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Abstract

Existing approaches to English character recognition 
generally ignore font differences, and those based on 
deep learning are often trained on only one font owing 
to computational constraints. To address this problem, 
we propose the Very Lightweight Network (VLNet), 
a lightweight convolutional neural network. First, we 
decompose the characters of a given font into their constituent 
strokes. Subsequently, we pass the stroke information as 
input to a simple convolutional neural network. Stroke-based 
feature extraction reduces the requirement for graphics data 
and training input size. The network is small and efficient; 
thus, it is suitable for edge computing and Internet of Things 
applications. In the experimental comparison with the 
standard character-recognition systems LeNet, AlexNet and 
MobileNet V3, VLNet demonstrated superior accuracy for 
known and unknown fonts and a reasonable prediction time 
per character. The results of this study were also implemented 
in Plustek Inc.’s Q30 network scanner, which enabled direct 
document content recognition and transfer to various cloud 
services.

Keywords: Feature extraction, CNN, Internet of things, 
Deep learning, Edge computing

1  Introduction

Recently, the field of automatic document processing 
has seen significant advancements. The demand for data 
extraction from documents has increased due to their 
digitalization. Data extraction and recognition tasks for 
paper-based documents pose significant challenges. Although 
these documents can easily be converted into digital formats 
using a scanner and computer via traditional scanning, 
after this procedure, the documents go through a storage 
phase that requires manual classification and creation of 
media files from images. With the increasing prevalence 
of artificial intelligence (AI), there has been a rise in the 
demand for internet-connected network scanners that have 
taken on the role of data extraction for cloud storage. Data 
sent to the cloud are not limited to image files but consist 
of media files containing document content, which can be 

used for automatic classification, archiving, and transfer of 
diverse types of document to cloud platforms. For example, 
accounting, education, and government documents can be 
loaded into accounting, education, and government clouds, 
respectively. For this, network scanners need to be upgraded 
to perform AI edge computing for document pre-recognition 
and deliver the necessary document content to cloud storage. 
Consequently, network scanners have evolved into Internet-
of-Things (IoT) devices. To achieve this functionality, we 
propose a neural network that performs edge computing 
and connects to cloud services, constituting a complete IoT 
device. The network can run smoothly on the Raspberry Pi 
4B platform.

The automatic recognition of English text is a subject of 
extensive research. The process begins with the document 
layout analysis and continues with preprocessing, text 
segmentation, optical character recognition (OCR), and 
postprocessing. However, the English text is printed in 
different fonts, and an effective text-recognition system 
must handle this diversity, particularly during the OCR 
stage. Because a neural network cannot effectively generate 
predictions, we developed a model comprising feature 
extraction methods and a neural network which can 
accurately learn character strokes and features, effectively 
predict unknown fonts, and readily obtain results without 
requiring a graphics processing unit (GPU).

Recent studies have employed deep learning to improve 
recognition accuracy rates. [1-3] However, this method 
cannot be suitably implemented in general Internet-of-
Things (IoT) settings and was therefore not used in this 
study. Furthermore, we utilized the more representative 
physical features of the recognition targets and did not adopt 
automatic feature extraction in deep learning.

Although many character recognition methods have 
been developed [4-12], these methods use the same fonts for 
training and verification. However, fonts affect the prediction 
results of deep learning. If a font is absent from the training 
data, its recognizability may be low. This is similar to the 
classic problem of binarization: most methods are employed 
in all situations because they cannot separate the foreground 
from the background in all images. The first step in learning 
to write English letters involves mimicking the printed 
writing in books. The 52 capital and lowercase characters 
of the English alphabet are composed of strokes [13] which 
have an associated direction relative to the center of the 
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character. In principle, this direction may be arbitrary. If only 
horizontal or vertical strokes are considered, the directions 
are limited to 0, 90, 180, and 270° [14]. Many fonts also 
include 125° strokes from the upper left to the lower right. In 
this study, we used strokes to characterize letters in different 
fonts.

Traditional AI networks are trained using preprocessed 
images to produce a desired model. However, different 
fonts that do not have clear features may negatively impact 
learning efficiency, affecting prediction accuracy. Because 
a neural network cannot effectively predict which fonts it 
will encounter, we developed a set of feature extraction 
methods and a neural network that can accurately learn 
character strokes and features. Our Very Lightweight 
Network (VLNet) employs two-layer one-dimensional 
convolutions and a three-layer fully-connected layer and 
accepts our artificially induced stroke features as input. Thus, 
VLNet effectively predicts unknown fonts and can deliver 
immediate results without needing a graphics processing 
unit (GPU). The primary distinction between VLNet and 
State of the Art networks in the field of artificial intelligence 
lies in their architectural approach. Contemporary network 
designs prioritize parameter simplification within each layer 
to reduce computational overhead. In contrast, VLNet is 
characterized by its inherent simplicity, comprising only 
two one-dimensional convolutional layers, resulting in 
fewer parameters and layers. Its uniqueness stems from 
its utilization of image feature data for training, deviating 
from the prevalent paradigm of employing networks with 
numerous layers and parameters. VLNet’s innovative training 
methodology harnesses image features to replace the need 
for multi-layer convolutions, achieving comparable precision 
and producing equivalent outcomes. This novel approach 
demonstrates the evolution of network design within the AI 
domain.

We conducted comprehensive experiments to assess 
VLNet’s ability to recognize both the same letter in different 
fonts and different letters in the same font. Additionally, we 
compared VLNet with existing networks such as LeNet [15], 
AlexNet [16], and MobileNet V3 [17] utilizing the same 
training data for a fair evaluation.

We considered physical characteristics that are more 
indicative of the recognition targets in the feature extraction 
process and did not use the automated feature extraction 
of deep learning. As a result, we could learn with less data 
and produce more precise features. The quantity of tensors 
employed also has an impact on computation. LeNet and 
AlexNet both employ 784 and 154,587 tensors, compared 
to 135 used by VLNet. In the IoT environment, the use of 
features is vital. This study provides experimental evidence 
that character recognition can be integrated with the IoT. 
In our innovative method, the architecture rather than 
the computer capacity determines how well a system can 
recognize objects.

Existing approaches to English character recognition 
generally ignore font differences, and those based on deep 
learning are often trained on few fonts owing to computing 
constraints. To address this problem, we first decompose 
the characters of a given font into their constituent strokes 
(directed line segments). 

The performance of VLNet on unknowed fonts 
demonstrates an impressive accuracy of 97.81%, surpassing 
that of LeNet (96.67%), AlexNet (91.15%), and MobileNet 
V3 (95.77%). Additionally, for knowed fonts, VLNet 
achieves an even higher accuracy of 99.1%, outperforming 
LeNet (98.59%), AlexNet (95.48%), and MobileNet V3 
(98.31%). The predicSubsequently, we use the stroke 
information as the input to a simple convolutional neural 
network, namely the Very Lightweight Network (VLNet). 
Stroke-based feature extraction reduces the requirement for 
graphics data and thus the training input size. The network is 
suitable for edge computing and use in the Internet of Things 
as it is small and efficient. An experimental comparison 
with the standard character-recognition systems LeNet and 
AlexNet demonstrate that ttion time per character is between 
4.44 and 4.61 ms when the system is implemented on 
Raspberry Pi 4B. 

The results of this study were also implemented in 
Plustek Inc.’s Q30 network scanner. The Q30 scanner is 
capable of performing document content recognition and 
uploading different types of documents to various cloud 
services directly from the machine.

The remainder of this paper is organized as follows. 
Section 2 presents a review of relevant literature. The 
proposed model is outlined in Section 3. The experimental 
results and performance are evaluated in Section 4. Finally, 
conclusions and the scope for future study are presented in 
Section 5.

2  Related Works

In this section, we review prior studies on the process 
of converting a paper document into digital text through 
image classification using OCR and convolutional neural 
networks (CNNs). In general, OCR operates through image 
acquisition, whereby an image is transformed into a digital 
file and preprocessed [18]. The subsequent algorithm is 
impacted by the preprocessing quality. When dealing with 
split characters during feature extraction, major issues may 
arise if the preprocessing does not effectively separate the 
character foreground from the background. File splitting may 
lead to errors in target recognition; for example, sticky or 
broken text may cause recognition failure. Preprocessing is 
followed by image segmentation [19], wherein each character 
to be recognized is segmented from the original image. As 
mentioned previously, low-quality foreground/background 
separation may lead to characters being missed or split 
characters being merged incorrectly. Thereafter, feature 
extraction [20-21] is applied, followed by classification [22]. 
The UCI capitalized English alphabet database is a machine 
learning database available for research [23]. It provides 
the features of 16 characters for training. This database is 
not used to train artificial intelligence (AI) networks as this 
would require the network to learn character properties by 
itself; however, this easily affects induction and convergence 
owing to variability among fonts. In other words, the use of 
character features for training can eliminate the problems 
associated with mutually different fonts.
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Existing deep-learning classification methods are based 
on prior feature extraction. In CNNs, feature extraction 
is contained within the convolutional layers, whereas 
classification occurs in the fully-connected layers.

CNNs have been used for tasks such as word recognition 
[24], handwriting recognition [25], intrusion detection [26], 
sign-language recognition [27], gesture recognition [28], 
automatic modulation classification [29], and parasitic egg 
detection [30]. LeNet-5 was the first CNN employed for 
handwritten digits recognition. It uses two layers of two-
dimensional convolutions and two layers of maxpooling, 
followed by a three-layer fully-connected layers. AlexNet 
was used in the ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC) on September 20, 2012. It comprises 
eight layers, of which the first five are convolutional layers 
(some of them followed by max-pooling layers), and the final 
three are fully connected layers. Subsequently, VGGNet [31], 
GoogLeNet [32], ResNet [33], and other variants have been 
proposed, expanding the width and depth of network models 
and setting new ILSVRC accuracy records.

However, these increasingly deep network architectures 
require large amounts of data. Although feature extraction 
is performed through the convolutional layer, the neural 
network obtains features by calculating image pixels and 
then using supervised learning with a large amount of 
training data to obtain a suitable model for classification. The 
greatest advantage of this method is that it does not require 
manual feature extraction: data of the same type only require 
appropriate labeling for use in deep learning. However, 
the disadvantage is that, owing to a higher accuracy and 
greater number of categories (i.e., greater network depth), 
the computation must be handled by a GPU. In contrast, we 
employed artificial feature extraction and a shallow neural 
network to achieve text classification. Each character is 
represented by its geometrical and statistical features and 
subsequently used to train the neural network.

MobileNet [34] was proposed by Andrew G. Howard 
from Google Inc. in 2017. It is a lightweight CNN image 
classification model designed for mobile and embedded 
devices. The key technique used in MobileNet is depthwise 
separable convolution. In this approach, depthwise 
convolution applies separate convolutions to each channel 
to reduce computational complexity, whereas pointwise 
convolution learns relationships between different channels 
by transforming the traditional convolutional multiplications 
into additions. This reduces the number of convolution 
operations and significantly decreases the number of network 
parameters, thereby improving computational efficiency.

In 2018, Howard introduced MobileNet V2 [35]. 
The motivation behind this version was the presence of 
many empty convolutional kernels in depthwise separable 
convolution. The application of a rectified linear unit (ReLU) 
in low-dimensional space was found to cause information 
loss, while it did not have the same effect in high-dimensional 
space. To address this issue, MobileNet V2 employs linear 
bottlenecks to increase the input dimensionality and replace 
ReLU before the operation. Thus, the characteristics of 
MobileNet V1 were retained while resolving the problem 
associated with ReLU in low-dimensional space.

MobileNet V3 further improved upon the previous 
versions by incorporating a neural architecture search (NAS) 
and the Squeeze and Excitation (SENet) framework. The 
SENet module employs global average pooling (GAP) to 
calculate importance weights for each feature map, thereby 
strengthening the influence of important feature maps while 
reducing the impact of less significant ones. The upgrade in 
MobileNet V3 was implemented to enhance accuracy without 
compromising image processing time.

In summary, the MobileNet series has successfully 
achieved efficient image classification on lightweight devices 
through techniques such as depthwise separable convolution. 
The improvements introduced in MobileNet V2 and V3 
have enhanced the models’ accuracy and performance while 
maintaining their efficiency.

3  Proposed Method

Data collection and preprocessing are crucial in the field 
of document processing because adequate typographical 
training datasets do not exist. As with other open-source 
OCRs, our training data consist of images produced by the 
program. These images tend to be excessively clean and tidy 
and may lack factors that affect recognizability. Therefore, 
we placed significant emphasis on data collection and 
preprocessing. In addition, we used stroke features to enhance 
the recognizability of different fonts. Because strokes have 
different directions, we specifically considered vector 
features in this study. The vectors are oriented line segments 
that are directed outward from the center of gravity of each 
character. Strokes may be long or short. Moreover, we added 
edge features for horizontal and portrait strokes because a 
very long lateral or lengthwise stroke extends to the edge 
of the bounding box of the character. Thus, the long stroke 
features can be accentuated, and the features of the lateral 
and lengthwise strokes become more comprehensive. Each 
unique feature can be induced more accurately irrespective of 
font variability because the character images are not used for 
deep-learning training.

3.1  Data Collection Phase
In this study, we employed twenty distinct fonts, as 

enumerated in Table 1, sourced from the Microsoft Windows 
10 operating system. To obtain the requisite dataset, text was 
printed in these fonts and subsequently scanned from printed 
pages. Throughout the scanning process, deliberate angle 
rotations were introduced to augment the diversity of letter 
shapes.

Initially, the selected fonts were printed on A4-sized paper 
using Microsoft Word, with five samples generated for each 
font. Subsequently, each of these five samples underwent 
ten scans. Following scanning, preprocessing steps were 
executed to isolate individual character images. The resulting 
images were meticulously categorized and sequentially 
encoded to represent the fifty-two English letters. Uppercase 
letters A-Z were encoded from class 0 to 25, while lowercase 
letters a-z were assigned class numbers from 26 to 51. This 
intricate process formed the foundation for both the training 
and testing datasets in this study.
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Table 1. Font list of the training set
No Font type
0 Arial Unicode MS
1 Malgun Gothic Semilight
2 MS Gothic

3 MS Mincho
4 MS PGothic

5 SimSun
6 Arial Narrow
7 Bahnschrift Condensed
8 Baskerville Old Face
9 Microsoft YaHei
10 Bookman Old Style
11 Candara Light
12 Comic Sans MS
13 Copperplate Gothic Bold
14 Courier New
15 Maiandra GD
16 Rockwell
17 Verdana
18 Mongolian Baiti
19 Leelawadee UI Semilight

3.2  Data Preprocessing Phase
Because each sample encompassed 20 fonts of English 

characters, each character corresponded to 20 images with 
a resolution of 300 DPI. The average variant method was 
used to calculate the binarization threshold. The average 
jump method was used to calculate the threshold, and the 
prediction equation was defined as follows:

HTGS(k) is a histogram statistical map with k ranging 
from 0 to 255, and it measures the average value of each 
pixel p. Gray(p) measures the gray value, which was 
substituted with the RGB three-channel average value in 
the present study. LastGray(p) represents the gray value of 
the previous pixel, and Mean is the gray value of the overall 
image. HTGS(k) can be calculated as

( ) {HTGS k p k=

( ) ( ) ,
2

Gray p LastGray p+ =   
50 ( ) ,Gray p Mean< <

( ) ( ) 40}Gray p LastGray p− >                        (1)

By applying statistics, we obtain kmax as the global 
binarization threshold. Following binarization, the character 
is labeled and cut by the connected-component labeling 
method [36].

As illustrated in Figure 1, each uppercase character has a 
single connected component and does not require the merging 
of separate parts; however, certain lowercase symbols (i and 
j) have two connected components and therefore necessitate 
the merging of rectangles that contain each component.

The merge principle is depicted in Figure 2. If yt2 (yb2) 
is the top (bottom) point of the small rectangle, and yt1 
(yb1) is the top (bottom) point of the large rectangle, the top 
(bottom) point of the merged rectangle, yt’ (yb’), is given by 

yt’ = yt2 (yb’ = yb1). Similarly, if xl2 (xr2) is the leftmost 
(rightmost) point of the small rectangle, xl1 (xr1) is the 
leftmost (rightmost) point of the large rectangle, and xl’ (xr’) 
is the leftmost (rightmost) point of the merged rectangle, xl’ 
= min (xl1, xl2) and xr’ = max (xr1, xr2).

Figure 1. Character cutting and labelling

Figure 2. Terminology for boundary boxes edges of connected 
components before and after merging

3.3  Vector Features
As illustrated in Figure 3, vectors are used to represent 

the 12 directions radiating from the center of gravity. Given 
a character of width w and height h, its center of gravity 
in Cartesian coordinates is (w/2, h/2). (If the coordinates 
are not integers, we round them down.) Starting at this 
center of gravity, we plotted a straight line every 30° from 
the horizontal. Three points on this straight line represent 
eigenvalues of the vector. Thus, the 12 lines correspond to 
36 vector features. The algorithm for the stroke direction 
feature method and selection of sampling point coordinates is 
expressed in Eqs. 2–9 [37]:

Figure 3. Vector-feature association schematic

,   
Short Edge

,   
Width if Height Width
Height if Width Height

>
=  >

            (2)
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/ 2nCenterX nWidth=                            (3)

2
nHeightnCenterY =                             (4)

( ),C nCenterX nCenterY=                       (5)

nRadius shortEdge / 2=                          (6)

nRadiusHalf nRadius / 2=                       (7)

nRadiusQuarter nRadiusHalf / 2=               (8)

d1= ( cos(30 ),
180

nCenterX nRadius i π°+ × × ×

       sin(30 ))),
180

nCenterY nRadius i π°+ × × ×

d2= ( cos(30 ),
180

nCenterX nRadiusHalf i π°+ × × ×

      sin(30 ))),
180

nCenterY nRadiusHalf i π°+ × × ×

d3= ( Quarter cos 30 ,( )
180

nCenterX nRadius i π°+ × × ×

     Quarter sin 30 ,( )))
180

nCenterY nRadius i π°+ × × ×

 ,  0 11where i R i∈ ≤ ≤                                             (9)

3.4  Edge Feature
A 360° range of vector features can be used to obtain 

stroke features in all directions. However, because the stroke 
length cannot be represented by vector features, we added 
edge features to reflect this information.

As illustrated in Figure 4, we can select five points on the 
top and bottom graph edges that are separated by quarters of 
the width and six points on the left and right graph edges that 
are separated by fifths of the height. (For most characters, 
the height is greater than the width.) No corner points are 
counted twice, and there are 18 points for the edge features. 
With the addition of the 36 vector-feature points, we obtain 
54 feature points. 

Figure 4. Schematic of edge features

3.5  Density Feature
Density is a stroke feature that indicates the manner in 

which a word is written. The character image is projected 
onto a grid, and the ratio of strokes to this grid is the average 
density. We used a 9 × 9 grid in this study. Thus, the width 
and height of each grid cell were W/9 and H/9, respectively. 

The positional feature of the stroke is the set of 
intersections between the stroke and the 81 cells. As 
illustrated in Figure 5, the density D is the ratio of the number 
of black pixels in each cell to the area of the grid. BlackPixel/
(W*H). If a stroke completely covers a cell, its density is 1; 
if the stroke does not pass through the cell at all, its density is 
0. Thus, we used density to represent the positional features 
of strokes in this study.

Figure 5. Positional features of a character

3.6  The Proposed VLNET Model
We designed the VLNet for edge computing. Because the 

stroke features are extracted as described previously, the 135 
vector-feature, edge-feature, and density-feature inputs do 
not have two-dimensional graphics features, and the output 
has only 52 categories (the uppercase and lowercase letters of 
the alphabet). 

Figure 6. VLNet workflow diagram

In accordance with the graphical representation in Figure 
6, the following workflow is executed:

1. Feature Extraction: A total of 36 vector features, 18 
edge features, and 81 density features are extracted from the 
input image.

2. Feature Concatenation: All extracted features are 
concatenated into a 1D array of size 1 x 135, serving as the 
input to subsequent layers.

3.  Convolutional Layers 1: A one-dimensional 
convolution operation is applied using a 1 x 3 kernel, 
resulting in the generation of six 1 x 133 feature maps.
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4. Max-Pooling: Max-pooling is performed with a 1 x 2 
kernel, producing six 1 x 66 feature maps.

5. Convolutional Layers 2: Another one-dimensional 
convolutional layer, utilizing a 1 x 3 kernel, refines the six 1 
x 66 feature maps, resulting in 18 feature maps.

6. Fully Connected Layers: The 18 resulting 1 x 64 
feature maps are fed into a fully connected layer, which 
reduces the dimensionality from 18 x 1 x 64 = 1152 features 
to 300 features, and subsequently to 150 features.

7. Classification: The final fully connected layer 
classifies the 150 features into one of 52 categories, 
producing 52 probability results.”

The maximum probability according to softmax is 
generated as the output.

Table 2 presents a comparison between the neural 
network architecture proposed in this study and the 
comparison group architectures. The output is in k categories, 
which in this study represents the 52 uppercase and lowercase 
English characters.

Table 2. Neural network architectures comparison
VLNet LeNet AlexNet MobileNet V3 

Small

Input 135 x 1 32 x 32 x 1 224 x 224 x 3 224 x 224 x 3

L1 1 x 3 
Conv1d, 6

5x5 Conv2d, 
6

11x11 Conv2d, 
96

3 x 3 Conv 2d, 
16

L2 Pool Pool 5x5 Conv2d, 
256

3 x 3 Bneck, 
16

L3
1 x 3 

Conv1d, 
18

5x5 Conv2d, 
16 Pool 3 x 3 Bneck, 

24

L4 FC 400 Pool 3x3 Conv2d, 
384

3 x 3 Bneck, 
24

L5 FC 300 FC 400 Pool 5 x 5 Bneck, 
40

L6 FC 150 FC 120 3x3 Conv2d, 
384

5 x 5 Bneck, 
40

L7 FC 84 3x3 Conv2d, 
256

5 x 5 Bneck, 
40

L8 Pool 5 x 5 Bneck, 
48

L9 FC 4096 5 x 5 Bneck, 
48

L10 FC 4096 5 x 5 Bneck, 
96

L11 FC 1000 5 x 5 Bneck, 
96

L12 5 x 5 Bneck, 
96

L13 1 x 1 Conv, 
576

L14 GAP

L15 1 x 1 Conv, 
1280

Output Softmax, k Softmax, k Softmax, k 1 x 1 Conv, k

4  Results and Discussion

In this study, 20 fonts were used for implementation 
(Figure 7). 

Figure 7. Letter A in 20 English fonts

The training set spanned five samples of each font for 
100 samples. There are 52 characters in the alphabet (upper 
and lower case); hence, 5200 characters were considered. 
Samples were not repeated between the training and test sets. 
Each test set comprised 260 characters, with five samples per 
character for a single font. The experimental objective was 
to evaluate the ability of the proposed model to recognize 
different fonts. Accordingly, each test set used a font that was 
absent from the corresponding training set; i.e., each model 
was trained with 19 fonts and tested with the remaining font. 
The result of each experiment was the average of the test 
results of 20 models.

The experimental results are presented in Table 3. We 
used two different calculation methods: case sensitive and 
case insensitive. In some fonts, the uppercase and lowercase 
letters were almost identical for certain characters; in all 
fonts, C, O, S, V, W, X, and Z were nearly identical in both 
cases, whereas P, U, and Y were similar in both cases. VLNet 
exhibited a fairly high error rate for characters with similar 
uppercase and lowercase forms, with a 6.41% difference 
between the case-insensitive and case-sensitive accuracies.

Table 3. Experiment results for unknown fonts
Model Test 

target
Case-

sensitive 
errors

Case-
insensitive 

errors

Case-
sensitive 
accuracy

Case-
insensitive 
accuracy

VLNet 5200 425 110 91.40% 97.81%

AlexNet 5200 786 469 84.88% 91.15%

LeNet 5200 623 121 88.02% 97.67%

MobileNet 
V3 5200 336 220 93.54% 95.77%

Regardless of the image used for training, LeNet, 
AlexNet, and MobileNet V3 could not distinguish between 
uppercase and lowercase characters. These results suggest 
that differentiating between uppercase and lowercase 
characters solely based on the same strokes is impossible. 
Therefore, the proposed method has no disadvantage relative 
to other AI recognition methods. The proposed method 
obtained the second best results in the final test for the case-
sensitive case, with 198 fewer errors (3.38%) than LeNet, 
361 fewer errors (also 6.25%) than AlexNet, and 89 more 
errors (2.14%) than MobileNet V3. For the case-insensitive 
case, VLNet yielded the best results among all architectures, 
with 11 fewer errors (0.14%) than LeNet, 359 fewer errors 
(6.66%) than AlexNet, and 110 fewer errors (2.04%) than 
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MobileNet V3. We also selected five characters in each font 
from the test set to demonstrate the ability of the network to 
recognize known fonts better than the comparison networks. 
Because each training set represented 19 fonts, each test set 
had 52 × 19 × 5 = 4940 characters for validation. Each test 
set also had different samples from those in its corresponding 
training set; only the fonts were the same.

Table 4. Experimental results for known font
Model Test 

target
Case-

sensitive 
errors

Case-
insensitive 

errors

Case-
sensitive 
accuracy

Case-
insensitive 
accuracy

VLNet 98800 1650 835 98.24% 99.11%

AlexNet 98800 6454 4470 93.47% 95.48%

LeNet 98800 7252 1392 92.66% 98.59%

MobileNet 
V3 98800 2327 1670 97.64 98.31%

The experimental results are listed in Table 4. We 
calculated separate accuracy rates for the uppercase and 
lowercase sets. The test results for same-font recognizability 
indicate that VLNet performs better than the comparison 
group. For the case-sensitive case, it exhibited 5602 fewer 
errors (5.58%) than LeNet, 4804 fewer errors (4.77%) than 
AlexNet, and 677 fewer errors (0.60%) than MobileNet 
V3. For the case-insensitive case, the proposed architecture 
yielded 557 fewer errors (0.52%) than LeNet, 3635 fewer 
errors (3.63%) than AlexNet, and 835 fewer errors (0.80%) 
than MobileNet V3. 

In summary, the four neural networks were not as 
effective in recognizing unknown fonts as known fonts; 
however, VLNet exhibited overall superior performance for 
both known and unknown fonts.

Moreover, when analyzing the experimental results, we 
identified another special case wherein it was not easy to 
distinguish between uppercase and lowercase characters, 
particularly, uppercase I and lowercase l, which are difficult 
to distinguish even with the human eye in some fonts. We 
have provided a detailed error sample in Table 5 to illustrate 
instances of such challenges. 

Table 5. The I and l error sample
Image

Ans l l l 1 I I I I
Predict I I I I l l l l

In these specific fonts, humans can correctly distinguish 
the two characters through context and prior knowledge. 
However, as this study did not include sequence-to-sequence 
training, VLNet could not distinguish these characters in 
certain fonts. The results obtained by VLNet for unknown 
fonts when ignoring mismatches between I and l are 
presented in Table 6. In the case-sensitive experiment, 
accuracy reached 92.40%, which was an increase of 1.00%; 
in the case-insensitive experiment, accuracy reached 98.46%, 
which was an increase of 0.65%.

Table 6. Experimental result for unknown fonts ignoring I and 1
Model Test 

samples
Error 

in case 
sensitive

Error 
in case 

insensitive

Accuracy 
for case 
sensitive

Accuracy 
for case 

insensitive

VLNet 5200 395 80 92.40% 98.46%

 Experimental results for the known-fonts model are 
displayed in Table 7. Experimental result for known fonts 
ignoring I and 1. The accuracy rates of the case-sensitive and 
case-insensitive experiments exceeded the original results by 
0.43% and 0.38%, respectively. Although the recognizability 
of I and l was lower with unknown fonts than with known 
fonts, the two characters were not easy to distinguish in either 
case. 

Table 7. Experimental result for known fonts ignoring I and 1
Model Test 

samples
Error 

in case 
sensitive

Error 
in case 

insensitive

Accuracy 
for case 
sensitive

Accuracy 
for case 

insensitive

VLNet 98800 1316 501 98.67% 99.49%

The objective of this study was to produce a network 
architecture that can run on a GPU or neural processing 
unit (NPU) platform without AI computing capabilities. 
Therefore, for verification, we opted to use Raspberry Pi 
4B, which is easily obtained in the market. The experiment 
was conducted using a CPU to perform the CNN operation. 
The average prediction time per character ranged between 
4.44 and 4.61 ms (Table 8 and Table 9), which confirms our 
assumption that character recognition can be performed by 
VLNet on an IoT device without AI computing capabilities.

Table 8. Model prediction time for unknown fonts

Model Test sample Time (s) Time
(ms/per character)

VLNet 5200 23.10 4.44

LeNet 5200 46.70 8.98

AlexNet 5200 1279.11 245.98

MobileNet 
V3 5200 853.55 164.14

Table 9. Model prediction time for known fonts

Model Test sample Times (s) Time
(ms/per character)

VLNet 98800 455.32 4.61

LeNet 98800 878.14 8.89

AlexNet 98800 22996.23 232.76

MobileNet 
V3 98800 16091.16 162.87

The experimental results presented in this study indicate 
that the character recognition time on Pi 4 ranged from 4.4 
to 4.6 ms. General documents, such as receipts or bills, 
typically contain fewer than 200 characters, resulting in a 
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maximum processing time of approximately 0.92 s. These 
findings successfully meet our pre-recognition requirements, 
prompting us to integrate the research outcomes into the 
Plustek Q30 system. The Q30 system enables the automatic 
transmission of various images and metadata to predefined 
clouds tailored to specific characteristics based on different 
keywords. This advanced functionality eliminates the need 
for manual classification and uploading. For further reference, 
please refer to Figure 8, which displays the architecture 
diagram presented by Plustek at Computex 2023.

Figure 8. Plustek Q30 cloud application architecture diagram

The recognition process within Q30 follows a standard 
methodology, consistent with the majority of recognition 
approaches, as depicted in Figure 9. The process involves 
scanning data into image files through the Q30 system. After 
undergoing image segmentation, the target characters are 
extracted. Subsequently, 135 features of these characters are 
computed. These 135 features are subjected to classification 
utilizing VLNnet, resulting in the identification of the 
character in question.

Figure 9. Plustek Q30 classification flow

Naturally, it is important to acknowledge that predictions 
generated by artificial intelligence systems are susceptible to 
errors. Therefore, a manual verification step is incorporated 
to ensure the accuracy of the obtained data. Depending on the 
specific requirements of the application domain, the manual 
verification step can be optionally deactivated. The data 
acquired through this process is employed for predictive data 

distribution, as illustrated in the example. For instance, if the 
system identifies a document as a FedEx Invoice, Q30 will 
autonomously allocate it to a designated temporary location. 
In this example, the document is stored within the “Invoice” 
directory on the NAS, encompassing both image files and 
associated media data.

Although MobileNet V3 demonstrated a comparable 
accuracy to VLNet, it exhibited an inferior execution speed 
on Pi 4. Moreover, although MobileNet V3 is intended for 
mobile devices, it still relies on an NPU to attain satisfactory 
performance. When running on a CPU, MobileNet 
V3 operates at least 36 times slower than VLNet. This 
reinforces the benefits of adopting the VLNet design when 
implementing neural networks on IoT devices.

5  Conclusion and Future Work

This study experimentally demonstrates that stroke 
features can be used to recognize unknown fonts. Our 
proposed VLNet employs two-layer two-dimensional 
convolutions and a three-layer fully connected layer and 
accepts our artificially induced stroke features as input. 
Thus, VLNet is effective for unknown font prediction; it can 
obtain results immediately without a graphics processing 
unit (GPU). We conducted comprehensive experiments 
to assess the ability of VLNet to recognize both the same 
letter in different fonts and different letters in the same font. 
Additionally, we compared VLNet with existing networks 
such as LeNet, AlexNet, and MobileNet V3, utilizing the 
same training data for a fair evaluation. The known-font 
recognizability of VLNet was 99.11%, whereas its unknown-
font recognizability was 97.81% under the best conditions. 
Several factors affected the recognition results. The uppercase 
and lowercase forms of the letters C, O, P, S, U, V, W, X, Y, 
and Z have identical or very similar strokes; similarly, the 
characters I and l have the same strokes and are difficult to 
distinguish even with the human eye. These cases are also 
problematic in traditional image recognition methods. In the 
future, we plan to use layer analysis or sequence-to-sequence 
training to resolve this issue.
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Permission of Data and Material

Samples used in this study were obtained by printing 
and scanning the 20 fonts built into the Microsoft Windows 
10 operating system. During the scanning process, angular 
rotation was applied to increase the variability between 
sample characters. In addition, according to the font 
redistribution FAQ for Windows, Microsoft does not place 
any restrictions on print output using these fonts unless using 
an application that is specifically licensed for home, student, 
or noncommercial use.
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