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Abstract

A 5G network enabling technology to meet multi-gabit 
data demands is mmwave D2D communications. As a result 
of their directional coverage and high data rate connectivity, 
mmwave networks are well suited for the delivery of 
proximity services via D2D communications. In a dense 
D2D pair network situation, the directional features at the 
mmwave band reduce interference between D2D pairs. To 
evaluate the impact of the integration of D2D and mmWave 
communication, this paper proposed a novel algorithm. The 
main idea is to maximize the total system throughput through 
optimal objective function. The linear correlation method 
is used to select the admission set of D2D users. Then, 
the optimal transmit power is determined through a power 
control mechanism. Finally, the resources are allocated to 
the D2D users using a multi-phase matching algorithm. 
Simulation results show that the proposed algorithm has 
better performance as compared with existing algorithms.

Keywords: Machine learning, Optimization, 5G network, 
Spectrum utilization

1  Introduction

The need for increased data rates and call traffic density 
per cell is increasing substantially along with the number of 
data-intensive applications [1]. Due to limited bandwidth, 
existing 4G technology is unable to keep up with the rising 
demand. The millimeter wave (mmWave) spectrum will 
be investigated as part of the development of 5G cellular 
technology [2]. Reducing interference can enhance the 
transmission quality of mmWave because of its high 
frequency and short-distance attenuation properties. At 28 
GHz and higher, the outdoor propagation environment offers 
abundant multipath that may be leveraged to increase the 
received signal strength, particularly in the event of non-line-
of-sight (NLOS) propagation [3]. Additionally, directional 
beamforming and smart antennas can enhance the quality of 
a link’s propagation [4].

Device-to-device (D2D) technology enables direct 
communication between base station-controlled devices 
without the requirement for base station forwarding [5]. 
D2D technology allows for the connection of two devices, 

a reduction in base station load, and increased user 
concurrency. Great data rates and high spectrum efficiency 
are two benefits, but they also boost throughput and cut down 
on delays [6]. Applying D2D communication technology to 
cellular networks, utilizing the short-distance communication 
properties and direct communication methods of D2D 
technology itself, fully exploits the enormous benefits and 
potentials of D2D in terms of saving wireless resources, 
reducing system interference, and providing services, 
network coverage, improving wireless resource utilization 
efficiency and system capacity, and better adapting to user 
needs [7].

To cohabit with conventional cellular connectivity, 
adjacent devices can interact with one another through extra 
signaling and control [8].

High bandwidth and spectrum efficiency are benefits that 
a 5G network would experience when mmWave technology 
and D2D communication are used [9]. Additionally, D2D 
is based on proximity connection, whereas mmWave is a 
short-distance communication, making it easier to combine 
the benefits of the two technologies. It can be found either 
concentrated or scattered at the border of a cell or in a 
crowded area [10]. Inter-D2D interference during numerous 
D2D connections and interference between D2D and 
base station-to-device communication both occur in such 
a network. Therefore, in concurrent D2D and mmWave 
networks, efficient resource-sharing and interference 
avoidance strategies must be used. A resource allocation 
approach with the highest weighted matching ratio fairness is 
used in [11]. Utilize the maximum weighted matching method 
to distribute available resources for D2D users to optimize 
the system’s overall weighted sum rate after first adjusting 
the power of the user to maximize the user’s weighted sum 
rate. However, when a certain need is satisfied, a random 
selection is made for the multiplexing pair that consists of the 
cellular user and the D2D user. Therefore, even if the system 
performance has somewhat improved, more study is still 
required. In [12], the wireless resource allocation problem 
was transformed into a mixed integer nonlinear programming 
problem, and a novel greedy heuristic algorithm was 
proposed. This algorithm makes use of channel gain 
information to lessen interference with the cellular network, 
increasing the cell’s overall throughput. By optimizing the 
overall rate allocation technique while fulfilling the signal-
to-interference-plus-noise ratio (SINR) of cellular users 
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and D2D users, Reference [13] distributes resources for 
D2D users. The authors in [14-15] may provide quality of 
service (QoS) guarantees on a specific basis, but there is only 
so much that can be done to increase system throughput. 
MmWave D2D transmission takes place primarily indoors 
and less frequently outside. Directional uplink measurements 
for mmWave propagation in 5G networks are covered in [16]. 
An efficient method for downloading well-liked information 
in millimeter-wave tiny cells is suggested in [17]. This 
network’s short-range and parallel D2D communication 
transmission increases transmission efficiency. The 28 GHz 
band is preferable to other mmWave bands because there 
isn’t much research on mmWave bands in outdoor settings, 
and references [18-19] state as much. To increase the overall 
system throughput, the D2D resource allocation problem in 
the outdoor urban cellular network operating at 28 GHz is 
primarily investigated.

The authors in [20] proposes a resource allocation 
scheme, but this scheme only considers the interference 
caused by a single D2D user and ignores the overall 
interference caused by all D2D users to the system. Reference 
[21] studies an energy efficiency algorithm that uses 
Lagrangian duality theory and jointly optimizes power and 
data rate to increase the energy efficiency of D2D networks. 
However, this algorithm does not consider the overall 
interference caused by D2D communication to cellular 
communication. The authors in [22] proposed a spectrum 
resource management scheme under the 28 GHz bandwidth, 
which improved the system throughput to a certain extent, 
but it only simply allocated resources to D2D users. The 
resource-sharing scheme in [23] allows interference-free 
D2D links to share resources and maintains good network 
connectivity while improving network capacity. However, 
interference is inevitable in practical applications.

The authors in [24] proposed that high-frequency 
microwave backhaul is a feasible solution for ultra-dense 
small cell backhaul links in non-line-of-sight (NLOS) 
environments. Based on simulation and measurement results, 
it was concluded that the wireless backhaul solution is 
suitable for ultra-dense networks. Make the right choice. On 
this basis, reference [25] analyzed the impact of different 
frequency bands on the energy efficiency of the backhaul 
network in two typical UDN backhaul scenarios, showing 
that distributed solutions have more advantages than 
centralized solutions and are suitable for future 5G networks. 
environment. However, many solutions require a macro base 
station (MBS) or a specific (SBS) to forward data from the 
source to the destination. This solution has a large path loss 
during the transmission process, which can easily lead to an 
increase in the bit error rate. Moreover, when two users are 
close to each other, they can communicate directly through 
short-range communication technologies such as Bluetooth. 
When two users are far apart, they cannot communicate 
directly. Communication is possible using device-to-device 
(D2D) communication capabilities, which allow two nearby 
devices to communicate with each other within the licensed 
cellular bandwidth without a base station (BS) involved 
or limited by the BS. This is a dramatic departure from 
traditional cellular architecture [26].

In light of this, this paper proposed a novel approach for 

5G network-based machine learning. The main contributions 
are as follows.

• A multi-stage bipartite graph-based matching method 
that can choose the best D2D user-sharing resources 
for mobile users. 

• The set of cellular users that can be reused by each 
D2D user is determined using the linear correlation 
approach before resource allocation, under the 
condition that the QoS of cellular users and D2D 
users is satisfied. 

• The D2D users manage power at the same time 
to maximize their throughput. Additionally, the 
mmWave frequency band has more resource 
blocks available than the LTE-Advanced system, 
which more than fulfills the technical requirements 
of communication standards in 5G application 
scenarios.

2  System Model and Problem 
Formulation

2.1 System Model
Assuming that the uplink resources in the cellular system 

are utilized to discuss the underlay approach in the 28 GHz 
cellular network in the 5G urban cellular network scenario 
where D2D users and cellular users coexist [27-28]. a 
distribution strategy that allows numerous D2D user pairs to 
share the same resource.

The interference between D2D users and cellular user 
equipment (CUEs) in this situation cannot be avoided, and 
it also cannot be disregarded when numerous D2D users are 
utilizing the same resources [29]. Assuming that each cellular 
user is given a mutually orthogonal resource block (RB), 
the set C ={1, 2, 3, …, N} stores the number of RBs, while 
the set D ={d = 1, 2, 3, …, M} contains the amounts for 
D2D pairs. Figure 1 displays a schematic of the interference 
produced when D2D1 and D2D3 multiplex the same cellular 
user CUE1 [30].

2.2 Transfer Model 
The authors in [31] gathered extensive measurement data 

while taking into account the real outdoor 28 GHz mmWave 
transmission circumstances and produced an intricate channel 
spatial statistical model. Under such dense user and obstacle 
settings, when angular signals are repeated with various 
delays, line-of-sight (LOS) transmission is impracticable. 

As a result, in this case, the received signal suffers from 
both line-of-sight (LOS) and non-line-of-sight (NLOS) route 
losses, along with the accompanying shadow fading of each 
portion [32-33]. The route loss model is therefore calculated 
as PL = PLLOS + PLNLOS. The distance model predicts the 
following given the distance d:

( ) 10 log( ( ))XPL d d mµ α ε= + +                     (1)

where ε is the response lognormal shading, which obeys 
N(0, σ2), α is the path loss exponent and μ is the path loss 
coefficient.
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In this case, the shadowing and lognormal path loss 
models are updated with the probabilities [34]. D2D lines 
typically receive more LoS signals because of the short-
distance nature of D2D transmission.

Therefore, the path loss PL1 of the D2D link is:

1 1 1(1 )LOS NLOSPL p PL p PL= + −                    (2)

The path loss PL2 of other links is:

2 2 2(1 )LOS NLOSPL p PL p PL= + −                    (3)

The multipath fading in mmWave communications is the 
Rician channel.

2.3 Problem Description 
The RBs of N N cellular users are allotted to M D2D 

users in a 28 GHz mmWave small cell network [35], and 
the allocation matrix X = {xc,d}N×M is utilized to describe the 
allocation outcome of the cellular user RBs. The primary 
objective of resource sharing is to increase overall throughput 
for both D2D and cellular users while maintaining both 
groups’ SINRs [36]. The SINR rc, rd of cellular users and 
D2D users in this study is:

,

1 , ,
, 1, 2,...,c c B th

c cM
d c d d d B c

p H
r r c N

x p H N=

= ≥ =
Σ +

          (4)

,

1 , , 1 ' \{ } , ,

, 1, 2,..., , 1, 2,...

d d d
d N N M

c c d c c d c d D d c d d d d d

th
c

p H
r

x p H x p H N

r c N d M

′ ′ ′= = ∈

= ≥
Σ + Σ Σ +

= =

(5)

Among them, pc and pd are the transmitting power of 
the cellular user and the D2D transmitter respectively; Hi,j 
is the channel gain of the link i, j, Nc and Nd are Gaussian 
white noise, both are N0 ; th

cr , th
dr  are the SINR threshold of 

cellular and of D2D users; xc,d are binary variables [37-38], 
indicating whether the d-th D2D pair reuses the c-th cellular 
user resources, xc,d = 1 means multiplexing; xc,d  = 0 means no 
multiplexing.

Where pc and pd  are the transmitting power of the cellular 
user and the D2D transmitter, respectively; Hi,j is the channel 
gain of the link i, j; Nc and Nd are AWGN [39], both of which 
are N0 ; th

cr ; th
dr  are the SINR thresholds of the cellular and the 

D2D users; and xc,d are binary variables that indicate whether 
the d-th D2D pair reuses the c-th cellular user resources, xc,d 
= 1 means multiplexing; xc,d = 0 means no multiplexing [40].

From Shannon’s formula, we get:

log(1 )c cR B r= +                                (6)

log(1 )d dR B r= +                                (7)

The maximizing problem may be phrased as follows if B 
is the bandwidth of the cellular user channel resources:

D2D1

D2D2

D2D3

D2D4

D2D𝑀

CUE1

CUE2 CUE𝑁mmWave
slave

D2D signal

CUE signal
Interference signal

Figure 1. Schematic diagram of the interference generated when the same single-cell user CUE1 is reused
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Their respective maximum transmission powers for 
cellular and D2D users are max

cp  and max
dp . The constraint 

conditions to satisfy the SINR needs of cellular users and 
D2D users are represented by equations (8a) and (8b) [41-
42]. Equations (8c) and (8d) represent the transmit power cap 
for cellular users and D2D users, respectively. A D2D user 
can only share resources with one cellular user, according to 
Eq. (8e).

The resource allocation strategy directly influences the 
system’s throughput since the optimization objective is a 
difficult-to-attain nonlinear integer programming problem 
[43], especially when there are many D2D pairings. As a 
result, the following resource allocation strategy is used as 
a solution to this issue. First, the group of cellular users that 
may be utilized again by D2D users is identified using the 
linear correlation approach [44]. Next, apply power control 
to D2D users. To allocate spectrum resources across various 
users, a bipartite graph D2D resource allocation technique 
based on multi-stage matching is implemented [45-46].

3  Resource Allocation

3.1 D2D Reusable Cellular User Set
Using the linear programming approach, find the set 

of reusable cellular users for each D2D user to fulfill the 
requirement of satisfying the quality of service (QoS) for 
cellular users and D2D users [47-48].

As seen in Figure 2, the admission set of D2D users, 
which is the set of prospective multiplexed cellular users, 
is screened out using the linear programming approach to 
assure the QoS of cellular users and D2D users [49-50]. Each 

cellular user and each D2D user must adhere to formulas (8a) 
and (8b) if the cellular user c is a member of the set “_d,” 
which may be written as follows:

, , 01: ( )th
c c B c d d Bb p H r p H N≥ +

                    , , 02 : ( )th
d d d d c c Bb p H r p H N≥ +                 (9)
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Figure 2. Selection of potential reuse objects

From the two inequalities in formula (9), the values of 
points A and G in Figure 2 can be obtained [51]:
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In Figure 2, the D2D user only has a cellular user that 
shares resources with it when there is an intersecting point 
A [52-53]. Furthermore, the QoS of cellular users and D2D 
users can only be ensured when the intersection point A is in 
the region defined by the coordinate axis and the dotted line 
in Figure 2. The viable transmission power region of pc and 
pd is indicated in Figure 2 by the shaded area [54-55].

The channel gain of the D2D user and the cellular user 
must match the following formula (11) if the cellular user c is 
in the set dΠ , 

{ } ( )max max, ,A A c dx y p p≤                         (11)

Equation (11) is used to demonstrate that no end user’s 
viable transmission power is higher than the maximum value.



An Optimal Algorithm for Resource Optimization in 5G Networks Based on Machine Learning   1013

3.2 Power Control for D2D Users
Power allocation is done on the D2D users if a cellular 

user c∈Πd and a D2D user share a cellular resource. The QoS 
needs of cellular users are met while D2D user throughput 
is increased [56]. Therefore, it is necessary to suitably limit 
the transmit power of cellular users while raising the transmit 
power of D2D users. Using the formula (8a):

,

, 0

c c B th
c

d d B

p H
r

p H N
≥

+
                            (12)

Therefore, the minimum transmit power for a cellular 
user is:

( )*
, 0

,

th
c

c d d B
c B

r
p p H N

H
= +                       (13)

Substitute formula (13) into Shannon’s equation to get:
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It is clear from the analysis formula (14) that when pd is 
raised, the throughput of D2D users will rise as well, with 
a monotonically rising trend [57]. As a result, to guarantee 
the cellular users’ communication quality, the D2D user d’s 
transmit power should be as high as it can be. It is evident 
from Figure 2 that:

{ }* maxmin ,d d Gp p y=                           (15)

Therefore, the optimal transmission power of D2D user d 
can be obtained from equation (15).

3.3 Multi-stage Matching Algorithm Based on Bipartite 
Graph
To increase the overall system performance, the D2D 

resource allocation is turned into a maximum weight 
matching issue and addressed using a bipartite graph-based 
multi-stage matching method [58].
3.3.1 Graph Construction

Make a bipartite graph similar to Figure 3 in your mind. It 
has one edge set and two vertex sets. Vertex set C represents 
N cellular users, vertex set D represents M D2D couples 
and the edge set represents a connection. When a cellular 
user and a D2D pair are connected by edges [59], or when a 
cellular user and a D2D pair are connected by an edge, the 
D2D pair is reusing the resource of the cellular user. What 
defines an edge’s weight is the improvement in resource 
throughput once the cellular user distributes it with the 

corresponding D2D pair. A subset of the edges in a bipartite 
graph match each other; no two edges may share the same 
vertices. Maximum weight matching is the subset of edges 
whose weight may be maximized [60]. Therefore, finding the 
best-weighted network that closely resembles Figure 3 will 
boost throughput. The best weight matching may be achieved 
using the KM (Kuhn-Munkras) approach.

The KM technique requires that two vertex sets have the 
same number of vertices [61-62]. A minimum of one virtual 
vertex must be added if the two sets of vertices are not equal, 
with the edges between the virtual vertex and other vertices 
weighting 0.

𝑀 D2D 
pairs

⋮

𝑁 cellular 
users

𝑀 −𝑁 viirtual 
order point

⋮

Figure 3. Illustration of a bipartite graph

3.3.2 Algorithm Description
The KM technique may be used to create the bipartite 

graph afterward to achieve the greatest weight matching 
in Figure 3. A multi-stage matching approach is utilized to 
redistribute resources to some D2D pairings because they 
are assigned to virtual vertices [63-64]. It will be attained at 
every stage. On the graph, the highest weight match between 
each pair of phases should be updated. The operation is to 
update the associated allocation matrix X = {xc,d}N×M  [65].

Following the KM algorithm’s execution at point G in 
Figure 2, the matching result shows that N cellular users 
have been matched with N D2D pairings, resulting in N new 
vertices, of which C2 is composed [66]. The unmatched M−N 
D2D pairs already have a new vertex set, D2, which includes 
d2(d = 1, 2, …, M−N), and at the same time, M−2N virtual 
vertices join c2, E2, which connects c2 and d 2, and weight W 2, 
which is the G2 = (C 2, D2, E 3, W 2) [67]. The specific phases 
of the algorithms are shown in Algorithms 1-2.

Algorithm 1. Multi-stage matching 

1. Create a bipartite graph for N CUE and M number of 
D2D pairs

2. If M ≤ N , add (N − M) to the vertex set of the D2D 
pair, and then execute the KM algorithm to obtain the 
distribution result.

3. If M > N , add (M − N) to the cellular user vertex set, 
execute the KM algorithm to get the matching result, then 
update the bipartite graph, and judge the size of M and N.  
If M > N , repeat this step, Otherwise return to step 2.

4. Until all D2D user pairs are allocated resources. So far, 
the optimal allocation matrix X = {xc,d}N×M  is obtained.



1014   Journal of Internet Technology Vol. 25 No. 7, December 2024

Algorithm 2. KM mechanism 

1. Calculate the weight matrix WZ×Z = {wx,y}Z×Z of the edge 
set, where, Z = N or Z = M , all cellular users C = {1, 2, 
…, N} or all cellular users and the combination of virtual 
vertices constitutes a vertex set P, and the combination 
of all D2D users D = {1, 2, …, M} and virtual vertices 
or all D2D users constitutes a vertex set Q, and assigns 
a top label lp  to each vertex in the set P, where lp = 
max{wp,1, wp,2, …, wp,2}. Similarly assign a topscript  lq  to 
each vertex in the set Q, where  lq = 0, and initialize the 
matching matrix MZ×Z to be a zero matrix.

2. From the first vertex in the set P, select the unmatched 
point with the largest weight value from the set Q 
to search, and search for the augmenting path. If an 
unmatched point is passed, it indicates that the search is 
successful, the path information is updated, the number 
of matched edges is increased by 1, and the search is no 
longer performed. If the augmenting path has not been 
found, the search is stopped from this point.

3. Add this augmenting path in the matching subgraph.
4. If no complete match is found, then the top mark value 

needs to be modified. The P vertex set on this path is S, 
and the Q vertex set is T. For all points in S and not in T, 
calculate the difference a = {lp + lq − wp,q}, from P in the 
S set subtract a from the top mark, and add a to the Q top 
mark in the set T .

5. Repeat steps 3 and 4 until finding the complete matching 
of equal subgraphs with edge weights of all bipartite 
graphs satisfying lp + lq = wp,q, that is, finding the matching 
matrix MZ×Z .

To sum up, the steps of a resource allocation scheme for 
D2D users proposed in this paper are as follows in Algorithm 
3.

Algorithm 3. Resource allocation 

1. Assuming that the base station knows the coordinates 
of users in the cell, it can be seen that the set of cellular 
users is C = {c = 1, 2, 3, …, N}, and the set of D2D users 
is D = {d = 1, 2, 3, …, M}.

2. Find out the set of potential multiplexed cellular users 
Πd for each D2D user. Calculate the intersection point A 
obtained from formula (9) and judge whether it satisfies 
the requirements of formula (10). If so, it will be stored 
in the set Πd, xc,d = 1, otherwise, xc,d = 0.

3. A c c o r d i n g  t o  * maxmin{ , }d d Gp p y= ,  s e l e c t  t h e 
appropriate D2D transmission power. 

4. Construct a bipartite graph and calculate the weight, 
wc,d = Rc,d − Rc0 . If cellular user c is not in the potential 
multiplexing set of D2D user d, its weight is 0.

5. A multi-stage matching algorithm is performed until 
each D2D user has the resources to communicate. Use 
the t = /M N    times KM algorithm to find the optimal 
matching result X* = {x*

c,d}N×M* 

3.4 Complexity Evaluation
The time complexity of KM is O(M 3), and since the 

KM method executes t = /M N    times, the complexity of 

the multi-stage matching process is O(t.M3), according to 
reference [68]. In this study, the suggested method has an 
acceptable polynomial time complexity of O(t.M3) where M 
and N are of the same order of magnitude.

4  Simulation Results

4.1 Parameters
The proposed algorithm is verified in an outdoor urban 

cellular network scenario in a 28 GHz mmWave 5G cellular 
network. The path loss value is based on reference [5]. In 
this paper, a single-cell scenario is considered, and cellular 
users and D2D users are randomly distributed in this cell, use 
MATLAB to simulate in this scenario, the main simulation 
parameters are shown in Table 1.

Table 1. Simulation parameters

Parameter Value
Cell radius 500 m

Distance of all users to BS  ≥ 35m 
Number of Cellular Subscribers 20

D2D distance 10 m
RB bandwidth 180 kHz

Maximum transmit power of 
cellular users 23 dBm

Cellular user SINR threshold th
cr 0

D2D user SINR threshold th
dr  0

D2D user maximum transmit 
power 10 dBm

Path loss LOS μ = 61.4, α = 2, σ = 5.8dB
Path loss NLOS μ = 72, α = 2.92, σ = 8.7dB

Rice channel K parameter 5
Noise power density -174 dBm/Hz

4.2 Results
The approach suggested in this study is contrasted in 

the simulation with the heuristic algorithm and random 
assignment algorithm in [29]. The random allocation 
algorithm is that the D2D user multiplexes a cellular user 
resource at random, regardless of other factors, while the 
heuristic algorithm [29] is that each D2D user selects the 
cellular user resource that maximizes the total rate for 
multiplexing under the condition of satisfying the SINR. 
When the D2D user distance is 10, Figure 4 shows the 
relationship between the quantity of D2D pairs and the 
overall system throughput. Figure 4 shows that when the 
number of D2D users rises, the system’s overall throughput 
rises as well. Because the method suggested in this work 
chooses the best D2D users for multiplexing for cellular 
users, its growth rate is higher than that of the reference 
approach. As a result, the suggested method outperforms 
previous reference algorithms in terms of performance.

When there are 30 D2D pairs, Figure 5 shows the 
relationship curve between the overall system throughput and 
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the D2D user distance. Figure 5 illustrates how the system’s 
overall throughput steadily declines as distance increases, 
and how the rate of decline gets less and smaller until it 
eventually starts to stabilize. Before distance=30 m, the 
total system throughput varies significantly as the distance 
increases, but at distance=30 m, the total system throughput 
changes gradually as the distance increases. The reason 
for this is that when the distance is small, the path loss of 
the link from the D2D transmitter to the receiver is small, 
resulting in better link quality, which has a significant impact 
on the system’s overall throughput. Conversely, when the 
distance is large, the path loss is large, producing poor D2D 
link quality, which has a minor impact on system throughput. 
Additionally, it is clear from Figure 5 that the suggested 
method performs notably better than the comparison 
algorithm.

With 30 D2D users and a distance of 10 m, Figure 6 
shows the variation trend of system throughput with D2D 
transmit power. Figure 6 illustrates how the throughput 
improves slowly as the D2D transmission power rises. This 
is because base station interference increases with D2D 
transmission power. The cellular link has a bigger influence; 
hence the system throughput growth trend tends to be flat. 
Therefore, power regulation of the D2D transmission power 
is required to enhance the system’s performance. Figure 6 

further demonstrates the suggested algorithm’s superiority to 
competing plans.

The cumulative distribution function (CDF) of the 
system throughput at 30 D2D users and a 10 m distance is 
shown in Figure 7. It illustrates how, with the addition of 
D2D communication, the system’s total throughput may be 
successfully increased by using a fair resource allocation 
strategy. To pick the most suitable D2D user for resource 
sharing for cellular users, the suggested algorithm maximizes 
the incremental value of throughput. As a result, the system 
may achieve better throughput than previous methods, thus 
demonstrating the usefulness of the proposed algorithm.

Figure 8 compares the outage probability of the proposed 
and existing algorithms. As can be seen from Figure 8, the 
outage probability of the proposed algorithm is better than 
existing algorithms, which indicates the improved QoS 
performance of the proposed algorithm.  

Figure 9 compares the energy efficiency of the proposed 
and existing algorithms under different power levels of 
D2D users. It can be concluded that the energy efficiency 
of the proposed algorithm is better than existing algorithms 
for every value of D2D transmit power. This validates the 
effectiveness of the proposed algorithm and its energy-
efficient performance. 
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Figure 4. Throughput comparison of the proposed and existing algorithms under an increasing number of D2D users
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5  Conclusion

In a 5G network, a single-cell outdoor millimeter-
wave scenario is investigated for D2D communication. The 
system’s overall throughput will be maximized by using a 
resource allocation strategy that is suggested. First, identify 
the group of cellular users that may be utilized again by D2D 
users using the linear correlation approach. Second, power 
control should be applied to D2D users to determine the ideal 
transmission power. To choose the most appropriate D2D 
users to share resources with cellular users, a bipartite graph 
matching technique is developed to distribute resources 
for D2D users. The simulation results demonstrate that the 
suggested method may successfully increase system capacity 
while maintaining the quality of service for D2D and cellular 
customers.

Further study on multiple cells can be done on the basis 
that this algorithm does not take the interference of numerous 
nearby cells into account.
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