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Abstract

Genetic algorithm, as a heuristic optimization technique, 
has achieved remarkable results in various fields, including 
path planning. Path planning, a fundamental challenge in 
automation systems and robotics, involves finding the optimal 
route from a starting point to a destination. This paper 
focuses on the application of improved genetic algorithms in 
path planning. Firstly, a brief overview of the fundamental 
principles of traditional genetic algorithms is provided, 
including operations such as individual encoding, selection, 
crossover, and mutation. Subsequently, a thorough exploration 
is conducted into how improved genetic algorithms can 
be introduced to address path planning problems. These 
enhancements encompass optimized population initialization 
strategies, novel genetic operation methods, and more 
effective fitness function designs. Furthermore, the discussion 
extends to how these improvements contribute to accelerating 
convergence speed, enhancing global search capabilities, 
and elevating the quality of solution outcomes. A substantial 
number of objective experiments have demonstrated the 
effectiveness of our approach.
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1  Introduction 

Path planning, as a fundamental challenge in automation 
systems, robotics, and navigation applications, has consist­
ently garnered extensive research and attention [1]. In 
numerous real­world applications, such as autonomous 
driving, robot navigation, and logistics distribution, effective 
path planning is crucial for enhancing efficiency, reducing 
costs, and ensuring safety [2­3]. However, due to the 
complexity of environments, the diversity of problems, and 
the demand for real­time solutions, finding optimal paths 
adaptable to various scenarios has remained a challenging 
task. 

With the continuous improvement in computing power 
and artificial intelligence applications [4­6], optimization 
algorithms have emerged as potent tools for addressing 
path planning challenges. Among these, genetic algorithms 
(GAs) [7­8], based on the principles of biological evolution, 
have gradually captured the interest of researchers. Genetic 
algorithms simulate natural selection and genetic mechanisms 
to seek optimized solutions through an evolutionary process. 

Their notable attributes such as robust adaptability and robust 
global search capabilities have unveiled immense potential, 
particularly in addressing intricate path planning problems. 

Specifically, GAs is an optimization technique inspired 
by natural selection and genetic mechanisms, used to address 
optimization and search challenges in complex problems. 
In the field of path planning, genetic algorithms find 
extensive application in determining the optimal route from 
a starting point to a destination. The fundamental concept 
of genetic algorithms involves iteratively refining solutions 
by simulating the process of biological evolution, aiming to 
identify improved solutions.

The fundamental workflow of GAs encompasses several 
key steps: 1) Individual Encoding: Initially, the path planning 
problem is represented by a set of individuals, often through 
binary encoding, integer encoding, and similar methods. 2) 
Initial Population Generation: An initial set of individuals, 
known as a population, is generated. These individuals 
are randomly created, forming an initial sample from the 
solution space. 3) Fitness Evaluation: Each individual’s 
fitness in the problem domain is assessed, reflecting the 
quality of the path solution. The fitness function is tailored 
to the problem’s characteristics. 4) Selection: Based on 
fitness, a portion of individuals is selected as “parents.” 
Generally, individuals with higher fitness have a greater 
chance of selection, simulating the natural selection process. 
5) Crossover: Crossover operations occur between selected 
parent individuals, producing new offspring individuals. This 
process simulates genetic exchange in biological evolution. 
6) Mutation: Offspring individuals are subjected to mutation 
operations, introducing randomness to enhance population 
diversity. This step emulates genetic mutation.

However, in path planning, traditional GAs often 
suffer from inadequate population initialization and fitness 
evaluation steps, which can lead to their path planning results 
getting trapped in local optima or even resulting in failure. 
Therefore, in this paper, we start by addressing various 
aspects of the traditional genetic algorithm and propose a 
novel improved genetic algorithm to enhance the ability to 
find the shortest path, aiming to prevent falling into local 
optima.

Specifically, we focus on the application of the impro­
ved genetic algorithm in the field of path planning. 
These enhancements may involve optimizing population 
initialization strategies, introducing novel genetic operation 
methods, and designing more effective fitness functions. The 
introduction of these improvements aims to further enhance 
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the performance and efficiency of genetic algorithms in 
addressing path planning problems. In this paper, we also 
explore how to model problems considering obstacles, 
constraints, and multi­objective optimization. Furthermore, 
we demonstrate how the improved genetic algorithm excels 
in these intricate scenarios.

The rest of this paper is structured as follows: Section 
2 delves into related research. In Section 3, we provide a 
comprehensive explanation of the proposed virtual try­on 
framework. Section 4 presents the results of our experiments. 
Finally, Section 5 analyzes and discusses the limitations of 
his work. and Section 6 offers concise conclusions.

2  Related Works

In this section, we briefly review previous works on path 
planning and genetic algorithms.

2.1 Path Planning
In the field of path planning [1, 3, 9­11], numerous 

studies have been dedicated to developing various methods 
and techniques to address the challenges of path planning in 
automation systems, robotics technology [2], and navigation 
applications. The following are some of the common path 
planning­related works frequently discussed in papers:

Early path planning methods primarily focused on finding 
the shortest path in static environments. Classic algorithms 
such as Dijkstra’s algorithm and A* algorithm employ graph 
search techniques to locate the optimal path from the starting 
point to the destination. However, these methods may be 
constrained when dealing with dynamic environments and 
multi­objective problems.

In practical applications, many studies employ hybrid 
methods that combine different path planning techniques to 
overcome various challenges. These methods not only enrich 
the research in the field of path planning but also provide 
more powerful tools to address intricate path planning 
challenges.

To sum up, the field of path planning encompasses 
various methods and techniques as researchers continuously 
explore new approaches to meet the path planning demands 
in different environments and application scenarios. In this 
paper, our focus will be on the application of improved 
genetic algorithms in path planning, aiming to enhance the 
quality and efficiency of solution outcomes.

2.2 Genetic Algorithms
In the field of path planning, Genetic Algorithms (GAs) 

[12], as an optimization technique based on the principles 
of biological evolution, have garnered widespread attention 
and application. GAs simulate natural selection and genetic 
mechanisms to iteratively explore the solution space of 
a problem, ultimately identifying optimal path planning 
solutions.

Early research on genetic algorithms primarily focused 
on solving classical optimization problems, such as function 
optimization and parameter tuning. However, with a 
deeper understanding of genetic algorithms, researchers 
began applying them to the field of path planning. The 
introduction of this approach stems from the advantages 
genetic algorithms offer in dealing with scenarios involving 
multiple objectives, constraints, and complex environments. 
Researchers began investigating how to apply genetic 
algorithms to practical problems like robot navigation, 
autonomous driving, and UAV path planning.

Although traditional genetic algorithms have achieved 
some success in path planning, they have also exposed 
certain issues. For instance, conventional genetic algorithms 
can get trapped in local optima, resulting in suboptimal 
path planning outcomes. Therefore, numerous studies have 
focused on enhancing the performance of genetic algorithms 
to better suit the characteristics of path planning problems.

In recent years, researchers have proposed various 
improved variants of genetic algorithms, including elite 
genetic algorithms, methods combining genetic algorithms 
with local search, and adaptive strategy­based genetic 
algorithms. These enhancements aim to boost the algorithms’ 
global search capabilities, convergence speed, and the quality 
of path solutions. Additionally, some studies have explored 
the design of more effective fitness functions to accurately 
assess the merits and drawbacks of path planning solutions. 
In this paper, we introduce a novel improved genetic 
algorithm specifically tailored to address path planning 
problems.

3  Methodology

3.1 Overview
Traditional path­planning algorithms suffer from issues 

such as high computational complexity and susceptibility 
to local optima. Therefore, in this chapter, by improving 
traditional genetic algorithms from the perspective of 
machine learning, we address problems related to path 
redundancy and real­time obstacle avoidance. This 
optimization aims to further enhance the results of shortest­
path planning. The execution process is illustrated in Figure 
1, and we summarize it into the following five steps:

Step 1: Construct a grid map and use a real­valued 
permutation encoding method to label the grid cells.

Step 2: Define the start and end points, and initialize the 
path population using an improved chaotic mapping.

Step 3: Compute fitness values, perform selection, 
crossover, and mutation operations.

Step 4: Calculate fitness values, determine if the iteration 
limit has been reached. If so, proceed to Step 5; otherwise, 
return to Step 3 and continue the genetic operations until the 
iteration limit is met.

Step 5: Output the optimal path from the start point to the 
end point.
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Figure 1. The algorithm flow chart of our improved genetic 
algorithms (The dashed box represents the part we improved.)

3.2 Grid Map Modeling
The grid map method is a common approach for map 

modeling, which employs a two­dimensional grid map to 
represent the environment. In the grid map method, the 
environment is divided into numerous grid cells, with each 
cell representing a point within the environment, possessing 
specific attributes and states. For instance, points can be 
labeled as passable or impassable, depicted with distinct 
colors to represent varying terrains, or utilized to depict 
obstacles and boundaries within the environment.

After the completion of map construction, it is necessary 
to establish a coordinate system on the map. The purpose of 
establishing a coordinate system is to allow the Automated 
Guided Vehicle (AGV) to determine its position and 
orientation on the map. As shown in Figure 2, we label 
obstacle grids with the number “1” and accessible grids with 
the number “0.” This can be expressed using Equation (1).

Figure 2. Map modeling example 

In order to satisfy the multi­angle visual analysis of data 
by managers, this tool provides a variety of perspective 
functions, including heat map, correlation matrix, scatter 
matrix, histograms, density plots and box­plots. All of these 
functions exhibit the data from different perspectives and can 

help the managers to analyze data easily. It is worth noting 
that before using these functions, the dimension to display 
the data must be selected as a scenario for analysis. Figure 2 
is an illustration of the buttons for data visualization.

{0,1}G =                                     (1)

In our work, a 20×20 grid map is constructed using the 
Matlab simulation software. The AGV is treated as a moving 
point, and each grid is assigned a number (represented by n). 
The starting grid for the AGV is set as grid 0, located at the 
bottom left corner (0,0), and the destination grid is set as grid 
399, situated at the top right corner (20,20). Black blocks in 
the grid map represent obstacle grids, indicating impassable 
areas, while white blocks represent path grids, signifying 
accessible areas. The red line in the grid map indicates the 
optimal path obtained using a genetic algorithm. In the text, 
(x, y) represents the position of a certain grid, and the value 
range for the index n is from 0 to 399. The relationship 
between them can be expressed using the following formula:

mod( ,20) 1x n= +                                (2)

( ) 1
20
ny fix= +                                  (3)

where mod represents the modulo operation, and fix 
represents the floor division operation.

In this work, all coordinates of the grid map are treated as 
a complete individual (chromosome), utilizing a real­valued 
permutation encoding method based on grid indices. This 
encoding method offers the advantages of a straightforward 
decoding process and space efficiency, while also being 
easily comprehensible. Through this approach, a more 
efficient implementation of the path planning algorithm can 
be achieved.

3.3 Initialization of Populations
Chaotic mapping [13­15] is commonly utilized in genetic 

algorithms for generating initial populations, leveraging its 
chaotic nature to achieve randomness, thoroughness, and 
regularity. The Sine chaotic map, for instance, is a type of 
nonlinear dynamic system that can generate high­quality 
sequences of random numbers. Its primary characteristics 
encompass strong chaotic behavior, favorable periodicity, and 
excellent continuity. These attributes collectively promote 
a more uniform distribution of random number sequences, 
thereby aiding the algorithm in better exploring the solution 
space. The traditional sine chaotic mapping is defined as 
follows:

1 sin( )n ny yη π+ =                                (4)

where η represents a control parameter with a range of 0.87 
to 0.93. Although the sine chaotic mapping is straightforward 
in implementation, as shown in Figure 3, it exhibits chaotic 
behavior when the sine chaotic mapping falls within the 
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intervals [0,0.05] and [0.095,1]. In these intervals, the 
probability of occurrence is significantly higher compared 
to other intervals, resulting in an uneven distribution and 
periodicity of the chaotic mapping. This phenomenon 
significantly impacts the search efficiency and convergence 
speed of the genetic algorithm. To achieve a more uniform 
distribution, we use an improved sine chaotic mapping, as 
demonstrated by the following equation:

1

1

1 1 1

sin( )
sin( )

mod  1

i i

i i

n i i

y y

y y

δπ
υ δπυ

υ

+

+

+ + +

=
=
= +

                           (5)

where mod represents the modulo operation, υi and yi are 
random numbers.

In the traditional GAs, random generation of initial 
populations can lead to the creation of infeasible solutions 
due to obstacles present in the grid. To address this issue, we 
introduce the concept of the Vector Field Histogram (VFH) 
[16­19] obstacle avoidance algorithm to further optimize the 
method of generating initial populations. The VFH algorithm 
divides the AGV’s operational space into grids and assigns a 
probability value to each grid to represent the likelihood of 
obstacles. During the path search process, the AGV avoids 
grids with high probability values while continuing the 
search.

Figure 3. Comparison between the effects of traditional sine chaotic 
mapping and our improved sine chaotic mapping

3.4 Design of the Fitness Function
In traditional genetic algorithms, the design of the 

fitness function is crucial to the algorithm’s performance. 
The primary role of the fitness function is to assess the 
quality of chromosomes (paths) to guide the selection of 
better chromosomes for crossover and mutation in the next 
generation. Specifically in the context of path planning 
problems, fitness can be defined as the quality of the path. 

In traditional genetic algorithms, typically only the 
path length is used as the fitness function, representing the 
assessment of path quality. The fitness function is formulated 
as follows:

1
2 2

1 1
1

1( )
( )

( ) ( ) ( )

T
L

m

L i i i i
i

f p
f p

f p x x y y
−

+ +
=

=

= − + −∑
                (6)

where p represents an individual path, i represents the 

coordinates of path point i, and m represents the number 
of nodes in the path. fL(p) represents the path length fitness 
function, and fT(p) represents the total fitness function as 
shown in Figure 4. However, due to the uncertainty and 
numerous turning points in the obstacle­filled warehousing 
environment, the feasibility index of the path is low, resulting 
in reduced safety. To minimize excessively small turning 
angles and enhance path efficiency, this paper introduces a 
path smoothness evaluation measure fS(p), which penalizes 
paths with excessively small angles and aims to reduce the 
probability of turns. The improved total fitness function fT(p) 
is formulated as follows:

1 1( )
( ) ( )lT

L S
sf p

f p f p
κ κ= +                        (7)

where κl  and κs are hyperparameters that balance the fitness 
components.

12

1
1

1

,  91 179,
( ) ,  47 91,

,  47.        

im

S i
i

i

S
f p S

S

α θ
β θ
γ θ

−−

−
=

−

+ < ≤
= + < ≤
 + ≤

∑                  (8)

where

= arccos
2

c b a
bc

θ + − 
 
 

                             (9)

where a, b, c are Euclidean distances between pairs of grids 
among the three. The above formula indicates that when the 
turning angle is within the range of 91 < θ < 171, the AGV 
can execute a safe turn. For turning angles of 47 < θ ≤ 91, 
the AGV can analyze the surrounding obstacles to perform a 
turn. When the turning angle θ ≤ 47, the AGV can turn safely. 
This can be achieved by adjusting the penalty weights α, β, 
and γ to constrain the turning angles.

Figure 4. Three different path angles

3.5 Selection
The selection operation [20] is used to determine which 

individuals will undergo crossover and how many offspring 
individuals will be generated. During the selection process, 
the overall population size should remain constant. Fitness 
values of each chromosome in the population are computed, 
and the chromosomes are sorted in ascending order based on 
their fitness. The individual with the lowest fitness value is 
directly retained in the next generation. However, the lower 
the fitness value of an individual, the higher the probability 
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of its selection. Duplicate chromosomes are not preserved.
In this paper, we employ roulette wheel selection. The 

specific method involves converting each individual’s fitness 
value into a probability, and then selecting individuals based 
on the magnitude of their probabilities. First, the selection 
probabilities of each individual are computed, and these 
probabilities are normalized so that their sum equals 1. Next, 
a random number within the range of [0,1] is generated and 
mapped onto the roulette wheel. Individuals for the next 
generation are selected based on their position on the wheel. 
Since in roulette wheel selection, individuals with higher 
fitness values have a higher chance of being chosen, it allows 
excellent individuals to be more easily inherited in the next 
generation.

3.6 Crossover
In genetic algorithms, crossover [21] is an operation 

that generates new individuals. The crossover operation 
involves pairing the genes of two parent individuals and 
randomly selecting a segment of genes to exchange, resulting 
in the creation of two new offspring individuals as shown in 
Figure 5. In the context of path planning problems, parent 
individuals can be represented as paths, and the crossover 
operation involves randomly selecting a segment from two 
paths for exchange, generating two new paths as offspring.

Figure 5. Crossover operation

It should be noted that the magnitude of the crossover 
probability (pc) directly affects the algorithm’s search 
capability and optimization performance. A high crossover 
probability (pc) can lead to premature convergence of the 
population, making it prone to getting trapped in local optima 
and unable to escape, thereby affecting the algorithm’s 
global search capability and optimization performance. 
Conversely, a very low crossover probability (pc) can result 
in a lack of diversity in the algorithm, making it difficult to 
find better solutions. In order to achieve beneficial evolution, 
enhance population diversity, and promote exploration, this 
paper introduces a nonlinear crossover operation, which is 
formulated as follows:

2(1 )c d
ip p
i

ε= − + +
+

                         (10)

Where (pd) represents the predefined crossover probability 
threshold and (i) denotes the current iteration index.

3.7 Mutation
Mutation operation [22­23] is a fundamental step 

in genetic algorithms, aiming to introduce new gene 
combinations into the population by randomly altering 
individual genes during the evolutionary process. This 
process enhances population diversity, preventing the 
algorithm from prematurely converging to local optima. 
Mutation typically occurs after crossover operations, with 
the primary goal of refining the newly generated individuals 
by modifying certain genes for improved adaptability. In the 
context of path planning, mutation involves fine-tuning gene 
sequences to generate novel feasible solutions.

It’s important to note that mutation should not occur 
too frequently, as excessive mutation can disrupt favorable 
gene combinations, affecting the convergence speed and 
precision of the algorithm. The mutation rate, denoted as 
pm, is typically kept between 0.1% and 1%. A high mutation 
probability pm can lead to excessive randomness, resulting in 
loss of convergence and stability, making it difficult for the 
algorithm to find suitable solutions. As illustrated in Figure 
6, a high linear mutation probability disperses the population 
widely, making it challenging to converge near the global 
optimum. Conversely, a low linear mutation probability 
can trap the algorithm in local optima, preventing it from 
escaping and conducting broader searches due to reduced 
population diversity.

Figure 6. Mutation operation

In this regard, this study introduces a linear mutation 
operation to enhance the exploratory capability of the genetic 
algorithm, prevent it from getting stuck in local optima, and 
improve the diversity of the population during later iterations. 
This operation introduces a degree of randomness and 
diversity, thereby expanding the search space and enhancing 
population diversity. The formula for the linear mutation 
operation is provided below:

min 1m
ip p
G

ε
 

= − +  
 

                         (11)

where, pmin represents the minimum mutation probability, 
i denotes the current iteration index, G represents the 
maximum generations, and ε represents the error term (or 
noise term).



1096   Journal of Internet Technology Vol. 25 No. 7, December 2024

4  Experiments

4.1 Experiment Settings
To validate the effectiveness of the algorithms proposed 

in the paper, experiments were conducted on the MATLAB 
simulation platform for both traditional genetic algorithms 
and improved genetic algorithms. 

The parameter settings are as follows: the starting 
position is labeled as 0, and the ending position is labeled as 
399. c

4.2 Visualization of Path Planning Results
Results in 20×20 map. The corresponding analysis of 

simulation data is presented in Table 1 and Figure 7. Classic 
genetic algorithms, when compared to the improved genetic 
algorithms, yield longer path lengths, longer execution 
times, and slower convergence rates in the pursuit of finding 
optimal paths. The algorithm tends to gradually converge 
and stabilize after approximately 5 iterations. On the other 
hand, the improved genetic algorithm proposed in this paper 
achieves convergence and stability after around 8 iterations. 
Furthermore, in traditional genetic algorithms, a notable 
observation is the existence of multiple 90° turning points 
and even turning points smaller than 47°. These conditions 
significantly undermine the safety and feasibility of the path. 
And our method does not suffer from these problems.

Results in 30×30 map. In order to further demonstrate 
the superiority of the algorithm presented in this paper and 
to eliminate the influence of random factors, as shown in 
Figure 8 and Table 2, simulations were conducted on a 
more complex random grid map. The size of this map is 
30×30, with a more intricate and randomized distribution 
of obstacles. Consequently, finding the optimal path in this 
environment poses a greater challenge.

As shown in the figure, the horizontal axis denotes 
time, the longitudinal axis denotes root categories, and the 
vertical axis denotes the total check­in times of a user in 
corresponding time and root category.

Table 1. Simulation ablation experiment of algorithm in 20×20 map
Methods Path length Time (s) Iterations
T GAs 32.5563 0.3774 50

T Gas + A 32.3848 0.3681 50
T Gas + A + B 31.2132 0.2371 50

T Gas + A + B + C 31.2132 0.2366 50
Ours 29.2132 0.2240 50

Table 2. Simulation ablation experiment of algorithm in 30×30 map
Methods Path length Time (s) Iterations
T GAs 45.7696 0.6869 50
Ours 41.1838 0.5291 50

4.3 Ablation Study
Figure 9 and Table 1 present the results of the 

corresponding ablation experiments as depicted in the 
previous figure, including numerical analyses of path length, 
execution time, and iteration count. Combined with the 
experimental graphs, it can be observed that when using 
only the classical genetic algorithm for path planning, the 

algorithm generates overly long and complex paths with 
slow convergence. The algorithm gradually converges 
and stabilizes after approximately 35 iterations. Upon 
incorporating the improved chaotic mapping A, the algorithm 
exhibits convergence and stabilization after around 20 
iterations. Subsequently, upon integrating the enhanced 
smoothness fitness function B, the algorithm demonstrates 
convergence and stabilization after roughly 15 iterations. 
Furthermore, with the incorporation of the improved 
nonlinear crossover operation C, the algorithm achieves 
convergence and stabilization after about 13 iterations. 
Lastly, upon integrating the enhanced nonlinear mutation 
operation, the algorithm converges and stabilizes gradually 
after approximately 10 iterations.

Figure 7. Simulation ablation experiment of algorithm in 20×20 
map

5  Discussion

The improved genetic algorithm has achieved significant 
advancements in the field of path planning. However, it 
still faces certain limitations while also showcasing several 
potential prospects. Firstly, despite the notable progress of 
the improved genetic algorithm in optimizing path planning 
problems, challenges persist when dealing with complex 
environments and multiple constraints. Real­world scenarios 
involve numerous obstacles, dynamic changes, and multi­
objective optimizations, potentially causing difficulties in 
converging to ideal solutions. Therefore, future research 
could further explore how to enhance the improved genetic 
algorithm to address the more diverse path planning 
requirements of real­world situations.
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(a) Path planning results based on traditional genetic algorithms.

(b) Path planning results based on improved genetic algorithms.
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Figure 8. Comprehensive demonstration of data visualization

(a) Traditional GAs. (b) GAs + A + B + C.
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Secondly, the performance of the improved genetic 
algorithm heavily relies on parameter configuration and 
adjustment. Selecting appropriate parameter values is 
crucial for the algorithm’s efficiency and convergence. 
However, parameter tuning often requires experience and 
experimentation, potentially affecting the algorithm’s stability 
and reproducibility. Future research might consider adaptive 
parameter adjustment methods, enabling the algorithm 
to automatically adapt parameters in various problems 
and environments, thereby enhancing its adaptability and 
generalization capability.

Furthermore, path planning problems often involve large 
search spaces, leading to potential challenges in terms of 
computational complexity. Although the improved genetic 
algorithm has optimized the search process to some extent, 
handling large­scale problems may still pose challenges in 
terms of computational resources. Future endeavors could 
explore the integration of other optimization techniques, 
such as deep learning and reinforcement learning, to further 
enhance the efficiency and scalability of path planning 
algorithms.

Lastly, when solving path planning problems, the 
improved genetic algorithm typically operates on static 
maps. However, in practical applications, environments 
can be subject to dynamic changes, such as traffic flow, 
obstacle positions, and other variables that evolve over time. 
Therefore, exploring how to integrate the improved genetic 
algorithm with real­time perception and adaptive path 
planning to address the dynamic requirements of changing 
environments is another promising avenue for future 
research.

6  Conclusion

This study delved into the application of improved 
genetic algorithms in the domain of path planning, a critical 
aspect of automation systems and robotics. The investigation 
began with an elucidation of the foundational principles 
underpinning traditional genetic algorithms, encompassing 
individual encoding, selection, crossover, and mutation. 
Building upon this groundwork, the research advanced 
towards the integration of enhanced genetic algorithms to 
tackle the challenges posed by path planning. The innovations 
introduced in this research primarily revolved around the 
optimization of population initialization strategies, the 
introduction of novel genetic operators, and the refinement 
of fitness function designs. These enhancements collectively 
aimed at expediting convergence speed, augmenting global 
search capabilities, and ultimately elevating the quality of 
solutions generated. The empirical evidence garnered from a 
comprehensive set of objective experiments strongly attested 
to the efficacy of the proposed approach. The results from 
the experiments underscored the tangible benefits of the 
improved genetic algorithms in addressing complex path 
planning problems. The optimized population initialization 
techniques contributed to the rapid initialization of diverse 
solutions, while the novel genetic operators facilitated 
efficient exploration of the solution space. Additionally, the 
carefully designed fitness functions guided the evolutionary 

process towards more desirable solutions. These synergistic 
improvements culminated in superior performance in terms 
of solution quality and convergence speed, as compared to 
traditional genetic algorithms.
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