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Abstract

This study presents an effective solution for detecting 
faults early on in smart meters. The proposed method 
involves using a variational auto-encoder to evaluate the 
operational conditions of the meters by creating a variational 
feature state space matrix from the power consumption 
data. The use of a variational auto-encoder automates the 
generation of a state model, which allows for accurate 
detection of early faults. The method works by calculating a 
predefined state model and the state model, and comparing 
it to an self-generated threshold. This enables prompt alerts 
when issues are detected. The proposed approach has been 
experimentally validated and has shown better performance 
compared to a comparison method that relies on high-
dimensional feature space. The accuracy rate of up to 91.67% 
has been achieved for alarming smart meter failures.

Keywords: Smart meters, Early fault alarm, Variational auto-
encoder, State model

1  Introduction

It is proposed that the inevitable option for achieving the 
emission peak and carbon neutralization aim is to develop a 
new power system with new energy as its main component. 
This is made possible by AMI (Advanced Metering 
Infrastructure), a critical component of the smart grid [1], 
which performs the essential task of terminal sensing for 
the modern power system and integrates with the Internet 
of Things, cloud computing, and new communication 
technology to create a vast smart meter network, which serves 
as the “last mile” of sensing and controlling carbon emissions 
[2]. The two primary purposes of AMI are automatic meter 
reading (AMR) and advanced data mining (ADM), which 
together provide an overview of the technology (Figure 1).

The volume and complexity of AMI are growing as 
a result of the emergence of advanced IT technologies 
including the Internet of Things (IoT), Cloud computing, and 
5G. In China, there will be roughly 600 million smart meters 
by 2020, and by 2025, there may be more than 1 billion of 
them. Such a sizable IoT system would not only contribute 
to the development of new national infrastructure but also 

carry significant hazards related to the security of data and 
electricity.
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Figure 1. Smart grid’s functions including smart meters [3]

In recent years, smart meters have become an essential 
component of power grid, facilitating the great achievement 
of the Smart Gird information collecting system [4-5]. As 
the primary measurement equipment in the system, smart 
meters play as a foundation in communicating original power 
measurement data, achieving smart meters information 
integration [6]. However, the efficient maintenance of a large 
number of smart meters remains a significant challenge for 
power grid safety. To reach balance of the maintenance cost 
and the financial benefits of smart meters, detecting early 
defect alert for devices is imperative. Traditional methods of 
evaluating the operating status of devices solely by human 
are extremely challenging, as the accuracy and timing of 
the findings cannot be trusted due to the sheer volume of 
operation data and the diverse range of potential defects [7]. 
Artificial intelligence with their exceptional data processing 
capabilities, offer a potential solution to this problem and are 
increasingly being applied in defect diagnosis. Zhang et al. [8] 
proposed a ideally ensemble empirical mode decomposition 
-convolutional deep belief network and achieved good results 
in fault diagnosis of reciprocating compressors. Zou et al. [9] 
achieved accurate bearing fault diagnosis by using an anti-
noise one-dimension convolutional neural network. Xue et al. 
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[10] proposed a deep convolution neural network and support 
vector machine-based fault diagnosis method for rotating 
machinery and the average diagnostic accuracy increased to 
98.71%. However, there is limited research for early alarms 
of smart meters failures. 

Several studies in the reliability field have examined 
smart meter reliability prediction approaches from a 
variety of perspectives. According to LCM (Life Cycle 
Management), the cost and accuracy of associated prediction 
systems should fluctuate noticeably at various stages. As 
shown in Figure 2, various reliability prediction techniques, 
including manual prediction, simulation prediction, reliability 
test, on-site failure data analysis, and PoF (Physics of Failure) 
analysis, are used in a typical LCM. The ability to anticipate 
product reliability with products from the demonstration, 
design, manufacture, operation, and scrapping stages has 
gradually increased. 

Figure 2. Life cycle reliability analysis

In the product design and demonstration stages, manual 
prediction tools like the Bellcore SR-332, Siemens SN29500, 
and ML-217 Plus have been quite helpful [11]. For engineers, 
it is affordable and simple to use, albeit the accuracy heavily 
depends on the database. In the iterative stage of product 
design, simulation prediction methods are frequently used. 
Structural reliability is typically predicted using ANSYS and 
Flotherm in the aerospace, shipbuilding, and other industries. 
Sara from the University of Maryland’s Computational 
Center is also more experienced when it comes to designing 
electronic products. Mathematical modeling and simulation 
in Matlab are typically utilized for complicated unusual 
systems. There are numerous studies and literature in this 
field. The literature [12] used a BP neural network for 
switching power supply reliability prediction. The literature 
[13] proposed a reliability prediction method that is 
appropriate for highly complex systems. The literature [14] 
proposed an aga-based Software reliability prediction method 
based on the LVQ neural network. 

When the technical finalization of the product is carried 
out to confirm the indicators at the product delivery stage, 
it is necessary to conduct several product tests through 
reliability tests, such as accelerated life test (ALT), 
accelerated degradation test (ADT), accelerated stress test 
(AST), and so on. The literature [15] is the most productive 
and concentrated area of dependability work. The issue of no 
failure data was resolved by the accelerated degradation test, 
which produced positive findings for the reliability prediction 
of smart meters.

The on-site operation data can accurately forecast the 
dependability of operating products and direct the use 
of upcoming items in real operations [16]. Essentially, a 
thorough analysis of the effect areas of physical structures, 
such as materials, structures, assembly processes, and the 
usage environment, is required to explain and predict the 
reliability of products. This necessitates performing a failure 
analysis and looking at the foundational layer of the failure 
mechanism. From this vantage point, the product prediction 
can comprehend why it exists. Therefore, numerous well-
known companies, like General Motors, Intel, and Boeing, 
no longer employ the conventional forecast method in favor 
of a reliability prediction method based on failure mode and 
failure mechanism [17].

KPCA (Kernel Principal Component Analysis) is a 
nonlinear data processing technique that may create a high-
dimensional feature space from the input data [18]. To create 
a high-dimensional feature space (HDFS) from the equipment 
operating data, Zhao et al. [19] employed the KPCA method. 
By comparing changes to the HDFS, they were able to 
identify early fault warnings. However, the choice of the 
kernel function or its parameters has a significant impact on 
the early defect alert method based on KPCA; poor selection 
will have a significant impact on the output.

The state model of the input data can be created 
automatically by a variational auto-encoder (VAE) [20]. 
Using VAE, Gregor et al. [21] created the state model of 
the image data and used this model to create similar image 
data.  Tran et al. [22] used VAE to obtain the features of the 
human face image and create a state model of the features. 
They finished reconstructing the photos of the human face 
using this approach. Wang [23] applied deep VAE to finish 
the unsupervised dimension reduction and visualization 
of Single-cell RNA sequencing data. Na [24] used VAE 
to achieve data reduction and feature extraction and then 
combined VAE with DNN to create high-precision gas 
dispersion models.

VAE and several of its derivation models are extensively 
employed in image, voice, vision, and language due to their 
powerful statistical distribution generation capabilities for 
complicated data [25-26], but they have not been applied 
to the anomaly detection of equipment functioning status. 
In this paper, we propose an early fault alarm approach for 
smart meters based on VAE. As input data, the variational 
feature state space matrix is employed, which is made up of 
several key indcators retrieved from the power consumption 
data. From the variational feature state space matrix, the 
approach automatically generates the state model using 
VAE. By meticulously calculating the disparities between  
predetermined and changing state model, and juxtaposing 
it against an automatically generated metric, smart meters 
possess the capability to provide early warning indicators 
[27].

2  FMEA of Smart Meter

A. Physical Structure of Smart Meter
The typical Smart meter is composed of a current 

sampling transformer, voltage sampling transformer, and 
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measurement integrated circuit. The data processing unit is 
composed of an MCU (Microcontroller Unit), data internal 
cards, power-off detection, and calendar clocks. The input 
and output system is composed of LCD (Liquid Crystal 
Display) components, meter pulse, keyboards, external card 
connectors, and auxiliary terminals. The power supply unit 
is composed of a transformer, a linear voltage source, and a 
battery. Figure 3 displays the smart meter’s building block 
diagram.

Figure 3. A typical smart meter structure

Its basic operation entails sampling the user’s supply 
voltage and current in real-time, processing that signal using 
a smart meter’s special integrated circuit to produce a pulse 
output proportional to the electric energy, and then processing 
that output under the control of a single chip computer to 
display the pulse as power consumption.

B. Performance Index of Smart Meter Component 
The key characteristic of smart meters encompass 

measurement errors, daily timing errors, meter constant, 
communica t ion  funct ional i ty,  and  LCD.  The  key 
characteristic of smart meters mainly include measurement 
errors, daily timing errors, meter constant, communication 
function, and LCD because these are the key factors that 
affect the accuracy and reliability of the data collected by 
the smart meters. Measurement error refers to the difference 
between the actual value and the estimated value of energy 
consumption, which can be caused by aging, faults, and 
other factors. Daily timing errors refer to the time deviation 
of measurement data due to inaccurate timing of smart 
meters2. The meter constant refers to the ratio of the energy 
passing through the meter to the number of revolutions of 
the meter disk. Communication function refers to the ability 
of the smart meter to communicate with other devices in 
the network. LCD refers to the display screen on the smart 
meter that shows information such as energy consumption 
and billing information. These performance indicators are 
important for ensuring that smart meters provide accurate and 
reliable data for energy management and billing purposes. 
The faults mentioned in this paper mainly involve the above 
several indicators. When one of these indicators has an 
abnormal value, the electric energy meter is judged to be 
faulty.

1) Measurement error
The deviation between the measurement pulses of 

the reference standard meter and the tested meter at a 
specific load point is used to quantify the measurement 
error of a smart meter. Then it is compared to the reference 
measurement pulse as follows

 %100×
−

=
ref

testref
m P

PP
E                               (1)

where Em ≥ 1% is the failure criterion of the normal smart 
meter for normal users (class 1).

2) Daily timing error
The hardware clock circuit for the smart meter has 

a temperature correction feature, and its terminal output 
frequency is 1Hz. Within the temperature range of –25 °C 
to +60 °C, the clock precision is less than ±1s/d. At the 
reference temperature of 23 °C, the clock accuracy is less 
than ±0.5s/d.

3) Measurement constant 
The smart meter constant is a number that describes the 

relationship between the electric energy value recorded by the 
smart meter and the matching test output value. The number 
of pulses the A/D converter sends when the intelligent meter 
senses one degree of electricity or pulse constant can also be 
used to express it. The test output of the watt-hour meter and 
reading indication must be related in a way that is consistent 
with the nameplate, which can be calculated as shown in (2).

1 10nE E
C

α−∆ = − < ×                            (2)

Where E is the reading value of the meter, n is the pulse 
constant of the meter, * is the cumulative value of the meter 
and * is the decimal place of the meter.

4) Communication
Infrared communication, carrier communication, and 

RS-485 communication are all part of the smart meter’s 
communication capabilities. A 485 communication defect can 
be used to verify whether a smart meter’s 485 communication 
is functioning normally by reading the smart meter’s address 
information through 485 communication on the test bench.

5) LCD
The LCD of smart meters can instantly determine whether 

something is normal to the unaided eye. The upgraded pre-
test results showed three potential scenarios for liquid crystal 
displays operating at high temperatures: the brightness of the 
liquid crystal dims slightly, the reading is only dimly visible 
when the liquid crystal darkens, and as the LCD lacks a 
display characters cannot be seen on it.

C. Effect of Stress on Smart Meters
According to the analysis of the actual use environment, 

the environmental stress of the smart meter includes 
temperature, humidity, vibration, magnetic interference, 
environmental pressure, and working electrical stress (Table 
1). The impact of the environment and workplace stress on 
smart meters will next be examined, along with the process 
by which temperature, humidity, electrical stress, and other 
elements affect smart meters.
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1) Influence of temperature on smart meter
The a sampling circuit is divided into voltage sampling 

and current sampling. The current sampling is mainly 
composed of magnet shunt. Defined that ρ0 is essentially 
a metal conductor with a small temperature coefficient of 
resistance value. According to the change characteristics 
ρ = ρ0(1+αt) of the resistance of the metal material with 
temperature (where t is the temperature in Celsius, the 
resistance at 0 ℃, and the temperature coefficient of 
resistance). It is clear that as the temperature rises, the 
resistance of the magnet resistance increases, increasing 
both the resistance value and the current measured by the 
shunt, or the current value sampled by the meter. The current 
transformer uses more energy than the manganin shunt and 
is an electromagnetic component. The used copper material 
has a high-temperature coefficient, and the temperature has 
a significant impact on the characteristics. They both will 
result in sampling error, which will then have an impact on 
measurement error.

One of the main factors that affect the time accuracy of 
the real-time clock chip is the accuracy and stability of the 
clock crystal oscillator. The temperature drift of the crystal 
oscillator is the primary cause of its accuracy deviation. The 
frequency drift rate of a crystal oscillator, also known as the 
aging rate, along with the temperature characteristics of the 
crystal oscillator affects the momentum of the oscillator’s 
frequency change, which invariably results in the daily 
timing error.

The rated accuracy index can only be guaranteed 
within a specific working range since the temperature will 
impact the weighted resistance network of the operational 
amplifier. ADC accuracy is significantly impacted by offset 
and gain errors that are brought on by variations in ambient 
temperature. Make the meter consistent out of the ordinary. 
Temperature will also impact the zero bias of the circuit, 
cause the operating of the amplifier point to wander, and 
in extreme situations, render the amplifier useless. The 
temperature sensor used by the measuring chip is essentially 
a temperature diode, whose output voltage varies as a 
function of temperature. Its output voltage roughly follows 
a linear relationship with temperature. It is simple to create 
interchangeability errors and linearity calibration errors 
when the temperature field varies significantly, which leads 
to sensor failure and measurement error. HTN-type liquid 
crystal is primarily the liquid crystal material used in single-
phase smart power meters. The Arrhenius reaction rate 
theoretical model predicts the impact of temperature stress on 
liquid crystal failure.

2) Influence of humidity on smart meters
The principal way that humidity damages semiconductor 

goods is by allowing moisture to enter the integrated circuit 
(IC) through the pin gaps and other openings in the plastic 
packaging of the IC. The high-temperature environment 
produces water vapor, which leads to pressure that causes the 
IC resin packaging to split and oxidize the metal inside the 
IC device, which leads to product failure.

3) Influence of electrical stress on smart meters
The thermal imbalance of the working environment of the 

meters is the primary indicator of how electrical stress affects 
smart meters. The current sampling circuit of the meters is 

what has the most impact. The coil of the current sampling 
circuit produces heat. To accurately measure electricity, 
the meters must be in a thermally stable state. The internal 
thermal stability of the meter will become out of balance 
under excessive electrical stress, which will lead to inaccurate 
measurement.

Table 1. Environmental stress factors of smart meter failure
Performance indicators 

affected
Corresponding main external 

environmental factors

Measurement error Temperature
Electrical stress

Daily timing error Temperature
Humidity

Measurement constant Temperature
Communication Temperature

Lcd Temperature

3  State Model

A. State Model  
VAE (Variational Autoencoder) is an algorithm used 

for data generation. It can extract features from input data 
and create a probability distribution model that reflects the 
original form of the input data. This model can generate 
both original and new data that resemble the input data. 
The principle theory of VAE is shown in Figure 4. y The 
feature from input x and θ is represented as Φ. θ represents 
the generative parameter, which is included in the pθ (y) 
and pθ (x|y). The ϕ variational parameter of the approximate 
posterior qφ (y|x) is represented as ψ. The desired state model 
is achieved through the posterior pθ (y|x), which involves the 
feature extraction process. Finally pθ (y)pθ (x|y), the generation 
model, represented as ϕ, is used to produce new data. This 
completes the new data generation process.

Figure 4. Working principle of VAE

The state model should be modified as

1
( ) ( )

k

K

k k
k

p y x p yθ ηα
=

= ∑                           (3)

It is evident that the model comprises K sub-models, 
where αk and ηk are the weights and the parameters, 
respectively.
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B. Generalized State Model 
The state model pθ (y|x) can be:

( ) ( )
( )

( )
p x y p y

p y x
p x

θ θ
θ

θ

=                          (4)

The computational complexity of (4) is prohibitively high 
due to the difficulty in estimating pθ (x). Consequently, a 
variational approximation qφ (y|x) is utilized to evaluating 
pθ(y|x). The DKL is Kullback-Leibler divergences frequently 
defied by [26]. D[qφ (y|x)||pθ(y|x)] can be formulated as 
follows:

( )

( )
[ ( ) ( )] log

( )q y x

q y x
D q y x p y x E

p y xϕ

ϕ
ϕ θ

θ

=             (5)

And log pθ (x) can be written as:

log ( ) ( ( ) ( )) ( , ; )p x D q y x p y x C xθ ϕ θ θ ϕ= +           (6)

where D[qφ (y|x)||pθ(y|x)] ≥ 0.
And (4) should be written

log ( ) ( ; ; )p x C xθ θ ϕ≥                             (7)

where 

( )

( , ; ) ( ( ) ( ))

log ( )q y x

C x D q y x p y

E p x y
ϕ

ϕ θ

θ

θ ϕ = −

+
                    (8)

The C(θ; φ; x) is stochastic gradient variational Bayes. 
Set C1 and C2 as follows:

{ }' 2 2 2
1

1

1 1 log[( ) ] ( ) ( )
2

M

m m m
m

C σ µ σ
=

= + − −∑             (9)

where σm is mean and μm is the standard deviation.

' ( )
2

1

1 log ( )
C

c

c
C P x y

C θ
=

= ∑                        (10)

( ) ( )( , )c cy g xϕ ε=                               (11)

where ε(c)~N(0,I).
Therefore (8) can be obtained by:

' ' '
1 2

1
( ; ; ) ( )

T

t

RC x C C
T

θ ϕ
=

= +∑                      (12)

where R and T represent data points from X and in the sample 
drawn from x.

4  Method 

Since most users’ electricity usage follows a regular 
pattern, especially when a large number of users are 
aggregated into one substation load, the substation load 
curve exhibits a certain degree of regularity. Furthermore, 
the power consumption data at a specific stage remains 
relatively consistent throughout the normal operation of 
smart meters. This consistency may suggest that the change 
data follows a specific distribution. A state model is created 
based on the distribution of change data across different 
phases. Any changes in power usage caused by a smart meter 
malfunction will alter this state model. By utilizing the power 
consumption change data from various periods as input, 
the modeling capabilities of VAEs enable us to efficiently 
construct the state model for smart meters.

The early alarm method’s principle is depicted in Figure 
5 as below. 

Figure 5. Working flow of early alarm method

A. Prepossessing of Input Data
To build the state model, we utilize data sets b derived 

from the original data, with each data set q containing 
multiple groups of data. We derived the feature p and obtain 
the state space matrix ( ) [1, ]S a a b∈，  as:

1,1 1,

,1 ,

( ) , [1, ]
p

q q p p q

s s
S a a b

s s
×

 
 = ∈ 
  



  



           (13)

The resulting state model can then be used to analyze the 
system’s behavior, make predictions about future states, and 
identify any potential issues or trends.

Three distinct features, namely variance, mean value, and 
peak value, are extracted to properly reflect the changes in 
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the input data. Therefore, when a smart meter malfunctions, 
the input data it measures will change, and the data features 
will also change accordingly. This change will be directly 
reflected in the variational feature state space matrix, thus 
achieving smart meter problem detection. 

B. Generation of State Model
( ) [1, ]S a bα ∈，  is the training data. All b datasets 

cover the entire deterioration process of the smart meters 
from normal to failure. The first data set during the normal 
operation stage is used to train the reference standard U, 
while the subsequent n sets of normal operation stage datasets 
are used to train V. As a reference standard, the state model 
created from the usual power consumption change data is 
defined as (14). The reference standard is contrasted with the 
real-time state model in (15).

, 1
1

( )
U i

N

i
i

U p Eηα
=

= ∑                              (14)

, 2
1

( )
W j

N

j
j

W p Eηβ
=

= ∑                             (15)

where E1 and E2 are the normal and real-time input data 
respectively. To optimized θU of the state model U, the 
stochastic gsradient variational Bayes is applied, which 
contains α i the ηUi weight of each sub-model and the 
parameter of each sub-model.

C. Determining Alarm Threshold  
Considering the normal defect of smart meter, the 

state model of some sub-distributions will deviate from 
predetermined standard. We utilize the notation DKL to assess 
the discrepancies between the predetermined standard and the 
real-time state model based on their specific characteristics. 
A failure of the equipment may be inferred if the calculated 
result exceeds a pre-determined threshold. The difference 
between the predetermined standard U and the real-time 
model W is defined as per Equation (16).

( )
1 ( )

( ) [ ( ) log ]
K

k
k k l k

k l k

D U W KL U W
α

α
β=

= +∑          (16)

where:

l
llk WUDkl ]log)(min[arg)( β−=                (17) 

The thresholds for most monitoring techniques are often 
determined by practical expertise. However, given the wide 
range of potential issues that can impact smart meters, which 
manual adjustment of alert settings based on past experiences 
is not feasible. To address this challenge, we present a 
technique that automatically determines warning levels using 
historical data set. This approach offers broader applicability 
and ensures that each smart meter’s alert value is tailored to 
its unique status.

To establish these warning levels, we first assume that the 
quantized values of the normal state models for smart meters 
follow a normal distribution. We apply the alarm value 
according to the 3delta criterion as follows:

3D DH µ σ= +                                 (18)

If the quantized values of the N normal state models follow 
a normal distribution, and the distance between each model 
and the predetermined standard has been quantified, we can 
calculate the alarm value using Eq. (18). Here, μD and σD are 
the average value and the standard deviation.

5  Experiments

To ensure the effectiveness of VAE method, an 
experiment was conducted using 12 groups of historical fault 
case data from various smart meters, the details of these data 
are shown in Table 2. Each set of data is extracted from the 
monitoring data of the faulty smart meter in reality. Taking 
one of the faulty smart meters as an example, the time 
domain data of the positive active energy is shown in Figure 
6.

Figure 6. Observed positive active energy

A. Fault Case Data
One of the smart meters used in this test is shown in 

Figure 7. Each fault case contains the same number of data 
sets, and each data set contains 10 different types of data. 
The new sparse fault case data is obtained by sampling 
from each type of data of the original fault case. To balance 
computational efficiency and alarm accuracy in experiments, 
the sampling period is set to 1 minute, and one value is taken 
for each sampling. The sampling period is also applicable 
for practical use. The fault sample data can be obtained by 
calculating the change in the power consumption per minute 
of each type of data in the newly generated fault case data. 
the sampling interval is set to 10 minutes.

The experimental data is divided into numerous datasets 
at regular intervals, each containing 240 data points. 
This approach enhances the model generation efficiency, 
leveraging the effectiveness of the suggested method. To 
establish the normal state model, we choose the first 10 
datasets with the initial dataset as the benchmark.
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Figure 7. Smart meter for test

B. Data Collecting System 
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Figure 8. AMI system for data collecting

The AMI system is taken into account in this paper. The 
system, which consists of a main station, a communication 
network, data terminators, and smart meters (Figure 8), 
covers over 20 million smart meters of end users. The 
information of users, including power consumption, voltage, 
current, and special issues, will be recorded and transmitted 
periodically. It is necessary to frequently capture end-user 
data, such as power usage, current, and voltage, for instance, 
every 15 minutes. A transmission procedure from smart 
meters will be gathered by various types of data terminals 
due to the trade-off in data communication costs. The data 
terminal communicates with the main station using a variety 
of communication techniques to set the time.

Table 2. Details of fault case data
Fault type Number of cases

Overload burning 4
Programming error 3

Electrical and mechanical failure 5

In Table 2, programming errors in the context of power 
consumption measurement can refer to errors in the software 
or firmware that is responsible for measuring and reporting 
power consumption. These errors can cause incorrect 
measurements or reporting of power consumption values. 
Depending on the nature of the error, it could be present all 
the time or only at specific points in time. For example, if 

there is an error in the algorithm used to calculate power 
consumption, it could result in consistently incorrect 
measurements. On the other hand, if there is an error that 
only occurs under certain conditions, such as when a specific 
sensor fails, it could result in incorrect measurements only 
when those conditions are met. Overloading conditions or 
mechanical failures can also affect the measured value of 
power consumption. Overloading refers to a situation where 
a component or system is subjected to a load that exceeds its 
rated capacity. This can cause the component or system to 
draw more power than it normally would, resulting in higher 
power consumption measurements. Mechanical failures, such 
as a seized bearing or a broken gear, can also cause changes 
in power consumption. For example, if a bearing seizes, it 
can cause increased friction and resistance, which can result 
in higher power consumption as the motor works harder to 
overcome the increased resistance.

C. Results and Analysis
The results obtained via the state model-based method 

(SM-based method) are summarized in Table 3. It is 
evident from the data presented in this table that 11 cases 
can be early alarmed, representing 91.67% of the total 
number of cases. This finding supports the conclusion that 
the SM-based method exhibits a high level of early alarm 
effectiveness for detecting failures in smart meters. To 
compare its performance with the SM-based method, the 
early alarm approach described in reference (HDFS-based 
method) was evaluated using the same failure case data. 
The outcomes indicate that the HDFS-based strategy is only 
50% effective and achieves early defect alarm only half of 
the time. Furthermore, Table 4 reveals that the SM-based 
method constructs models more rapidly than the HDFS-
based method, indicating that the proposed method may be 
more computationally efficient. Table 5 compares the average 
advance time scales for three types of failures by both the 
SM-based approach and the HDFS-based method. The SM-
based method exhibits better performance in all time scale 
for all failurs.

Table 6 shows the experimental results of the HDFS-
based method for various types of faults. The method 
performs well in detecting overload burning. However, it 
faces challenges in implementing effective early alarms for 
different kinds of failures. In contrast, the SM-based method 
demonstrates high early warning effectiveness for all kinds of 
failures. This suggests a wide range of potential applications 
for the SM-based method. To further improve the early alarm 
effectiveness of the SM-based method, we will investigate 
reducing the sampling interval in our next stage of research, 
as one of the fault cases was missed by the alarm.

Consider the instance of excess burning. Figure 9 
displays the results of condition monitoring from the two 
overload burning methods. The solid curves indicate the 
real-time distance values, while the horizontal dotted lines 
represent the alarm thresholds automatically established by 
each method. It is evident from Figure 9 that both approaches 
effectively distinguish between normal and abnormal data. 
However, the SM-based approach raises an alarm 21 minutes 
before the actual failure, while the HDFS-based approach 
provides a 10-minute advance. Consequently, the SM-
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based strategy outperforms the HDFS-based method. The 
robustness of the alarm threshold ensures that when the 
distance value surpasses the alarm level, it signifies system 
recognition of a fault rather than a false alarm. Notably, all 11 
early alarms generated by this method in the experiment were 
valid.

The number of data points would be 120 and 480, 
respectively, to figure out the relationship between size of 
the training data set and the average advance time in both 
approaches. The test results for newly divided data presented 
in Table 7 indicate that both early failure alert systems will 
experience a decline in effectiveness and average advance 
time scale when the dataset contains inappropriate data 
points. A lack of sufficient points can destabilize the state 
model, while an overabundance of points can render it 
insensitive to small changes. 

The aforementioned test findings indicate that for 
common smart meter issues, the SM-based method 
outperforms the HDFS-based method. Considering the model 
generation effectiveness, the SM-based method are superior 
than the HDFS-based method. The KPCA-based method’s 
performance is significantly limited because the HDFS-based 
method should not be generative. Hence, it is challenged to 
detect minor changes from historical data sets. Additionally, 
the efficacy of HDFS-based method is greatly influenced 
by the choice of kernel function. The state model created 
by the SM-based method aligns with the dataset, enhancing 
its ability to capture minute changes. Furthermore, the SM-
based method’s predetermined alert value exhibits a high 
level of adaptability.

Table 3. Effectiveness
Method  Samples Alarms at early stage  (%)

SM-based method 12 11 91.67
HDFS-based method 12 6 50

Table 4. Efficiency
Method Time consumption (s)

SM-based method 1.2
HDFS-based method 2.5

Table 5. Average advance time scale
Method Overload burning (min) Average early alarm time for 

Programming error (min)
Average early alarm time for 

Electrical and mechanical 
failure (min)

SM-based method 20.1 6.5 22.67
HDFS-based method 8.6 3 9.5

Table 6. Details of early alarm results of HDFS-based method

Fault type Total number 
of samples

Number of samples 
alarmed at early stage

Overload burning 4 3
Programming error 3 1

Electrical and mechanical failure 5 2

Table 7. Training data set effect of both methods

Method
 Rate of success (%)

Average advance time scale

Burning time (min) Programming error 
time (min)

Electrical and 
mechanical failure 

time (min)

120 480 120 480 120 480 120 480
SM-based 75 83.33 16.8 19.4 5.9 6.35 20.6 21.4

HDFS-based 33.33 33.33 6.6 8.05 0 2 7.8 8.65
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(a) SM-based method

 (b) HDFS-based method

Figure 9. Monitoring results of two methods

D. Reliability Prediction by Manual 
Electronic product dependability prediction methods 

have been the subject of several studies, and many useful 
standards have been developed. For instance, the mil-hdbk-
217f, gjb/z 299c-2006, and PRISM built on this premise are 
typically used in military electronic equipment. Because 
military standards are typically conservative, iec-tr 62380, 
Telcordia sr-332, IEEE Std 1418, and other standards are 
more commonly utilized for civil electronic goods. The 
linked database is where these methods diverge most. These 
methods, when viewed from the perspective of prediction 
methods, are traditional prediction methods developed from 
mil-hdbk-217f: that is, they determine the basic failure rate of 
each type of component through a large number of statistical 
data, and then they correct the basic failure rate according 
to the actual working environment by introducing various 
correction factors to obtain the expected failure rate.

The Telcordia sr-332 served as the foundation for the 
dependability dynamic prediction method that is provided in 
this paper. Since Telcordia sr-332 also includes information 
on the standard deviation of the basic failure rate, this section 
first describes the reliability prediction method based on 
this standard. However, for simplicity, we do not take the 
fundamental failure rate’s dispersion into account). Bell 
Laboratories has proposed Telcordia sr-332, formerly known 
as Bellcore tr-332, as a commercial standard for electronic 
device dependability prediction.

In the early fault alarm approach for smart meters, 
it is possible to consider integrating electronic product 
dependability prediction methods. For example, the 
Telcordia sr-332 standard can be used as a basis for dynamic 
dependability prediction of smart meters. First, FMEA 
is performed on the smart meter to identify its primary 
components. Then, a test design is used to calculate the 
electrical stress factor and the working current is measured 
using a data acquisition system built on the LabVIEW 
platform. Finally, the expected value of product dependability 
is calculated based on the test results and prediction method. 
This integrated approach can improve the accuracy and 
reliability of the early fault alarm approach for smart meters. 

By dynamically predicting the dependability of smart meters, 
their status can be better monitored and anomalies can be 
detected promptly. This approach not only improves the 
safety and stability of smart meters but also provides an 
important reference value for engineering applications.

To demonstrate the suggested strategy, this section uses 
the dependability prediction of an electronic device as an 
example. Table 3 displays the composition of the product.

FMEA for this product should be done first. The magnetic 
holding relay is the primary component of the product, per 
the FMEA results. As a result, this component is created and 
tested, the amount of electrical stress applied is measured, 
and the failure rate is calculated using formula (3). According 
to the guidelines in the literature [8], the effect factor of 
electrical stress is assumed to be one for other non-critical 
components. The dependability predicted value of non-
critical components is displayed in the last column of Table 3 
using formula (4).

The following test design is used to calculate the electrical 
stress factor: a total of 8 test samples are chosen, and the test 
is carried out at 40 °C. Measure the working current of the 
magnetic hold relay after the product has operated steadily. 
The data acquisition system built on the LabVIEW platform 
measures working current. Figure 2 depicts the test device.

Table 4 displays the test results. The anticipated value of 
the estimated failure rate is displayed in Table 4 by formula 
(3). Using the conventional approach, the anticipated value 
of product reliability given from equation (1) is 110.3982 fit 
when dynamic prediction is not taken into account.

6  Conclusion

This study presents an advanced early fault detection 
approach for smart meters, leveraging the power of a 
Variational Auto-Encoder (VAE). Our approach relies on 
the extraction of a feature state space matrix derived from 
fluctuations in power consumption data. This matrix serves 
as the foundation for the identification of deviations from 
normal patterns, enabling the automatic generation of alarm 
values tailored to the unique characteristics of each smart 
meter. The alarm values are dynamically computed based on 
historical normal data, ensuring accurate correlation with the 
current state of each meter. This approach offers significant 
advantages in terms of adaptability and practicality, making 
it highly suitable for real-world engineering applications. 
Furthermore, the method’s versatility extends beyond 
smart meters, enabling its application in various fields, 
including early warning systems for mechanical equipment. 
In summary, this study offers a promising new approach 
to enhancing the reliability and proactive maintenance of 
smart meters. By combining the power of deep learning 
and historical data analysis, the proposed method can detect 
potential faults with high accuracy and advance notice, 
significantly reducing downtime and operational costs. 
The approach’s adaptability and versatility further enhance 
its value, opening up new possibilities for enhancing 
the reliability and efficiency of smart metering systems 
across various industries. Future research directions could 
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explore the integration of additional data sources, such as 
environmental factors or operational conditions, to improve 
fault detection accuracy even further. Additionally, exploring 
novel techniques for real-time monitoring and early fault 
detection could provide valuable insights for maintaining 
the overall performance and reliability of smart metering 
systems.

References

[1] D. Singhal, L. Ahuja, A. Seth, An insight into combating 
security attacks for smart grid, International Journal 
of Performability Engineering, Vol. 18, No. 7, pp. 512-
520, July, 2022.

[2] M. Ordonez, M. Manbachi, AMI-Based Energy 
Management for Islanded AC/DC Microgrids Utilizing 
Energy Conservation and Optimization,  IEEE 
Transactions on Smart Grid, Vol. 10, No. 1, pp. 293-
304, January, 2019.

[3] Z. Yang, Y. X. Chen, Y. F. Li, E. Zio, R. Kang, Smart 
Electricity Meter Reliability Prediction based on 
Accelerated Degradation Testing and Modeling, 
International Journal of Electrical Power & Energy 
Systems, Vol. 56, pp. 209-219, March, 2014.

[4] D. Muyizere, L. K. Letting, B. B. Munyazikwiye, Effect 
on Transient Stability and Analyses Resulting from a 
Cyber-Attack on Frequency Relay Device, International 
Journal of Performability Engineering, Vol. 19, No. 1, 
pp. 20-32, January, 2023.

[5] W.-H. Zhuang, Y. Zhou, A Survey of Cooperative MAC 
Protocols for Mobile Communication Networks, Journal 
of Internet Technology, Vol. 14, No. 4, pp. 541-559, 
July, 2013.

[6] L. Wen, K. Zhou, S. Yang, L. Li, Compression of smart 
meter big data: A survey, Renewable and Sustainable 
Energy Reviews, Vol. 91, pp. 59-69, August, 2018.

[7] J. Yang, M.-Y. Xin, J.-X. Ou, J.-R. Wang, Q. Song, Data 
accuracy judgment method of metrology automation 
system based on La Yida criterion, Power Systems and 
Big Data, Vol. 20, No. 11, pp. 74-78, November, 2017.

[8] Y.  Zhang,  J .  C.  J i ,  B.  Ma,  Fault  diagnosis  of 
reciprocating compressor using a novel ensemble 
empirical mode decomposition-convolutional deep 
belief network, Measurement, Vol. 156, Article No. 
107619, May, 2020.

[9] F. Q. Zou, H. F. Zhang, S. T. Sang, X. M. Li, W. Y. He, 
X. W. Liu, Y. F. Chen, An anti-noise one-dimension 
convolutional neural network learning model applying 
on bearing fault diagnosis, Measurement, Vol. 186, 
Article No. 110236, December, 2021.

[10] Y. Xue, D. Y. Dou, J. G. Yang, Multi-fault diagnosis of 
rotating machinery based on deep convolution neural 
network and support vector machine, Measurement, Vol. 
156, Article No. 107571, May, 2020.

[11] Y. He, Z. Yang, Low Rank Tensor Approximate 
Discrete Simulation Method of Smart Meter Reliability 
Prediction, 6th International Conference on Information 
Science and Control Engineering (ICISCE), Changsha, 
China, 2019, pp. 360-366.

[12] X. Gao, X. Diao, J. Liu, M. Zhang, Y. He, A multi-
classification method of smart meter fault type based 
on Model Adaptive Selection Fusion, Power System 
Technology, Vol. 43, No. 6, pp. 1955-1961, June, 2019. 

[13] J. C. Yang, P. Jiang, G. Y. Chen, T. J. Yuan, F. Xue, 
Study on smart meters fault identification model, 
Electrical and Energy Management Technology, Vol. 
58, No. 6, pp. 30-36, June, 2017.

[14] Z. Q. Li, D. B. Gao, S. Su, J. C. Wang, D. D. Chen, X. 
J. Zeng, Big data based intrusion detection method of 
smart meters, Journal of Electric Power Science and 
Technology, Vol. 31, No. 1, pp. 121-126, March, 2016.

[15] D. Xu, J. He, Z. Yang, Reliability prediction based on 
Birnbaum–Saunders model and its application to smart 
meter, Annals of Operations Research, Vol. 312, No. 1, 
pp. 519-532, May, 2022.

[16] G. Henri, N. Lu, A Multi-Agent Shared Machine 
Learning Approach for Real-time Battery Operation 
Mode Prediction and Control, 2018 IEEE Power & 
Energy Society General Meeting (PESGM), Portland, 
OR, USA, 2018, pp. 1-5.

[17] K. Song, L. Cui, A common random effect induced 
bivariate gamma degradation process with application to 
remaining useful life prediction, Reliability engineering 
& system safety, Vol. 219, Article No. 108200, March, 
2022.

[18] N. Cai, P. Li, Image compression method based on 
KPCA, Radio Engineering, Vol. 48, No. 12, pp 1061-
1064, 2018.

[19] Y. W. Zhao, B. Ma, B. S. Shen, J. J. Zhang, Study on 
application of state subspace for automatic alarm of 
reciprocating compressor, Mechanical Science and 
Technology for Aerospace Engineering, Vol. 35, No. 4, 
pp. 568-572, April, 2016.

[20] D. P. Kingma, M. Welling, Auto-encoding variational 
Bayes,  International  Conference on Learning 
Representations, arXiv, December, 2013. https://arxiv.
org/abs/1312.6114

[21] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, D. 
Wierstra, DRAW: a recurrent neural network for image 
generation, The 32nd International Conference on 
International Conference on Machine Learning, Lille, 
France, 2015, pp. 1462-1471.

[22] D. L. Tran, R. Walecki, O. Rudovic, S. Eleftheriadis, 
B. Schuller, M. Pantic, DeepCoder: semi-parametric 
variational autoencoders for automatic facial action 
coding, IEEE International Conference on Computer 
Vision, Venice, Italy, 2017, pp. 3209-3218.

[23] D. F. Wang, J. Gu, VASC: dimension reduction and 
visualization of single-cell RNA-seq data by deep 
variational autoencoder, Genomics, Proteomics and 
Bioinformatics, Vol. 16, No. 5, pp. 320-331, October, 
2018.

[24] J. Na, K. Jeon, W. B. Lee, Toxic gas release modeling 
for real-time analysis using variational autoencoder with 
convolutional neural networks, Chemical Engineering 
Science, Vol. 181, pp. 68-78, May, 2018.

[25] C. Du, B. Chen, B. Xu, D. Guo, H. Liu, Factorized 
discriminative conditional variational auto-encoder for 
radar HRRP target recognition, Signal Processing, Vol. 



A Variational Auto-Encoder Method in Early Fault Alarm of Smart Meters   1061

158, pp. 176-189, May, 2019.
[26] G. W. Zhao, Y. X. Peng, Semisupervised SAR image 

change detection based on a siamese variational 
autoencoder, Information Processing and Management, 
Vol. 59, No. 1, pp. 1-16, January, 2022.

[27] J. Yang, M. Y. Xin, J. X. Ou, J. R. Wang, Q. Song, Data 
accuracy judgment method of metrology automation 
system based on La Yida criterion, Power Systems and 
Big Data, Vol. 20, No. 11, pp. 74-78, November, 2017.

Biographies

Zhou Yang (Member, IEEE) received the 
B.Sc. And Ph.D. degrees from Beihang 
University, China, in 2008 and 2014, 
respectively. During his Ph.D. study, 
he was a Visiting Scholar with Rutgers 
University, New Brunswick, NJ, USA, 
from 2013 to 2014.From 2017 to 2019, he 
was a Post-Doctoral Fellow with Tsinghua 

University. He is currently a Senior Engineer with China 
Southern Power Grid Company Ltd. (CSG). His research 
interests include smart metering, readability, and safety in the 
electricity domain.

Yuxiang Peng was born in Nanning, China, 
1974. He received the B.Sc., and Master’s 
degrees from the University of Huazhong 
University of Science and Technology 
and Wuhan University respectively. He is 
currently in CSG. (China Southern Power 
Grid Company Limited). He’s research 
interests include AMI and Smart Grid 

domain. 

Wenqian Jiang was born in Hunan, China. 
She received the B.Sc., and MA.Sc degrees 
from the University of Hunan University, 
China in 2007 and 2010 receptively. She 
is currently pursuing Ph.D at Tianjin 
University, and a senior engineer in CSG. 
(China Southern Power Grid Company 
Limited).  Wenqian Jiang’s research 

interests include AMI and Date analysis. 

Juntao Pan was born in Wuzhou, China. 
He received the B.Sc., and MA.Sc degrees 
from the University of Hunan University, 
China in 2008 and 2011 receptively. He is 
currently a senior engineer in CSG. (China 
Southern Power Grid Company Limited). 
Juntao Pan’s research interests include 
smart metering, readability and safety in 

electricity domain. 

Yanfu Li (Senior Member, IEEE) was a 
Faculty Member with the Laboratory of 
Industrial Engineering, CentraleSupélec, 
University of Paris-Saclay, France, from 
2011 to 2016. He is currently a Professor 
wi th  the  Depar tment  o f  Indus t r i a l 
Engineering, Tsinghua University. He 
has led/participated in several projects 

supported by EU, France, and Chinese Governmental funding 
agencies and various industrial partners. He has coauthored 
more than 100 publications in international journals, 
conference proceedings, and books. His current research 
interests include reliability, availability, maintainability, 
safety (RAMS) assessment, and optimization with the 
applications of various industrial systems. He is an Associate 
Editor of IEEE TRANSACTIONS ON RELIABILITY.


