
A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 931

*Corresponding Author: Wei Zheng; E-mail: wzheng@nwpu.edu.cn
DOI: https://doi.org/10.70003/160792642024112506013

A Mutation-Based Data Enhancement Approach for
Software Vulnerability Detection

Lianyi Su, Jie Hu, Wei Zheng*

School of Software,
Northwestern Polytechnical University,

China
sulianyi@mail.nwpu.edu.cn, 305860691@qq.com, wzheng@nwpu.edu.cn

Abstract

Effective software vulnerability detection is paramount
for ensuring the security of software systems. However,
the presence of imbalanced data in extensive datasets often
leads to overfitting on non-vulnerable code and suboptimal
performance on vulnerable code. Traditional methods of
collecting vulnerable data frequently fall short in capturing
the complexities of real-world scenarios. This paper proposes
a mutation-based data enhancement approach to tackle
this challenge, with a focus on capturing essential traits of
vulnerable source code. Our approach systematically extracts
traits from extensive vulnerable source code and employs
mutation operators to introduce high-level alterations. We
evaluate the convergence of multiple mutation rounds using
a diversity index to ensure consistent enhancements. By
selecting the most effective mutation operators for subsequent
model training, our approach achieves substantial accuracy
improvements across diverse datasets and deep neural
network models. This work represents the initial version
of our approach, with continuous refinements underway to
facilitate practical implementation and address real-world
security challenges.

Keywords: Deep learning, Vulnerability detection, Data
enhancement, Code mutation

1 Introduction

Software vulnerability refers to defects in the specific
implementation of software or system policies and is the
root cause of the prevalence of network attacks [1-2]. As
shown in Figure 1, in the CVE [3] (Common Vulnerabilities
and Exposures) report, the most authoritative vulnerability
repository in the world, only 894 vulnerabilities were
exposed in 1999; by the end of 2022, the total number of
vulnerabilities reached 166462.

With the vigorous development of artificial intelligence
(e.g., large language model [4], GPT-4 [5]), the deep
integration of static detection with machine learning
[6], and deep learning has become a research hotspot in
academia. Researchers try to explore new intelligent software

vulnerability mining methods for problems of vulnerability
mining. Using deep learning technology to detect potential
vulnerabilities and defects in software has become a
feasible solution for the intelligent detection of software
vulnerabilities [7]. Vulnerability detection falls into two
categories: source code-based and binary program-based.
However, real projects often suffer from limited vulnerability
data and diverse vulnerability characteristics [8]. This can
lead to accuracy issues when transitioning to actual projects.
The scarcity of real-world vulnerability datasets and the
demand for large data in deep learning pose challenges to
intelligent software vulnerability detection.

Figure 1. Number of vulnerabilities from 1999 to 2022 in CVE

This paper analyzes the current state of intelligent
vulnerability detection and explores enhancing vulnerability
code data as a means to improve detection accuracy. Data
enhancement involves augmenting data by adding modified
copies or synthetic data, which reduces overfitting during
model training [8]. While widely used in computer vision
and natural language processing, this paper adapts data
enhancement techniques to the realm of vulnerable code.

Our contributions include proposing a code mutation-
based data enhancement method [9-11], designing a mutation
operator selection approach based on diversity, and evaluating
the method across multiple open-source datasets and various
deep-learning vulnerability detection models [12]. The paper
proceeds as follows: Section 2 introduces background and
related work, Section 3 presents our approach’s algorithm,
Section 4 details our experimental setup and results analysis,
and Section 6 concludes the paper.

932 Journal of Internet Technology Vol. 25 No. 6, November 2024

2 Background and Related Work

2.1 Definition and Characteristics of Software
Vulnerabilities
Software vulnerabilities are security flaws in software

or information systems that can allow unauthorized access
and compromise system integrity [13-14]. They pose
significant threats at various levels, necessitating effective
detection. Exposure in spatial information security includes
diversity [15], persistence, timeliness, concealment, and
usability. Understanding these vulnerability characteristics,
especially the information in the code, is crucial for efficient
vulnerability detection. Enhancing vulnerability-related
code texts through data augmentation is vital for improved
detection [16].

2.2 Vulnerability Detection Neural Network
Recent advancements have yielded numerous effective

deep neural network structures, enabling the application of
deep learning in code vulnerability and defect prediction [17-
18]. This presents exciting opportunities for in-depth research
in software reliability. Figure 2 illustrates the structure of a
simple neural network, comprising input and output layers,
with intermediate layers referred to as hidden layers. An
activation function is employed to introduce nonlinearity
after weighing and summing the input vectors, enhancing the
network’s modeling capabilities. During training, the output
layer’s feature representation is typically processed by the
softmax function to derive a posterior probability distribution
[19-20]. The cross-entropy between this distribution and the
empirical distribution serves as the loss function.

Figure 2. Simple neural network structure diagram

3 Our Data Enhancement Approach

This chapter mainly provides a detailed introduction
to the data augmentation method studied in this article, as
shown in Figure 3.

3.1 Vulnerability-Related Code Examples
Figure 4 shows a simple vulnerability code snippet. There

is a memory out-of-bounds access vulnerability (CWE-119),
and the code related to the exposure is marked in yellow. As
shown in Figure 4, the function’s function is to re-encode
according to the input and copy it to the target buffer. The

loophole of this function is that a character string larger than
MAXSIZE can be obtained by constructing a line containing
too many ‘&’ symbols. Large-length yarns create illegal
overwrites of memory. Analyzing the vulnerable code in the
previous paragraph, arrays need to be defined as a standard
implementation method of unlawful memory access type
vulnerabilities because, under normal circumstances, we
access illegal memory locations in the form of array out-
of-bounds. In addition, a statement is needed to access the
memory, so there will be an array of subscript index symbols
and functions such as strcpy and memcpy; simultaneously,
because it is an out-of-bounds access, there is no if statement
in the code to check the subscript variable. It can be seen
that in addition to the characteristics of the code itself, such
as malloc, strcpy and other library functions, more in-depth
features are needed to learn the process from “definition” to
“no check” and then to “illegal access”.

Figure 3. Vulnerability code cases

Based on the above ana lys i s , to p rese rve the
characteristics of these vulnerabilities, an essential principle
of the data enhancement method proposed in this paper is that
the enhanced samples still maintain the features of the same
vulnerabilities based on as diverse representations as possible.
From the subjective analysis of the code in Figure 4, you
can start with functions, statements, control structures, and
variable names and do as many “synonymous substitutions”
as possible. To sum up, the research of this paper mainly
focuses on two points: one is to do data enhancement without
changing the type and characteristics of the vulnerability;
the second approach involves enhancing the exposure of
vulnerability code by leveraging data flow similarities. This
enables the detection model to better understand vulnerable
code during representation.

3.2 Data Enhancement Based on Code Mutation
Mutation testing involves modifying a program in small

ways [21]. However, the same strategy can also be applied

A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 933

to data. To improve the vulnerability dataset effectively, we
utilize high-order mutation, a method that combines three
mutation operators creatively to maximize data diversity
through random permutations. The effectiveness of a
mutation path is evaluated using the Self-BLEU index.

In our endeavor for an effective mutation path, proper
code formatting is essential to align with the exact match
statement for mutation operators. This process involves
filtering out comments and blank lines, eliminating
consecutive blank lines, and standardizing code indentation
to four spaces, enhancing the identification of variation
points and ranges. The code formatting process is illustrated
in Figure 5. Additionally, we address duplicate data concerns
using Simhash text de-duplication during formatting, which
reduces dimensionality and calculates text similarity by
evaluating hamming distance between hash strings. The

specific process is depicted in Figure 6. Post formatting and
de-duplication, we conduct multiple rounds of high-order
mutations on both vulnerable and non-vulnerable code data.

In the first round, we determine which mutation operators
to include or skip using random numbers, considering the
presence of loops or branch structures in the code. We
decide whether to mutate a specific point based on random
probability, leading to exponential growth in mutated sample
data after each round, as demonstrated in Figure 7.

Following several rounds of random mutation, we
calculate the Self-BLEU diversity index for the mutation
samples generated in each round. Upon approaching optimal
diversity within the dataset, we select the first approaching
position vector as the optimal mutation operator path.
Leveraging this mutation operator order, we generate the
final enhanced sample data for subsequent training of deep
learning detection models.

Figure 4. Overall framework of data enhancement

Figure 5. Code formatting

934 Journal of Internet Technology Vol. 25 No. 6, November 2024

Figure 6. SimHash algorithm

Figure 7. Mutation operator can generate multiple samples due to multiple mutation points in the code

3.3 Data Enhancement Based on Code Variation
Data enhancement techniques have matured in image

and natural language processing, but there’s a need for
theory specific to code data enhancement. Code data, while
fundamentally text-based, differs from natural language
due to its structured syntax. Some methods from image and
text processing can be adapted for code data enhancement.
However, code data differs from images because it’s non-
serialized and context sensitive. Conventional image
transformation methods don’t apply to code fragments.
Additionally, converting code into images for enhancement
isn’t feasible.

Code data shares similarities with text data but differs
significantly in three key aspects: complexity, vocabulary,
and structure. To enhance code data, real-world vulnerability
datasets are crucial. These datasets should ideally contain
diverse and consistent samples of the same vulnerability
types. This paper’s research direction focuses on enhancing
vulnerability code data while maintaining semantic

consistency to improve intelligent vulnerability detection
accuracy.

4 Experimental Evaluation

4.1 RNN Models
We propose a data enhancement method with different

processing granularities for vulnerability-related code. It first
generates a variety of mutation operators that can maintain the
semantic invariance of the vulnerable code. Then, it performs
high-level mutation on the vulnerable code to expand the
training samples. This section conducts experiments to verify
the effectiveness of our data enhancement approach. We
raise 5 research questions to guide our experiments, and each
experiment focuses on different research questions.

4.2 Datasets
Two real-world open-source project vulnerability

datasets are used in this paper’s experimental research on

A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 935

security vulnerability detection. Firstly, the data set used
and published by Design is used to test the effect of the
model. At the same time, to compare and study the two data
enhancement methods proposed in this paper and to verify
the detection effect of data enhancement on different data
sets, auxiliary Validate with the REVEAL dataset.

Both Devign and REVEAL are derived from real-world
open-source projects. They differ from synthetic and semi-
synthetic datasets such as SARD regarding code complexity
and readability. The Design dataset is obtained in several
large open-source projects such as Linux, FFmpeg, QEMU,
and Wireshark. Still, the paper’s authors only publish the
QEMU and FFmpeg datasets. Based on the above actual
situation, and to compare with the experimental results of
the predecessors, QEMU and FFmpeg are combined into one
data set, which is consistent with the practice of the author of
Devign’s paper. The overview of the Design dataset is shown
in Table 1. The number of submissions of vulnerabilities
and non-vulnerabilities in this dataset is relatively ideal, and
the ratio of positive and negative samples is relatively even.
For the sample extraction method, the author of the paper
extracted the critical functions as samples by analyzing the
submitted information and assisted by manually marking

them as vulnerability samples or non-vulnerability samples.
The REVEAL dataset selects the Linux Debian version

project and Google’s open-source Chromium project as
data sources. REVEAL looks for security issues from the
two fields of operating system engineering and browser
engineering. In addition, REVEAL also uses a security
keyword filtering method similar to Devign, which has
improved the dataset’s quality. As for the sample content,
although REVEAL also extracted the code corresponding
to the security vulnerability and its repair patch code and
marked it at the function granularity, it also made some
changes. An important point is functional analysis. For a
vulnerability and its corresponding repair code, if it only
involves the code content of one function, it can be directly
compared and marked, but if the repair of a vulnerability
consists of the range of multiple parts (especially if there are
iterations), then the function that was initially marked as non-
vulnerable needs to be re-marked. According to the original
author’s statistics, more than 80$\%$ of the vulnerability
fixes involve multiple function modifications. As shown in
Table 2, the REVEAL dataset has the problem of unbalanced
sample distribution, but this paper needs to do it as an
auxiliary verification dataset—excessive demands.

Table 1. Devign dataset overview
Project Vulnerability related commits Non-vulnerability related commits

FFmpeg 5962 8000
QEMU 4932 6978
Total 10894 14978

Table 2. REVEAL dataset overview
Dataset Vulnerability related code Non-vulnerability related code

REVEAL 2276 20558

Table 3. Experimental environment detailed parameter configuration table

Hardware configuration

Processor model Intel(R) Xeon(R) Sliver 4110 CPU
@2.10GHz 2.10GHz

Memory size 64GB
Disk size 4TB

OS Windows 10(64-bit)
Software configuration Python 3.6.2, Pytorch 1.3.1, Anaconda 4.3.30

Table 4. Training parameter configuration table
Parameter name Parameter value Remark

Max_Len 64 Slice length
Test_Size 0.2 Proportion of test set

Seed 20221116 Random seed
LR 1e-3 Learning rate

Weight_Decay 0 Weight decay
Emb_Dim 128 Vector length
Batch_Size 16 Single training sample number

Num_Epoches 10 Iterations
Input_Dim 64 Input feature dimension

Hidden_Size 256 Hidden state feature dimension
Dropout 0.2 Regularization parameter

936 Journal of Internet Technology Vol. 25 No. 6, November 2024

Table 5. Devign dataset division

The number of samples Training set Validation set Test set
Related to the vulnerability 10018 1187 1255

Related to the non-vulnerability 11836 1545 1477
Total 21854 2732 2732

Table 6. Data generated by a single mutation of the Devign training set

Variation method Numbers of samples related to the
vulnerability

Numbers of samples related to the
non-vulnerability

Devignorigin 10018 11836
DevignRDS 31732 29763
DevignIF 23765 27112
DevignCR 16753 16463

4.3 Environment and Evaluation Indicators
4.3.1 Programming Environment

The system uses Python programming, and Table 3 shows
the configuration information of the server.

 To facilitate the use of deep learning for data set
experiments, the model training mainly uses the deep learning
framework provided by Pytorch, Python programming, and
C++ language for the development of index storage and
retrieval
4.3.2 Software Vulnerability Detection Model

To evaluate the data enhancement method of this topic,
it is necessary to implement a vulnerability classification
detection model for verification results and then input the
augmented corpus (including accurate data and sample data)
into the classifier for training.
(1) Model Building

This topic constructs four neural networks, which are
recurrent neural network (RNN), bidirectional recurrent
neural network (BiRNN), long short-term memory network
(LSTM) and bidirectional long short-term memory
network (BiLSTM).RNNs were chosen for their ability to
capture temporal dependencies, while BiRNNs excelled at
contextual understanding in both forward and backward
directions. LSTMs were employed to model intricate long-
range dependencies, crucial for complex code structures.
BiLSTMs combine bidirectional processing and long-term
dependency modeling. Each selection was based on their
individual strengths observed in natural language processing
and sequence data analysis, ensuring a holistic vulnerability
detection approach.
(2) Loss Function

The optimization algorithm we choose here is the
Adam (Adaptive Moment Estimation) algorithm, which
is essentially RMSprop with a momentum item d. It can
dynamically adjust the learning rate of each parameter by
using the first-order moment estimation and second-order
moment estimation of the gradient.
(3) Train

This project divides the coded corpus into two parts, 80%

of the data is used for training (including data enhancement
samples), and 20% is used for testing. Then we use the
training set for data enhancement. The trained classifier is
then tested on samples from the test set, and its accuracy is
recorded. There are mainly 11 hyperparameters in the training
phase. After continuous experiments, we found the optimal
parameter combination, as shown in Table 4.
4.3.3 Evaluation Indicator

In machine learning, the measurement and evaluation
of models requires a reliable metric to facilitate later model
iteration and optimization. This topic belongs to a typical
binary classification problem. There are three leading
measurement indicators: precision, recall and F1-Score, the
definitions are as below.

TP (True Positive): The prediction is Positive, and the
answer is True Positive.

FP (False Positive): The prediction is Positive, and the
answer is Negative, so it is false Positive.

TN (True Negative): The prediction is Negative, and the
answer is true Negative.

FN (False Negative): The prediction is Negative, and the
answer is Positive, so it is false.

Precision indicates that the model prediction is predicted
as a loophole. Still, the number of samples the vulnerability
accounted for the proportion of all samples with openness, as
shown in formula 1.

TPPrecisin
TP FP

=
+

 (1)

The recall rate indicates that the model prediction is
predicted as a loophole. Still, the number of vulnerability
samples accounts for the proportion of all pieces with
loopholes, as shown in formula 2.

TPRecall
TP FN

=
+

 (2)

A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 937

Table 7. Mutation matrix for code mutation after 10 rounds of random selection

Mutation round RDS IF CR Generate sample size Self-BLEU indicator
0 0 0 0 21854 -
1 1 1 1 72435 0.893
2 1 0 0 118563 0.912
3 0 1 1 403114 0.878
4 1 0 1 1512431 0.736
5 1 0 0 4837370 0.747
6 0 1 0 11125951 0.782
7 1 0 1 34490452 0.713
8 1 1 1 158656074 0.692
9 1 0 0 491833831 0.701
10 0 0 1 821362497 0.722

Table 8. Finally select the code mutation variation matrix for the exp6 experiment

Mutation round RDS IF CR Generate sample size Self-BLEU indicator
0 0 0 0 21854 -
1 1 0 1 39132 0.813
2 0 1 0 59821 0.774
3 0 0 1 77469 0.693
4 0 0 1 92435 0.719
5 1 1 0 212631 0.731
6 0 1 0 297640 0.706
7 1 0 0 565517 0.698
8 0 0 1 1074482 0.733
9 0 0 1 3878883 0.727
10 1 0 0 7085096 0.719

Figure 8. Convergence of data diversity index for high-order mutation of mutation operator selected randomly for ten times

938 Journal of Internet Technology Vol. 25 No. 6, November 2024

F1-score represents the average F1 value of accuracy and
recall rate, a comprehensive model indicator, as shown in
formula 3.

2F1 score= Precision Recall
Precision Recall
× ×

−
+

 (3)

4.4 Research Questions
Our study aims to answer the following four research

questions:
RQ1: Whether the data enhancement method based

on mutation can effectively expand the training data set?
RQ1 is to verify whether the data enhancement method

based on code mutation can generate many enhanced samples
on the actual data set Design, which meets the primary
conditions of data enhancement.

RQ2: Whether expanding the training data set by
simple copying and duplication can improve the detection
accuracy of the model?

RQ2 is a study to avoid the impact of a large amount
of data on the model detection effect and generate training
samples of the same magnitude by simple copying and
replication for comparison.

RQ3: Whether the way of data enhancement can
improve the detection accuracy of the model?

RQ3 is to study the enhanced samples generated by RQ1
and RQ2 and the unenhanced training samples together with
multiple models for comparative experiments and compare
the results to determine whether the detection accuracy of the
model can be improved.

RQ4: Whether code mutation enhancement samples of
different magnitudes can improve the detection accuracy
of the model?

RQ4 is to study based on RQ1, RQ2, and RQ3
experiments, using random sampling, extracting enhanced
samples of different sets of numbers and mixing them with
the original data collection, and then inputting the model to
study and analyze the detection accuracy of the model, and to
judge the detection accuracy of different magnitudes Whether
surrogate mutation augmentation samples can improve the
detection accuracy of the model.

RQ5: Can the data enhancement method based on
code mutation improve the detection accuracy of the
model in other real data sets?

RQ5 studies the generalization verification of data
augmentation in this paper. Generalization here refers to
verifying whether the data augmentation method based
on code mutation is effective on other real datasets and
experimenting with the REVEAL dataset.

RQ6: whether the data enhancement method in this
article can be used across projects?

RQ6 is to study whether the data enhancement method
based on code variation can be used across projects and
explore the possibility of its cross-project use by analyzing
the forms and characteristics of this data enhancement.

5 Results and Analysis

5.1 Response to RQ1
RQ1: Whether the data enhancement method based

on mutation can effectively expand the training data set?
In this section, we address RQ1 by exploring the impact

of data enhancement methods on deep learning vulnerabilities
using the cleaned DEVIGN dataset, as shown in Table 5. We
applied two data enhancement methods to this dataset and
evaluated their effect on vulnerability detection accuracy
across four network models: RNN, BIRNN, LSTM, and
Bilstm.

First, it is necessary to test whether the three mutation
operators apply to Devign’s original training set. The
number of generated samples after a single code mutation is
performed on the training set is shown in Table 6. The RDS
mutation operator expanded the dataset by approximately
1.81 times, IF mutation by about 1.33 times, and CR mutation
by roughly 0.52 times, demonstrating the feasibility of data
enhancement through code mutation. Once we confirmed
the effectiveness of these operators, we performed multiple
high-order mutations guided by the Self-BLEU text diversity
index to find the optimal mutation path. Table 8 displays the
mutation matrix for three mutation operators subjected to a
10-order random selection for code mutation.

It’s important to note that the generated samples in this
stage serve as input for the next step, leading to a significant
increase in the number of generated models. The Self-BLEU
diversity index gradually converged to around 0.7 with the
growing number of generated samples, as shown in Table
7. To determine the optimal mutation operator execution
path and Self-BLEU convergence, we conducted ten rounds
of random mutations. Table 8 presents the data variation
matrices, and Figure 8 illustrates the convergence of the Self-
BLEU index for these rounds.

Following ten high-level code mutations, we selected
the most diverse mutation matrices to create the final
mutation samples for the training set. Our experiments
showed that generating a substantial amount of data through
transformation had a limited impact on diversity. To balance
the number of rounds and diversity, we chose the ‘exp6’
order from the mutation matrix in Table 8, resulting in the
selection of 92,435 enhanced sample data after the fourth-
order mutation.

In addressing RQ1, we significantly expanded the
training data set while maintaining diversity. These diverse
samples hold practical significance, enhancing the accuracy
of vulnerability detection models across various network
architectures. This methodological rigor not only contributes
to academia but also promises valuable real-world
applications in bolstering software security protocols.

Summary of RQ1

Through ten groups of 10-order code mutations of
diversity indicators, a group of the most diverse mutation
operators is selected for execution order and times. Ninety-

A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 939

two thousand four hundred thirty-five enhanced sample data
are generated using 21,854 original data, which meets the
expansion requirements—basic requirements of the dataset.

5.2 Response to RQ2
RQ2: Whether expanding the training data set by

simple copying and duplication can improve the detection
accuracy of the model?

To address RQ2, this section processes 92,435 enhanced
sample data from the divided training set of the Design
dataset using code mutation. To mitigate the impact of
significantly increasing the training set, a control experiment
introduced enhanced samples that replicated and shuffled the
initial training set. The training parameters are consistent with
the software vulnerability detection model mentioned earlier.
The three enhanced sample sets, Devignorigin, Devignmutate, and
Devigncopy, are input into RNN, BiRNN, LSTM, and BiLSTM
models for training. Ten rounds of iterative testing were
conducted on the test set in binary classification experiments,
and results were statistically analyzed and visualized using
box plots in Figure 9 to Figure 11.

Table 9 presents the index values of the three training
sets after training. Devignorigin serves as the baseline, while
Devignmutate and Devigncopy are the enhanced training sets.
Results indicate that although Devigncopy contains a similar
number of samples as Devignmutate, F1 scores across the three
vulnerability detection models remain around 0.55. This
suggests that simply copying and expanding the training set
is insufficient to enhance the vulnerability detection model’s
effectiveness.

Examining RQ2, we amplified the training dataset by
duplicating samples and analyzed their impact on model
accuracy. Despite similar sample numbers, F1 scores around
0.55 indicated limited effectiveness. Simple copying fell
short, emphasizing the necessity for more sophisticated
methods in model improvement.

Summary of RQ2

The effect of expanding the training set samples by simple
copy and replication on the model is negligible compared to
using training samples without data enhancement.

5.3 Response to RQ3
RQ3: Whether the way of data enhancement can

improve the detection accuracy of the model?
To answer RQ3, the data in this part is obtained from the

previous experiments. Observation Table 9 shows the values
of various indicators after the training of the three training
sets. The F1 score of the detection model using Devignmutate
is 14.79% higher than that of the model using Devginorigin,
which is accurate. The rate has increased by 21.73%, and the
recall rate has not improved much compared with the other
two indicators, which is 8%.

In addressing RQ3, our experiments reveal significant
enhancements in the detection model’s F1 score, the overall
results underscore the effectiveness of our proposed code
mutation-based data enhancement method in enhancing
binary classification tasks.

Figure 9. Devignorigin dataset deep learning vulnerability detection experiment box plot

Figure 10. Box plot of deep learning vulnerability detection experiment using Devignmutate training set

Figure 11. Using the Devigncopy box training set for deep learning vulnerability detection experiment box line

940 Journal of Internet Technology Vol. 25 No. 6, November 2024

Table 9. Using the Devgin dataset to study the effect of data enhancement on deep learning vulnerability detection research experiment
results

Training dataset Model Precision Recall F1-Score

Devignorigin

RNN 0.491 0.541 0.514
BiRNN 0.513 0.562 0.536
LSTM 0.502 0.563 0.531

BiLSTM 0.537 0.604 0.569

Devignmutate

RNN 0.603 0.641 0.621
BiRNN 0.621 0.563 0.590
LSTM 0.626 0.607 0.616

BiLSTM 0.637 0.644 0.641

Devigncopy

RNN 0.511 0.532 0.521
BiRNN 0.594 0.502 0.544
LSTM 0.563 0.537 0.549

BiLSTM 0.612 0.489 0.543

Summary of RQ3

The data enhancement method proposed in this paper
through code mutation can improve the experimental results
of the binary classification task to a certain extent, reflected
in multiple classification indicators.

5.4 Response to RQ4
RQ4: Whether code mutation enhancement samples of

different magnitudes can improve the detection accuracy
of the model?

To address RQ4, we examined the final part of the
experiment. Our analysis revealed two key findings. Firstly,
enhancing various aspects of code without changing
semantics in the training set improves the accuracy of the
detection model. Secondly, data enhancement contributes by
increasing the training set’s size, often leading to improved
model accuracy due to the availability of more training data.

To investigate the impact of data augmentation on models
with different training set sizes, we created enhanced samples
of various sizes using Devginmutate from the previous
section. The original data was randomly sampled to create
training sets of different magnitudes (as shown in Table 10),
ranging from 1N to 5N, underwent code mutation and ANN
retrieval recall-based enhancement before being input into

multiple network models to assess vulnerability detection
accuracy.

Figure 12 illustrates how different training set sizes affect
the F1 score of the detection model using the code mutation-
based enhancement method. The x-axis represents the data
size, ranging from 1N to 5N, achieved by mixing original
samples with enhanced selections. The y-axis represents
the F1 score, an evaluation index for the model. The figure
shows a significant improvement in model performance
for Devginmutate enhanced models with smaller samples.
However, this performance improvement gradually
diminishes as the size of enhanced samples increases. The
optimal number of enhanced samples for Devginmutate
models is approximately 3N, with further expansion not
yielding better results.

Table 10. Different magnitudes of training set data distribution

Training set size Devginmutate Sampling number

1N 18487
2N 36974
3N 55461
4N 73948
5N 92435

Figure 12. The influence of different magnitudes of enhanced samples on the model effect under the method of code mutation enhancement

A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 941

Our investigation into varying data augmentation
magnitudes (1N to 5N) yielded crucial insights. Enhancing
different aspects of code, without altering semantics,
significantly improved detection accuracy. Furthermore,
augmenting data increased training set size, enhancing
model accuracy due to richer training data. These findings
emphasize the delicate balance required for effective data
augmentation, particularly in resource-constrained scenarios.

Summary of RQ4

Although the variation range of the model’s evaluation
index F1 score is small (less than ten percentage points),
it can be found that in the case of small samples and low
resources, the data enhancement method in this paper can
effectively improve the accuracy of the model to a certain
extent, but adding too many augmented samples may not
help much.

5.5 Response to RQ5
RQ5: Can the data enhancement method based on

code mutation improve the detection accuracy of the
model in other real data sets?

To answer RQ5, the experiments in this part use the
REVEAL security vulnerability data set of the whole open-
source project in the experimental research of security
vulnerability detection. Because the data set has specific
data class imbalance problems, the code samples containing
vulnerabilities and the code samples without Vulnerable code
samples should be as balanced as possible in number. Table

11 shows the division of the balanced training set, verification
set, and test set, and then this experiment will conduct data
enhancement experiments on the divided training set.

Do the same data enhancement processing for the RQ1
part of the REVEAL training set after sampling and division,
and the number of REVEALmutate in the enhanced sample set
is shown in Table 12.

Input the enhanced sample sets REVEALorigin and
REVEALmutate described above in this section into the RNN,
BiRNN, LSTM, and BiLSTM models for training. Since the
training process is similar to the experiment in RQ1, Table 13
directly shows the experimental results.

Table 13 shows the results of model-checking experiments
on the REVEAL training set after enhancement. Because the
scale of the REVEAL dataset itself is not large, even if the
samples are enhanced and expanded, the improvement of the
detection effect of the model is limited. However, compared
with REVEALorigin, the accuracy of REVEALmutate increased
by about 16.86%, the recall rate increased by approximately
24.86%, and the F1 score increased by approximately
21.78%.

In addressing RQ5, we extended our study to the
REVEAL security vulnerability dataset. Despite the dataset’s
inherent limitations due to class imbalances, our code
mutation-based data augmentation proved effective. These
consistent enhancements underscore the method’s stability
across diverse datasets, showcasing its generalizability in
improving model performance. This broad applicability
enhances the method’s practical utility in real-world
vulnerability detection scenarios.

Table 11. REVEAL data set sampling division system situation

Training set Verification set Test set
Numbers of samples related to the vulnerability 1822 227 227

Numbers of samples related to the non-vulnerability 1778 233 233
Total 3600 460 460

Table 12. REVEAL training set for data enhancement

Vulnerability related samples Non-vulnerability related samples Total
REVEALorigin 1822 1778 3600
REVEALmutate 7664 7467 15131

Table 13. Experimental results of research on the effect of data enhancement on deep learning vulnerability detection

Training dataset Model Precision Recall F1-Score

REVEALorigin

RNN 0.277 0.339 0.305
BiRNN 0.346 0.267 0.301
LSTM 0.487 0.403 0.441

BiLSTM 0.491 0.371 0.422

REVEALmutate

RNN 0.363 0.298 0.327
BiRNN 0.489 0.414 0.448
LSTM 0.497 0.518 0.507

BiLSTM 0.522 0.493 0.507

942 Journal of Internet Technology Vol. 25 No. 6, November 2024

Table 14. Analysis of data augmentation methods

Code-based mutation
Granularity of operation Codes

Operation logic Vulnerable code is still vulnerable code after mutation
Whether across projects and languages No

Summary of RQ5

The data augmentation method based on code mutation
has stable performance on multiple datasets, which shows
that the data augmentation method proposed in this paper has
certain generality.

5.5 Response to RQ6
RQ6: whether the data enhancement method in this

article can be used across projects?
To answer RQ6, the data in this part is based on the

evaluation of the effectiveness of the RQ1 data enhancement
method and the analysis of the enhancement experiment on
the RQ5 auxiliary data set REVEAL. The data enhancement
method based on code mutation is effective on multiple data
sets and detection models. Solid performance. Table 14 is
used to analyze the data enhancement method based on code
mutation to explore its applicable specific scenarios.

From the analysis of the above Table 14, it can be seen
that the data enhancement method of the code mutation
sampled in this paper is mutated based on C language
grammar and logic. Although the mutation strategy can be
reproduced in other languages, the realization of cross-project
mutation is currently Unrealistic.

Summary of RQ6

The data augmentation method based on code mutation to
achieve cross-project transformation is currently not realistic.

6 Conclusion and Future Work

This paper presents a mutation-based data enhancement
approach to improve software vulnerability detection
by generating diverse training samples through multiple
mutation rounds. Our method significantly enhances the
detection accuracy of deep neural networks when applied to
open-source datasets, showcasing the effectiveness of code
mutation in addressing data imbalance issues.

In the future, we plan to optimize mutation operators
further and explore cross-project data enhancement.
Additionally, expanding the application of this method to
other programming languages and more complex software
systems will be an important direction for future research.

References

[1] X. Wu, W. Zheng, X. Chen, Y. Zhao, T. Yu, D.
Mu, Improving high-impact bug report prediction with
combination of interactive machine learning and active
learning, Information and Software Technology, Vol.

133, Article No. 106530, May, 2021.
[2] X. Wu, W. Zheng, X. Xia, D. Lo, Data quality matters:

A case study on data label correctness for security
bug report prediction, IEEE Transactions on Software
Engineering, Vol. 48, No. 7, pp. 2541–2556, July, 2022.

[3] L. Bao, X. Xia, A. E. Hassan, X. Yang, V-SZZ:
automatic identification of version ranges affected
by CVE vulnerabilities, 2022 44th International
Conference on Software Engineering (ICSE), Pittsburgh,
PA, USA, 2022, pp. 2352–2364.

[4] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert,
D. Dementieva, F. Fischer, U. Gasser, G. Groh, S.
Günnemann, E. Hüllermeier, S. Krusche, G. Kutyniok,
T. Michaeli, C. Nerdel, J. Pfeffer, O. Poquet, M.
Sailer, A. Schmidt, T. Seidel, M. Stadler, M. Stadler, J.
Weller, J. Kuhn, G. Kasneci, ChatGPT for good? On
opportunities and challenges of large language models
for education, Learning and Individual Differences, Vol.
103, Article No. 102274, April, 2023.

[5] S. Kim, S. Yoo, Multimodal surprise adequacy analysis
of inputs for natural language processing DNN models,
2021 2nd IEEE/ACM International Conference on
Automation of Software Test (AST), Madrid, Spain,
2021, pp. 80–89.

[6] T. Suzuki , Teachaugment: Data augmentat ion
optimization using teacher knowledge, 2022 IEEE/
CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 2022, pp.
10894–10904.

[7] E. Real, C. Liang, D. R. So, Q. V. Le, Automl-zero:
Evolving machine learning algorithms from scratch,
2020 37th International Conference on Machine
Learning (ICML), Virtual Event, 2020, pp. 8007–8019.

[8] C. Uhle, M. Torcoli, J. Paulus, Controlling the perceived
sound quality for dialogue enhancement with deep
learning, 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 2020, pp. 51–55.

[9] P. Xu, Y. Wang, X. Chen, Z. Tian, Deep kernel learning
networks with multiple learning paths, 2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Singapore, 2022, pp.
4438–4442.

[10] L. Gazzola, D. Micucci, L. Mariani, Automatic software
repair: A survey, 2018 40th International Conference on
Software Engineering, Gothenburg, Sweden, 2018, pp.
1219–1219.

[11] X. Kong, L. Zhang, W. E. Wong, B. Li, Experience
Report: How Do Techniques, Programs, and Tests
Impact Automated Program Repair? 2015 IEEE 26th
International Symposium on Software Reliability
Engineering, Gaithersburg, Maryland, USA, 2015, pp.

A Mutation-Based Data Enhancement Approach for Software Vulnerability Detection 943

194–204
[12] G. Spanos, L. Angelis, A multi-target approach to

estimate software vulnerability characteristics and
severity scores, Journal of Systems and Software, Vol.
146, pp. 152–166, December, 2018.

[13] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sysevr: A
Framework for Using Deep Learning to Detect Software
Vulnerabilities, IEEE Transactions on Dependable and
Secure Computing, Vol. 19, No. 4, pp. 2244–2258, July-
August, 2022.

[14] J. Coffman, A. Chakravarty, J. A. Russo, A. S. Gearhart,
Quantifying the Effectiveness of Software Diversity
Using Near-Duplicate Detection Algorithms, 2018 5th
ACM Workshop on Moving Target Defense, Toronto,
ON, 2018, pp. 1–10.

[15] D. Fraunholz, D. Krohmer, S. D. Antón, H. D. Schotten,
Catch Me If You Can: Dynamic Concealment of
Network Entities, 2018 5th ACM Workshop on Moving
Target Defense, Toronto, ON, 2018, pp. 31–39.

[16] D. Weiss, C. Alberti, M. Collins, S. Petrov, Structured
Training for Neural Network Transition-based
Parsing, 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing,
Beijing, China, 2015, pp. 323–333.

[17] A. P. B. Veyseh, T. H. Nguyen, D. Dou, Graph based
Neural Networks for Event Factuality Prediction using
Syntactic and Semantic Structures, 57th Conference of
the Association for Computational Linguistics, Florence,
Italy, 2019, pp. 4393–4399.

[18] Y. Zhang, X. Yu, Z. Cui, S. Wu, Z. Wen, L. Wang,
Every Document Owns Its Structure: Inductive Text
Classification via Graph Neural Networks, 2020 58th
Annual Meeting of the Association for Computational
Linguistics, Online, 2020, pp. 334–339.

[19] B. Bogin, J. Berant, M. Gardner, Representing Schema
Structure with Graph Neural Networks for Text-to-SQL
Parsing, 2019 57th Conference of the Association for
Computational Linguistics (ACL), Florence, Italy, 2019,
pp. 4560–4565.

[20] W. E. Wong, Mutation Testing for the New Century,
Springer Science & Business Media, 2001.

[21] S. Chakraborty, R. Krishna, Y. Ding, B. Ray, Deep
learning based vulnerability detection: Are we there
yet?, IEEE Transactions on Software Engineering, Vol.
48, No. 9, pp. 3280–3296, September, 2022.

Biographies

Lianyi Su (2002-), female, master, School
of Software, Northwestern Polytechnical
University. The main research area is
formal validation.

Jie Hu (1998-), male, master, School
of Physics and Technology, Yangzhou
University. The main research areas are
video processing and data enhancement
algorithms.

Wei Zheng (1975-) , male , doc tor,
Associate professor, Senior member of
CCF, The main research areas are software
testing, software security, and software
warehouse excavate.

