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Abstract

This study proposes a new algorithm MALight based on 
multi-step deep Q network (DQN) and attentive experience 
replay (AER). Multi-step DQN samples multiple consecutive 
experiences within a time step, combines them into a long-
term sample, and uses them to update the Q network to 
reduce the bias caused by inaccurate Q value estimation, 
which could accelerate the convergence of Q network. 
During training, we adopted the concept of AER to prioritize 
learning experiences close to the current state to enable 
the agent to learn better strategies. Finally, we conducted 
simulation experiments in the city traffic simulator CityFlow 
using both synthetic and real-world traffic flow datasets. The 
evaluation results show that MALight can accelerate the 
convergence speed of the network, effectively improve the 
traffic capacity of intersections, and optimize the average 
travel time of intersections.

Keywords: Deep reinforcement learning, Traffic signal 
control lights, Multi-step DQN, Experience replay

1  Introduction

With the rapid increase in the number of motor vehicles 
in this world, traffic congestion has become a challenging 
and terrible problem worldwide. Nowadays, traditional traffic 
signal lights can only switch according to preset time cycles 
and cannot dynamically adjust according to real-time traffic 
conditions, this results in the waste of road resources and 
thus alleviates traffic congestion to some extent. In contrast, 
self-adaptive traffic signal control lights can adjust the signal 
lights in real-time based on road traffic conditions to adapt to 
actual traffic needs, thereby achieving the goal of optimizing 
traffic flow and reducing traffic congestion. There are 
many deep reinforcement learning-based methods for self-
adaptive traffic signal light optimization. However, the neural 
networks used in this research always result in the training 
process does not converge, are unstable, or even trapped in 
local optima.

To alleviate traffic congestion, methods such as limiting 
the growth of demand for vehicles and increasing the 

construction of road infrastructure are usually adopted. 
However, both of these methods have their limitations. As we 
all know, the traffic signal control system plays an important 
role in traffic conditions, and a desirable traffic signal control 
system can increase traffic volume and alleviate traffic 
congestion. Unfortunately, most of the currently used traffic 
signal lights are still traditional fixed-time traffic signal 
lights. Traditional traffic signal control (TSC) can be divided 
into three main categories: fixed-time control [1], actuated 
control [2], and adaptive control [3-7]. Fixed-time control 
is the most common traffic signal control way, traffic lights 
switch according to a predetermined schedule. Each traffic 
signal state (red, yellow, green) persists for a specific period 
and then switches in a predetermined sequence. This type of 
control is suitable for situations where traffic flow changes 
relatively little and is predictable, such as during nighttime 
or periods of low traffic flow.Actuated control triggers the 
switching of signal light states by detecting traffic flow or 
driver demands. This can include detecting the presence of 
vehicles, pedestrians, or bicycles and making corresponding 
adjustments to signal lights.Actuated control is suitable for 
situations that require flexible adjustments based on actual 
traffic demands, such as busy intersections or locations where 
pedestrians cross roads.  Adaptive control is one of the most 
effective traffic signal control methods, which uses advanced 
algorithms and ideas to train network models to converge and 
achieve intelligent control of traffic signals. Adaptive control 
is suitable for high-traffic and frequently changing situations. 
It allows for real-time adjustments of signal lights to adapt 
to traffic conditions, providing higher traffic efficiency and 
reducing traffic congestion.MaxPressure [5] is one of the 
state-of-the-art in adaptive control methods, which chooses 
the appropriate phase based on traffic conditions to minimize 
traffic pressure. When traffic volume is too high, traditional 
fixed-time traffic signal lights cannot effectively handle 
traffic flow, thereby aggravating traffic congestion problems. 
Compared to traditional traffic signal lights, adaptive traffic 
signal light control has three advantages. Firstly, it can 
dynamically adjust the signal lights to adapt to the actual 
traffic demand, thus enabling more effective control of traffic 
flow. Secondly, it can optimize traffic lights according to real-
time traffic conditions, thereby reducing traffic congestion 
and improving the efficiency of roads and pedestrian travel. 
Finally, it can achieve precise traffic flow prediction and 
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control, thereby improving traffic safety and reliability.
In recent years, with the development of artificial 

intelligence (AI), many AI-related technologies have 
attracted the attention of researchers and have been applied 
to solve the problem of smart traffic signal control [8-10], 
e.g., Reinforcement learning (RL) which allows an agent to 
interact with the environment to learn how to achieve long-
term goals. Some recent RL-based research has focused 
on the DQN (deep Q network) algorithm. However, the 
DQN algorithm suffers from the problem of biased Q-value 
estimation. To address this issue, we propose MALight, 
a multi-step DQN-based algorithm that can speed up the 
training process and improve the convergence rate. Moreover, 
since the random experience replay used in DQN fails to 
capture the importance of different experiences, we propose 
to replace it with a higher-priority sampling method that 
targets experiences similar to the current state.

The network framework of DQN is improved by 
accumulating n single-step experiences into one and using 
the accumulated experience for learning, thus accelerating 
the convergence speed of the network and enhances the 
accuracy of decision-making. Attentive experience replay 
(AER) [11] is combined with the multi-step DQN network to 
prioritize learning experiences that are similar to the current 
state, enabling the intelligent agent to learn better strategies.
Comparative analysis with traditional control methods and 
the Presslight algorithm reveals that MALight outperforms in 
terms of reducing average vehicle travel times and increasing 
the average throughput of intersections.

2  Related Work

Deep reinforcement learning (DRL) [12] is a learning 
framework that combines deep learning and reinforcement 
learning, which is considered to be one of the most advanced 
frameworks in control systems [6, 8-10, 13-24]. In DRL, 
agents adopt deep neural networks to learn better policies 
to adapt to various complex traffic environments. In recent 
years, DRL-based methods and frameworks have been 
proposed and developed for smart traffic light control, 
in which the traffic lights (red, green, or yellow) are 
controlled automatically based on real-time and dynamic 
traffic conditions. For example, Genders et al. [13] used 
the DQN framework in traffic control systems, defining 
the state of an intersection as a two-dimensional value that 
includes the position and velocity information of vehicles 
at this intersection, through collecting traffic information 
in the vehicle network and then using convolutional neural 
networks (CNNs) for feature extraction to more accurately 
represent real-time environmental state information of the 
intersection. However, the action selection module and 
evaluation module in DQN are in the same network, which 
can cause overestimation issues. Some research has tried to 
alleviate the overestimation problem by improving the used 
DRL network frameworks. For example, Pol et al. [14] used 
an integrated learning method with double deep Q network 
(DDQN), prioritized experience replay (PER), and shadow 
target networks to enable adjacent intersections to interact 
and share their learned joint Q-function for optimal overall 

performance. DDQN can prevent the overestimation of 
Q-values and accelerate network convergence, resulting in 
better performance than DQN. In addition, In [15-16] used 
an integrated learning method with dueling double deep Q 
network (D3QN) and PER, which outperformed other models 
in terms of performance and learning speed and demonstrated 
better control effects than previous models. PER [25] selects 
samples from the experience pool based on their priorities, 
which are modified based on the values according to temporal 
difference (TD) errors, to enable the policy network to learn 
final policies better and more quickly.

Some earlier related studies based on the DQN [26] 
framework use complex states embedding and rewards 
calculation. For example, IntelliLight [9] used the DQN 
method to solve the TSC problem, and its state features 
consisted of five parts (queue length on the lanes, average 
waiting time, current traffic light state, number of waiting 
vehicles, and the state feature of the intersection extracted 
by Convolutional Neural Network). The reward was 
comprehensively decided by six elements (sum of queue 
lengths on the lanes, average waiting time, current traffic 
light, delay time of vehicles, number of vehicles passing 
through the intersection, and travel time of all vehicles). 
Currently, most reinforcement learning methods use more 
simple state representations and reward designs. Light-
IntellighT (LIT) [10] only embeds the current phase and 
number of vehicles to a state, and the reward only depends on 
the vehicle queue length. Under the same network structure, 
its results were better than IntelliLight. PressLight [17] is 
a maxpressure-based method, and its state consists of the 
current phase, the number of vehicles entering and leaving the 
lane. The reward is designed to be pressure, which is defined 
as the difference between the numbers of vehicles entering 
and leaving a lane respectively. Experimental evaluation 
results have shown that PressLight performs better than LIT 
in terms of reducing average travel time. A RL model design 
called FRAP (which is invariant to symmetric operations like 
Flip and Rotation and considers All Phase configurations) 
[18] improved the network structure to capture the phase 
competition relation between different traffic movements. It 
can find the optimal policy faster and improve the network 
convergence speed.

CoLight [19] uses graph attention networks (GANs) to 
enhance the coordination and cooperation between agents, 
which can better handle cooperative control of multiple 
intersections. HiLight [20] introduces a hierarchical structure 
where each agent learns a high-level policy by selecting 
among several sub-policies to minimize the average travel 
time. In this structure, high-level policies focus on long-
term goals while sub-policies optimize different short-term 
goals, allowing agents to learn to cooperate and optimize the 
average travel time.

In addition, there are several studies that have used 
various novel methods to control intelligent traffic signal 
lights. For example, AttentionLight [21] defines the state 
and reward of traffic phase selection as Max-QueueLength 
and proposes a new reinforcement learning-based model that 
uses self-attention mechanisms to capture phase correlations. 
AttendLight [22] adopts a policy-based model that can be 
applied to any traffic environment with different crossroads 
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and phase combinations. It incorporates two attention 
mechanisms, one for handling different numbers of lanes 
and the other for handling different phases of intersections. 
In addition, DemoLight [23] integrates the idea of imitation 
learning, while MetaLight [24] proposes more generalized 
models using meta-learning strategies.

3  Preliminaries

This article explores the dynamic control of traffic signal 
phases in multi-intersection scenarios. For general reason, we 
assume that in the traffic network, each intersection is divided 
into four directions (“W”, “E”, “N”, “S”), each of which 
includes six lanes, with three entry lanes and three exit lanes, 
as shown in Figure 1. It is notable that such an assumption 
is just an example and the proposed algorithm in this study 
could be generalized to more scenarios.

Traffic Movement: The lane entering an intersection is 
the entry lane, and the lane leaving the intersection is the 
exit lane. Traffic movement is defined as the traffic trajectory 
from entering the incoming lane to leaving the exit lane. With 
three types of traffic flow depending on the movement mode: 
straight, left turn, and right turn. The rightmost lane only 
allows straight and right turns, the middle lane only allows 
straight going, and the leftmost lane only allows left turns.

Traffic Environment: Traffic environment simulates 
the movement of vehicles on the road network based on the 
given traffic flow and pushes vehicles into the network at the 
corresponding time. The traffic control algorithm controls 
each traffic signal based on the current traffic volume.

Intersection and road network: The traffic network is 
described as a directed graph in which each node represents 
an intersection, each intersection is controlled by traffic 
signals and is designed as a two-way six-lane intersection.

Travel time: The time a vehicle takes from entering to 
leaving a specific area.

Phase: Traffic signals control corresponded traffic 
movements, with green indicating traffic movement is 
allowed and red indicating it is prohibited.

Traffic pressure: Defined as the difference between 
the numbers of vehicles on the entrance and exit lanes 
respectively, reflecting the degree of imbalance in terms of 
vehicle density between the entrance and exit lanes.

Figure 1. Intersections

4  MALight Algorithm

4.1 Problem Modelling
In DRL-based traffic control models, the traffic lights with 

control algorithms integrated at intersections are modeled 
as agents, while the controlling objects are the real-time 
changing traffic flows in the traffic network. The closed-loop 
interaction process between the agent and the controlling 
object is abstracted into a Markov decision process (MDP). 
Given real-time traffic flows and current traffic signals, the 
agent’s goal is to select optimal actions to maximize the 
total reward. In the MALight model proposed in this study, 
an agent is set for each intersection in the road network, 
and models the control process as a MDP, employing multi-
step DQN as the framework to control the traffic lights at 
intersections. It mainly consists of four modules as follows.

State representation module: Representing the current 
traffic signal control state as a vector that includes the 
respective numbers of vehicles on the entering and exiting 
lanes.

Action selection module: Using a deep neural network to 
learn the next action to be taken, controlling the phase of the 
signal lights.

Reward calculation module: Calculating immediate 
rewards according to the pressure Eq. (1).

Experience replay module: Saving the interaction 
history between the agent and the environment to train the 
neural network.

4.2 Multi-step DQN
In multi-step DQN, the agent captures the current phase 

and the numbers of vehicles in each lane based on the current 
state of the traffic intersection, and uses this observational 
data as the input for the neural network, as shown in Figure 
2. Then, based on the pressure definition, the corresponding 
pressure is determined, and an action is accordingly selected 
from the action space to control the signal light phase, thus 
achieving intelligent control to the signal light and effective 
traffic management. The pressure is defined as:

in outP N Ni = −                                    (1)

where Pi represents the pressure at intersection i, Nin and 
Nout indicates the number of vehicles entering and exiting 
the lane, respectively. The reward is defined as the opposite 
number of pressure:

r Pi i= −                                          (2)

The total reward of all  traffic movements at an 
intersection is:

( )R s ,a rt t i= ∑                                   (3)

The traditional one-step DQN is a deep reinforcement 
learning algorithm that uses two neural networks with 
identical structures but different parameters: an evaluation 
value network used to approximate the Q values and a target 
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Figure 2. Diagram of multi-step DQN structure

value network used to calculate the target Q values. Since 
the DQN’s target Q value is determined by the immediate 
reward and the maximum Q value at the next time step, the 
traditional one-step DQN has a slower learning speed in 
the early period. Multi-step DQN accumulates n single-step 
experiences and learns using the accumulated experience to 
improve the learning efficiency of the algorithm. The multi-
step reward and multi-step target respectively are:

( ) ( )1
10

nn k
t t t kk

R Rγ
−

+ +=
=∑                            (4)

and

( )
1

1
1

1
ta

0

rget

1

1 2 max ( ,

max

; )

, ;

n n
t t t n a t n

n i n
t i a t ni

y r r r Q s a

r Q s aγ γ θ

γ γ γ θ−
+ + +

−
+ +

+

+ +=

+

+

= + +…+ +

=∑
 (5)

To update the network parameters of DQN, the mean 
squared error (MSE) is commonly adopted as the loss of the 
network, which is:
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4.3 Attentive Experience Replay
During the interaction between the agent and the 

environment, the accumulation of experience is crucial. 
These experiences are represented by many quad-tuple (s, a, 
r, s′) and stored in an experience pool, as shown in Figure 3. 

To update the network, the target network randomly selects a 
batch of samples from the experience pool. The advantages 
of experience replay are as follows. Firstly, that it can reduce 
the correlation between different samples through random 
sampling. Secondly, samples can repeatedly use for multiple 
times to improve the utilization efficiency of experiences. 
However, experience replay suffers from the problem that it 
cannot reflect the importance of experiences and thus past 
policies may not match the current policy when updating, 
affecting overall performance. To solve this problem, 
AER mechanism was proposed [11], which compares the 
distribution of states in the experience pool with the current 
state distribution, and accordingly selects the experiences 
with higher similarity for replay, thereby improving the 
convergence performance of the neural network. This further 
promotes more accurate value estimation and better action 
selection. Therefore, AER can be seen as an improved 
mechanism of experience replay that can effectively improve 
the learning efficiency and performance of the intelligent 
agent. Compared to random experience replay, AER can 
more effectively utilize historical experience data to improve 
the model’s learning ability.

To further improve performance, we made some 
improvements to AER. We extract the experiences sampled 
from the most recent episodes in the experience pool and 
calculate their similarity with the remaining samples in the 
pool one by one. Then, the top K most similar experiences 
are selected as a mini batch for gradient updates of the neural 
network. Euclidean distance is adopted to calculate the 
similarity between two states.

Figure 3. Sample picking
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Multi-step DQN is an improvement over the original 
DQN that introduces experience samples from multiple time 
steps to improve the accuracy, efficiency, and stability of 
value function estimation during training. Traditional DQN 
can only train on experience samples from a single time 
step, while Multi-step DQN can construct a more accurate 
value function estimate by using rewards from multiple time 
steps. The pseudocode of the detailed implementation of our 
proposed MALight is as follows.

MALight
Input: replay memory D, multi-step replay memory D′ , multi-
step replay memory size N, multi-step n, sample size B, mini-
batch k, episode length T, discount factor γ, greedy ε, learning 
rate α, replacement frequency C, similarity measure F.
 Initialize Q with parameters θ, Q̂ with parameters θ̂
  for each episode do
     Initialize step number t as 0, total time tsum as 0
     while tsum < T do
        Select a random phase pha with probability ԑ
        Otherwise pha ← argmaxpha Q (st, pha; θ)         
        Receive the green phase duration time tgreen from the envi-
ronment
        Execute at ← {pha, tgreen}
        Observe the new state st+1 
        Calculate the reward based on max pressure
        rt = − (Nin − Nout)    
        Store transition (st, at, rt, st+1) in D
        if t > n then

 ( ) ( )1
10

R R
nn k

t t t kk
γ

−
+ +=

=∑
          Store transition (st, at, R

(n)
t , st+n) in D’

        end if
       tsum ← tsum + tgreen, t ← t+1
        if N > B then
           for j = 1 to N do
                Uniformly sample transition j:(sj, aj, R

(n)
j , sj+n)

                Compute similar lj = F(sj, st) 
           end for
        Select k most similar transition B
        Calculate weight-change Δ using transitions B
        Update weights
        end if

Calculate the loss J by Eq. 6 and update θ by gradient descent 
with learning rate as α

    Every C step update Q̂  ← Q
    end while
  end for

5  Experimental Results

In this experiment, we employed the CityFlow [27] traffic 
simulator, which supports large-scale traffic signal control 
simulation, to evaluate the performance of MALight. By 
inputting traffic data into the simulator, vehicles are directed 
to their destinations according to the environmental settings, 
thereby simulating traffic flow.

5.1 Datasets
To evaluate the performance of MALight, both synthetic 

and real-world datasets are utilized in this evaluation. The 

synthetic dataset was synthesized from statistical analysis of 
real-world traffic patterns and used to learn the properties of 
different algorithms by manually designing traffic volume. 
The real-world dataset was collected from traffic data streams 
in the real world and has characteristics of randomness and 
irregularity.

For the synthetic dataset, a 1x6 intersection traffic 
network is used, where there is one road in the W-E direction 
and six roads in the N-S direction. The length of the lanes 
in both directions is 300 meters. Each intersection has four 
approaches, with each approach having three lanes for left 
turn, though, and right turn. The speed of the vehicles is 40 
km/h. For the real-world dataset, some history traffic data 
flows of HangZhou and Jinan were used. The HangZhou 
dataset contains a 4x4 grid of intersections, with four roads 
in the W-E direction and four roads in the N-S direction, with 
the length of the lanes in the N-S direction being 800 meters 
and 600 meters respectively. The Jinan dataset contains 
12 intersections in a 3x4 grid, with three roads in the W-E 
direction and four roads in the N-S direction. The real-world 
dataset was obtained through roadside surveillance cameras, 
recording the movement trajectory, speed, and entry time of 
vehicles, which was used to reproduce traffic in the simulator. 
Compared to the synthetic dataset, the real-world dataset is 
more random and unpredictable.

5.2 Experiment Settings and Baseline
In this experiment, a universal traffic signal control 

strategy was adopted for all intersections. Specifically, a 
green signal is followed by a 3-second yellow signal and 
a 2-second red signal to clear the intersection and prepare 
for the next phase of signal control. The simulation round 
length was set to 3600 seconds, and the signal control period 
for each phase was 10 seconds. In reinforcement learning 
training, the value of multi-step was set to 5, which means 
cumulative rewards were calculated every 5 steps. The size 
of the experience pool was set to 10000, and a sample batch 
size of 20 was used for each network update. A learning 
rate of 0.001 was used to update the parameters of the Q 
network, and a discount factor of 0.99 was set to calculate 
cumulative rewards. At the beginning of training, the initial 
exploration probability was set to 0.8 and gradually reduced 
to a minimum exploration probability of 0.2 to promote the 
model’s learning of new traffic scenarios, as shown in Table 
1.

Table 1. Settings for method
Model parameter Value

Round length 3600 seconds
Action time interval Δt 10 seconds

n for multi-step 5
Memory size 10000
Sample size 1000
Bacth size 20

α for learning rate 0.001
γ for discount factor 0.99

Ԑ for exploration 0.8

To demonstrate the effectiveness of MALight, we used 
a traditional traffic light control model FixedTime [1] and 
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two state-of-the-art reinforcement learning-based models, 
Maxpressure [5] and PressLight [17] as baselines.

FixedTime: a widely used approach that adopts a 
predetermined cycle length and is applied when traffic flow is 
stable.

Maxpressure: a reinforcement learning-based model 
selects the phase that maximizes the pressure.

PressLight: a reinforcement learning-based model 
that designs the reward function based on traffic pressure, 
minimizing traffic pressure to achieve uniform distribution of 
vehicles at intersections, while maximizing the reward.

5.3 Evaluation Metrics
Two representative metrics, the average travel time in 

seconds and the average traffic flow at intersections, are 
employed to evaluate different models.

Average Travel Time: The travel time of a vehicle is 
defined as the difference between the time of entering and 

leaving a road network, and the average travel time of all 
vehicles is employed as one of the metrics in this study.

Average Traffic Flow: Traffic flow is defined as the 
number of vehicles passing through a road network, and the 
higher the traffic flow is, the better the control strategy.

5.4 Results
The evaluation results demonstrate that MALight 

significantly outperforms the original PressLight models in 
terms of reducing average travel time and increasing average 
throughput. In specific, the average travel time and average 
throughput for different models in each dataset, Table 2 and 
Table 3, respectively. Figure 4 shows the average travel 
time for different methods. In order to compare the network 
training time, we recorded the data while the process of 
network training, as shown in Figure 5. From Figure 4 and 
Figure 5, it can be seen that MALight not only achieves 
better performance, but also reduces the average training time 
of the network as a whole.

Table 2. Average travel time (seconds)
Jinan-1 Jinan-2 Jinan-3 HangZhou 1-6 3-3

FixedTime 139.81 123.61 112.45 160.99 65.28 87.10
Maxpressure 86.28 76.77 74.38 125.87 40.99 45.67
PressLight 71.34 68.74 72.09 70.40 33.89 33.40
MALight 59.68 65.32 62.43 68.48 28.59 31.93

Table 3. Average throughput
Jinan-1 Jinan-2 Jinan-3 HangZhou 1-6 3-3

FixedTime 1410 1308 1153 925 1223 1167
Maxpressure 1530 1420 1197 1226 1250 1207
PressLight 1513 1367 1169 1234 1256 1220
MALight 1540 1428 1206 1239 1257 1221

(a) (b)

(c) (d)

(e) (f)
Figure 4. The average travel time of intersections
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(a)  (b)

(c) (d)

(e) (f)
Figure 5. Training time

6  Conclusion

In this work, we propose MALight, a traffic light control 
algorithm with multi-step DQN and AER. We extensively 
tested our method and compared it with other algorithms, 
and the results showed that our method outperforms other 
reinforcement learning algorithms. Our method not only 
improves the average traffic flow at intersections, but also 
shortens the average travel time of vehicles. This indicates 
that our method has broad application prospects in practical 
applications and can provide strong support for urban traffic 
management. However, for complex traffic situations, 
considering only the current traffic conditions at individual 
intersections is insufficient. It’s essential to take into account 
the traffic conditions at multiple intersections. In our future 
research, we aim to enable reinforcement learning agents 
to collaborate with other intelligent entities to address 
traffic congestion more effectively. Furthermore, to enhance 
the performance of TSC, we are also exploring more 
sophisticated state representations and innovative network 
structures.
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