
Lightweight CNN Architecture for IoT: Enhancing Character Recognition in Multiple Fonts 987

*Corresponding Author: Ko-Wei Huang; E-mail: elone.huang@nkust.edu.tw
DOI: https://doi.org/10.70003/160792642024122507004

Lightweight CNN Architecture for IoT:
Enhancing Character Recognition in Multiple Fonts

Chung-Hsing Chen1,2, Ko-Wei Huang1*

1 Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Taiwan
2 Plustek Inc., Kaohsiung City, Taiwan

I110154101@nkust.edu.tw, elone.huang@nkust.edu.tw

Abstract

Existing approaches to English character recognition
generally ignore font differences, and those based on
deep learning are often trained on only one font owing
to computational constraints. To address this problem,
we propose the Very Lightweight Network (VLNet),
a lightweight convolutional neural network. First, we
decompose the characters of a given font into their constituent
strokes. Subsequently, we pass the stroke information as
input to a simple convolutional neural network. Stroke-based
feature extraction reduces the requirement for graphics data
and training input size. The network is small and efficient;
thus, it is suitable for edge computing and Internet of Things
applications. In the experimental comparison with the
standard character-recognition systems LeNet, AlexNet and
MobileNet V3, VLNet demonstrated superior accuracy for
known and unknown fonts and a reasonable prediction time
per character. The results of this study were also implemented
in Plustek Inc.’s Q30 network scanner, which enabled direct
document content recognition and transfer to various cloud
services.

Keywords: Feature extraction, CNN, Internet of things,
Deep learning, Edge computing

1 Introduction

Recently, the field of automatic document processing
has seen significant advancements. The demand for data
extraction from documents has increased due to their
digitalization. Data extraction and recognition tasks for
paper-based documents pose significant challenges. Although
these documents can easily be converted into digital formats
using a scanner and computer via traditional scanning,
after this procedure, the documents go through a storage
phase that requires manual classification and creation of
media files from images. With the increasing prevalence
of artificial intelligence (AI), there has been a rise in the
demand for internet-connected network scanners that have
taken on the role of data extraction for cloud storage. Data
sent to the cloud are not limited to image files but consist
of media files containing document content, which can be

used for automatic classification, archiving, and transfer of
diverse types of document to cloud platforms. For example,
accounting, education, and government documents can be
loaded into accounting, education, and government clouds,
respectively. For this, network scanners need to be upgraded
to perform AI edge computing for document pre-recognition
and deliver the necessary document content to cloud storage.
Consequently, network scanners have evolved into Internet-
of-Things (IoT) devices. To achieve this functionality, we
propose a neural network that performs edge computing
and connects to cloud services, constituting a complete IoT
device. The network can run smoothly on the Raspberry Pi
4B platform.

The automatic recognition of English text is a subject of
extensive research. The process begins with the document
layout analysis and continues with preprocessing, text
segmentation, optical character recognition (OCR), and
postprocessing. However, the English text is printed in
different fonts, and an effective text-recognition system
must handle this diversity, particularly during the OCR
stage. Because a neural network cannot effectively generate
predictions, we developed a model comprising feature
extraction methods and a neural network which can
accurately learn character strokes and features, effectively
predict unknown fonts, and readily obtain results without
requiring a graphics processing unit (GPU).

Recent studies have employed deep learning to improve
recognition accuracy rates. [1-3] However, this method
cannot be suitably implemented in general Internet-of-
Things (IoT) settings and was therefore not used in this
study. Furthermore, we utilized the more representative
physical features of the recognition targets and did not adopt
automatic feature extraction in deep learning.

Although many character recognition methods have
been developed [4-12], these methods use the same fonts for
training and verification. However, fonts affect the prediction
results of deep learning. If a font is absent from the training
data, its recognizability may be low. This is similar to the
classic problem of binarization: most methods are employed
in all situations because they cannot separate the foreground
from the background in all images. The first step in learning
to write English letters involves mimicking the printed
writing in books. The 52 capital and lowercase characters
of the English alphabet are composed of strokes [13] which
have an associated direction relative to the center of the

988 Journal of Internet Technology Vol. 25 No. 7, December 2024

character. In principle, this direction may be arbitrary. If only
horizontal or vertical strokes are considered, the directions
are limited to 0, 90, 180, and 270° [14]. Many fonts also
include 125° strokes from the upper left to the lower right. In
this study, we used strokes to characterize letters in different
fonts.

Traditional AI networks are trained using preprocessed
images to produce a desired model. However, different
fonts that do not have clear features may negatively impact
learning efficiency, affecting prediction accuracy. Because
a neural network cannot effectively predict which fonts it
will encounter, we developed a set of feature extraction
methods and a neural network that can accurately learn
character strokes and features. Our Very Lightweight
Network (VLNet) employs two-layer one-dimensional
convolutions and a three-layer fully-connected layer and
accepts our artificially induced stroke features as input. Thus,
VLNet effectively predicts unknown fonts and can deliver
immediate results without needing a graphics processing
unit (GPU). The primary distinction between VLNet and
State of the Art networks in the field of artificial intelligence
lies in their architectural approach. Contemporary network
designs prioritize parameter simplification within each layer
to reduce computational overhead. In contrast, VLNet is
characterized by its inherent simplicity, comprising only
two one-dimensional convolutional layers, resulting in
fewer parameters and layers. Its uniqueness stems from
its utilization of image feature data for training, deviating
from the prevalent paradigm of employing networks with
numerous layers and parameters. VLNet’s innovative training
methodology harnesses image features to replace the need
for multi-layer convolutions, achieving comparable precision
and producing equivalent outcomes. This novel approach
demonstrates the evolution of network design within the AI
domain.

We conducted comprehensive experiments to assess
VLNet’s ability to recognize both the same letter in different
fonts and different letters in the same font. Additionally, we
compared VLNet with existing networks such as LeNet [15],
AlexNet [16], and MobileNet V3 [17] utilizing the same
training data for a fair evaluation.

We considered physical characteristics that are more
indicative of the recognition targets in the feature extraction
process and did not use the automated feature extraction
of deep learning. As a result, we could learn with less data
and produce more precise features. The quantity of tensors
employed also has an impact on computation. LeNet and
AlexNet both employ 784 and 154,587 tensors, compared
to 135 used by VLNet. In the IoT environment, the use of
features is vital. This study provides experimental evidence
that character recognition can be integrated with the IoT.
In our innovative method, the architecture rather than
the computer capacity determines how well a system can
recognize objects.

Existing approaches to English character recognition
generally ignore font differences, and those based on deep
learning are often trained on few fonts owing to computing
constraints. To address this problem, we first decompose
the characters of a given font into their constituent strokes
(directed line segments).

The performance of VLNet on unknowed fonts
demonstrates an impressive accuracy of 97.81%, surpassing
that of LeNet (96.67%), AlexNet (91.15%), and MobileNet
V3 (95.77%). Additionally, for knowed fonts, VLNet
achieves an even higher accuracy of 99.1%, outperforming
LeNet (98.59%), AlexNet (95.48%), and MobileNet V3
(98.31%). The predicSubsequently, we use the stroke
information as the input to a simple convolutional neural
network, namely the Very Lightweight Network (VLNet).
Stroke-based feature extraction reduces the requirement for
graphics data and thus the training input size. The network is
suitable for edge computing and use in the Internet of Things
as it is small and efficient. An experimental comparison
with the standard character-recognition systems LeNet and
AlexNet demonstrate that ttion time per character is between
4.44 and 4.61 ms when the system is implemented on
Raspberry Pi 4B.

The results of this study were also implemented in
Plustek Inc.’s Q30 network scanner. The Q30 scanner is
capable of performing document content recognition and
uploading different types of documents to various cloud
services directly from the machine.

The remainder of this paper is organized as follows.
Section 2 presents a review of relevant literature. The
proposed model is outlined in Section 3. The experimental
results and performance are evaluated in Section 4. Finally,
conclusions and the scope for future study are presented in
Section 5.

2 Related Works

In this section, we review prior studies on the process
of converting a paper document into digital text through
image classification using OCR and convolutional neural
networks (CNNs). In general, OCR operates through image
acquisition, whereby an image is transformed into a digital
file and preprocessed [18]. The subsequent algorithm is
impacted by the preprocessing quality. When dealing with
split characters during feature extraction, major issues may
arise if the preprocessing does not effectively separate the
character foreground from the background. File splitting may
lead to errors in target recognition; for example, sticky or
broken text may cause recognition failure. Preprocessing is
followed by image segmentation [19], wherein each character
to be recognized is segmented from the original image. As
mentioned previously, low-quality foreground/background
separation may lead to characters being missed or split
characters being merged incorrectly. Thereafter, feature
extraction [20-21] is applied, followed by classification [22].
The UCI capitalized English alphabet database is a machine
learning database available for research [23]. It provides
the features of 16 characters for training. This database is
not used to train artificial intelligence (AI) networks as this
would require the network to learn character properties by
itself; however, this easily affects induction and convergence
owing to variability among fonts. In other words, the use of
character features for training can eliminate the problems
associated with mutually different fonts.

Lightweight CNN Architecture for IoT: Enhancing Character Recognition in Multiple Fonts 989

Existing deep-learning classification methods are based
on prior feature extraction. In CNNs, feature extraction
is contained within the convolutional layers, whereas
classification occurs in the fully-connected layers.

CNNs have been used for tasks such as word recognition
[24], handwriting recognition [25], intrusion detection [26],
sign-language recognition [27], gesture recognition [28],
automatic modulation classification [29], and parasitic egg
detection [30]. LeNet-5 was the first CNN employed for
handwritten digits recognition. It uses two layers of two-
dimensional convolutions and two layers of maxpooling,
followed by a three-layer fully-connected layers. AlexNet
was used in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) on September 20, 2012. It comprises
eight layers, of which the first five are convolutional layers
(some of them followed by max-pooling layers), and the final
three are fully connected layers. Subsequently, VGGNet [31],
GoogLeNet [32], ResNet [33], and other variants have been
proposed, expanding the width and depth of network models
and setting new ILSVRC accuracy records.

However, these increasingly deep network architectures
require large amounts of data. Although feature extraction
is performed through the convolutional layer, the neural
network obtains features by calculating image pixels and
then using supervised learning with a large amount of
training data to obtain a suitable model for classification. The
greatest advantage of this method is that it does not require
manual feature extraction: data of the same type only require
appropriate labeling for use in deep learning. However,
the disadvantage is that, owing to a higher accuracy and
greater number of categories (i.e., greater network depth),
the computation must be handled by a GPU. In contrast, we
employed artificial feature extraction and a shallow neural
network to achieve text classification. Each character is
represented by its geometrical and statistical features and
subsequently used to train the neural network.

MobileNet [34] was proposed by Andrew G. Howard
from Google Inc. in 2017. It is a lightweight CNN image
classification model designed for mobile and embedded
devices. The key technique used in MobileNet is depthwise
separable convolution. In this approach, depthwise
convolution applies separate convolutions to each channel
to reduce computational complexity, whereas pointwise
convolution learns relationships between different channels
by transforming the traditional convolutional multiplications
into additions. This reduces the number of convolution
operations and significantly decreases the number of network
parameters, thereby improving computational efficiency.

In 2018, Howard introduced MobileNet V2 [35].
The motivation behind this version was the presence of
many empty convolutional kernels in depthwise separable
convolution. The application of a rectified linear unit (ReLU)
in low-dimensional space was found to cause information
loss, while it did not have the same effect in high-dimensional
space. To address this issue, MobileNet V2 employs linear
bottlenecks to increase the input dimensionality and replace
ReLU before the operation. Thus, the characteristics of
MobileNet V1 were retained while resolving the problem
associated with ReLU in low-dimensional space.

MobileNet V3 further improved upon the previous
versions by incorporating a neural architecture search (NAS)
and the Squeeze and Excitation (SENet) framework. The
SENet module employs global average pooling (GAP) to
calculate importance weights for each feature map, thereby
strengthening the influence of important feature maps while
reducing the impact of less significant ones. The upgrade in
MobileNet V3 was implemented to enhance accuracy without
compromising image processing time.

In summary, the MobileNet series has successfully
achieved efficient image classification on lightweight devices
through techniques such as depthwise separable convolution.
The improvements introduced in MobileNet V2 and V3
have enhanced the models’ accuracy and performance while
maintaining their efficiency.

3 Proposed Method

Data collection and preprocessing are crucial in the field
of document processing because adequate typographical
training datasets do not exist. As with other open-source
OCRs, our training data consist of images produced by the
program. These images tend to be excessively clean and tidy
and may lack factors that affect recognizability. Therefore,
we placed significant emphasis on data collection and
preprocessing. In addition, we used stroke features to enhance
the recognizability of different fonts. Because strokes have
different directions, we specifically considered vector
features in this study. The vectors are oriented line segments
that are directed outward from the center of gravity of each
character. Strokes may be long or short. Moreover, we added
edge features for horizontal and portrait strokes because a
very long lateral or lengthwise stroke extends to the edge
of the bounding box of the character. Thus, the long stroke
features can be accentuated, and the features of the lateral
and lengthwise strokes become more comprehensive. Each
unique feature can be induced more accurately irrespective of
font variability because the character images are not used for
deep-learning training.

3.1 Data Collection Phase
In this study, we employed twenty distinct fonts, as

enumerated in Table 1, sourced from the Microsoft Windows
10 operating system. To obtain the requisite dataset, text was
printed in these fonts and subsequently scanned from printed
pages. Throughout the scanning process, deliberate angle
rotations were introduced to augment the diversity of letter
shapes.

Initially, the selected fonts were printed on A4-sized paper
using Microsoft Word, with five samples generated for each
font. Subsequently, each of these five samples underwent
ten scans. Following scanning, preprocessing steps were
executed to isolate individual character images. The resulting
images were meticulously categorized and sequentially
encoded to represent the fifty-two English letters. Uppercase
letters A-Z were encoded from class 0 to 25, while lowercase
letters a-z were assigned class numbers from 26 to 51. This
intricate process formed the foundation for both the training
and testing datasets in this study.

990 Journal of Internet Technology Vol. 25 No. 7, December 2024

Table 1. Font list of the training set
No Font type
0 Arial Unicode MS
1 Malgun Gothic Semilight
2 MS Gothic

3 MS Mincho
4 MS PGothic

5 SimSun
6 Arial Narrow
7 Bahnschrift Condensed
8 Baskerville Old Face
9 Microsoft YaHei
10 Bookman Old Style
11 Candara Light
12 Comic Sans MS
13 Copperplate Gothic Bold
14 Courier New
15 Maiandra GD
16 Rockwell
17 Verdana
18 Mongolian Baiti
19 Leelawadee UI Semilight

3.2 Data Preprocessing Phase
Because each sample encompassed 20 fonts of English

characters, each character corresponded to 20 images with
a resolution of 300 DPI. The average variant method was
used to calculate the binarization threshold. The average
jump method was used to calculate the threshold, and the
prediction equation was defined as follows:

HTGS(k) is a histogram statistical map with k ranging
from 0 to 255, and it measures the average value of each
pixel p. Gray(p) measures the gray value, which was
substituted with the RGB three-channel average value in
the present study. LastGray(p) represents the gray value of
the previous pixel, and Mean is the gray value of the overall
image. HTGS(k) can be calculated as

() {HTGS k p k=

() () ,
2

Gray p LastGray p+ =   
50 () ,Gray p Mean< <

() () 40}Gray p LastGray p− > (1)

By applying statistics, we obtain kmax as the global
binarization threshold. Following binarization, the character
is labeled and cut by the connected-component labeling
method [36].

As illustrated in Figure 1, each uppercase character has a
single connected component and does not require the merging
of separate parts; however, certain lowercase symbols (i and
j) have two connected components and therefore necessitate
the merging of rectangles that contain each component.

The merge principle is depicted in Figure 2. If yt2 (yb2)
is the top (bottom) point of the small rectangle, and yt1
(yb1) is the top (bottom) point of the large rectangle, the top
(bottom) point of the merged rectangle, yt’ (yb’), is given by

yt’ = yt2 (yb’ = yb1). Similarly, if xl2 (xr2) is the leftmost
(rightmost) point of the small rectangle, xl1 (xr1) is the
leftmost (rightmost) point of the large rectangle, and xl’ (xr’)
is the leftmost (rightmost) point of the merged rectangle, xl’
= min (xl1, xl2) and xr’ = max (xr1, xr2).

Figure 1. Character cutting and labelling

Figure 2. Terminology for boundary boxes edges of connected
components before and after merging

3.3 Vector Features
As illustrated in Figure 3, vectors are used to represent

the 12 directions radiating from the center of gravity. Given
a character of width w and height h, its center of gravity
in Cartesian coordinates is (w/2, h/2). (If the coordinates
are not integers, we round them down.) Starting at this
center of gravity, we plotted a straight line every 30° from
the horizontal. Three points on this straight line represent
eigenvalues of the vector. Thus, the 12 lines correspond to
36 vector features. The algorithm for the stroke direction
feature method and selection of sampling point coordinates is
expressed in Eqs. 2–9 [37]:

Figure 3. Vector-feature association schematic

,
Short Edge

,
Width if Height Width
Height if Width Height

>
=  >

 (2)

Lightweight CNN Architecture for IoT: Enhancing Character Recognition in Multiple Fonts 991

/ 2nCenterX nWidth= (3)

2
nHeightnCenterY = (4)

(),C nCenterX nCenterY= (5)

nRadius shortEdge / 2= (6)

nRadiusHalf nRadius / 2= (7)

nRadiusQuarter nRadiusHalf / 2= (8)

d1= (cos(30),
180

nCenterX nRadius i π°+ × × ×

 sin(30))),
180

nCenterY nRadius i π°+ × × ×

d2= (cos(30),
180

nCenterX nRadiusHalf i π°+ × × ×

 sin(30))),
180

nCenterY nRadiusHalf i π°+ × × ×

d3= (Quarter cos 30 ,()
180

nCenterX nRadius i π°+ × × ×

 Quarter sin 30 ,()))
180

nCenterY nRadius i π°+ × × ×

 , 0 11where i R i∈ ≤ ≤ (9)

3.4 Edge Feature
A 360° range of vector features can be used to obtain

stroke features in all directions. However, because the stroke
length cannot be represented by vector features, we added
edge features to reflect this information.

As illustrated in Figure 4, we can select five points on the
top and bottom graph edges that are separated by quarters of
the width and six points on the left and right graph edges that
are separated by fifths of the height. (For most characters,
the height is greater than the width.) No corner points are
counted twice, and there are 18 points for the edge features.
With the addition of the 36 vector-feature points, we obtain
54 feature points.

Figure 4. Schematic of edge features

3.5 Density Feature
Density is a stroke feature that indicates the manner in

which a word is written. The character image is projected
onto a grid, and the ratio of strokes to this grid is the average
density. We used a 9 × 9 grid in this study. Thus, the width
and height of each grid cell were W/9 and H/9, respectively.

The positional feature of the stroke is the set of
intersections between the stroke and the 81 cells. As
illustrated in Figure 5, the density D is the ratio of the number
of black pixels in each cell to the area of the grid. BlackPixel/
(W*H). If a stroke completely covers a cell, its density is 1;
if the stroke does not pass through the cell at all, its density is
0. Thus, we used density to represent the positional features
of strokes in this study.

Figure 5. Positional features of a character

3.6 The Proposed VLNET Model
We designed the VLNet for edge computing. Because the

stroke features are extracted as described previously, the 135
vector-feature, edge-feature, and density-feature inputs do
not have two-dimensional graphics features, and the output
has only 52 categories (the uppercase and lowercase letters of
the alphabet).

Figure 6. VLNet workflow diagram

In accordance with the graphical representation in Figure
6, the following workflow is executed:

1. Feature Extraction: A total of 36 vector features, 18
edge features, and 81 density features are extracted from the
input image.

2. Feature Concatenation: All extracted features are
concatenated into a 1D array of size 1 x 135, serving as the
input to subsequent layers.

3. Convolutional Layers 1: A one-dimensional
convolution operation is applied using a 1 x 3 kernel,
resulting in the generation of six 1 x 133 feature maps.

992 Journal of Internet Technology Vol. 25 No. 7, December 2024

4. Max-Pooling: Max-pooling is performed with a 1 x 2
kernel, producing six 1 x 66 feature maps.

5. Convolutional Layers 2: Another one-dimensional
convolutional layer, utilizing a 1 x 3 kernel, refines the six 1
x 66 feature maps, resulting in 18 feature maps.

6. Fully Connected Layers: The 18 resulting 1 x 64
feature maps are fed into a fully connected layer, which
reduces the dimensionality from 18 x 1 x 64 = 1152 features
to 300 features, and subsequently to 150 features.

7. Classification: The final fully connected layer
classifies the 150 features into one of 52 categories,
producing 52 probability results.”

The maximum probability according to softmax is
generated as the output.

Table 2 presents a comparison between the neural
network architecture proposed in this study and the
comparison group architectures. The output is in k categories,
which in this study represents the 52 uppercase and lowercase
English characters.

Table 2. Neural network architectures comparison
VLNet LeNet AlexNet MobileNet V3

Small

Input 135 x 1 32 x 32 x 1 224 x 224 x 3 224 x 224 x 3

L1 1 x 3
Conv1d, 6

5x5 Conv2d,
6

11x11 Conv2d,
96

3 x 3 Conv 2d,
16

L2 Pool Pool 5x5 Conv2d,
256

3 x 3 Bneck,
16

L3
1 x 3

Conv1d,
18

5x5 Conv2d,
16 Pool 3 x 3 Bneck,

24

L4 FC 400 Pool 3x3 Conv2d,
384

3 x 3 Bneck,
24

L5 FC 300 FC 400 Pool 5 x 5 Bneck,
40

L6 FC 150 FC 120 3x3 Conv2d,
384

5 x 5 Bneck,
40

L7 FC 84 3x3 Conv2d,
256

5 x 5 Bneck,
40

L8 Pool 5 x 5 Bneck,
48

L9 FC 4096 5 x 5 Bneck,
48

L10 FC 4096 5 x 5 Bneck,
96

L11 FC 1000 5 x 5 Bneck,
96

L12 5 x 5 Bneck,
96

L13 1 x 1 Conv,
576

L14 GAP

L15 1 x 1 Conv,
1280

Output Softmax, k Softmax, k Softmax, k 1 x 1 Conv, k

4 Results and Discussion

In this study, 20 fonts were used for implementation
(Figure 7).

Figure 7. Letter A in 20 English fonts

The training set spanned five samples of each font for
100 samples. There are 52 characters in the alphabet (upper
and lower case); hence, 5200 characters were considered.
Samples were not repeated between the training and test sets.
Each test set comprised 260 characters, with five samples per
character for a single font. The experimental objective was
to evaluate the ability of the proposed model to recognize
different fonts. Accordingly, each test set used a font that was
absent from the corresponding training set; i.e., each model
was trained with 19 fonts and tested with the remaining font.
The result of each experiment was the average of the test
results of 20 models.

The experimental results are presented in Table 3. We
used two different calculation methods: case sensitive and
case insensitive. In some fonts, the uppercase and lowercase
letters were almost identical for certain characters; in all
fonts, C, O, S, V, W, X, and Z were nearly identical in both
cases, whereas P, U, and Y were similar in both cases. VLNet
exhibited a fairly high error rate for characters with similar
uppercase and lowercase forms, with a 6.41% difference
between the case-insensitive and case-sensitive accuracies.

Table 3. Experiment results for unknown fonts
Model Test

target
Case-

sensitive
errors

Case-
insensitive

errors

Case-
sensitive
accuracy

Case-
insensitive
accuracy

VLNet 5200 425 110 91.40% 97.81%

AlexNet 5200 786 469 84.88% 91.15%

LeNet 5200 623 121 88.02% 97.67%

MobileNet
V3 5200 336 220 93.54% 95.77%

Regardless of the image used for training, LeNet,
AlexNet, and MobileNet V3 could not distinguish between
uppercase and lowercase characters. These results suggest
that differentiating between uppercase and lowercase
characters solely based on the same strokes is impossible.
Therefore, the proposed method has no disadvantage relative
to other AI recognition methods. The proposed method
obtained the second best results in the final test for the case-
sensitive case, with 198 fewer errors (3.38%) than LeNet,
361 fewer errors (also 6.25%) than AlexNet, and 89 more
errors (2.14%) than MobileNet V3. For the case-insensitive
case, VLNet yielded the best results among all architectures,
with 11 fewer errors (0.14%) than LeNet, 359 fewer errors
(6.66%) than AlexNet, and 110 fewer errors (2.04%) than

Lightweight CNN Architecture for IoT: Enhancing Character Recognition in Multiple Fonts 993

MobileNet V3. We also selected five characters in each font
from the test set to demonstrate the ability of the network to
recognize known fonts better than the comparison networks.
Because each training set represented 19 fonts, each test set
had 52 × 19 × 5 = 4940 characters for validation. Each test
set also had different samples from those in its corresponding
training set; only the fonts were the same.

Table 4. Experimental results for known font
Model Test

target
Case-

sensitive
errors

Case-
insensitive

errors

Case-
sensitive
accuracy

Case-
insensitive
accuracy

VLNet 98800 1650 835 98.24% 99.11%

AlexNet 98800 6454 4470 93.47% 95.48%

LeNet 98800 7252 1392 92.66% 98.59%

MobileNet
V3 98800 2327 1670 97.64 98.31%

The experimental results are listed in Table 4. We
calculated separate accuracy rates for the uppercase and
lowercase sets. The test results for same-font recognizability
indicate that VLNet performs better than the comparison
group. For the case-sensitive case, it exhibited 5602 fewer
errors (5.58%) than LeNet, 4804 fewer errors (4.77%) than
AlexNet, and 677 fewer errors (0.60%) than MobileNet
V3. For the case-insensitive case, the proposed architecture
yielded 557 fewer errors (0.52%) than LeNet, 3635 fewer
errors (3.63%) than AlexNet, and 835 fewer errors (0.80%)
than MobileNet V3.

In summary, the four neural networks were not as
effective in recognizing unknown fonts as known fonts;
however, VLNet exhibited overall superior performance for
both known and unknown fonts.

Moreover, when analyzing the experimental results, we
identified another special case wherein it was not easy to
distinguish between uppercase and lowercase characters,
particularly, uppercase I and lowercase l, which are difficult
to distinguish even with the human eye in some fonts. We
have provided a detailed error sample in Table 5 to illustrate
instances of such challenges.

Table 5. The I and l error sample
Image

Ans l l l 1 I I I I
Predict I I I I l l l l

In these specific fonts, humans can correctly distinguish
the two characters through context and prior knowledge.
However, as this study did not include sequence-to-sequence
training, VLNet could not distinguish these characters in
certain fonts. The results obtained by VLNet for unknown
fonts when ignoring mismatches between I and l are
presented in Table 6. In the case-sensitive experiment,
accuracy reached 92.40%, which was an increase of 1.00%;
in the case-insensitive experiment, accuracy reached 98.46%,
which was an increase of 0.65%.

Table 6. Experimental result for unknown fonts ignoring I and 1
Model Test

samples
Error

in case
sensitive

Error
in case

insensitive

Accuracy
for case
sensitive

Accuracy
for case

insensitive

VLNet 5200 395 80 92.40% 98.46%

 Experimental results for the known-fonts model are
displayed in Table 7. Experimental result for known fonts
ignoring I and 1. The accuracy rates of the case-sensitive and
case-insensitive experiments exceeded the original results by
0.43% and 0.38%, respectively. Although the recognizability
of I and l was lower with unknown fonts than with known
fonts, the two characters were not easy to distinguish in either
case.

Table 7. Experimental result for known fonts ignoring I and 1
Model Test

samples
Error

in case
sensitive

Error
in case

insensitive

Accuracy
for case
sensitive

Accuracy
for case

insensitive

VLNet 98800 1316 501 98.67% 99.49%

The objective of this study was to produce a network
architecture that can run on a GPU or neural processing
unit (NPU) platform without AI computing capabilities.
Therefore, for verification, we opted to use Raspberry Pi
4B, which is easily obtained in the market. The experiment
was conducted using a CPU to perform the CNN operation.
The average prediction time per character ranged between
4.44 and 4.61 ms (Table 8 and Table 9), which confirms our
assumption that character recognition can be performed by
VLNet on an IoT device without AI computing capabilities.

Table 8. Model prediction time for unknown fonts

Model Test sample Time (s) Time
(ms/per character)

VLNet 5200 23.10 4.44

LeNet 5200 46.70 8.98

AlexNet 5200 1279.11 245.98

MobileNet
V3 5200 853.55 164.14

Table 9. Model prediction time for known fonts

Model Test sample Times (s) Time
(ms/per character)

VLNet 98800 455.32 4.61

LeNet 98800 878.14 8.89

AlexNet 98800 22996.23 232.76

MobileNet
V3 98800 16091.16 162.87

The experimental results presented in this study indicate
that the character recognition time on Pi 4 ranged from 4.4
to 4.6 ms. General documents, such as receipts or bills,
typically contain fewer than 200 characters, resulting in a

994 Journal of Internet Technology Vol. 25 No. 7, December 2024

maximum processing time of approximately 0.92 s. These
findings successfully meet our pre-recognition requirements,
prompting us to integrate the research outcomes into the
Plustek Q30 system. The Q30 system enables the automatic
transmission of various images and metadata to predefined
clouds tailored to specific characteristics based on different
keywords. This advanced functionality eliminates the need
for manual classification and uploading. For further reference,
please refer to Figure 8, which displays the architecture
diagram presented by Plustek at Computex 2023.

Figure 8. Plustek Q30 cloud application architecture diagram

The recognition process within Q30 follows a standard
methodology, consistent with the majority of recognition
approaches, as depicted in Figure 9. The process involves
scanning data into image files through the Q30 system. After
undergoing image segmentation, the target characters are
extracted. Subsequently, 135 features of these characters are
computed. These 135 features are subjected to classification
utilizing VLNnet, resulting in the identification of the
character in question.

Figure 9. Plustek Q30 classification flow

Naturally, it is important to acknowledge that predictions
generated by artificial intelligence systems are susceptible to
errors. Therefore, a manual verification step is incorporated
to ensure the accuracy of the obtained data. Depending on the
specific requirements of the application domain, the manual
verification step can be optionally deactivated. The data
acquired through this process is employed for predictive data

distribution, as illustrated in the example. For instance, if the
system identifies a document as a FedEx Invoice, Q30 will
autonomously allocate it to a designated temporary location.
In this example, the document is stored within the “Invoice”
directory on the NAS, encompassing both image files and
associated media data.

Although MobileNet V3 demonstrated a comparable
accuracy to VLNet, it exhibited an inferior execution speed
on Pi 4. Moreover, although MobileNet V3 is intended for
mobile devices, it still relies on an NPU to attain satisfactory
performance. When running on a CPU, MobileNet
V3 operates at least 36 times slower than VLNet. This
reinforces the benefits of adopting the VLNet design when
implementing neural networks on IoT devices.

5 Conclusion and Future Work

This study experimentally demonstrates that stroke
features can be used to recognize unknown fonts. Our
proposed VLNet employs two-layer two-dimensional
convolutions and a three-layer fully connected layer and
accepts our artificially induced stroke features as input.
Thus, VLNet is effective for unknown font prediction; it can
obtain results immediately without a graphics processing
unit (GPU). We conducted comprehensive experiments
to assess the ability of VLNet to recognize both the same
letter in different fonts and different letters in the same font.
Additionally, we compared VLNet with existing networks
such as LeNet, AlexNet, and MobileNet V3, utilizing the
same training data for a fair evaluation. The known-font
recognizability of VLNet was 99.11%, whereas its unknown-
font recognizability was 97.81% under the best conditions.
Several factors affected the recognition results. The uppercase
and lowercase forms of the letters C, O, P, S, U, V, W, X, Y,
and Z have identical or very similar strokes; similarly, the
characters I and l have the same strokes and are difficult to
distinguish even with the human eye. These cases are also
problematic in traditional image recognition methods. In the
future, we plan to use layer analysis or sequence-to-sequence
training to resolve this issue.

Acknowledgement

The authors wish to acknowledge the help of Plustek Inc.
in data collection and the full support of the General Manager
Lin of Plustek Inc. The authors extend their gratitude to
Advanced View Inc. for providing the NVIDIA GPU that was
used in the training model, as well as aiding in the successful
completion of this study. The research production has been
imported into Plustek’s iKnow and SmartZone software,
as well as the DOCapture cloud recognition platform. The
method proposed in this study obtained an invention patent
of the Republic of China with the patent number I775634.
In addition, this work was supported in part by the Ministry
of Science and Technology, Taiwan, R.O.C., under grants
MOST 110-2222-E-992 -006 -.

This work was also supported in part by the Ministry
of Science and Technology, Taiwan, R.O.C., under grants
MOST 110-2222-E-992 -006 -.

Lightweight CNN Architecture for IoT: Enhancing Character Recognition in Multiple Fonts 995

Permission of Data and Material

Samples used in this study were obtained by printing
and scanning the 20 fonts built into the Microsoft Windows
10 operating system. During the scanning process, angular
rotation was applied to increase the variability between
sample characters. In addition, according to the font
redistribution FAQ for Windows, Microsoft does not place
any restrictions on print output using these fonts unless using
an application that is specifically licensed for home, student,
or noncommercial use.

References

[1] A. Aberdam, R. Litman, S. Tsiper, O. Anschel,
R. Slossberg, S. Mazor, Sequence-to-Sequence
Contrastive Learning for Text Recognition, 2021 IEEE/
CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Nashville, TN, USA, 2021, pp.
15297-15307.

[2] T. T. H. Nguyen, A. Jatowt, M. Coustaty, A. Doucet,
Survey of post-OCR processing approaches, ACM
Computing Surveys (CSUR), Vol. 54, No. 6, pp. 1-37,
July, 2022.

[3] X. Chen, L. Jin, Y. Zhu, C. Luo, T. Wang, Text
recognition in the wild: A survey, ACM Computing
Surveys (CSUR), Vol. 54, No. 2, pp. 1–35, March, 2022.

[4] Y. Yang, L. Xu, C. Chen, English character recognition
based on feature combination, Procedia Engineering,
Vol. 24, pp. 159-164, 2011.

[5] S.-W. Lee, D.-J. Lee, H.-S. Park, A new methodology
for gray-scale character segmentation and recognition,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 18, No. 10, pp. 1045-1050, October,
1996.

[6] I. B. Cruz, A. D. Sardiñas, R. B. Pérez, Y. S. Oliva,
Learning optimization in a MLP Neural Network
Applied to OCR, MICAI 2002: Advances in Artificial
Intelligence: Second Mexican International Conference
on Artificial Intelligence Mérida, Yucatán, Mexico,
2002, pp. 292-300.

[7] N. Sharma, B. Kumar, V. Singh, Recognition of off-
line hand printed English Characters, Numerals and
Special Symbols, 2014 5th International Conference
- Confluence The Next Generation Information
Technology Summit (Confluence), Noida, India, 2014,
pp. 640-645.

[8] J. R. Quinlan, Induction of decision trees, Machine
learning, Vol. 1, No. 1, pp. 81–106, March, 1986.

[9] Y. Li, J. Li, M. Li, Character Recognition Based on
Hierarchical RBF Neural Networks, Sixth International
Conference on Intelligent Systems Design and
Applications, Jian, China, 2006, pp. 127-132.

[10] R. Arnold, P. Miklós, Character recognition using
neural networks, 2010 11th International Symposium on
Computational Intelligence and Informatics (CINTI),
Budapest, Hungary, 2010, pp. 311-314.

[11] J. Bai, Z. Chen, B. Feng, B. Xu, Image character
recognition using deep convolutional neural network

learned from different languages, 2014 IEEE
International Conference on Image Processing (ICIP),
Paris, France, 2014, pp. 2560-2564.

[12] R. Ptucha, F. P. Such, S. Pillai, F. Brockler, V. Singh, P.
Hutkowski, Intelligent character recognition using fully
convolutional neural networks, Pattern recognition, Vol.
88, pp. 604-613, April, 2019.

[13] J. Parkinson, B. Khurana, Temporal order of strokes
primes letter recognition, The Quarterly Journal of
Experimental Psychology, Vol. 60, No. 9, pp. 1265-
1274, September, 2007.

[14] Y. Y. Tang, B. F. Li, H. Ma, J. Lin, Ring-projection-
wavelet-fractal signatures: a novel approach to feature
extraction, IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, Vol. 45, No.
8, pp. 1130-1134, August, 1998.

[15] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-
based learning applied to document recognition,
Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-
2324, November, 1998.

[16] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet
classification with deep convolutional neural networks,
Communications of the ACM, Vol. 60, No. 6, pp. 84-90,
June, 2017.

[17] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen,
M. Tan, G. Chu, V. Vasudevan, Y. Zhu, R. Pang, H.
Adam, Q. Le, Searching for mobilenetv3, Proceedings
of the IEEE/CVF international conference on computer
vision, Seoul, Korea (South), 2019, pp. 1314-1324.

[18] W. B. Lund, D. J. Kennard, E. K. Ringger, Combining
multiple thresholding binarization values to improve
OCR output, Document Recognition and Retrieval XX,
February, 2013.

[19] N. A. Shaikh, Z. A. Shaikh, G. Ali, Segmentation of
Arabic text into characters for recognition, Wireless
Networks, Information Processing and Systems:
International Multi Topic Conference, IMTIC 2008,
Jamshoro, Pakistan, 2008, pp. 11-18.

[20] S. Khalid, T. Khalil, S. Nasreen, A survey of feature
selection and feature extraction techniques in machine
learning, 2014 Science and Information Conference,
London, UK, 2014, pp. 372-378.

[21] K. K. M. Shreyas, S. Rajeev, K. Panetta, S. S. Agaian,
Fingerprint authentication using geometric features,
2017 IEEE International Symposium on Technologies
for Homeland Security (HST), Waltham, MA, USA,
2017, pp. 1-7.

[22] A. S. Tarawneh, A. B. Hassanat, D. Chetverikov, I.
Lendak, C. Verma, Invoice Classification Using Deep
Features and Machine Learning Techniques, 2019 IEEE
Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT),
Amman, Jordan, 2019, pp. 855-859.

[23] E. M. d. A. Neves, A. Gonzaga, A. F. F. Slaets, A multi-
font character recognition based on its fundamental
features by artificial neural networks, Proceedings II
Workshop on Cybernetic Vision, Sao Carlos, Brazil,
1996, pp. 196-201.

[24] H. Hosseini, B. Xiao, R. Poovendran, Google’s cloud
vision api is not robust to noise, 2017 16th IEEE

996 Journal of Internet Technology Vol. 25 No. 7, December 2024

international conference on machine learning and
applications (ICMLA), Cancun, Mexico, 2017, pp. 101-
105.

[25] J . Memon, M. Sami , R . A. Khan, M. Uddin ,
Handwritten Optical Character Recognition (OCR): A
Comprehensive Systematic Literature Review (SLR),
IEEE Access, Vol. 8, pp. 142642-142668, July, 2020.

[26] J. Kim, J. Kim, H. Kim, M. Shim, E. Choi, CNN-based
network intrusion detection against denial-of-service
attacks, Electronics, Vol. 9, Article No. 916, June, 2020.

[27] A. A. Barbhuiya, R. K. Karsh, R. Jain, CNN based
feature extraction and classification for sign language,
Multimedia Tools and Applications, Vol. 80, No. 2, pp.
3051-3069, January, 2021.

[28] W. Cheng, Y. Sun, G. Li, G. Jiang, H. Liu, Jointly
network: a network based on CNN and RBM for gesture
recognition, Neural Computing and Applications, Vol.
31, No. 1 supplement, pp. 309-323, January, 2019.

[29] J. H. Lee, K.-Y. Kim, Y. Shin, Feature Image-Based
Automatic Modulation Classification Method Using
CNN Algorithm, 2019 International Conference
on Art i f ic ial Inte l l igence in Information and
Communication (ICAIIC), Okinawa, Japan, 2019, pp.
1-4.

[30] V. Savitha, M. Karthick, T. Kalaikumaran, Parasitic Egg
detection from Microscopic images using Convolutional
Neural Networks, Tamjeed Journal of Healthcare
Engineering and Science Technology, Vol. 1, No. 1, pp.
24-34, April, 2023.

[31] K. Simonyan, A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv
preprint arXiv:1409.1556, April, 2015. https://arxiv.org/
abs/1409.1556

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich,
Going deeper with convolutions, 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 2015, pp. 1-9.

[33] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual
Learning for Image Recognition, 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 2016, pp. 770-778.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.
Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets:
Efficient convolutional neural networks for mobile
vision applications, arXiv preprint arXiv:1704.04861,
April, 2017. https://arxiv.org/abs/1704.04861

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-
C. Chen, MobileNetV2: Inverted Residuals and Linear
Bottlenecks, 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT,
USA, 2018, pp. 4510-4520.

[36] J.-M. Park, C. G. Looney, H.-C. Chen, Fast connected
component labeling algorithm using a divide and
conquer technique, 15th International Conference
on Computers and their Applications (CATA), New
Orleans, LA, USA, 2000, pp. 373-376.

[37] C.-H. Chen, Z.-H. Huang, K.-W. Huang, Recognition of
Handwritten English and Digits Using Stroke Features
and MLP, 2022 Joint 12th International Conference

on Soft Computing and Intelligent Systems and 23rd
International Symposium on Advanced Intelligent
Systems (SCIS&ISIS), Ise, Japan, 2022, pp. 1-5.

Biographies

Chung-Hsing Chen received his master’s
degree at the Department of Information
Management, National Sun Yat-Sen
University, in 2006. Currently, he is the
Director of Research and Development
Department of Plustek Inc. His current
research interests mainly include, network
applications, embedded systems and AI

image recognition.

Ko-Wei Huang received his PhD from the
Institute of Computer and Communication
Engineering, Department of Electrical
Engineering, National Cheng Kung
University, Tainan, Taiwan, in 2015. He
is currently an Associate Professor at the
Department of Electrical Engineering,
National Kaohsiung University of Science

and Technology, Taiwan. His current research interests
mainly include data mining, deep learning, evolutionary
computing, and medical image processing.

