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Abstract

The evolution of cloud and edge computing technologies 
has brought about resource management challenges. 
Traditional resource scheduling strategies fall short in 
dynamic cloud-edge environments, one of the challenges 
is identifying system state changes in multi-scenario edge 
cloud-native environments. The dynamic orchestration and 
deployment of container resources are crucial. To address 
this issue, we introduce a virtual environment, which 
generates interactions of multi-scenario mixed service 
groups. Furthermore, we proposed a multi-agent adversarial 
imitation learning approach, which is trained in the virtual 
environment. Experiments reveal that our approach, which is 
fully trained in the virtual mixed-service environment, results 
in no physical sampling costs and significantly outperforms 
traditional supervised approaches.

Keywords: Edge cloud-native, Resource scheduling, 
Imitation learning

1  Introduction

As cloud-native technology matures, it’s being explored 
by academia and business communities for practical 
implementation [1]. The integrated development of AI, IoT, 
and edge computing is leading to a growing variety, scale, 
and complexity of business operations in edge computing 
scenarios [2-4], and building a new generation of edge 
computing platforms using cloud-native technology is 
becoming an industry focus [5]. Therefore, studying how 
to integrate cloud-native technology and edge computing 
to assist developers in managing large-scale applications 
on wide-ranging cloud-edge resources is of significant 
importance [6].

Edge cloud-native applications have a broad spectrum 
of use cases, including live video [7], cloud gaming [8], 
logistics  and transportation [9], intelligent manufacturing 
[10], and urban brain [11], etc. These applications can be 
categorized into mobile broadband services [12], large-scale 
IoT services with fixed sensors [13], and mission-critical IoT 
services like the Internet of Vehicles, based on factors such 
as mobility, billing, security, policy control, latency, and 
reliability [14-16]. However, deploying ultra-large-scale edge 

cloud-native services can be challenging due to issues like 
decentralized computing power, heterogeneous resources, and 
weak network connectivity. The goal of edge cloud-native 
technology is to consolidate scattered computing power into 
a larger resource pool and optimize resource scheduling 
for maximum energy efficiency, effectively balancing peak 
and valley filling. When users deploy mixed services (a 
combination of online and offline services) and request 
necessary computing resources (such as CPU, memory, 
disk) from the management node, the scheduler selects 
physical machines that meet the specifications to deploy the 
containers. Since there are often multiple fitting physical 
machines, each with varying resource capacities, different 
allocation approaches can lead to different allocation rates. 
The crucial role of the scheduler is to select the most suitable 
physical machine out of numerous possibilities, adhering to 
a specific strategy [17-18]. Implementing mixed services in 
multiple scenarios within a native edge cloud environment 
is a challenge due to the varying movement characteristics 
and communication capabilities among different service 
communities. These discrepancies can delay the formation of 
a stable cluster. Issues arise when the data flow and control 
flow are separated into different mixed service groups, 
obstructing the collaboration among multi-scenario mixed 
service groups. In the current edge cloud environment, 
resources for data and control planes are scheduled separately 
within distinct service groups. This situation prompts 
several questions. How can we maintain stability in multi-
scenario mixed-service groups given their rapidly changing 
topologies and complex interaction? Additionally, how can 
we effectively manage service group resources?

Reinforcement learning (RL) can effectively manage the 
scheduling of mixed-service resources. However, its direct 
application can be challenging due to the need for numerous 
interactions with the environment, which can be expensive. 
As a solution, simulators are often used for RL training. A 
prime example is Google’s data center cooling system [19], 
where a neural network estimates system dynamics. The 
policy is subsequently trained in a virtual environment using 
advanced reinforcement learning algorithms.

Applying reinforcement learning to real-world tasks can 
be challenging. In physical environments, conducting a large 
number of experiments as required by current approaches is 
often impractical. To enhance service resource scheduling 
in edge-native multi-application scenarios, we propose an 
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approach involving offline training using reinforcement 
learning algorithms in a virtual environment. The goal is to 
maximize long-term rewards in a simulator. The resulting 
policy is expected to perform well in the actual environment 
or serve as a starting point for online tuning.

Simulating the behavior of multi-scenario mixed service 
groups in a dynamic environment is more challenging than 
approximating the dynamics of a data center. We generate 
the behavior data for the mixed service groups from 
some policies. Current imitation learning approaches can 
form policies from data [20-21]. Behavior cloning (BC) 
approaches [22] primarily learn policies from state-behavior 
data using supervised approaches. However, BC requires an 
i.i.d. assumption on demonstration data, which isn’t met in 
RL tasks. On the other hand, Inverse Reinforcement Learning 
(IRL) approaches [23] learn a reward function from data 
and then train a policy based on this reward function. Unlike 
BC, IRL relaxes the i.i.d. assumption on the data but still 
presumes a static environment. If the environment changes, 
the learned policy may fail. These shortcomings make these 
approaches less practical for building virtual environments.

Reinforcement learning approaches come with several 
challenges: 1) they are time-consuming and require 
substantial engineering; 2) if the model is not trained 
sufficiently before deployment, it may perform poorly on 
real-time data, compromising the reinforcement learning 
phase; 3) large amounts of data are necessary to ensure the 
model’s robustness. To mitigate these challenges, some 
researchers recommend using a virtual environment for 
training and assessing the system [24-25]. Integrating a 
virtual environment with reinforcement learning enables 
intelligent scheduling based on runtime resources. It 
simplifies the unified resource scheduler, enhances runtime 
stability, and reduces resource costs.

However, there is a compound error issue in the 
environment model of offline reinforcement learning. In 2002, 
Kearns and Singh demonstrated [26] that the environment 
model obtained through supervised learning is prone to a 
significant compound error, with an error coefficient of T^2 
after T steps of action. For example, if there are 100 steps, the 
final single-step error will be magnified by a factor of 10,000. 
This quadratic compound error has had a substantial impact 
on the field, leading to the abandonment of high-precision 
environment models and the avoidance of relying on them. 
As an alternative, the model-based policy optimization 
(MBPO) approach, proposed by the University of California, 
Berkeley in 2021 [27], recognizes the difficulty in reducing 
compound error and instead focuses on minimizing it 
within a few steps in the environment model. However, this 
approach faces challenges in fully evaluating the policy if the 
complete action decision trajectory cannot be executed in the 
environment model, greatly reducing its applicability in real-
world tasks.

In 2020, Tian Xu et al. proposed a novel proof approach 
for cumulative errors [28], which identified that compound 
error consists of two components. The first one is the 
conversion from single-step error to state distribution error, 
while the second one is the conversion from state distribution 

error to overall policy return error. By bypassing the first part 
and utilizing distribution matching targets instead of single-
step prediction targets, the coefficient of compound error 
can be reduced from T2 to T, reaching the theoretical lower 
bound. This breakthrough effectively resolves the theoretical 
problem of excessive compound error. Distribution matching 
targets involve matching the overall distribution of data 
generated through policy interactions in the environment 
model with historical data. The approaches for constructing 
an environment model based on distribution matching targets 
can effectively leverage reinforcement learning techniques to 
train efficient policy models in the environment model.

In this study, we build a virtual environment through the 
interaction between multi-agent policy and the environment. 
This is particularly relevant for multi-scenario mixed service 
groups under edge cloud-native environments, where the 
movement characteristics and communication capabilities of 
multi-scenarios vary greatly. Their distribution is complex 
and extensive, but database sampling cannot generate 
additional data, leading to a low degree of generalization 
in the final model. To address this, we propose the GAN 
(Generative Adversarial Network) [29] Simulating Multi-
scenario Mixed Service groups (GAN-SMMSG) approach 
to create virtual agents, as traditional approaches like GMM 
[30] and GAN struggle with such high-dimensional data. 
To generate interactions, a fundamental aspect of virtual 
environments, we introduce a Multi-agent Adversarial 
imitation Learning of Multi-Scenario Mixed Service 
Groups (MAIL-MMSG). This approach follows the idea 
of GAIL [31] and learns the policies of the client and the 
platform simultaneously using the generative adversarial 
framework [32]. MAIL-MMSG trains a discriminator to 
distinguish between simulated and real interactions, using 
signal feedback as a reward to generate more realistic 
interactions. After the agent and environmental interactions 
are generated, the virtual environment is complete and can 
be used for platform policy training. In our experiments, 
we created a virtual environment using records from a real 
mixed ministry service environment and compared it with 
the actual environment. The results showed that the virtual 
environment accurately replicates properties close to the real 
environment. We then used the virtual environment to train 
a resource scheduling policy for the multi-scenario mixed 
service to maximize revenue. The policy trained in the virtual 
environment outperformed traditional supervised learning 
approaches, improving revenue in the real environment, with 
no physical trial costs.

The contributions of this paper are:
(1) For the construction of a multi-scenario virtual 

environment of mixed service groups, it’s necessary to  
sample the perception-decision-execution behavior of 
the mixed service groups. The distribution of the group’s 
characteristics should closely map the real distribution.

(2) The environment and policy models are trained 
simultaneously through the dual and adversarial learning of 
the virtual environment and the agent, enabling more realistic 
interactions.
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Figure 1. Multi-scenario under  edge cloud-native environment

2  Motivating Scenario

Implementing reinforcement learning in a real user 
environment can be costly due to trial and error, even with 
minimal traffic. Simply transferring the reinforcement 
learning algorithm to the real world is impractical. However, 
by learning virtual environment models from historical 
data in real-world scenarios, we can achieve significant 
advantages in terms of generalization ability. 

To ensure the disaster tolerance and other runtime state 
requirements of services in the scheduled container, the 
scheduling system allows business applications to set unique 
type requirements, exclusive requirements, and mutual 
exclusion and affinity when scheduling. These firm and 
flexible rules undoubtedly add complexity to the knapsack 
problem.

We delved into scenarios where online and offline tasks 
coexisted. Suppose the online task chooses to drop some 
containers to allocate resources for the offline task, based 
on current business service requirements. Which instances 
would be most sensible to reduce? While scaling is a factor 
to consider, should it also be accounted for in capacity 
allocation? Another factor to consider is time constraints. 
While it’s not critical, adhering to previously outlined 
conditions is important. Typically, each request should be 
completed within a maximum of 180 seconds. The scale of 
the controlled host usually falls around the 10,000 mark. The 
high potential concurrency level of requests should also be 
taken into account.

All of our previous simulations were static, such as the 
Sigma-cerebro scheduling simulator [33], which was a tool 
platform, using 1:1 production data to perform scheduling and 
distribution simulations. These simulations are completely 
data-driven, based on static data for dynamic prediction. This 
approach is due to the challenge of simulating the online 
conditions of tens of thousands of hosts, which will require a 
lot of resources. This brings two problems:

Firstly, even if static requirements are met, it’s unclear 
whether various microservices will coexist harmoniously. 
We need to determine the most effective combination of 

applications and explore whether cutting peak load and using 
resources efficiently through approaches like CPU share is 
preferable.

Secondly, our current static simulations can’t answer 
these questions.

This paper primarily focuses on the unified scheduling 
approach for mixed-service resources across multiple 
application scenarios as shown in Figure 1. We utilize a 
virtual environment to simulate business Scenarios and 
utilize the Reinforcement Learning (RL) algorithm to train 
strategies. This exploration helps address the challenge of 
unified scheduling for mixed service groups under multiple 
scenarios.

3  Our Approach

In this section, we give a formal description of the 
problem in Section 3.1, propose the framework in Section 
3.2, build a multi-scenario virtual environment in Section 3.3, 
and train the environment and policy models simultaneously 
through the dual and adversarial learning in Section 3.4.

3.1 Problem Formulation
In the native edge cloud, there are numerous sub-

scenarios. Each is optimized independently, resulting in a 
competitive dynamic between them. Unfortunately, enhancing 
the performance of individual sub-scenarios doesn’t 
necessarily lead to overall improvement. To address this, the 
sorting problem of multiple sub-scenarios was treated as a 
series of fully cooperative and partially observable multi-
agent sequential decision issues. This approach allowed 
for the exploration of optimization strategies, shifting the 
deployment strategy of each scenario from being independent 
to a cooperative, win-win approach.
3.1.1 Markov Decision Process Formulation 

In a classical reinforcement learning problem, there 
will be a formulation (o1, r1, a1, ..., at, ot, rt), where o/r/
a denotes observation, payoff, and action, respectively. 
As mentioned before, the environment in our problem is 
partially observable, which means that the state St represents 
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experience, i.e. st = f (o1, r1, a1, ..., at−1, ot, rt), we are 
considering a problem with N agents {A1, A1, ..., AN}, each 
of which corresponds to an optimization scenario with a 
feature (e.g. mobile broadband, Internet of things, Internet 
of vehicles, etc.). In this multi-agent setting, the state of the 
environment (St) is global and shared by multiple agents; 
But observations (ot =(o1

t , o
2
t , ..., o

N
t )), actions (at = (at

1, at
2, ..., 

at
N)), and memories of short-term rewards (rt = (r(st , a

1
t), r(st , 

a2
t), ..., r(st , at

N))) are all owned by the individual agents.
More specifically, each agent Ai will take each decision 

action at
i based on its policy πi(st) and state St, and then 

it will receive a temporary reward rt
i = r(st , at

i) from the 
environment while the state is updated from St to St+1. In 
our task, multiple agents will cooperate to achieve the overall 
maximum payoff. We have a global “action-value” function 
(critic) Q(st, at

1, at
2, ..., at

N) that estimates the global payoff 
for the whole when taking an action (at

1, at
2, ..., at

N) under the 
current state. We also have a global state representation that 
each agent will perform a local action after getting a local 
observation.
3.1.2 Simulator-based RL for Optimization

In this paper, we adhere to the general process of 
simulator-based RL optimization. We first define an 
environment simulator M: S×A×S→Y. Specifically, the goal 
of the user simulator can be formally defined as follows: 
Given a state-action pair (s, a), imitate the user’s feedback y 
on action a based on state s. For each time step t, given the 
prediction ŷt+1, we first update st+1

hist and st+1
stat then load st+1

agent,r 

and st+1
group,r according to ŷt+1, from a real trajectory dataset 

Dτr,where τr = [sr
0, a

r
0, s

r
1, a

r
1, ..., s

r
T, a

r
T ]. Finally, we have st+1 = 

[st+1
hist, st+1

stat, st+1
agent,r , st+1

group,r ] and rewards rt = R(st, at, st+1). We 
define a symbol PM,τr (s'|s, a) as the above transition process 
based on M and τr. Note that instead of directly predicting the 
entire next state st+1, the simulator just predicts the past y and 
builds other states from historical τr.

The overall goal of simulator-based RL is to find an 
optimal policy π̂ * that maximizes the cumulative reward for 
all users. In particular, the goal is written as follows:

~ ( | , )~ ( ), ~ ( ), ~ ( , )
0

max [ [r
M

T
t

r p P tg p g u p u D u g
t

E E rτ πτ
γ

=
∑ ] ]      (1)

where p(g) and p(u) are the prior distributions of multi-
scenario mixed service groups and sub-scenarios, τr ~D(u,g)
represent the true trajectories of sub-scenarios u sampled 
from the log dataset D of multi-scenario mixed service 
groups g, and p(τ | π, PM) is the probability of generating 
trajectories τ = [s0, a0, r0, ..., sT, aT, rT] under the policy π and 
transition functions PM. In particular,

0 0 10
( | , )= ( ) ( | , ) ( | )T

t t t t tt
p P d s P s s a a sτ π π+=∏       (2)

where d0 (s0) is the initial state distribution.

3.2 Outline
Our Approach is a multi-agent training strategy that 

can be used to simultaneously train the policies of multiple 
agents and the policies of virtual environments. In this 

way, the multi-agent policy obtained can include different 
scheduling strategies. By training both the agent and the 
virtual environment together, only historical data is required, 
without the need to access the real environment, and Nash 
equilibrium can be achieved among multiple agents.

Figure 2 shows the process of our approach, which is 
introduced as follows:

(1) First, we obtained the features of mixed-services 
under multiple scenarios, and then utilized a generative 
adversarial network that simulates the distribution of mixed 
services to construct multiple-scenario virtual environments.

(2) A multi-agent adversarial imitation learning approach 
is proposed, which allows agents to interact with the virtual 
environment during the training process, while continuously 
optimizing the reward function.

Reward

GAN-SMMSG

Real Data Discriminator Virtual Data 

Real 
Environment 

Mixed Service 
Groups

Virtual Mixed 
Service Groups

Virtual 
Environment 

Features of 
Mixed Service 

Groups

Multi-agent 
Reinforcement 
Learning

Policy Deloyment

Figure 2. Framework of our approach

3.3 Building a Multi-Scenario Virtual Environment
To build a multi-scenario simulator, it’s necessary to 

generate characteristics of multi-scenario mixed service 
groups. This involves sampling the perception-decision- 
execution behaviors of these groups from multiple scenarios 
to initiate their interaction process. The distribution of 
the generated characteristics for a single scenario should 
resemble the actual distribution. However, learning the 
feature distribution of a single scenario mixed service group 
in high-dimensional space can be challenging. Traditional 
approaches like the Gaussian mixture model struggle to 
achieve this similarity, whereas the Generative Adversarial 
Network (GAN) framework can effectively generate samples 
that closely align with the original data. Yet, the traditional 
GAN discriminator can only determine if the behavior data 
of a single service instance is real, without capturing the 
characteristics of the service group in a single scenario. 
To generate the distribution of the mixed service groups, 
as opposed to a single instance, we use the Generative 
Adversarial Network Simulating Multi-scenario mixed 
service groups (GAN-SMMSG), as illustrated in Algorithm 1. 
GAN-SMMSG maintains a generator (G) and a discriminator 
(D). The discriminator aims to accurately distinguish the 
generated data from the training data by maximizing the 
following objective function

x
p p[log ( )] [log(1 ( ( ))]

D x G
E D x E D G z

∼
+ −



            (3)

The generator is updated to maximize the following 
objective function
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[ ],p p ( ( )) ( ( ( ))) ( ( )|| ( ( )))  G DE D G z aH V G z KL V x V G zβ+ −       (4)

We shorten px~G to pG, px~D to pD. G(z) is the instance 
generated by the noise sample z, V(∙) represents some 
variable associated with internal value. H(V(G(z)) denote the 
entropy of the variable derived from the generated data, used 
to create a broader distribution. KL(V(x)||V(G(z))) is the KL 
divergence between the training data and the variables that 
generated the data, guiding the generated distribution towards 
the training data’s distribution. Under the constraints of KL 
divergence and entropy, GAN-MMSG can learn from the 
generator more effectively. It uses guiding information from 
actual data and can generate superior distributions compared 
to the traditional GAN.

Algorithm 1. Generative Adversarial Network Simulating 
Multi-scenario Mixed Service Groups (GAN-SMMSG)

Input: Real data distribution pD

Body
Initialize training variables θD, θG

for i = 0, 1, 2, ...do
for k steps do
sample mini-batch from pG

sample mini-batch from pD

 update the generator by gradient:

[ ],p p ( ( )) ( ( ( ))) ( ( )|| ( ( )))  G D
G
E D G z aH V G z KL V x V G z

θ
β∀ + − end for

sample mini-batch from pG

sample mini-batch from pD

update the discriminator by gradient:

x x
p p[log ( )] [log(1 ( ( ))]

D GG
E D x E D G z

θ
+ −∀

 

end for
Output: agent generator G

3.4 Multi-agent Adversarial Imitation Learning
We propose an approach called Multi-agent Adversarial 

Imitation Learning of Multi-scenarios Mixed Service Groups 
(MAIL-MMSG), inspired by GAIL. GAIL enables the 
agent to engage with the environment during training, while 
simultaneously optimizing the reward function. It’s important 
to note that the environment needs to be accessible during 
GAIL training. However, when training the client policy, the 
environment is expected to be an unknown or dynamic one.

The GAIL algorithm consists of a discriminator and a 
policy. The policy functions as a generator in a generative 
adversarial network. Given a state, the policy dictates the 
action to be taken, and the discriminator D processes the 
state-action pair (s, a) as input. It then outputs a real number 
between 0 and 1, which represents the probability that the 
state-action pair originated from the agent’s policy, not an 
expert. The discriminator aims to bring the output for expert 
data closer to 0 and the output for the imitator policy closer 
to 1, enabling a clear distinction between the two sets of 
data. Consequently, the loss function of the discriminator is 
defined as follows:

p p( ) [log ( , )] [log(1 ( ( , ))]L E D s a E D G s a
π πφ φ

φ = − + −              (5)

where ϕ are the parameters of the discriminator. With 
discriminator D, the goal of the imitator strategy is that the 
trajectories produced by its interactions can be mistaken for 
expert trajectories by the discriminator. Therefore, we can use 
the output of Discriminator D as the reward function to train 
the imitator policy. Specifically, if the imitator policy samples 
the state s of the environment and takes action a, the state-
action pair (s, a) is fed into the discriminator D, outputs Dϕ(s, 
a), and then the reward is set to r(s, a) = −logDϕ(s, a). We can 
then use this data with any reinforcement learning algorithm 
to continue training the imitator policy. Finally, after the 
adversarial process continues, the data distribution generated 
by the imitator strategy will be close to the real expert data 
distribution, achieving the goal of imitation learning.

MAIL-MMSG is a multi-agent approach that simult-
aneously trains the client and engine policies, unlike GAIL 
which trains a single-agent policy in a static environment. 
This allows the learned client policies to generalize across 
different environment policies. Because MAIL-MMSG trains 
both policies concurrently, it requires only historical data and 
doesn’t need access to the real environment.

However, learning the agent policy and the environment 
policy iteratively can result in a large search space, 
leading to poor performance. Luckily, we can optimize 
both simultaneously. To model the agent policy πc, we 
parameterize customer policy π c

k by k, environment policy 
πσ

 by σ, and reward function Rc
θ by θ. If the customer 

observation sc =< s, a, n > depends on the action a, we have:

( , ) ( , , , ) ( , ( , ), , )c c c c c c cs a s a n a s s n aπ π π π= < > = < ⋅ >           (6)

This shows that the joint policy π c
k,σ can be seen as a 

mapping from S×N to Ac given the environment policy. In 
other words, given the parameters of the environment agent, 
the customer agent can make the decision directly. Since Sc= 
S×A×N, for convenience, we still consider π c

k,σ is the mapping 
from S c to Ac. Joint policies π  and πc together provide 
the opportunity to learn agent policies and environments 
simultaneously. The reward function Rc is designed to be 
non-discriminative in generating data and historical state-
action pairs. Adopting a reinforcement learning algorithm 
will maximize the reward, which means generating 
indistinguishable data.

Algorithm 2 shows the processing of MAIL-MMSG. 
we need historical traces τe and agent distribution Pc to 
run MAIL. In this paper, GAN-SMMSG is used for pre-
learning Pc. After initializing the variables, we start the 
main process of MAIL-MMSG: in each iteration, we collect 
trajectories during the interactions between the agent and the 
environment. We then sample from the generated trajectories 
and optimize the reward function via a gradient approach. 
Then, k and τ is updated by a joint policy π c

k,σ from M c by RL 
optimization. When the iteration ends, MAIL-MMSG returns 
the agent policy πc.

After simulating Pc and πc, we know how the agent 
behaviors are generated and how they react to the 
environment, and the virtual environment has been set up. 
We can generate interactions by deploying engine policies to 
the virtual environment.
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Algorithm 2. Multi-agent Adversarial Imitation Learning of 
Multi-scenario Mixed Service Groups (MAIL-MMSG)
Input: Expert trajectories τe , agent distribution pD

Body
Initialize variables k, σ, θ
for i = 0,1,2,…I do
for j = 0,1,2,…J do
τj = ∅, s ~ Pc, a ~ πσ (S

c, ∙), S c = < s, a >
while NOT TERMINATED do
            sample ac ~ πσ (s

c, ∙)
            add  < sc, ac > to τj

            generate sc ~ τ c
σ (s

c, ac | Pc)
end while
end for
sample trajectories τg from τ0~J

update θ0~J to in the direction to minimize:

x
p

0
[log ( )] [log(1 ( )]( , ) ( , )

g

c c
r

J
E D R E D Rs a s a

θ θ θ+ −∑




 update k, σ by optimizing π c
k,σ with RL in M c

end for
Output : agent policy π c

4  Experiments

In this paper, a Kubernetes-based edge cloud-native 
platform is utilized to transition the Multi-agent Adversarial 
Imitation Learning (MAIL) [34] to an edge cloud-native 
scenario. By leveraging the duality and adversarial learning 
of the environment and agent, the environment model and 
policy model are concurrently trained. This paper concludes 
with a verification of the process.

4.1 Experimental Design
We utilized an edge-cloud network consisting of 

cloud servers, edge nodes, and terminal devices to support 
multi-scenario mixed service groups as our experimental 
environment. The cloud server is a physical machine with 
a 16-core Intel Xeon E5-2620 v4 CPU, 64GB of memory, 
a 1TB hard drive, and Ubuntu 18.04 operating system, 
providing powerful computing and storage capabilities as 
the cloud computing center. The connection between the 
cloud server, edge nodes, and terminal devices is established 
through wired or wireless networks, with network bandwidth 
and latency dynamically changing according to the actual 
situation.

On the software side, we have built a mixed architecture 
based on Karmada, RunD, and Koordinator. We use their 
APIs and tools to implement various resource scheduling 
strategies. The training process includes real-time acquisition 
of user behavior logs to provide training samples for the 
MA-PPO algorithm. These samples are then stored in a 
replay buffer. The model is updated, and the revised model 
is applied online. This process repeats, allowing the online 
model to be dynamically updated to capture changes in agent 
behavior.

In terms of parameter settings, for each agent (scene) 
using PPO, the local observations are a 52-dimensional 
vector, and the actions correspond to 7-dimensional and 
3-dimensional vectors. For simplicity, we output a vector of 
length 10 (filled with 0s to account for the vacant part) from 

the evaluation network, as both the communication module 
and the evaluation network require behavior from each 
different scene.

In PPO, the actor network has 2 hidden layers, the 
number of neurons in each layer is 32, and ReLU is used as 
the activation function. The gain attenuation coefficient in 
the Bellman formula is set to γ = 0.95. In our experiments, 
we use RMSProp to learn the parameters of the network; 
The learning rate is 10-2-3and 10, and the hidden layer of the 
network is 128 layers, corresponding to the actor network 
and the critic network, respectively.

The discriminator uses a 4-layer fully connected network. 
It takes state-action pairs as inputs and outputs a probability 
scalar. The replay buffer size is 104, while the minibatch size 
is 100.

To assess the virtual environment’s impact, we use 
metrics such as average task completion time, convergence 
time, and offloading ratio (defined as the ratio of offloaded 
tasks to the total number of tasks generated in the network).

Al l  measurements  were  ob ta ined  f rom on l ine 
experiments. To compare these metrics between the real 
and virtual environments, we implement the random engine 
strategy in the real environment and collect the corresponding 
trajectories as historical data. Please note that we do not 
assume the engine strategy that generated the data. When 
building the virtual environment, the engine strategy could be 
an unknown complex model.

We simulated the customer distribution P c with GAN-
SMMSG, where α = β = 1. Then we construct the virtual 
environment using MAIL-MMSG, implementing the PPO 
RL approach. All function approximates in this study utilize 
multi-layer perception. Due to resource constraints, we could 
only compare both strategies concurrently in the online 
experiment.

We demonstrate that the virtual agent’s distribution is 
similar to that of the real agent using Algorithm 1. This is 
achieved by deploying the history engine strategy in the 
virtual environment and comparing the agent’s offloading 
ratio over time and their characteristics in both the virtual 
and real environments. We ran algorithm 2 in the virtual 
environment.

4.2 Analysis
4.2.1 Virtual Agent Distributions and Behaviors

To evaluate the ability of simulating agent distribution, 
we compare our approach with the following approaches:

(1) GMM (Gaussian Mixture Model) [30]: This approach 
combines multiple Gaussian models to form a mixture model. 
It is used to calculate the probability distribution of the data.

(2) GAN (Generative Adversarial Networks) [29]: 
Generative Adversarial Networks are composed of two 
networks: the generator network generates simulated data, 
and the discriminator network determines whether the input 
data is real or generated. The generator network continuously 
optimizes the generated data to make it indistinguishable 
from the discriminator network, while the discriminator 
network also optimizes itself to make more accurate 
judgments. The interaction between the two networks creates 
an adversarial scenario.

(3) WGAN (Wasserstein generative adversarial network) 
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[35]: In the original GAN, the discriminator  measures the 
JS divergence between two distributions. However, using 
JS divergence can lead to unstable training. To address this 
issue, this approach uses Wasserstein Distance to measure 
the distance between two probability distributions. WGAN is 
proposed to improve the stability of GAN model training and 
avoid mode collapse.

The ratio of different agents is a fundamental criterion 
for evaluating the virtual environment. We simulate agent 
distribution using GAN-SMMSG, generating 100,000 agents, 
the agents are divided into 3 levels, corresponding to 3 sub-
scenes. The proportions are calculated in four dimensions: 
average task time, convergence time, offloading ratio, and 
agent. These results are compared with the ground truth. 

Figure 3 illustrates that the GAN-SMMSG distribution 
closely matches the ground truth. Table 1 details the specific 
KL difference between the generated and real agents. In our 
experiments, we carefully selected the number of GMM 
clusters to be 10 to fit the data, finding that traditional GANs 
struggled to capture the distribution structure.

Virtual agents are generated by GAN-SMMSG. The 
agents have varying feature preferences, which affect 
the offloading ratio. To assess if the virtual environment 
accurately simulates reality, we analyze the impact of agent 
characteristics on the offloading ratio within this environment 
and compare these findings with real-world results. As 
depicted in Figure 3, the results from the virtual environment 
closely resemble the ground truth.

Figure 3. Comparisons of the virtual agent distributions

Table 1. KL divergence between virtual agents and real agents
KL Average 

task time
Convergence 

time
Offloading 

ratio
Agent

GAN-SMMSG 0.00 0.00 0.01 0.00
GMM 0.03 0.03 0.07 0.32
GAN 0.70 0.11 0.18 0.90

WGAN 0.68 0.03 0.28 0.02

Figure 4. Comparisons of offload-ratio between the reality and 
virtual environment

The offload ratio of the agent changes over time, 
suggesting that the virtual environment should have similar 
characteristics. However, because our agent model doesn’t 
account for time, we split the historical data of a day into 
12 parts in chronological sequence to simulate the offload 
ratio’s temporal changes. Each partitioned dataset is used 
to independently train a virtual environment. Each virtual 
environment then deploys the same history engine policy, 
specifically the random policy. We present theoffload ratio 
in both the virtual and real environments. As illustrated in 
Figure 4, the virtual environment can mirror the offload 
ratio’s temporal trends.
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4.2.2 Generalization Ability of Our Approach
Next, we will assess whether the proposed approach’s 

strategy has superior generalization capabilities. Given there 
is no prior work on constructing virtual environments, we 
compare our approach with a traditional behavior cloning 
(BC) algorithm. This algorithm learns a mapping from 
customer states to actions, assuming the data is independently 
and identically distributed, which isn’t accurate in practice. 
As a result, the BC algorithm can’t discern the agent’s true 
intent, and minor environmental changes can significantly 
decrease accuracy. In contrast, the MAIL approach learns 
long-term behavior without assuming independent and 
identical distribution, thus potentially offering better 
generalization.

Since the goal of building the virtual environment is 
to train RL algorithms offline, we use the RL approach to 
learn policies on the virtual environment S and use Behavior 
Cloning (BC) approach to learn policies on historical data S1. 
Please note that the virtual environment is constructed solely 
based on historical data.

The first baseline approach adopts Behavior Cloning 
(BC), which fits a model based on historical data to generate 
actions that are close to the “correct” ones, using the 
following loss function:

1

* 2

( , )1

1
arg min | ( ) |

| |BC
s a S

s a
Sππ π

∈

= −∑                (7)

The second baseline adopts MAIL-MMSG, using the 
following loss function:

1

* 2 2

( , ) ( , )1

1
arg min | ( ) | + | ( ) |

| | | |MAIL-MMSG
s a S s a S

s a s
S Sπ

λ
π π π

∈ ∈

= −∑ ∑ (8)

where λ is set to 0.4.
We utilize one day’s data to construct a virtual 

environment using MAIL-MMSG, and then use one day, 
one week, and one month’s data to create three more 
environments. We initially run our approach in the first 
environment and implement the resulting policies in the 
others. As environments grow more distinct over time, the 
offloading ratio is anticipated to decrease, reflecting the 
ability to generalize to new environments. We replicated 
this process, substituting MAIL with the behavior cloning 
approach (BC), which uses the same network structure as 
MAIL-MMSG. Table 2 shows the offload ratio improvement 
for the random strategy. Offloading decreases faster in the 
BC environment than in others. After a month, the BC 
environment strategy performs worse than the random 
strategy.

Table 2. Offloading ratios improved from two simulators by BC and 
MMSG-MAIL

0 day 1 day 1 week 1 month
BC 21.45% 8.36% 1.05% 0.54%
MAIL-MMSG 18.57% 16.68% 8.44% 8.47%

5  Related Work and Discussion

This paper studies the multi-scenario unified resource 
scheduling problem in an edgecloud-native environment. It 
involves edge computing, cloud-native computing, resource 
allocation, and task scheduling, presenting both high 
theoretical complexity and practical value.

Several issues arise in the unified scheduling of mixed-
scenario services: How can we evaluate the effectiveness of 
scheduling and allocation results? How can we accurately 
assess resources when numerous applications are generated 
simultaneously? How can we recreate a real-world scheduling 
problem in the virtual environment?

There are two potential solutions to these problems: one 
is using a supervised learning approach; the other involves 
learning the environment model from historical data first, and 
then deriving the scheduling policy from that model.

Supervised learning approaches include:
(1) Behavior Cloning (BC) primarily learns policies from 

state-behavior data using supervised approaches. However, 
BC requires an independent and identically distributed 
assumption on demonstration data, which is not met in 
reinforcement learning (RL) tasks [22].

(2) Inverse Reinforcement Learning (IRL) learns a 
reward function from data and then trains a policy based on 
this function. IRL relaxes the independent and identically 
distributed data assumption, but still assumes that the 
environment is static. IRL relaxes the independent and 
identically distributed assumption of data, but still assumes 
that the environment is static.

Given the highly dynamic nature of real-world 
environments, these approaches have limitations. They make 
it unfeasible to learn policies directly from data. Moreover, 
building a unified resource scheduling policy for multiple 
scenarios is challenging.

Reinforcement learning training often uses simulators 
to avoid physical costs. A prime example is Google’s 
application for data center cooling. Here, a neural network 
models the system dynamics, and the policy is trained in the 
simulated environment using a state-of-the-art RL algorithm 
[36]. However, simulating the behavior of mixed service 
groups across multiple scenarios in the native environment 
of the edge cloud is challenging. Current RL algorithms 
typically require abundant interactions with the environment. 
Any errors in the environment model can increase the square 
error of the policy. Despite this, successful environment 
learning can offer unparalleled advantages in terms of policy 
generalization and application.

This paper aims to understand the virtual environment 
from historical data to achieve reinforcement learning with 
“zero cost” training. However, the behavior of the highly 
dynamic mixed-service community is complex. Can it be 
successfully simulated? Is this technical approach feasible?

Sigma, Alibaba’s container scheduling system, has delved 
into this topic. Its current simulator, Cerebro, is a tool that 
uses 1:1 production data to perform scheduling and allocation 
simulations [33]. Currently, simulations are purely data-level, 
with dynamic predictions also based on static data. However, 
several questions remain unanswered by these static 
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simulations. Can various microservices harmonize once static 
requirements are met? What combination of microservices 
is the most effective? Is it more efficient to reduce peak load 
and utilize resources, such as by sharing CPUs? These are all 
inquiries that current static simulations cannot address.

Generative Adversarial Imitation Learning (GAIL) [31] 
was recently proposed to overcome the fragility of behavior 
cloning using GAN frameworks as well as the costality of 
inverse reinforcement learning. GAIL allows the agent to 
interact with the environment and learn a policy through 
reinforcement learning approach, while improving the 
reward function during training. Hence, RL approaches 
are generators in the GAN framework. GAIL employs a 
discriminator D to measure the similarity between policy-
generated trajectories and expert trajectories. Practice 
shows that the theoretical and empirical results of GAIL are 
similar to those of IRL, and GAIL is more efficient. GAIL 
has become a popular choice for imitation learning [37], 
and there already exist model-based extensions [38] and 
third-person extensions [39]. Inspired by the work of Yang 
et al. [40]. we will migrate MAIL (Multi-agent Adversarial 
Imitation Learning) to edge cloud-native scenarios.

Generative Adversarial Imitation Learning (GAIL) was 
recently proposed to address the limitations of behavior 
cloning and the complexity of inverse reinforcement learning. 
GAIL allows the agent to interact with the environment, 
learning a policy through reinforcement approaches 
while refining the reward function during training. In this 
framework, reinforcement learning approaches function as 
generators. GAIL employs a discriminator to compare policy-
generated trajectories and expert trajectories. Empirical 
evidence shows that GAIL’s theoretical and practical results 
are similar to those of inverse reinforcement learning, but 
GAIL is more efficient. As such, it has become a popular 
choice for imitation learning [37], with existing model-based 
extensions [38] and third-person extensions [39]. Inspired by 
the work of Yu Yang et al. [34] and Fan  Yang et al. [40], we 
adapted Multi-agent Adversarial Imitation Learning (MAIL) 
to edge cloud-native scenarios.

6  Conclusion and Future Work

In conclusion, this paper presents an approach to resource 
scheduling in edge-cloud-native environments using Multi-
agent Adversarial Imitation Learning. Our approach has 
effectively demonstrated its capability to replicate a real-
world scheduling problem within the virtual environment, 
and it stands out for its superior generalization capabilities 
when compared to traditional approaches. This superiority is 
particularly notable given the dynamic and complex nature of 
real-world environments.

Our approach offers a promising solution to the 
challenges of resource scheduling in mixed-service scenarios, 
bringing both high theoretical complexity and practical value. 
It addresses the inherent issues in the unified scheduling of 
mixed-scene services such as evaluating the effectiveness 
of scheduling and allocation results, accurately assessing 
resources when numerous applications are generated 
simultaneously, and recreating a real-world scheduling 

problem in the virtual environment.
Future work will concentrate on further optimizing this 

approach, refining the algorithms, and enhancing the ability 
of the virtual environment to map the temporal trends of 
the offload ratio in real-world environments. We also aim 
to explore the potential applications of this approach in 
other complex scheduling scenarios. Given the growing 
complexities of edgecloud-native environments, the need 
for effective and efficient resource scheduling strategies is 
only projected to increase. Therefore, the lessons learned 
and the methodologies developed in this study could have 
implications for future research and developments in this 
field.
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