update f (x);
Update pi using Equation (5);
Update evi use Equation (7);

Randomly choose a solution xj , ( j ≠ i);
if dist(xj , xi ) < G then

Update pi use Equation (9), 
Update evi use Equation (10);

The initial position x needs to be represented by a 
binary number. Use Equation (11) to initialize the value 
of x to a binary number. x is initialized by the random 
function to generate a random number between (0,1). 
Compare the generated random number to 0.5. If the 
random number is less than 0.5, the x value is 0. If the 
random number is greater than 0.5, then x is 1.

Equation (12) is used to calculate the value of x after 
iteration. The value of x is related to ev, which is 0 or 1. If 
ev > 0, then x is equal to 1, otherwise x is equal to 0.

3.2 Analysis of the Behavior of existing Transfer 
Functions
A common way to convert binaries is to use a transfer 

function. It works by mapping continuous values to [0,1] 
and then discrete them into 0 and 1 based on probability. 

This section used four types of transfer functions to 
improve the standard PPE. Each type of transfer function 
is described in detail. Four common transfer functions of 
each type are selected to improve the algorithm. A total 
of 16 transfer functions were tested. The performance of 
these transfer functions is compared across 23 benchmark 
functions. And analyzes their influencing factors and 
performance. In the improvement of the binary algorithm, 
some scholars add time tracking to the binary algorithm. 
Through reading literature, the better effect of time-varying 
factors on binary was confirmed.
3.2.1 Sigmoid Transfer Function

This section shows four sigmoid functions, the 
expression details of the four functions are shown in Table 
1, and Figure 2 and Figure 3 show the curves formed by 
the functions

Table 1. The expressions of the S-shaped families of 
transfer functions

Name Transfer function

S1 2

1( )
(1 )xT x

e−=
+

S2
1( )

(1 )xT x
e−=

+

S3 /2

1( )
(1 )xT x

e−=
+

S4 /3

1( )
(1 )xT x

e−=
+

Figure 2. S-types transfer function
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If BPPE uses S1 as the transfer function, the value of  
S1(x) increases as the value of x increases. As shown in 
Figure 2, the sigmoid function maps x to a number at [0,1]. 
It can be seen that the sigmoid function is applicable when 
the absolute value of x is small in the early stage, which is 
conducive to the better exploration of search space in the 
early stage.

It can be seen from Figure 3 that the convergence 
conditions formed by the four different sigmoid functions 
are different, but the trend is roughly the same. Where x = 
0.5 is the critical value, if x = 0.5, then S1(x) = 0.5; when x 
is equal to 0.5, BPPE has a 50% probability of becoming 
0; if x < 0.5, then its probability of becoming 0 is higher 
than large; if x > 0.5, the probability of it becoming 0 is 
small. 

 

Figure 3. The curve of S1, S2, S3, S4

3.2.2 V-shaped Transfer Functions
This section shows four V-type functions, the 

expression details of the four functions are shown in Table 
2, and Figure 4 shows the curves formed by the functions.

Table 2. The expressions of the V-shaped families of 
transfer functions

Name Transfer function

V1(x) ( )
2

T x erf xπ 
=   

 

V2(x) ( ) tanh( )T x x=

V3(x) 2( ) / 1T x x x= +

V4(x)
2 2( ) arctanT x x
π π

 =  
 

As shown in Figure 4, in the function curve of the four 
V-shaped functions, when x is less than -1 and greater than 
1, the probability of the position taking 1 exceeds 0.5. 
The values of different types of V-shaped functions are 
different. In the interval from -1 to 1, the closer the value 
of x is to 0, the greater the probability of the position being 
0. The function formulas of the four V-type functions differ 
greatly. The graph of the function is symmetric about x = 

0.

Figure 4. The curve of V1, V2, V3, V4

3.2.3 U-shaped Transfer Functions
This section introduces 4 types of the U-type transfer 

function. Plot the U-shaped transfer function using 
Equations (13) and (14). Figure 5 shows the Convergence 
curve. 

( )U x xβα=                              (13)

( )  ( ( 1))
( 1)

  ( )   ( ( 1))

k k
k i i
i k k

i i

x t r U u t
x t

x t r U u t
− < ++ = 

≥ +
           (14)

Figure 5. The curve of U1, U2, U3, U4

The inflection point of the curve represents the point of 
full saturation, and the return value is 1 which indicates the 
highest exploration volume. When the value of x is greater 
than 1 or less than -1, the value of the position will be 1. 
The value of y only exceeds 0.5 when the value of x is 
very close to 1 or -1. It follows that the greater the absolute 
value of x, the greater the probability of taking 1.

The shape of this transfer function allows for higher 
exploration and is ideal for solution mining by the PPE 
algorithm. 
3.2.4 Z-shaped Transfer Functions

This section presents four Z-type transfer functions. 
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The functions’ details are in Table 3, and the curve formed 
by the function is shown in Figure 6. This type of function 
takes 1 when the value of x is greater than 0, and the 
probability of the position value taking 1 when the value 
of x is smaller is greater. The population evolutionary trend 
is represented by x. The range of x is x less than 0. If the 
population trend value is greater than 0, it is taken as 0. 

Table 3. The expressions of the Z-shaped families of 
transfer functions

Name Transfer function

Z1(x) ( ) 1 2xT x = −

Z2(x) ( ) 1 5xT x = −

Z3(x) ( ) 1 8xT x = −

Z4(x) ( ) 1 20xT x = −

Figure 6. The curve of Z1, Z2, Z3, Z4

4  Time-varying Transfer Function-
based BPPE (TV-BPPE)

This section describes how BPPE combines with the 
time-varying function and how the time-varying function 
works. The time-varying function will be added to four 
types of transfer functions for use and to test algorithm 
performance. The solution process of Time-Varying BPPE 
(TV-BPPE) will be introduced in detail. 

4.1 Design Considerations for the Time-varying 
Transfer Function
As shown in Figure 7, the curve is a sigmoid time-

varying transfer function that is connected by several 
discrete points where to evaluate x every 0.1 units. The 
Y-axis represents the result of the binary conversion. 
Correspondingly, the inversion of the position also 
increases with the slope of the curve. 

Figure 7. An illustration of different shapes of the time-
varying transfer function (Equation (15)) with different 
values of the control parameter ϕ

The equation of the S-type function is shown as 
Equation (15). The variable x in the S-type equation will 
be replaced. The value of x is controlled by ψ to make it a 
non-fixed value, and the value of ψ is based on the formula 
(16). x is going to range from -4 to 4. Itrk+1 represents the k 
iteration and Itrmax represents the total number of iterations 
where k = 0, 1, 2, . . ., Itrk+1 − 1. In this paper, the total 
number of iterations of Itrmax is 500. The value of φmax is -5, 
and the value of φmin is 5. The pseudo-code of TV-BPPE is 
presented in Algorithm 3.

1
1 1( , )

1
k
id

k
T id v

TV V

e ϕ

ϕ +

+

−
=

+
                    (15)

max min
max 1

max
kItr

Itr
ϕ ϕ

ϕ ϕ +

 −
= − ∗ 

 
              (16)

Algorithm 3. TV-BPPE

Initialize Np solutions using Equation (11)
Initialize ev, p, k, and a use Equations (1)-(3);
Calculate fitness f(x), set gbest and Ho; 
for t = 2 to Maxgen do 

calculate ϕ using Equation (18)
update xi using Equation (19), (20)

Update each x to newx use Equation (14) and (15);
Calculate new fitness newx, update gbest and Ho;

for i = 1 t o Np do
if f (newx) ≤ f (x) then
Update x = newx, update f (x);
Update pi use Equation (5);
Update evi  use Equations (6) and (8);

else
if rd < pi then

Update x = newx, update f (x);
Update pi using Equation (5);
Update evi use Equation (7);



Time-varying Binary Phasmatodea Population Evolution Algorithm   31

Randomly choose a solution xj, ( j ≠ i);
if dist(xj , xi ) < G then
Update pi using Equation (9).

Compared with the traditional fix-shaped function, the 
proposed scheme has the following benefits. 

1. For each given x value, the time-varying function 
curve provides a higher flip probability. This function can 
provide the minimum flip probability of the position of the 
particle x.

2. The binary transfer function of time-varying 
function (TV-b) converges quickly, which can quickly find 
the optimal solution in the process of exploration.

3. TV-b can find higher quality solutions in the later 
development process.

5  Experimental Results and Analysis

5.1 BPPE Experimental Results 
This section tests the BPPE with 23 benchmark 

functions. The tests were divided into four groups. Four 
types of transfer functions are used to improve the PPE. 
Each type is tested as a group. Each type has four transfer 
functions.

The 23 test functions including Table 4 describe the 
unimodal functions. Table 5 describes the multimodal 
functions and Table 6 describes the Fixed-dimension 
benchmark functions. 

Experimental data are rounded to four decimal places 
for ease of reading. The main reference indexes of the 
experimental results are the mean value followed by the 
optimal value and the median. We compared the results 
of running 500 iterations on each of BPPE’s four transfer 
functions. 

The unimodal function can verify the convergence 
speed of the function which is only used for optimal 
solutions.

Multimodal functions can verify whether the algorithm 
can avoid falling into local traps. Due to the complexity of 
its structure, composite functions can test the performance 
of functions in many aspects.

Space represents the boundary of the search space. Dim 
represents the dimension of the function, which the value 
in this paper is the same as the number of populations, and 
fmin represents the optimal value.

5.2 BPPE Experimental Analysis
This section analyzes the binary conversion method in 

detail. The performance of different binary algorithms is 
analyzed. The quality of the binary algorithm is compared 
by testing. The BPPE functions are compared with the 
other four binary algorithms on the test functions. The 
five functions tested are Binary Phasmatodea Population 
Evolution (BPPE), Binary Differential Evolution (BDE), 
Binary Fish Migration Optimization (BFMO), Binary 
Particle Swarm Optimization (BPSO), and Binary Grey 
Wolf Optimizer (BGWO). They were tested using 23 
benchmark functions.

The 23 benchmark functions contain many function 
forms, which can better test the performance of the 
algorithm. It contains three kinds of functions which are 
unimodal, multimodal, and complex functions. Table 4 is 
the unimodal function. It has a global optimal solution and 
no local trap, so it can verify the convergence speed of the 
algorithm. Table 5 is multimodal function and Table 6 is 
complex functions respectively. The multimodal function 
can judge whether the algorithm avoids falling into a local 
trap. The composite multimodal function has a complex 
structure with many random global optimal solutions.

Table 7 shows the binary PPEs under the S-type 
transfer function. Table 8 shows the binary PPEs under the 
V-type transfer function. Table 9 shows the binary PPEs 
under the U-type transfer function. And Table 10 shows 
the binary PPEs under Z-type transfer function.

Table 4. Unimodal benchmark functions

Name Function Space Dim  fmin

Sphere 2
1 1
( ) n

ii
f x x

=
= ∑ [-100,100] 30 −12 569

Schwefel’s
Function2.21 2 1 1

( ) nn
i ii i

f x x x
= =

= +∑ ∏ [-10,10] 30 0

Schwefel’s
Function1.2 ( )2

3 1 1
( ) n n

ji j
f x x

= −
= ∑ ∑ [-100,100] 30 0

Schwefel’s
Function2.22 { }4 ,1( ) max

ii x i nf x ≤ ≤= [-100,100] 30 0

Rosenbrock 1 2 2 2
5 11
( ) 100( ) ( 1)n

i i ii
f x x x x−

+=
 = − + − ∑ [-30,30] 30 0

Step [ ]( )2
6 1
( ) 0.5n

ii
f x x

=
= +∑ [-100,100] 30 0

Dejong’s noisy [ )4
7 1
( ) Random 0,1n

ii
f x ix

=
= +∑ [-1.28,1.28] 30 0
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Table 5. Multimodal benchmark functions
Name Function Space Dim fmin

Schwefel ( )8
1

( ) sin
n

i i
i

f x x x
=

= −∑  [−500,500] 30 −12 569

Rastringin 2
9 1
( ) 10cos(2 ) 10n

i ii
f x x xπ

=
 = − + ∑ [−5.12,5.12] 30 0

Ackley
2

10 1 1

1 1( ) 20exp( 0.2 ) exp( cos(2 ))

20

n n
i ii i

f x x x
n n

e

π
= =

= − − −

+ +

∑ ∑  [−32,32] 30 0

Griewank 2
11 1 1

1( ) cos( ) 1
4000

nn i
ii i

x
f x x

i= =
= − +∑ ∏ [−600,600] 30 0

Generalized 
penalized 1 { }1 2

12 1 1
( ) 10sin( ) ( 1)n

ii
f x y y

x
π π −

=
= + −∑  [−50,50] 30 0

Generalized 
penalized 2

( ){ }2 2 2
13 1 1

1

( ) 0.1 sin 3 ( 1) 1 sin (2 )

( ,10,100,4)

n
i ni

n
ii

f x x x x

u x

π π
=

=

 = + − + 

+

∑
∑

 [−50,50] 30 0

Table 6. Fixed-dimension benchmark functions

Name Function Space Dim fmin

Fifth of Dejong
( )

1

25
14 61 2

1

1 1( )
500 j

i iji

f x
j x a

−

=

=

 
 =
 + − 

∑
∑

[−65, 65] 2 1

Kowalik
( ) 22

11 2
15 21

3 4

( ) i i i
ii

i i

x b b x
f x a

b b x x=

 +
 = −

+ +  
∑ [−5, 5] 4 0.00030

Six-hump
camel back

2 4 6 2 4
16 1 1 1 2 2 2

1( ) 4 2.1 4 4
3if x x x x x x x x= − + + − + [−5, 5] 2 −1.0316

Brains 2 2
17 2 1 1 12

5.1 5 1( ) ( 6) 10(1 )cos 10
84

f x x x x x
π ππ

= − + − + − + [−5, 5] 2 0.398

Goldstein
–Price

2 2 2
18 1 2 2 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

( ) [1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

f x x x x x x x x x

x x x x x x x x

= + + + − + − + +

× + − × − + + − +
[−2, 2] 2 3

Hartman 1
24 3

19 1 1
( ) exp( ( ) )i j iji j

f x c aij x p
= =

= − − −∑ ∑ [1, 3] 3 −3.86

Hartman 2
24 6

20 1 1
( ) exp( ( ) )i j iji j

f x c aij x p
= =

= − − −∑ ∑ [0, 1] 6 −3.32

Shekel 1 ( )( )
15

21 1
( ) T

i i ii
f x X a X a c

−

=
 = − − − + ∑ [0, 10] 4 −10.1532

Shekel 2 ( )( )
17

22 1
( ) T

i i ii
f x X a X a c

−

=
 = − − − + ∑ [0, 10] 4 −10.4028

Shekel 3 ( )( )
110

23 1
( ) T

i i ii
f x X a X a c

−

=
 = − − − + ∑ [0, 10] 4 −10.5363
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Table 7. Statistical results of the transfer function in the original equation of the S-shaped function

S1 S2 S3 S4

AVG STD AVG STD AVG STD AVG STD

F1 6.2800 0.9161 6.2940 0.9324 6.3720 0.9313 6.3920 0.9099

F2 6.1200 0.8940 6.2860 0.8864 6.3140 0.9408 6.3840 0.8798

F3 361.2500 111.5523 371.9880 103.0235 375.3380 106.4106 384.3260 103.9238

F4 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

F5 610.3440 88.1663 624.5060 86.1236 630.4660 84.9715 620.7600 86.1863

F6 19.8920 1.7879 20.0880 1.8212 20.0280 1.8374 20.2800 1.8413

F7 76.8208 13.5761 78.3223 14.9077 80.4258 14.2327 82.6748 14.4170

F8 12549.2900 0.7467 12549.4562 0.7570 12549.5706 0.7088 12549.5016 0.7898

F9 6.1020 0.8816 6.2460 0.9248 6.2600 0.9022 6.3260 0.9303

F10 1.7239 0.1319 1.7289 0.1301 1.7491 0.1289 1.7463 0.1342

F11 0.2072 0.0317 0.2080 0.0357 0.2096 0.0343 0.2066 0.0352

F12 2.6562 2.6704 2.6805 0.1671 2.6971 0.1817 2.7158 0.1676

F13 0.6142 0.0946 0.6286 0.0913 0.6380 0.0991 0.6360 0.0888

F14 11.6705 1.7781 11.6705 1.7781 11.6705 0.0000 11.6705 0.0000

F15 0.1481 3.3340 0.1481 3.3340 0.1481 0.0000 0.1481 0.0000

F16 1.0316 1.0316 1.0316 2.4449 1.0316 0.0000 1.0316 0.0000

F17 27.3049 3.5563 27.3049 3.5563 27.3049 0.0000 27.3049 0.0000

F18 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000

F19 3.5252 1.0669 3.5252 1.0669 3.5252 0.0000 3.5252 0.0000

F20 3.1543 5.3344 3.1543 5.3344 3.1543 0.0000 3.1543 0.0000

F21 4.9448 8.8907 4.9448 8.8907 4.9448 0.0000 4.9448 0.0000

F22 4.9123 8.8907 4.9123 8.8907 4.9123 0.0000 4.9123 0.0000

F23 4.8715 4.4453 4.8715 8.8876 4.8715 0.0000 4.8715 0.0000

5.2.1 Experimental Analysis of S-type Binary Functions
AVG represents the average of 500 results. STD is the 

variance of the function. In Table 7, F4, F14-23, function S1, 
S2, S3, S4 achieves the same optimal value.

The test results show that the S1-type function achieves 
the best result among the 22 benchmark functions. The 
S2-type function achieves the best result among the 12 
benchmark functions. The S3-type function achieves the 
best result among the 11 benchmark functions. The S4-type 
function achieves the best result among the 12 benchmark 
functions.

In summary, there is a big difference between the 
results of 23 benchmark functions calculated by four 
functions. S1-type works best among the 23 benchmark 
functions.
5.2.2 Experimental Analysis of V-type Binary Functions

Table 8 shows the operation results of the V-type 
function on 23 test functions. F1, F2, F3, F8, F9, F14-23 
function V1, V2, V3, V4 achieves the same optimal value. 

The test results show that the V1-type function achieves 

the best result among the 18 benchmark functions. The 
V2-type function achieves the best result among the 19 
benchmark functions. The V3-type function achieves the 
best result among the 16 benchmark functions. The V4-type 
function achieves the best result among the 19 benchmark 
functions.

In summary, the four transfer functions of V-type 
perform roughly the same across the 23 benchmark 
functions, with V1 performing the best.
5.2.3 Experimental Analysis of U-type Binary Functions

Table 9 shows the operation results of the U-type 
function on 23 test functions. F1-4, F6, F8-19, F21, F23 function 
U1, U2, U3, U4 achieves the same optimal value. 

The test results show that the U1-type function achieves 
the best result among the 22 benchmark functions. The 
U2-type function achieves the best result among the 20 
benchmark functions. The U3-type function achieves the 
best result among the 21 benchmark functions. The U4-type 
function achieves the best result among the 19 benchmark 
functions.
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Table 8. Statistical results of the transfer function in the original equation of the V-shaped function

V1 V2 V3 V4

AVG STD AVG STD AVG STD AVG STD

F1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F4 0.0220 0.1468 0.0060 0.0773 0.0000 0.0000 0.0080 0.0892 

F5 3.3640 9.2958 6.1100 15.3237 17.1000 15.5906 27.6900 7.8576 

F6 7.5040 0.0894 7.5160 0.2187 7.5160 0.2187 7.5160 0.1783 

F7 0.0027 0.0028 0.0023 0.0021 0.0024 0.0023 0.0023 0.0025 

F8 12544.2559 0.0000 12544.2559 0.0000 12544.2559 3.6416 12544.2559 0.0000 

F9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F10 0.0029 0.0453 0.0014 0.0321 8.8818 0.0000 8.8818 0.0000 

F11 0.0007 0.0095 0.0008 0.0107 0.0006 0.0097 0.0000 0.0000 

F12 1.6809 0.0393 1.6772 0.0332 1.6731 0.0229 1.6724 0.0209 

F13 0.0000 0.0000 0.0000 0.0000 0.0038 0.0191 0.0614 0.0581 

F14 11.6705 0.0000 11.6705 0.0000 11.6705 1.7781 11.6705 0.0000 

F15 0.1481 0.0000 0.1481 0.0000 0.1481 3.3340 0.1481 0.0000 

F16 1.0316 0.0000 1.0316 0.0000 1.0316 2.4449 1.0316 2.4449 

F17 27.3049 0.0000 27.3049 0.0000 27.3049 3.5563 27.3049 0.0000 

F18 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 

F19 3.5252 0.0000 3.5252 0.0000 3.5252 1.0669 3.5252 1.0669 

F20 3.1549 0.0049 3.1553 0.0062 3.1545 0.0030 3.1549 0.0050 

F21 4.9448 0.0000 4.9448 0.0000 4.9448 0.0000 4.9448 0.0000 

F22 4.9123 0.0000 4.9207 0.1868 4.9123 0.0000 4.9123 0.0000 

F23 4.8715 0.0000 4.8715 0.0000 4.8715 0.0000 4.8715 0.0000 

The test results of the U-shaped function are consistent 
with the above analysis of the function image. U-shaped 
functions have the advantage of binary improvements to 
the PPE. The four U-shaped transfer functions perform 
well in the test functions. In summary, U3-type works best 
among the 23 benchmark functions. 
5.2.4 Experimental Analysis of Z-type Binary Functions

Table 10 shows the operation results of Z-type function 
on 23 test functions. F3, F9, F14-19, F23 function Z1, Z2, Z3, Z4 
achieves the same optimal value. 

The test results show that the Z1-type function achieves 
the best result among the 19 benchmark functions. The 
Z2-type function achieves the best result among the 11 
benchmark functions. The Z3-type function achieves the 
best result among the 11 benchmark functions. And the 
Z4-type function achieves the best result among the 14 
benchmark functions. In summary, Z1-type and Z4-type 
work best among the 23 benchmark functions.

5.2.5 Experimental Analysis of Four Types of Binary 
Functions

Table 11 shows the Comparison of Statistical Results 
of Transfer Functions in Original Equations of U, V, S, Z. 
The most effective of the four types of transfer functions 
are S1-type, V3-type, U1-type, and Z1-type. 

The test results show that the S1-type function achieves 
the best result among the 10 benchmark functions. The 
V3-type function achieves the best result among the 16 
benchmark functions. The U1-type function achieves the 
best result among the 23 benchmark functions. The Z1-type 
function achieves the best result among the 17 benchmark 
functions. Among the 23 benchmark functions, U1-type has 
the strongest ability to obtain the optimal solution. S1-type 
has the worst ability to obtain the optimal solution.

The improvement effect of the S-type on the PPE 
algorithm is quite different from that of the other three 
types. S-type is not suitable for improving the PPE 
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algorithm. It is worth noting that the U1-type transfer 
function of the PPE algorithm has obtained the optimal 
values in all the benchmark functions.

5.3 Comparative Analysis of Binary PPE and Other 
Binary Functions
BPPE(U1) and four other binary algorithms were 

tested on 23 benchmark functions. The other four binary 
algorithms are BFMO, DBE, BPSO, and BGWO.

The experimental results are shown in Table 12. 
Among the 23 test functions, BPPE(U1) obtains the 
optimal value in 19 benchmark functions. BPPE(U1) 
failed to obtain the optimal value in F5, F8, F16, and F20. 

BGWO, DBE, and BFMO are optimized in individual 
reference functions. BFMO performs well on some specific 
benchmark functions, such as F16 and F20, but the number 
of functions to obtain the optimal value is small, which 
is suitable for solving fixed problems. In summary, the 
optimal time and function performance of BPPE(U1) is the 
best. The PPE algorithm proposed in this paper has good 
performance on most functions and has good universality. 
It is suitable for solving fixed problems. In conclusion, 
BPPE(U1) has the most optimal times and the best function 
performance. The BPPE algorithm proposed in this paper 
has good performance on most functions and has good 
universality.

Table 9. Statistical results of the transfer function in the original equation of the U-shaped function

U1 U2 U3 U4

AVG STD AVG STD AVG STD AVG STD

F1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F5 2.3200 7.8754 4.8140 10.8011 9.3380 13.5636 12.1800 14.3275 

F6 7.5000 0.0000 7.5000 0.0000 7.5000 0.0000 7.5000 0.0000 

F7 0.0016 0.0016 0.0015 0.0014 0.0014 0.0015 0.0014 0.0016 

F8 12544.2559 0.0000 12544.2559 0.0000 12544.2559 0.0000 12544.2559 0.0000 

F9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F12 1.6690 0.0000 1.6690 0.0000 1.6690 0.0000 1.6690 0.0000 

F13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0063 

F14 11.6705 0.0000 11.6705 0.0000 11.6705 0.0000 11.6705 0.0000 

F15 0.1481 0.0000 0.1481 0.0000 0.1481 0.0000 0.1481 0.0000 

F16 1.0316 0.0000 1.0316 0.0000 1.0316 0.0000 1.0316 0.0000 

F17 27.3049 0.0000 27.3049 0.0000 27.3049 0.0000 27.3049 0.0000 

F18 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 

F19 3.5252 0.0000 3.5252 0.0000 3.5252 0.0000 3.5252 0.0000 

F20 3.1563 0.0091 3.1576 0.0114 3.1577 0.0114 3.1592 0.0138 

F21 4.9448 0.0000 4.9448 0.0000 4.9448 0.0000 4.9448 0.0000 

F22 4.9123 0.0000 4.9123 0.0000 4.9123 0.0000 4.9207 0.1868 

F23 4.8715 0.0000 4.8715 0.0000 4.8715 0.0000 4.8715 0.0000 
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Table 10. Statistical results of the transfer function in the original equation of the Z-function

Z2 Z3 Z3 Z4

AVG STD AVG STD AVG STD AVG STD

F1 0.0000 0.0000 0.0000 0.0000 0.0020 0.0447 0.1240 0.5633 

F2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0632 

F3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F4 0.0000 0.0000 0.0700 0.2554 0.1740 0.3795 0.3320 0.4714 

F5 29.0000 0.0000 63.2760 66.8132 109.2600 89.8967 171.2220 102.8733 

F6 7.5520 0.3186 8.7320 1.1819 9.4240 1.5201 10.2640 1.7454 

F7 0.0054 0.0055 0.0165 0.0166 0.0291 0.0297 0.0607 0.0612 

F8 12550.4239 0.8428 12550.2387 0.8858 12550.1462 0.8688 12550.0839 0.8099 

F9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F10 0.0000 0.0000 0.2080 0.3257 0.3836 0.3669 0.5848 0.3655 

F11 0.0000 0.0000 0.0004 0.0066 0.0013 0.0119 0.0059 0.0260 

F12 1.6691 0.0023 1.7353 0.0754 1.7766 0.0887 1.8502 0.1097 

F13 0.8058 0.1172 0.7878 0.1048 0.7774 0.1066 0.7642 0.1006 

F14 11.6705 0.0000 11.6705 0.0000 11.6705 0.0000 11.6705 0.0000 

F15 0.1481 0.0000 0.1481 0.0000 0.1481 0.0000 0.1481 0.0000 

F16 1.0316 0.0000 1.0316 0.0000 1.0316 0.0000 1.0316 0.0000 

F17 27.3049 0.0000 27.3049 0.0000 27.3049 0.0000 27.3049 0.0000 

F18 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 597.0000 0.0000 

F19 3.5252 0.0000 3.5252 0.0000 3.5252 0.0000 3.5252 0.0000 

F20 3.1612 0.0153 3.1596 0.0139 3.1600 0.0145 3.1587 0.0127 

F21 4.9532 0.1866 4.9532 0.1866 4.9448 0.0000 4.9448 0.0000 

F22 4.9123 0.0000 4.9290 0.2639 4.9207 0.1868 4.9123 0.0000 

F23 4.8715 0.0000 4.8715 0.0000 4.8715 0.0000 4.8715 0.0000 

Table 11. Comparison of statistical results of transfer functions in original equations of U, V, S, Z

　 S1 V3 U1 Z1

F1 6.2800 0.0000 0.0000 0.0000 
F2 6.1200 0.0000 0.0000 0.0000 
F3 361.2500 0.0000 0.0000 0.0000 
F4 1.0000 0.0000 0.0000 0.0000 
F5 610.3440 17.1000 2.3200 29.0000 
F6 19.8920 7.5160 7.5000 7.5520 
F7 76.8208 0.0024 0.0016 0.0054 
F8 12549.2900 12544.2559 12544.2559 12550.4239 
F9 6.1020 0.0000 0.0000 0.0000 
F10 1.7239 8.8818 0.0000 0.0000 
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F11 0.2072 0.0006 0.0000 0.0000 
F12 2.6562 1.6731 1.6690 1.6691 
F13 0.6142 0.0038 0.0000 0.8058 
F14 11.6705 11.6705 11.6705 11.6705 
F15 0.1481 0.1481 0.1481 0.1481 
F16 1.0316 1.0316 1.0316 1.0316 
F17 27.3049 27.3049 27.3049 27.3049 
F18 597.0000 597.0000 597.0000 597.0000 
F19 3.5252 3.5252 3.5252 3.5252 
F20 3.1543 3.1545 3.1563 3.1612 
F21 4.9448 4.9448 4.9448 4.9532 
F22 4.9123 4.9123 4.9123 4.9123 

F23 4.8715 4.8715 4.8715 4.8715 

Table 12. Comparison of BPPE with other binary functions

BPPE(U1) BFMO DBE PSO BGWO 
AVG AVG AVG AVG AVG

F1 0.0000 0.5667 0.2353 8.2549 1.6471 
F2 0.0000 0.5667 0.1765 7.9804 1.6471 
F3 0.0000 5.5000 5.8824 649.6471 27.4706 
F4 0.0000 0.9000 1.0000 1.0000 1.0000 
F5 2.3200 142.9000 0.0000 0.0000 0.0000 
F6 7.5000 8.5000 8.0882 23.8137 10.7549 
F7 0.0016 7.1454 6.6079 114.9173 16.0392 
F8 12544.2559 -18.4563 -12.6751 -12.6751 -12.6751 
F9 0.0000 0.5667 0.2549 8.1176 1.3922 

F10 0.0000 0.2726 0.1322 1.9695 0.7194 
F11 0.0000 0.0148 0.0286 0.2908 0.0807 
F12 1.6690 1.7661 1.7265 3.0965 1.9142 
F13 0.0000 0.7933 0.0000 0.0000 0.0000 
F14 11.6705 12.6705 11.6705 11.6705 11.6705 
F15 0.1481 0.1484 0.1481 0.1481 0.1481 
F16 1.0316 0.0000 1.0316 1.0316 1.0316 
F17 27.3049 27.7029 27.3049 27.3049 27.3049 
F18 597.0000 600.0000 597.0000 597.0000 597.0000 
F19 3.5252 -0.3348 3.5252 3.5252 3.5252 
F20 3.1563 -0.1657 3.1543 3.1597 3.1594 
F21 4.9448 -5.0552 4.9448 4.9448 4.9448 
F22 4.9123 -5.0877 4.9123 4.9123 4.9123 
F23 4.8715 -5.1285 4.8715 4.8715 4.8715 
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Table 13. Comparison of TV-BPPE with PPE and other binary functions
BPPE-U1 TV-BPPE BPPE-U1 TV-BPPE

F1 0.0000 0.0000 F13 0.0000 0.0000 
F2 0.0000 0.0000 F14 11.6705 11.6705 
F3 0.0000 0.0000 F15 0.1481 0.1481 
F4 0.0000 0.0000 F16 1.0316 1.0316 
F5 2.3200 0.0000 F17 27.3049 27.3049 
F6 7.5000 7.5000 F18 597.0000 597.0000 
F7 0.0016 0.0015 F19 3.5252 3.5252 
F8 12544.2559 12544.2559 F20 3.1563 3.1570 
F9 0.0000 0.0000 F21 4.9448 4.9448 
F10 0.0000 0.0000 F22 4.9123 4.9123 
F11 0.0000 0.0000 F23 4.8715 4.8715 
F12 1.6690 1.6690 

6  TV-BPPE and BPPE Experimental 
results and Analysis

The experimental results are shown in Table 13. 
Among the 23 test functions, BPPE(U1) obtains the 
optimal value in 21 benchmark functions. BPPE(U1) failed 
to obtain the optimal value in F5 and F8. TV-BPPE(U1) 
obtains the optimal value in 23 benchmark functions. It 
is worth noting that the calculation result using the TV-
BPPE(U1) function in function F5 reaches the optimal 
value of the function. Adding a time function to the 
BPPE(U1) optimizes the BPPE(U1).

Figure 8. The convergence curves of average fitness 
functions for the datasets

In Figure 8, iter stands for the number of iterations, 
and values stand for fitness value, which in this paper is 
equal to the backpack value. These curves are drawn from 
the data set generated by 100 iterations of knapsack data 
in 30 dimensions. TV-BPPE provides a better solution. 

According to this figure, the time-varying transfer function 
tends to find the best accuracy with the minimum number 
of features faster than the original BPPE. TV-BPPE has a 
stronger exploration ability and faster convergence speed.

According to the experimental results and convergence 
curves, we can see that using time-varying indeed has the 
advantages of stronger convergence capability and better 
global exploration capability.

6.1 Application for the 0–1 Knapsack Problem
The 0-1 knapsack is a classic NP-hard problem. A 

mathematical model of the problem is that: Suppose we 
have n items, each item i has a weight wi and a profit pi, 
where i = 1, 2, ..., n. The goal is to select a subset of items 
such that the total profit is maximized such that the total 
weight of the selected items does not exceed the knapsack 
capacity C. Among them, wi and pi are randomly set test 
data, and c is the set fixed maximum capacity. To model 
this problem, xi is introduced as a decision variable for 
each item. Use xi as the solution set to store the knapsack 
combination that maximizes profit.

6.2 Datasets Description
The results of different binary swarm intelligence 

algorithms in 0-1 knapsack in multiple dimensions are 
tested experimentally. 

The number of iterations is 500. avg is average, and 
the median is the median value in the results. best is the 
best result. The winner is the name of the best algorithm. 
The binary algorithm is used to obtain the optimal solution 
and the algorithm is used to calculate the maximum value 
of the backpack. In the multi-dimensional test, 20, 40, 50, 
and 100 dimensions were tested respectively. Comparison 
binary algorithms include BPPE, TV-BPPE, DBE, BPSO, 
and BFMO. Table 14 to Table 17 lists the experimental 
results. 
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Table 14. 20-dimensional comparison

Best Median Avg

BPPE 1024 970 971.26

DBE 939 838 839.7

BPSO 959 845 851.42

BFMO 910 854 876.6

TV-BPPE 1024 964.5 968.66

Table 15. 40-dimensional comparison

Best Median Avg

BPPE 1219 1125 1119.5

DBE 1152 1089 1091.14

BPSO 1157 1094.5 1098.24

BFMO 1150 1094.5 1100.53

TV-BPPE 1201 1133 1133.34

As shown in Table 14, in the 0-1 backpack experiment 
with dimension 20, the maximum backpack capacity is 
set to 878. Taking the average as the evaluation standard, 
the optimal volumetric value function for 0-1 knapsack in 
20 dimensions is BPPE. TV-BPPE has the second-highest 
volume value after BPPE.

As shown in Table 15, the maximum backpack capacity 
is set to 1300. From the point of view of the average avg, 
TV-BPPE gains the best which a dimension is 40. From 
the point of view of optimum value best, BPPE gains the 
best.  It is proved that the stability of TV-BPPE is better.

As shown in Table 16, the experiment dimension is 
set to 50, the maximum backpack capacity is set to 1600. 
The algorithm that performs best in 0-1 knapsack in 50 
dimensions is TV-BPPE, followed by BPPE. The worst-
performing algorithm was DBE. After the dimension of 

0-1 knapsack is increased, the optimization function of the 
TV-BPPE algorithm is better played.

As shown in Table 17, the dimension is set to 100, 
the maximum backpack capacity is set to 3500. Whether 
it’s the optimal value or the average value, the optimal 
volumetric value function for 0-1 knapsack in 100 
dimensions is TV-BPPE. The second-best algorithm is 
BPPE. The remaining three algorithms have similar effects. 
The performance of TV-BPPE begins to exceed that of 
BPPE when the dimension is increased.

Table 18 compares the effects of four algorithms under 
20 dimensions, 40 dimensions, 50 dimensions, and 100 
dimensions. According to the results of the comparison and 
data analysis with other binary functions, BPPE and TV-
BPPE are good solutions to binary problems in multiple 
dimensions. 

Table 16. 50-dimensional comparison

Best Median Avg

BPPE 1536 1493.5 1495.58

DBE 1437 1375 1375.6

BPSO 1545 1403.5 1406.6

BFMO 1459 1094.5 1409.8

TV-BPPE 1551 1516 1517.6

Table 17. 100-dimensional comparison

Best Median Avg
BPPE 3235 3094 3093.26
DBE 2937 2712.5 2715.14

BPSO 3112 2717.5 2731.26

BFMO 3034 2654.83 2698.3

TV-BPPE 3291 3149 3152.46

Table 18. 20, 40, 50, 100-dimensional comparison

BPPE DBE BPSO BFMO TV-BPPE winner

Dim Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best

20 971.26 1024 893,7 939 851.42 959 876.6 910 968.66 1024 BPPE TV-BPPE
BPPE

40 1119.5 1219 1091.14 1152 1098.24 1157 1100.53 1150 1133.34 1201 TV-
BPPE BPPE

50 1495.58 1536 1375.6 1437 1406.6 1545 1409.8 1459 1517.6 1551 BPPE TV-BPPE

100 3093.26 3235 2715.14 2937 2731.26 3112 2698.3 3034 3152.46 3291 BPPE TV-BPPE
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6.3 Experimental Results and Analysis
As can be seen from Table 14 to Table 17, both 

BPPE and TV-BPPE get the best results in the case of 20 
dimensions. With the increase of dimension, the difficulty 
of finding the optimal solution increases. In terms of the 
optimal value, the TV-BPPE is worse than BPPE in the 
40-dimensional case. In terms of average value TV-BPPE 
get the best. But, TV-BPPE exceeds that of BPPE in 50 
dimensions in the double index of mean and optimal value. 
The result on 100-dimensional TV-BPPE is quite better 
than other functions. 

At low dimensions, BPPE is slightly better than TV-
BPPE. But TV-BPPE is more stable. As the dimension 
increases, the performance of TV-BPPE gradually 
surpasses that of BPPE. Several experiments have shown 
that TV-BPPE performs better at high latitudes. However, 
It can be seen from the median value that TV-BPPE 
performs better in the later stage of development. 

Therefore, it can be predicted that the superiority of 
TV-BPPE will be more prominent after the dimension 
continues to rise. It can be seen that the time-varying 
binary PPE algorithm can achieve better results in high-
latitude knapsack problems.

7  Conclusion

The binary Phasmatodea Population Evolution 
Algorithm solves the discretization problems of 0-1 
knapsack. The transfer functions with the focus of 
converting the standard PPE into a binary PPE and a time-
varying binary PPE. This paper analyzes the problem-
solving effect of PPE in binary conditions. Then, based 
on improving the ability of exploration and development, 
the transfer function is optimized, and a transfer function 
updating equation with a time variable is proposed. These 
methods show remarkable performance in the benchmark 
function and have fast convergence. 

Finally, a 0-1 knapsack is used for multi-dimensional 
testing. Simulation results show that the improved method 
(TV-BPPE) has better late development ability and stability 
than BPPE. It is more advantageous to solve high latitude 
problems. In this paper, 0-1 knapsack is just used to verify 
the ability of this algorithm to solve discrete problems. 
In the future, it can be combined with neural networks to 
solve more discrete problems.
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