
Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning 1071

*Corresponding Author: Xinying Wang; E-mail: wxy200888@126.com
DOI: https://doi.org/10.70003/160792642024122507011

Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups
under Edge Cloud-Native Environments Using Simulation Learning

Wei Xiong1, Xinying Wang1*, Franz Wotawa2, Qiaozhi Hua1

1 School of Computer Engineering, HuBei University of Arts and Science, China
2 Institute for Software Technology, Graz University of Technology, Austria

xwei9093@126.com, wxy200888@126.com, wotawa@ist.tugraz.at, alex2441@163.com

Abstract

The evolution of cloud and edge computing technologies
has brought about resource management challenges.
Traditional resource scheduling strategies fall short in
dynamic cloud-edge environments, one of the challenges
is identifying system state changes in multi-scenario edge
cloud-native environments. The dynamic orchestration and
deployment of container resources are crucial. To address
this issue, we introduce a virtual environment, which
generates interactions of multi-scenario mixed service
groups. Furthermore, we proposed a multi-agent adversarial
imitation learning approach, which is trained in the virtual
environment. Experiments reveal that our approach, which is
fully trained in the virtual mixed-service environment, results
in no physical sampling costs and significantly outperforms
traditional supervised approaches.

Keywords: Edge cloud-native, Resource scheduling,
Imitation learning

1 Introduction

As cloud-native technology matures, it’s being explored
by academia and business communities for practical
implementation [1]. The integrated development of AI, IoT,
and edge computing is leading to a growing variety, scale,
and complexity of business operations in edge computing
scenarios [2-4], and building a new generation of edge
computing platforms using cloud-native technology is
becoming an industry focus [5]. Therefore, studying how
to integrate cloud-native technology and edge computing
to assist developers in managing large-scale applications
on wide-ranging cloud-edge resources is of significant
importance [6].

Edge cloud-native applications have a broad spectrum
of use cases, including live video [7], cloud gaming [8],
logistics and transportation [9], intelligent manufacturing
[10], and urban brain [11], etc. These applications can be
categorized into mobile broadband services [12], large-scale
IoT services with fixed sensors [13], and mission-critical IoT
services like the Internet of Vehicles, based on factors such
as mobility, billing, security, policy control, latency, and
reliability [14-16]. However, deploying ultra-large-scale edge

cloud-native services can be challenging due to issues like
decentralized computing power, heterogeneous resources, and
weak network connectivity. The goal of edge cloud-native
technology is to consolidate scattered computing power into
a larger resource pool and optimize resource scheduling
for maximum energy efficiency, effectively balancing peak
and valley filling. When users deploy mixed services (a
combination of online and offline services) and request
necessary computing resources (such as CPU, memory,
disk) from the management node, the scheduler selects
physical machines that meet the specifications to deploy the
containers. Since there are often multiple fitting physical
machines, each with varying resource capacities, different
allocation approaches can lead to different allocation rates.
The crucial role of the scheduler is to select the most suitable
physical machine out of numerous possibilities, adhering to
a specific strategy [17-18]. Implementing mixed services in
multiple scenarios within a native edge cloud environment
is a challenge due to the varying movement characteristics
and communication capabilities among different service
communities. These discrepancies can delay the formation of
a stable cluster. Issues arise when the data flow and control
flow are separated into different mixed service groups,
obstructing the collaboration among multi-scenario mixed
service groups. In the current edge cloud environment,
resources for data and control planes are scheduled separately
within distinct service groups. This situation prompts
several questions. How can we maintain stability in multi-
scenario mixed-service groups given their rapidly changing
topologies and complex interaction? Additionally, how can
we effectively manage service group resources?

Reinforcement learning (RL) can effectively manage the
scheduling of mixed-service resources. However, its direct
application can be challenging due to the need for numerous
interactions with the environment, which can be expensive.
As a solution, simulators are often used for RL training. A
prime example is Google’s data center cooling system [19],
where a neural network estimates system dynamics. The
policy is subsequently trained in a virtual environment using
advanced reinforcement learning algorithms.

Applying reinforcement learning to real-world tasks can
be challenging. In physical environments, conducting a large
number of experiments as required by current approaches is
often impractical. To enhance service resource scheduling
in edge-native multi-application scenarios, we propose an

1072 Journal of Internet Technology Vol. 25 No. 7, December 2024

approach involving offline training using reinforcement
learning algorithms in a virtual environment. The goal is to
maximize long-term rewards in a simulator. The resulting
policy is expected to perform well in the actual environment
or serve as a starting point for online tuning.

Simulating the behavior of multi-scenario mixed service
groups in a dynamic environment is more challenging than
approximating the dynamics of a data center. We generate
the behavior data for the mixed service groups from
some policies. Current imitation learning approaches can
form policies from data [20-21]. Behavior cloning (BC)
approaches [22] primarily learn policies from state-behavior
data using supervised approaches. However, BC requires an
i.i.d. assumption on demonstration data, which isn’t met in
RL tasks. On the other hand, Inverse Reinforcement Learning
(IRL) approaches [23] learn a reward function from data
and then train a policy based on this reward function. Unlike
BC, IRL relaxes the i.i.d. assumption on the data but still
presumes a static environment. If the environment changes,
the learned policy may fail. These shortcomings make these
approaches less practical for building virtual environments.

Reinforcement learning approaches come with several
challenges: 1) they are time-consuming and require
substantial engineering; 2) if the model is not trained
sufficiently before deployment, it may perform poorly on
real-time data, compromising the reinforcement learning
phase; 3) large amounts of data are necessary to ensure the
model’s robustness. To mitigate these challenges, some
researchers recommend using a virtual environment for
training and assessing the system [24-25]. Integrating a
virtual environment with reinforcement learning enables
intelligent scheduling based on runtime resources. It
simplifies the unified resource scheduler, enhances runtime
stability, and reduces resource costs.

However, there is a compound error issue in the
environment model of offline reinforcement learning. In 2002,
Kearns and Singh demonstrated [26] that the environment
model obtained through supervised learning is prone to a
significant compound error, with an error coefficient of T^2
after T steps of action. For example, if there are 100 steps, the
final single-step error will be magnified by a factor of 10,000.
This quadratic compound error has had a substantial impact
on the field, leading to the abandonment of high-precision
environment models and the avoidance of relying on them.
As an alternative, the model-based policy optimization
(MBPO) approach, proposed by the University of California,
Berkeley in 2021 [27], recognizes the difficulty in reducing
compound error and instead focuses on minimizing it
within a few steps in the environment model. However, this
approach faces challenges in fully evaluating the policy if the
complete action decision trajectory cannot be executed in the
environment model, greatly reducing its applicability in real-
world tasks.

In 2020, Tian Xu et al. proposed a novel proof approach
for cumulative errors [28], which identified that compound
error consists of two components. The first one is the
conversion from single-step error to state distribution error,
while the second one is the conversion from state distribution

error to overall policy return error. By bypassing the first part
and utilizing distribution matching targets instead of single-
step prediction targets, the coefficient of compound error
can be reduced from T2 to T, reaching the theoretical lower
bound. This breakthrough effectively resolves the theoretical
problem of excessive compound error. Distribution matching
targets involve matching the overall distribution of data
generated through policy interactions in the environment
model with historical data. The approaches for constructing
an environment model based on distribution matching targets
can effectively leverage reinforcement learning techniques to
train efficient policy models in the environment model.

In this study, we build a virtual environment through the
interaction between multi-agent policy and the environment.
This is particularly relevant for multi-scenario mixed service
groups under edge cloud-native environments, where the
movement characteristics and communication capabilities of
multi-scenarios vary greatly. Their distribution is complex
and extensive, but database sampling cannot generate
additional data, leading to a low degree of generalization
in the final model. To address this, we propose the GAN
(Generative Adversarial Network) [29] Simulating Multi-
scenario Mixed Service groups (GAN-SMMSG) approach
to create virtual agents, as traditional approaches like GMM
[30] and GAN struggle with such high-dimensional data.
To generate interactions, a fundamental aspect of virtual
environments, we introduce a Multi-agent Adversarial
imitation Learning of Multi-Scenario Mixed Service
Groups (MAIL-MMSG). This approach follows the idea
of GAIL [31] and learns the policies of the client and the
platform simultaneously using the generative adversarial
framework [32]. MAIL-MMSG trains a discriminator to
distinguish between simulated and real interactions, using
signal feedback as a reward to generate more realistic
interactions. After the agent and environmental interactions
are generated, the virtual environment is complete and can
be used for platform policy training. In our experiments,
we created a virtual environment using records from a real
mixed ministry service environment and compared it with
the actual environment. The results showed that the virtual
environment accurately replicates properties close to the real
environment. We then used the virtual environment to train
a resource scheduling policy for the multi-scenario mixed
service to maximize revenue. The policy trained in the virtual
environment outperformed traditional supervised learning
approaches, improving revenue in the real environment, with
no physical trial costs.

The contributions of this paper are:
(1) For the construction of a multi-scenario virtual

environment of mixed service groups, it’s necessary to
sample the perception-decision-execution behavior of
the mixed service groups. The distribution of the group’s
characteristics should closely map the real distribution.

(2) The environment and policy models are trained
simultaneously through the dual and adversarial learning of
the virtual environment and the agent, enabling more realistic
interactions.

Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning 1073

Figure 1. Multi-scenario under edge cloud-native environment

2 Motivating Scenario

Implementing reinforcement learning in a real user
environment can be costly due to trial and error, even with
minimal traffic. Simply transferring the reinforcement
learning algorithm to the real world is impractical. However,
by learning virtual environment models from historical
data in real-world scenarios, we can achieve significant
advantages in terms of generalization ability.

To ensure the disaster tolerance and other runtime state
requirements of services in the scheduled container, the
scheduling system allows business applications to set unique
type requirements, exclusive requirements, and mutual
exclusion and affinity when scheduling. These firm and
flexible rules undoubtedly add complexity to the knapsack
problem.

We delved into scenarios where online and offline tasks
coexisted. Suppose the online task chooses to drop some
containers to allocate resources for the offline task, based
on current business service requirements. Which instances
would be most sensible to reduce? While scaling is a factor
to consider, should it also be accounted for in capacity
allocation? Another factor to consider is time constraints.
While it’s not critical, adhering to previously outlined
conditions is important. Typically, each request should be
completed within a maximum of 180 seconds. The scale of
the controlled host usually falls around the 10,000 mark. The
high potential concurrency level of requests should also be
taken into account.

All of our previous simulations were static, such as the
Sigma-cerebro scheduling simulator [33], which was a tool
platform, using 1:1 production data to perform scheduling and
distribution simulations. These simulations are completely
data-driven, based on static data for dynamic prediction. This
approach is due to the challenge of simulating the online
conditions of tens of thousands of hosts, which will require a
lot of resources. This brings two problems:

Firstly, even if static requirements are met, it’s unclear
whether various microservices will coexist harmoniously.
We need to determine the most effective combination of

applications and explore whether cutting peak load and using
resources efficiently through approaches like CPU share is
preferable.

Secondly, our current static simulations can’t answer
these questions.

This paper primarily focuses on the unified scheduling
approach for mixed-service resources across multiple
application scenarios as shown in Figure 1. We utilize a
virtual environment to simulate business Scenarios and
utilize the Reinforcement Learning (RL) algorithm to train
strategies. This exploration helps address the challenge of
unified scheduling for mixed service groups under multiple
scenarios.

3 Our Approach

In this section, we give a formal description of the
problem in Section 3.1, propose the framework in Section
3.2, build a multi-scenario virtual environment in Section 3.3,
and train the environment and policy models simultaneously
through the dual and adversarial learning in Section 3.4.

3.1 Problem Formulation
In the native edge cloud, there are numerous sub-

scenarios. Each is optimized independently, resulting in a
competitive dynamic between them. Unfortunately, enhancing
the performance of individual sub-scenarios doesn’t
necessarily lead to overall improvement. To address this, the
sorting problem of multiple sub-scenarios was treated as a
series of fully cooperative and partially observable multi-
agent sequential decision issues. This approach allowed
for the exploration of optimization strategies, shifting the
deployment strategy of each scenario from being independent
to a cooperative, win-win approach.
3.1.1 Markov Decision Process Formulation

In a classical reinforcement learning problem, there
will be a formulation (o1, r1, a1, ..., at, ot, rt), where o/r/
a denotes observation, payoff, and action, respectively.
As mentioned before, the environment in our problem is
partially observable, which means that the state St represents

1074 Journal of Internet Technology Vol. 25 No. 7, December 2024

experience, i.e. st = f (o1, r1, a1, ..., at−1, ot, rt), we are
considering a problem with N agents {A1, A1, ..., AN}, each
of which corresponds to an optimization scenario with a
feature (e.g. mobile broadband, Internet of things, Internet
of vehicles, etc.). In this multi-agent setting, the state of the
environment (St) is global and shared by multiple agents;
But observations (ot =(o1

t , o
2
t , ..., o

N
t)), actions (at = (at

1, at
2, ...,

at
N)), and memories of short-term rewards (rt = (r(st , a

1
t), r(st ,

a2
t), ..., r(st , at

N))) are all owned by the individual agents.
More specifically, each agent Ai will take each decision

action at
i based on its policy πi(st) and state St, and then

it will receive a temporary reward rt
i = r(st , at

i) from the
environment while the state is updated from St to St+1. In
our task, multiple agents will cooperate to achieve the overall
maximum payoff. We have a global “action-value” function
(critic) Q(st, at

1, at
2, ..., at

N) that estimates the global payoff
for the whole when taking an action (at

1, at
2, ..., at

N) under the
current state. We also have a global state representation that
each agent will perform a local action after getting a local
observation.
3.1.2 Simulator-based RL for Optimization

In this paper, we adhere to the general process of
simulator-based RL optimization. We first define an
environment simulator M: S×A×S→Y. Specifically, the goal
of the user simulator can be formally defined as follows:
Given a state-action pair (s, a), imitate the user’s feedback y
on action a based on state s. For each time step t, given the
prediction ŷt+1, we first update st+1

hist and st+1
stat then load st+1

agent,r

and st+1
group,r according to ŷt+1, from a real trajectory dataset

Dτr,where τr = [sr
0, a

r
0, s

r
1, a

r
1, ..., s

r
T, a

r
T]. Finally, we have st+1 =

[st+1
hist, st+1

stat, st+1
agent,r , st+1

group,r] and rewards rt = R(st, at, st+1). We
define a symbol PM,τr (s'|s, a) as the above transition process
based on M and τr. Note that instead of directly predicting the
entire next state st+1, the simulator just predicts the past y and
builds other states from historical τr.

The overall goal of simulator-based RL is to find an
optimal policy π̂ * that maximizes the cumulative reward for
all users. In particular, the goal is written as follows:

~ (| ,)~ (), ~ (), ~ (,)
0

max [[r
M

T
t

r p P tg p g u p u D u g
t

E E rτ πτ
γ

=
∑]] (1)

where p(g) and p(u) are the prior distributions of multi-
scenario mixed service groups and sub-scenarios, τr ~D(u,g)
represent the true trajectories of sub-scenarios u sampled
from the log dataset D of multi-scenario mixed service
groups g, and p(τ | π, PM) is the probability of generating
trajectories τ = [s0, a0, r0, ..., sT, aT, rT] under the policy π and
transition functions PM. In particular,

0 0 10
(| ,)= () (| ,) (|)T

t t t t tt
p P d s P s s a a sτ π π+=∏ (2)

where d0 (s0) is the initial state distribution.

3.2 Outline
Our Approach is a multi-agent training strategy that

can be used to simultaneously train the policies of multiple
agents and the policies of virtual environments. In this

way, the multi-agent policy obtained can include different
scheduling strategies. By training both the agent and the
virtual environment together, only historical data is required,
without the need to access the real environment, and Nash
equilibrium can be achieved among multiple agents.

Figure 2 shows the process of our approach, which is
introduced as follows:

(1) First, we obtained the features of mixed-services
under multiple scenarios, and then utilized a generative
adversarial network that simulates the distribution of mixed
services to construct multiple-scenario virtual environments.

(2) A multi-agent adversarial imitation learning approach
is proposed, which allows agents to interact with the virtual
environment during the training process, while continuously
optimizing the reward function.

Reward

GAN-SMMSG

Real Data Discriminator Virtual Data

Real
Environment

Mixed Service
Groups

Virtual Mixed
Service Groups

Virtual
Environment

Features of
Mixed Service

Groups

Multi-agent
Reinforcement
Learning

Policy Deloyment

Figure 2. Framework of our approach

3.3 Building a Multi-Scenario Virtual Environment
To build a multi-scenario simulator, it’s necessary to

generate characteristics of multi-scenario mixed service
groups. This involves sampling the perception-decision-
execution behaviors of these groups from multiple scenarios
to initiate their interaction process. The distribution of
the generated characteristics for a single scenario should
resemble the actual distribution. However, learning the
feature distribution of a single scenario mixed service group
in high-dimensional space can be challenging. Traditional
approaches like the Gaussian mixture model struggle to
achieve this similarity, whereas the Generative Adversarial
Network (GAN) framework can effectively generate samples
that closely align with the original data. Yet, the traditional
GAN discriminator can only determine if the behavior data
of a single service instance is real, without capturing the
characteristics of the service group in a single scenario.
To generate the distribution of the mixed service groups,
as opposed to a single instance, we use the Generative
Adversarial Network Simulating Multi-scenario mixed
service groups (GAN-SMMSG), as illustrated in Algorithm 1.
GAN-SMMSG maintains a generator (G) and a discriminator
(D). The discriminator aims to accurately distinguish the
generated data from the training data by maximizing the
following objective function

x
p p[log ()] [log(1 (())]

D x G
E D x E D G z

∼
+ −

 (3)

The generator is updated to maximize the following
objective function

Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning 1075

[],p p (()) ((())) (()|| (())) G DE D G z aH V G z KL V x V G zβ+ − (4)

We shorten px~G to pG, px~D to pD. G(z) is the instance
generated by the noise sample z, V(∙) represents some
variable associated with internal value. H(V(G(z)) denote the
entropy of the variable derived from the generated data, used
to create a broader distribution. KL(V(x)||V(G(z))) is the KL
divergence between the training data and the variables that
generated the data, guiding the generated distribution towards
the training data’s distribution. Under the constraints of KL
divergence and entropy, GAN-MMSG can learn from the
generator more effectively. It uses guiding information from
actual data and can generate superior distributions compared
to the traditional GAN.

Algorithm 1. Generative Adversarial Network Simulating
Multi-scenario Mixed Service Groups (GAN-SMMSG)

Input: Real data distribution pD

Body
Initialize training variables θD, θG

for i = 0, 1, 2, ...do
for k steps do
sample mini-batch from pG

sample mini-batch from pD

 update the generator by gradient:

[],p p (()) ((())) (()|| (())) G D
G
E D G z aH V G z KL V x V G z

θ
β∀ + − end for

sample mini-batch from pG

sample mini-batch from pD

update the discriminator by gradient:

x x
p p[log ()] [log(1 (())]

D GG
E D x E D G z

θ
+ −∀

end for
Output: agent generator G

3.4 Multi-agent Adversarial Imitation Learning
We propose an approach called Multi-agent Adversarial

Imitation Learning of Multi-scenarios Mixed Service Groups
(MAIL-MMSG), inspired by GAIL. GAIL enables the
agent to engage with the environment during training, while
simultaneously optimizing the reward function. It’s important
to note that the environment needs to be accessible during
GAIL training. However, when training the client policy, the
environment is expected to be an unknown or dynamic one.

The GAIL algorithm consists of a discriminator and a
policy. The policy functions as a generator in a generative
adversarial network. Given a state, the policy dictates the
action to be taken, and the discriminator D processes the
state-action pair (s, a) as input. It then outputs a real number
between 0 and 1, which represents the probability that the
state-action pair originated from the agent’s policy, not an
expert. The discriminator aims to bring the output for expert
data closer to 0 and the output for the imitator policy closer
to 1, enabling a clear distinction between the two sets of
data. Consequently, the loss function of the discriminator is
defined as follows:

p p() [log (,)] [log(1 ((,))]L E D s a E D G s a
π πφ φ

φ = − + − (5)

where ϕ are the parameters of the discriminator. With
discriminator D, the goal of the imitator strategy is that the
trajectories produced by its interactions can be mistaken for
expert trajectories by the discriminator. Therefore, we can use
the output of Discriminator D as the reward function to train
the imitator policy. Specifically, if the imitator policy samples
the state s of the environment and takes action a, the state-
action pair (s, a) is fed into the discriminator D, outputs Dϕ(s,
a), and then the reward is set to r(s, a) = −logDϕ(s, a). We can
then use this data with any reinforcement learning algorithm
to continue training the imitator policy. Finally, after the
adversarial process continues, the data distribution generated
by the imitator strategy will be close to the real expert data
distribution, achieving the goal of imitation learning.

MAIL-MMSG is a multi-agent approach that simult-
aneously trains the client and engine policies, unlike GAIL
which trains a single-agent policy in a static environment.
This allows the learned client policies to generalize across
different environment policies. Because MAIL-MMSG trains
both policies concurrently, it requires only historical data and
doesn’t need access to the real environment.

However, learning the agent policy and the environment
policy iteratively can result in a large search space,
leading to poor performance. Luckily, we can optimize
both simultaneously. To model the agent policy πc, we
parameterize customer policy π c

k by k, environment policy
πσ

 by σ, and reward function Rc
θ by θ. If the customer

observation sc =< s, a, n > depends on the action a, we have:

(,) (, , ,) (, (,), ,)c c c c c c cs a s a n a s s n aπ π π π= < > = < ⋅ > (6)

This shows that the joint policy π c
k,σ can be seen as a

mapping from S×N to Ac given the environment policy. In
other words, given the parameters of the environment agent,
the customer agent can make the decision directly. Since Sc=
S×A×N, for convenience, we still consider π c

k,σ is the mapping
from S c to Ac. Joint policies π and πc together provide
the opportunity to learn agent policies and environments
simultaneously. The reward function Rc is designed to be
non-discriminative in generating data and historical state-
action pairs. Adopting a reinforcement learning algorithm
will maximize the reward, which means generating
indistinguishable data.

Algorithm 2 shows the processing of MAIL-MMSG.
we need historical traces τe and agent distribution Pc to
run MAIL. In this paper, GAN-SMMSG is used for pre-
learning Pc. After initializing the variables, we start the
main process of MAIL-MMSG: in each iteration, we collect
trajectories during the interactions between the agent and the
environment. We then sample from the generated trajectories
and optimize the reward function via a gradient approach.
Then, k and τ is updated by a joint policy π c

k,σ from M c by RL
optimization. When the iteration ends, MAIL-MMSG returns
the agent policy πc.

After simulating Pc and πc, we know how the agent
behaviors are generated and how they react to the
environment, and the virtual environment has been set up.
We can generate interactions by deploying engine policies to
the virtual environment.

1076 Journal of Internet Technology Vol. 25 No. 7, December 2024

Algorithm 2. Multi-agent Adversarial Imitation Learning of
Multi-scenario Mixed Service Groups (MAIL-MMSG)
Input: Expert trajectories τe , agent distribution pD

Body
Initialize variables k, σ, θ
for i = 0,1,2,…I do
for j = 0,1,2,…J do
τj = ∅, s ~ Pc, a ~ πσ (S

c, ∙), S c = < s, a >
while NOT TERMINATED do
 sample ac ~ πσ (s

c, ∙)
 add < sc, ac > to τj

 generate sc ~ τ c
σ (s

c, ac | Pc)
end while
end for
sample trajectories τg from τ0~J

update θ0~J to in the direction to minimize:

x
p

0
[log ()] [log(1 ()](,) (,)

g

c c
r

J
E D R E D Rs a s a

θ θ θ+ −∑

 update k, σ by optimizing π c
k,σ with RL in M c

end for
Output : agent policy π c

4 Experiments

In this paper, a Kubernetes-based edge cloud-native
platform is utilized to transition the Multi-agent Adversarial
Imitation Learning (MAIL) [34] to an edge cloud-native
scenario. By leveraging the duality and adversarial learning
of the environment and agent, the environment model and
policy model are concurrently trained. This paper concludes
with a verification of the process.

4.1 Experimental Design
We utilized an edge-cloud network consisting of

cloud servers, edge nodes, and terminal devices to support
multi-scenario mixed service groups as our experimental
environment. The cloud server is a physical machine with
a 16-core Intel Xeon E5-2620 v4 CPU, 64GB of memory,
a 1TB hard drive, and Ubuntu 18.04 operating system,
providing powerful computing and storage capabilities as
the cloud computing center. The connection between the
cloud server, edge nodes, and terminal devices is established
through wired or wireless networks, with network bandwidth
and latency dynamically changing according to the actual
situation.

On the software side, we have built a mixed architecture
based on Karmada, RunD, and Koordinator. We use their
APIs and tools to implement various resource scheduling
strategies. The training process includes real-time acquisition
of user behavior logs to provide training samples for the
MA-PPO algorithm. These samples are then stored in a
replay buffer. The model is updated, and the revised model
is applied online. This process repeats, allowing the online
model to be dynamically updated to capture changes in agent
behavior.

In terms of parameter settings, for each agent (scene)
using PPO, the local observations are a 52-dimensional
vector, and the actions correspond to 7-dimensional and
3-dimensional vectors. For simplicity, we output a vector of
length 10 (filled with 0s to account for the vacant part) from

the evaluation network, as both the communication module
and the evaluation network require behavior from each
different scene.

In PPO, the actor network has 2 hidden layers, the
number of neurons in each layer is 32, and ReLU is used as
the activation function. The gain attenuation coefficient in
the Bellman formula is set to γ = 0.95. In our experiments,
we use RMSProp to learn the parameters of the network;
The learning rate is 10-2-3and 10, and the hidden layer of the
network is 128 layers, corresponding to the actor network
and the critic network, respectively.

The discriminator uses a 4-layer fully connected network.
It takes state-action pairs as inputs and outputs a probability
scalar. The replay buffer size is 104, while the minibatch size
is 100.

To assess the virtual environment’s impact, we use
metrics such as average task completion time, convergence
time, and offloading ratio (defined as the ratio of offloaded
tasks to the total number of tasks generated in the network).

Al l measurements were ob ta ined f rom on l ine
experiments. To compare these metrics between the real
and virtual environments, we implement the random engine
strategy in the real environment and collect the corresponding
trajectories as historical data. Please note that we do not
assume the engine strategy that generated the data. When
building the virtual environment, the engine strategy could be
an unknown complex model.

We simulated the customer distribution P c with GAN-
SMMSG, where α = β = 1. Then we construct the virtual
environment using MAIL-MMSG, implementing the PPO
RL approach. All function approximates in this study utilize
multi-layer perception. Due to resource constraints, we could
only compare both strategies concurrently in the online
experiment.

We demonstrate that the virtual agent’s distribution is
similar to that of the real agent using Algorithm 1. This is
achieved by deploying the history engine strategy in the
virtual environment and comparing the agent’s offloading
ratio over time and their characteristics in both the virtual
and real environments. We ran algorithm 2 in the virtual
environment.

4.2 Analysis
4.2.1 Virtual Agent Distributions and Behaviors

To evaluate the ability of simulating agent distribution,
we compare our approach with the following approaches:

(1) GMM (Gaussian Mixture Model) [30]: This approach
combines multiple Gaussian models to form a mixture model.
It is used to calculate the probability distribution of the data.

(2) GAN (Generative Adversarial Networks) [29]:
Generative Adversarial Networks are composed of two
networks: the generator network generates simulated data,
and the discriminator network determines whether the input
data is real or generated. The generator network continuously
optimizes the generated data to make it indistinguishable
from the discriminator network, while the discriminator
network also optimizes itself to make more accurate
judgments. The interaction between the two networks creates
an adversarial scenario.

(3) WGAN (Wasserstein generative adversarial network)

Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning 1077

[35]: In the original GAN, the discriminator measures the
JS divergence between two distributions. However, using
JS divergence can lead to unstable training. To address this
issue, this approach uses Wasserstein Distance to measure
the distance between two probability distributions. WGAN is
proposed to improve the stability of GAN model training and
avoid mode collapse.

The ratio of different agents is a fundamental criterion
for evaluating the virtual environment. We simulate agent
distribution using GAN-SMMSG, generating 100,000 agents,
the agents are divided into 3 levels, corresponding to 3 sub-
scenes. The proportions are calculated in four dimensions:
average task time, convergence time, offloading ratio, and
agent. These results are compared with the ground truth.

Figure 3 illustrates that the GAN-SMMSG distribution
closely matches the ground truth. Table 1 details the specific
KL difference between the generated and real agents. In our
experiments, we carefully selected the number of GMM
clusters to be 10 to fit the data, finding that traditional GANs
struggled to capture the distribution structure.

Virtual agents are generated by GAN-SMMSG. The
agents have varying feature preferences, which affect
the offloading ratio. To assess if the virtual environment
accurately simulates reality, we analyze the impact of agent
characteristics on the offloading ratio within this environment
and compare these findings with real-world results. As
depicted in Figure 3, the results from the virtual environment
closely resemble the ground truth.

Figure 3. Comparisons of the virtual agent distributions

Table 1. KL divergence between virtual agents and real agents
KL Average

task time
Convergence

time
Offloading

ratio
Agent

GAN-SMMSG 0.00 0.00 0.01 0.00
GMM 0.03 0.03 0.07 0.32
GAN 0.70 0.11 0.18 0.90

WGAN 0.68 0.03 0.28 0.02

Figure 4. Comparisons of offload-ratio between the reality and
virtual environment

The offload ratio of the agent changes over time,
suggesting that the virtual environment should have similar
characteristics. However, because our agent model doesn’t
account for time, we split the historical data of a day into
12 parts in chronological sequence to simulate the offload
ratio’s temporal changes. Each partitioned dataset is used
to independently train a virtual environment. Each virtual
environment then deploys the same history engine policy,
specifically the random policy. We present theoffload ratio
in both the virtual and real environments. As illustrated in
Figure 4, the virtual environment can mirror the offload
ratio’s temporal trends.

1078 Journal of Internet Technology Vol. 25 No. 7, December 2024

4.2.2 Generalization Ability of Our Approach
Next, we will assess whether the proposed approach’s

strategy has superior generalization capabilities. Given there
is no prior work on constructing virtual environments, we
compare our approach with a traditional behavior cloning
(BC) algorithm. This algorithm learns a mapping from
customer states to actions, assuming the data is independently
and identically distributed, which isn’t accurate in practice.
As a result, the BC algorithm can’t discern the agent’s true
intent, and minor environmental changes can significantly
decrease accuracy. In contrast, the MAIL approach learns
long-term behavior without assuming independent and
identical distribution, thus potentially offering better
generalization.

Since the goal of building the virtual environment is
to train RL algorithms offline, we use the RL approach to
learn policies on the virtual environment S and use Behavior
Cloning (BC) approach to learn policies on historical data S1.
Please note that the virtual environment is constructed solely
based on historical data.

The first baseline approach adopts Behavior Cloning
(BC), which fits a model based on historical data to generate
actions that are close to the “correct” ones, using the
following loss function:

1

* 2

(,)1

1
arg min | () |

| |BC
s a S

s a
Sππ π

∈

= −∑ (7)

The second baseline adopts MAIL-MMSG, using the
following loss function:

1

* 2 2

(,) (,)1

1
arg min | () | + | () |

| | | |MAIL-MMSG
s a S s a S

s a s
S Sπ

λ
π π π

∈ ∈

= −∑ ∑ (8)

where λ is set to 0.4.
We utilize one day’s data to construct a virtual

environment using MAIL-MMSG, and then use one day,
one week, and one month’s data to create three more
environments. We initially run our approach in the first
environment and implement the resulting policies in the
others. As environments grow more distinct over time, the
offloading ratio is anticipated to decrease, reflecting the
ability to generalize to new environments. We replicated
this process, substituting MAIL with the behavior cloning
approach (BC), which uses the same network structure as
MAIL-MMSG. Table 2 shows the offload ratio improvement
for the random strategy. Offloading decreases faster in the
BC environment than in others. After a month, the BC
environment strategy performs worse than the random
strategy.

Table 2. Offloading ratios improved from two simulators by BC and
MMSG-MAIL

0 day 1 day 1 week 1 month
BC 21.45% 8.36% 1.05% 0.54%
MAIL-MMSG 18.57% 16.68% 8.44% 8.47%

5 Related Work and Discussion

This paper studies the multi-scenario unified resource
scheduling problem in an edgecloud-native environment. It
involves edge computing, cloud-native computing, resource
allocation, and task scheduling, presenting both high
theoretical complexity and practical value.

Several issues arise in the unified scheduling of mixed-
scenario services: How can we evaluate the effectiveness of
scheduling and allocation results? How can we accurately
assess resources when numerous applications are generated
simultaneously? How can we recreate a real-world scheduling
problem in the virtual environment?

There are two potential solutions to these problems: one
is using a supervised learning approach; the other involves
learning the environment model from historical data first, and
then deriving the scheduling policy from that model.

Supervised learning approaches include:
(1) Behavior Cloning (BC) primarily learns policies from

state-behavior data using supervised approaches. However,
BC requires an independent and identically distributed
assumption on demonstration data, which is not met in
reinforcement learning (RL) tasks [22].

(2) Inverse Reinforcement Learning (IRL) learns a
reward function from data and then trains a policy based on
this function. IRL relaxes the independent and identically
distributed data assumption, but still assumes that the
environment is static. IRL relaxes the independent and
identically distributed assumption of data, but still assumes
that the environment is static.

Given the highly dynamic nature of real-world
environments, these approaches have limitations. They make
it unfeasible to learn policies directly from data. Moreover,
building a unified resource scheduling policy for multiple
scenarios is challenging.

Reinforcement learning training often uses simulators
to avoid physical costs. A prime example is Google’s
application for data center cooling. Here, a neural network
models the system dynamics, and the policy is trained in the
simulated environment using a state-of-the-art RL algorithm
[36]. However, simulating the behavior of mixed service
groups across multiple scenarios in the native environment
of the edge cloud is challenging. Current RL algorithms
typically require abundant interactions with the environment.
Any errors in the environment model can increase the square
error of the policy. Despite this, successful environment
learning can offer unparalleled advantages in terms of policy
generalization and application.

This paper aims to understand the virtual environment
from historical data to achieve reinforcement learning with
“zero cost” training. However, the behavior of the highly
dynamic mixed-service community is complex. Can it be
successfully simulated? Is this technical approach feasible?

Sigma, Alibaba’s container scheduling system, has delved
into this topic. Its current simulator, Cerebro, is a tool that
uses 1:1 production data to perform scheduling and allocation
simulations [33]. Currently, simulations are purely data-level,
with dynamic predictions also based on static data. However,
several questions remain unanswered by these static

Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning 1079

simulations. Can various microservices harmonize once static
requirements are met? What combination of microservices
is the most effective? Is it more efficient to reduce peak load
and utilize resources, such as by sharing CPUs? These are all
inquiries that current static simulations cannot address.

Generative Adversarial Imitation Learning (GAIL) [31]
was recently proposed to overcome the fragility of behavior
cloning using GAN frameworks as well as the costality of
inverse reinforcement learning. GAIL allows the agent to
interact with the environment and learn a policy through
reinforcement learning approach, while improving the
reward function during training. Hence, RL approaches
are generators in the GAN framework. GAIL employs a
discriminator D to measure the similarity between policy-
generated trajectories and expert trajectories. Practice
shows that the theoretical and empirical results of GAIL are
similar to those of IRL, and GAIL is more efficient. GAIL
has become a popular choice for imitation learning [37],
and there already exist model-based extensions [38] and
third-person extensions [39]. Inspired by the work of Yang
et al. [40]. we will migrate MAIL (Multi-agent Adversarial
Imitation Learning) to edge cloud-native scenarios.

Generative Adversarial Imitation Learning (GAIL) was
recently proposed to address the limitations of behavior
cloning and the complexity of inverse reinforcement learning.
GAIL allows the agent to interact with the environment,
learning a policy through reinforcement approaches
while refining the reward function during training. In this
framework, reinforcement learning approaches function as
generators. GAIL employs a discriminator to compare policy-
generated trajectories and expert trajectories. Empirical
evidence shows that GAIL’s theoretical and practical results
are similar to those of inverse reinforcement learning, but
GAIL is more efficient. As such, it has become a popular
choice for imitation learning [37], with existing model-based
extensions [38] and third-person extensions [39]. Inspired by
the work of Yu Yang et al. [34] and Fan Yang et al. [40], we
adapted Multi-agent Adversarial Imitation Learning (MAIL)
to edge cloud-native scenarios.

6 Conclusion and Future Work

In conclusion, this paper presents an approach to resource
scheduling in edge-cloud-native environments using Multi-
agent Adversarial Imitation Learning. Our approach has
effectively demonstrated its capability to replicate a real-
world scheduling problem within the virtual environment,
and it stands out for its superior generalization capabilities
when compared to traditional approaches. This superiority is
particularly notable given the dynamic and complex nature of
real-world environments.

Our approach offers a promising solution to the
challenges of resource scheduling in mixed-service scenarios,
bringing both high theoretical complexity and practical value.
It addresses the inherent issues in the unified scheduling of
mixed-scene services such as evaluating the effectiveness
of scheduling and allocation results, accurately assessing
resources when numerous applications are generated
simultaneously, and recreating a real-world scheduling

problem in the virtual environment.
Future work will concentrate on further optimizing this

approach, refining the algorithms, and enhancing the ability
of the virtual environment to map the temporal trends of
the offload ratio in real-world environments. We also aim
to explore the potential applications of this approach in
other complex scheduling scenarios. Given the growing
complexities of edgecloud-native environments, the need
for effective and efficient resource scheduling strategies is
only projected to increase. Therefore, the lessons learned
and the methodologies developed in this study could have
implications for future research and developments in this
field.

Acknowledgment

The work has been supported by the Natural Science
Foundation of Hubei Province in China (No. 2021CFB482),
the Basic Research Science and Technology Project of
Xiangyang (High-tech Domain 2022ABH007013), and Hubei
Superior and Distinctive Discipline Group of “New Energy
Vehicle and Smart Transportation”.

References

[1] A. Damiani, G. Fiscaletti, M. Bacis, R. Brondolin,
M. D. Santambrogio, BlastFunction: A Full-stack
Framework Bringing FPGA Hardware Acceleration
to Cloud-native Applications, ACM Transactions on
Reconfigurable Technology and Systems (TRETS), Vol.
17, pp. 1-27, June, 2022.

[2] A. Boudi, M. Bagaa, P. Poyhonen, T. Taleb, H. Flinck,
AI-Based Resource Management in Beyond 5G Cloud
Native Environment, IEEE Network, Vol. 35, No. 2, pp.
128-135, March/April, 2021.

[3] S. Pardeshi, C. Khairnar, K. Alfatmi, Analysis of Data
Handling Challenges in Edge Computing, International
Journal of Performability Engineering, Vol. 18, No. 3,
pp. 176-187, March, 2022.

[4] H. Deng, X. Zhang, J. Jiang, J. Wang, H. Huang,
Privacy Protection of Personal Education Information
on Blockchain, International Journal of Performability
Engineering, Vol. 18, No. 5, pp. 317-328, May, 2022.

[5] G. A. Jimenez-Maggiora, S. Bruschi, H. Qiu, J. So, P.
S. Aisen, Corrigendum to: ATRI EDC: a novel cloud-
native remote data capture system for large multicenter
Alzheimer’s disease and Alzheimer’s disease-related
dementias clinical trials, JAMIA Open, Vol. 5, No. 1, pp.
1-8, April, 2022.

[6] M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno,
A. Zoha, K. Arshad, K. Assaleh, S. Muhaidat, M.
Debbah, M. Imran, Edge-Native Intelligence for 6G
Communications Driven by Federated Learning: A
Survey of Trends and Challenges, IEEE Transactions
on Emerging Topics in Computational Intelligence, Vol.
7, No. 3, pp. 957-979, June, 2023.

[7] H. Wang, G. Tang, K. Wu, J. Wang, PLVER: Joint
Stable Allocation and Content Replication for Edge-
assisted Live Video Delivery, IEEE Transactions on

1080 Journal of Internet Technology Vol. 25 No. 7, December 2024

Parallel and Distributed Systems, Vol. 33, No. 1, pp.
218-230, January, 2022.

[8] S. Kassir, G. Veciana, N. Wang, X. Wang, P. Palacharla,
Joint Update Rate Adaptation in Multiplayer Cloud-
Edge Gaming Services: Spatial Geometry and
Performance Tradeoffs, Twenty-second International
Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile
Computing, Shanghai, China, 2021, pp. 191-200.

[9] N. Sreekumar, A. Chandra, J. Weissman, Position Paper:
Towards a Robust Edge-Native Storage System, IEEE/
ACM Symposium on Edge Computing (SEC), San Jose,
CA, USA, 2020, pp. 285-292.

[10] G. Nain, K. K. Pattanaik, G. K. Sharma, Towards edge
computing in intelligent manufacturing: Past, present
and future, Journal of Manufacturing Systems, Vol. 62,
pp. 588-611, January, 2022.

[11] Q. Huang, Y. Huang, The Significance of Urban Cockpit
for Urban Brain Construction, 11th International
Conference on E-bus iness , Management and
Economics, Virtual Conference, 2020, pp. 70-73.

[12] L. Loven, T. Leppanen, E. Peltonen, J. Partala, E.
Harjula, P. Porambage, M. Ylianttila, J. Riekki,
EdgeAI: A Vision for Distributed, Edge-native Artificial
Intelligence in Future 6G Networks, 6G Wireless
Summit, Levi, Finland, 2019, pp. 10-18.

[13] J. Okwuibe, J. Haavisto, E. Harjula, I. Ahmad, M.
Ylianttila, SDN Enhanced Resource Orchestration of
Containerized Edge Applications for Industrial IoT,
IEEE Access, Vol. 8, pp. 229117-229131, December,
2020.

[14] X. He, H. Lu, Y. Mao, K. Wang, QoE-driven Task
Offloading with Deep Reinforcement Learning in
Edge intelligent IoV, IEEE Global Communications
Conference, Taipei, Taiwan, 2020, pp. 1-6.

[15] Y. Zhai, W. Sun, J. Wu, L. Zhu, J. Shen, X. Du, M.
Guizani, An Energy Aware Offloading Scheme for
Interdependent Applications in Software-Defined IoV
With Fog Computing Architecture, IEEE Transactions
on Intelligent Transportation Systems, Vol. 22, No. 6,
pp. 3813-3823, June, 2021.

[16] M. Liwang, R. Chen, X. Wang, Resource Trading in
Edge Computing-enabled IoV: An Efficient Futures-
based Approach, IEEE Transactions on Services
Computing, Vol. 15, No. 5, pp. 2994-3007, September-
October, 2022.

[17] M. C. Ogbuachi, A. Reale, P. Suskovics, B. Kovacs,
Context-Aware Kubernetes Scheduler for Edge-native
Applications on 5G, Journal of Communications
Software and Systems, Vol. 16, No. 1, pp. 85-94, March,
2020.

[18] S. H. VanderLeest, ARINC 653 hypervisor, 29th Digital
Avionics Systems Conference, Salt Lake City, UT, USA,
2010, pp. 5.E.2-1-5.E.2-20.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, M. Riedmiller, Playing
Atari with Deep Reinforcement Learning, arXiv,
arXiv: 1312.5602, December, 2013. https://arxiv.org/
abs/1312.5602

[20] S. Schaal, Is imitation learning the route to humanoid
robots? Trends in cognitive sciences, Vol. 3, No. 6, pp.
233-242, June, 1999.

[21] B. D. Argall, S. Chernova, M. Veloso, B. Browning, A
survey of robot learning from demonstration, Robotics
and autonomous systems, Vol. 57, No. 5, pp. 469-483,
May, 2009.

[22] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J.
Valasek, N. R. Waytowich, Integrating Behavior Cloning
and Reinforcement Learning for Improved Performance
in Dense and Sparse Reward Environments, 19th
International Conference on Autonomous Agents and
MultiAgent Systems, Auckland, New Zealand, 2020, pp.
465-473.

[23] P. Wang, D. Liu, J. Chen, H. Li, C. Chan, Human-
like Decision Making for Autonomous Driving via
Adversarial Inverse Reinforcement Learning, arXiv,
arXiv: 1911.08044, February, 2020. https://arxiv.org/
abs/1911.08044v2

[24] X. Zhao, L. Zhang, L. Xia, Z. Ding, D. Yin, J.
Tang, Deep Reinforcement Learning for List-wise
Recommendations, arXiv, arXiv: 1801.00209, June,
2019. https://arxiv.org/abs/1801.00209v3

[25] X. Zhao, L. Xia, L. Zou, D. Yin, J. Tang, Toward
Simulating Environments in Reinforcement Learning
Based Recommendations, arXiv, arXiv: 1906.11462,
September, 2019. https://arxiv.org/abs/1906.11462

[26] M. Kearns, S. Singh, Near-Optimal Reinforcement
Learning in Polynomial Time, Machine Learning, Vol.
49, No. 2/3, pp. 209-232, November, 2002.

[27] M. Janner, J. Fu, M. Zhang, S. Levine, When to trust
your model: Model-based policy optimization, arXiv,
arXiv: 1906.08253, November, 2021. https://arxiv.org/
abs/1906.08253

[28] T. Xu, Z. Li, Y. Yu, Error bounds of imitating policies
and environments, arXiv, arXiv: 2010.11876, October,
2020. https://arxiv.org/abs/2010.11876

[29] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan,
D. Krishnan, Unsupervised Pixel-Level Domain
Adaptation with Generative Adversarial Networks,
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 95-
104.

[30] T. Toda, H. Saruwatari, K. Shikano, Voice conversion
algorithm based on Gaussian mixture model with
dynamic frequency warping of STRAIGHT spectrum,
2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat.
No.01CH37221), Salt Lake City, UT, USA, 2001, pp.
841-844.

[31] X. Wang, J. Zhou, T. Song, D. Liu, Q. Wang, FlotGAIL:
An operational adjustment framework for flotation
circuits using generative adversarial imitation learning,
Minerals Engineering, Vol. 183, Article No. 107598,
June, 2022.

[32] H. Zhao, H. Li, S. Maurer-Stroh, L. Cheng, Synthesizing
retinal and neuronal images with generative adversarial
nets, Medical Image Analysis, Vol. 49, pp. 14-26,
October, 2018.

Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning 1081

[33] Ali container scheduling system Sigma simulation
platform Cerebro was revealed, 2023. Available online:
https://developer.aliyun.com/article/448315 (accessed
on 13 October 2023).

[34] J. C. Shi, Y. Yu, Q. Da, S. Y. Chen, A. X. Zeng,
Virtual-Taobao: Virtualizing Real-World Online Retail
Environment for Reinforcement Learning, arXiv,
arXiv: 1805.10000, May, 2018. https://arxiv.org/
abs/1805.10000

[35] Z. Hu, H. Xue, Q. Zhang, J. Gao, N. Zhang, S. Zou,
Y. Teng, X. Liu, Y. Yang, D. Liang, X. Zhu, H. Zheng,
DPIR-Net: Direct PET Image Reconstruction Based
on the Wasserstein Generative Adversarial Network,
IEEE Transactions on Radiation and Plasma Medical
Sciences, Vol. 5, No. 1, pp. 35-43, January, 2021.

[36] R. S. Sutton, A. G. Barto, Reinforcement Learning: An
Introduction, IEEE Transactions on Neural Networks,
Vol. 9, No. 5, pp. 1054-1054, September, 1998.

[37] A. Kuefler, J. Morton, T. Wheeler, M. Kochenderfer,
Imitating driver behavior with generative adversarial
networks, 2017 IEEE Intelligent Vehicles Symposium
(IV), Los Angeles, CA, USA, 2017, pp. 204-211.

[38] N. Baram, O. Anschel, S. Mannor, Model-based
adversarial imitat ion learning, arXiv , arXiv:
1612.02179, December, 2016. https://arxiv.org/
abs/1612.02179

[39] B. C. Stadie, P. Abbeel, I. Sutskever, Third-person
imitation learning, arXiv , arXiv: 1703.01703,
September, 2019. https://arxiv.org/abs/1703.01703

[40] F. Yang, A. Vereshchaka, C. Chen, W. Dong, Bayesian
Multi-type Mean Field Multi-agent Imitation Learning,
34th Conference on Neural Information Processing
Systems, Vancouver, Canada, 2020, pp. 1-10.

Biographies

Wei Xiong is an associate professor at
Hubei University of Arts and Science,
China. He received his Ph.D. degree in
computer science from Wuhan University,
China in 2015. His research interest
includes edge computing and AI, as well as
autonomous driving vehicles.

Xinying Wang is an associate professor
at Hubei University of Arts and Science,
China. He received his B.S. in education
technology from Central China Normal
Universi ty in 2000, M.S. degree in
automatic control from Wuhan University
of Technology in 2008. His research
interest includes service computing and

software engineering.

Franz Wotawa is a PhD graduate from
the Vienna University of Technology in
Austria. He currently holds a professorship
a t Graz Univers i ty of Technology.
Professor Wotawa’s research focuses on
intelligent systems, software verification,
system testing, and autonomous driving
vehicles.

Qiaozhi Hua is an associate professor
at Hubei University of Arts and Science,
China. He received the PhD from Waseda
University, Tokyo, Japan in 2019. His main
fields of research interests include mobile
communications, wireless sensor networks,
intelligent transportation systems and
optical communications.

