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Abstract

Effective software vulnerability detection is paramount 
for ensuring the security of software systems. However, 
the presence of imbalanced data in extensive datasets often 
leads to overfitting on non-vulnerable code and suboptimal 
performance on vulnerable code. Traditional methods of 
collecting vulnerable data frequently fall short in capturing 
the complexities of real-world scenarios. This paper proposes 
a mutation-based data enhancement approach to tackle 
this challenge, with a focus on capturing essential traits of 
vulnerable source code. Our approach systematically extracts 
traits from extensive vulnerable source code and employs 
mutation operators to introduce high-level alterations. We 
evaluate the convergence of multiple mutation rounds using 
a diversity index to ensure consistent enhancements. By 
selecting the most effective mutation operators for subsequent 
model training, our approach achieves substantial accuracy 
improvements across diverse datasets and deep neural 
network models. This work represents the initial version 
of our approach, with continuous refinements underway to 
facilitate practical implementation and address real-world 
security challenges.

Keywords: Deep learning, Vulnerability detection, Data 
enhancement, Code mutation

1  Introduction

Software vulnerability refers to defects in the specific 
implementation of software or system policies and is the 
root cause of the prevalence of network attacks [1-2]. As 
shown in Figure 1, in the CVE [3] (Common Vulnerabilities 
and Exposures) report, the most authoritative vulnerability 
repository in the world, only 894 vulnerabilities were 
exposed in 1999; by the end of 2022, the total number of 
vulnerabilities reached 166462. 

With the vigorous development of artificial intelligence 
(e.g., large language model [4], GPT-4 [5]), the deep 
integration of static detection with machine learning 
[6], and deep learning has become a research hotspot in 
academia. Researchers try to explore new intelligent software 

vulnerability mining methods for problems of vulnerability 
mining. Using deep learning technology to detect potential 
vulnerabilities and defects in software has become a 
feasible solution for the intelligent detection of software 
vulnerabilities [7]. Vulnerability detection falls into two 
categories: source code-based and binary program-based. 
However, real projects often suffer from limited vulnerability 
data and diverse vulnerability characteristics [8]. This can 
lead to accuracy issues when transitioning to actual projects. 
The scarcity of real-world vulnerability datasets and the 
demand for large data in deep learning pose challenges to 
intelligent software vulnerability detection.

Figure 1. Number of vulnerabilities from 1999 to 2022 in CVE

This paper analyzes the current state of intelligent 
vulnerability detection and explores enhancing vulnerability 
code data as a means to improve detection accuracy. Data 
enhancement involves augmenting data by adding modified 
copies or synthetic data, which reduces overfitting during 
model training [8]. While widely used in computer vision 
and natural language processing, this paper adapts data 
enhancement techniques to the realm of vulnerable code.

Our contributions include proposing a code mutation-
based data enhancement method [9-11], designing a mutation 
operator selection approach based on diversity, and evaluating 
the method across multiple open-source datasets and various 
deep-learning vulnerability detection models [12]. The paper 
proceeds as follows: Section 2 introduces background and 
related work, Section 3 presents our approach’s algorithm, 
Section 4 details our experimental setup and results analysis, 
and Section 6 concludes the paper.
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2  Background and Related Work

2.1 Definition and Characteristics of Software 
Vulnerabilities
Software vulnerabilities are security flaws in software 

or information systems that can allow unauthorized access 
and compromise system integrity [13-14]. They pose 
significant threats at various levels, necessitating effective 
detection. Exposure in spatial information security includes 
diversity [15], persistence, timeliness, concealment, and 
usability. Understanding these vulnerability characteristics, 
especially the information in the code, is crucial for efficient 
vulnerability detection. Enhancing vulnerability-related 
code texts through data augmentation is vital for improved 
detection [16].

2.2 Vulnerability Detection Neural Network
Recent advancements have yielded numerous effective 

deep neural network structures, enabling the application of 
deep learning in code vulnerability and defect prediction [17-
18]. This presents exciting opportunities for in-depth research 
in software reliability. Figure 2 illustrates the structure of a 
simple neural network, comprising input and output layers, 
with intermediate layers referred to as hidden layers. An 
activation function is employed to introduce nonlinearity 
after weighing and summing the input vectors, enhancing the 
network’s modeling capabilities. During training, the output 
layer’s feature representation is typically processed by the 
softmax function to derive a posterior probability distribution 
[19-20]. The cross-entropy between this distribution and the 
empirical distribution serves as the loss function.

Figure 2. Simple neural network structure diagram

3  Our Data Enhancement Approach

This chapter mainly provides a detailed introduction 
to the data augmentation method studied in this article, as 
shown in Figure 3.

3.1 Vulnerability-Related Code Examples
Figure 4 shows a simple vulnerability code snippet. There 

is a memory out-of-bounds access vulnerability (CWE-119), 
and the code related to the exposure is marked in yellow. As 
shown in Figure 4, the function’s function is to re-encode 
according to the input and copy it to the target buffer. The 

loophole of this function is that a character string larger than 
MAXSIZE can be obtained by constructing a line containing 
too many ‘&’ symbols. Large-length yarns create illegal 
overwrites of memory. Analyzing the vulnerable code in the 
previous paragraph, arrays need to be defined as a standard 
implementation method of unlawful memory access type 
vulnerabilities because, under normal circumstances, we 
access illegal memory locations in the form of array out-
of-bounds. In addition, a statement is needed to access the 
memory, so there will be an array of subscript index symbols 
and functions such as strcpy and memcpy; simultaneously, 
because it is an out-of-bounds access, there is no if statement 
in the code to check the subscript variable. It can be seen 
that in addition to the characteristics of the code itself, such 
as malloc, strcpy and other library functions, more in-depth 
features are needed to learn the process from “definition” to 
“no check” and then to “illegal access”.

Figure 3. Vulnerability code cases

Based  on  the  above  ana lys i s ,  to  p rese rve  the 
characteristics of these vulnerabilities, an essential principle 
of the data enhancement method proposed in this paper is that 
the enhanced samples still maintain the features of the same 
vulnerabilities based on as diverse representations as possible. 
From the subjective analysis of the code in Figure 4, you 
can start with functions, statements, control structures, and 
variable names and do as many “synonymous substitutions” 
as possible. To sum up, the research of this paper mainly 
focuses on two points: one is to do data enhancement without 
changing the type and characteristics of the vulnerability; 
the second approach involves enhancing the exposure of 
vulnerability code by leveraging data flow similarities. This 
enables the detection model to better understand vulnerable 
code during representation.

3.2 Data Enhancement Based on Code Mutation
Mutation testing involves modifying a program in small 

ways [21]. However, the same strategy can also be applied 
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to data. To improve the vulnerability dataset effectively, we 
utilize high-order mutation, a method that combines three 
mutation operators creatively to maximize data diversity 
through random permutations. The effectiveness of a 
mutation path is evaluated using the Self-BLEU index.

In our endeavor for an effective mutation path, proper 
code formatting is essential to align with the exact match 
statement for mutation operators. This process involves 
filtering out comments and blank lines, eliminating 
consecutive blank lines, and standardizing code indentation 
to four spaces, enhancing the identification of variation 
points and ranges. The code formatting process is illustrated 
in Figure 5. Additionally, we address duplicate data concerns 
using Simhash text de-duplication during formatting, which 
reduces dimensionality and calculates text similarity by 
evaluating hamming distance between hash strings. The 

specific process is depicted in Figure 6. Post formatting and 
de-duplication, we conduct multiple rounds of high-order 
mutations on both vulnerable and non-vulnerable code data.

In the first round, we determine which mutation operators 
to include or skip using random numbers, considering the 
presence of loops or branch structures in the code. We 
decide whether to mutate a specific point based on random 
probability, leading to exponential growth in mutated sample 
data after each round, as demonstrated in Figure 7.

Following several rounds of random mutation, we 
calculate the Self-BLEU diversity index for the mutation 
samples generated in each round. Upon approaching optimal 
diversity within the dataset, we select the first approaching 
position vector as the optimal mutation operator path. 
Leveraging this mutation operator order, we generate the 
final enhanced sample data for subsequent training of deep 
learning detection models.

Figure 4. Overall framework of data enhancement

Figure 5. Code formatting
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Figure 6. SimHash algorithm

Figure 7. Mutation operator can generate multiple samples due to multiple mutation points in the code

3.3 Data Enhancement Based on Code Variation
Data enhancement techniques have matured in image 

and natural language processing, but there’s a need for 
theory specific to code data enhancement. Code data, while 
fundamentally text-based, differs from natural language 
due to its structured syntax. Some methods from image and 
text processing can be adapted for code data enhancement. 
However, code data differs from images because it’s non-
serialized and context sensitive. Conventional image 
transformation methods don’t apply to code fragments. 
Additionally, converting code into images for enhancement 
isn’t feasible.

Code data shares similarities with text data but differs 
significantly in three key aspects: complexity, vocabulary, 
and structure. To enhance code data, real-world vulnerability 
datasets are crucial. These datasets should ideally contain 
diverse and consistent samples of the same vulnerability 
types. This paper’s research direction focuses on enhancing 
vulnerability code data while maintaining semantic 

consistency to improve intelligent vulnerability detection 
accuracy.

4  Experimental Evaluation

4.1 RNN Models
We propose a data enhancement method with different 

processing granularities for vulnerability-related code. It first 
generates a variety of mutation operators that can maintain the 
semantic invariance of the vulnerable code. Then, it performs 
high-level mutation on the vulnerable code to expand the 
training samples. This section conducts experiments to verify 
the effectiveness of our data enhancement approach. We 
raise 5 research questions to guide our experiments, and each 
experiment focuses on different research questions.

4.2 Datasets
Two real-world open-source project vulnerability 

datasets are used in this paper’s experimental research on 
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security vulnerability detection. Firstly, the data set used 
and published by Design is used to test the effect of the 
model. At the same time, to compare and study the two data 
enhancement methods proposed in this paper and to verify 
the detection effect of data enhancement on different data 
sets, auxiliary Validate with the REVEAL dataset.

Both Devign and REVEAL are derived from real-world 
open-source projects. They differ from synthetic and semi-
synthetic datasets such as SARD regarding code complexity 
and readability. The Design dataset is obtained in several 
large open-source projects such as Linux, FFmpeg, QEMU, 
and Wireshark. Still, the paper’s authors only publish the 
QEMU and FFmpeg datasets. Based on the above actual 
situation, and to compare with the experimental results of 
the predecessors, QEMU and FFmpeg are combined into one 
data set, which is consistent with the practice of the author of 
Devign’s paper. The overview of the Design dataset is shown 
in Table 1. The number of submissions of vulnerabilities 
and non-vulnerabilities in this dataset is relatively ideal, and 
the ratio of positive and negative samples is relatively even. 
For the sample extraction method, the author of the paper 
extracted the critical functions as samples by analyzing the 
submitted information and assisted by manually marking 

them as vulnerability samples or non-vulnerability samples.
The REVEAL dataset selects the Linux Debian version 

project and Google’s open-source Chromium project as 
data sources. REVEAL looks for security issues from the 
two fields of operating system engineering and browser 
engineering. In addition, REVEAL also uses a security 
keyword filtering method similar to Devign, which has 
improved the dataset’s quality. As for the sample content, 
although REVEAL also extracted the code corresponding 
to the security vulnerability and its repair patch code and 
marked it at the function granularity, it also made some 
changes. An important point is functional analysis. For a 
vulnerability and its corresponding repair code, if it only 
involves the code content of one function, it can be directly 
compared and marked, but if the repair of a vulnerability 
consists of the range of multiple parts (especially if there are 
iterations), then the function that was initially marked as non-
vulnerable needs to be re-marked. According to the original 
author’s statistics, more than 80$\%$ of the vulnerability 
fixes involve multiple function modifications. As shown in 
Table 2, the REVEAL dataset has the problem of unbalanced 
sample distribution, but this paper needs to do it as an 
auxiliary verification dataset—excessive demands.

Table 1. Devign dataset overview
Project Vulnerability related commits Non-vulnerability related commits

FFmpeg 5962 8000
QEMU 4932 6978
Total 10894 14978

Table 2. REVEAL dataset overview
Dataset Vulnerability related code Non-vulnerability related code

REVEAL 2276 20558

Table 3. Experimental environment detailed parameter configuration table

Hardware configuration

Processor model Intel(R) Xeon(R) Sliver 4110 CPU 
@2.10GHz 2.10GHz

Memory size 64GB
Disk size 4TB

OS Windows 10(64-bit)
Software configuration Python 3.6.2, Pytorch 1.3.1, Anaconda 4.3.30

Table 4. Training parameter configuration table
Parameter name Parameter value Remark

Max\_Len 64 Slice length
Test\_Size 0.2 Proportion of test set

Seed 20221116 Random seed
LR 1e-3 Learning rate

Weight\_Decay 0 Weight decay
Emb\_Dim 128 Vector length
Batch\_Size 16 Single training sample number

Num\_Epoches 10 Iterations
Input\_Dim 64 Input feature dimension

Hidden\_Size 256 Hidden state feature dimension
Dropout 0.2 Regularization parameter
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Table 5. Devign dataset division

The number of samples Training set Validation set Test set
Related to the vulnerability 10018 1187 1255

Related to the non-vulnerability 11836 1545 1477
Total 21854 2732 2732

Table 6. Data generated by a single mutation of the Devign training set

Variation method Numbers of samples related to the 
vulnerability

Numbers of samples related to the 
non-vulnerability

Devignorigin 10018 11836
DevignRDS 31732 29763
DevignIF 23765 27112
DevignCR 16753 16463

4.3 Environment and Evaluation Indicators
4.3.1 Programming Environment

The system uses Python programming, and Table 3 shows 
the configuration information of the server.

 To facilitate the use of deep learning for data set 
experiments, the model training mainly uses the deep learning 
framework provided by Pytorch, Python programming, and 
C++ language for the development of index storage and 
retrieval
4.3.2 Software Vulnerability Detection Model

To evaluate the data enhancement method of this topic, 
it is necessary to implement a vulnerability classification 
detection model for verification results and then input the 
augmented corpus (including accurate data and sample data) 
into the classifier for training.
(1) Model Building

This topic constructs four neural networks, which are 
recurrent neural network (RNN), bidirectional recurrent 
neural network (BiRNN), long short-term memory network 
(LSTM) and bidirectional long short-term memory 
network (BiLSTM).RNNs were chosen for their ability to 
capture temporal dependencies, while BiRNNs excelled at 
contextual understanding in both forward and backward 
directions. LSTMs were employed to model intricate long-
range dependencies, crucial for complex code structures. 
BiLSTMs combine bidirectional processing and long-term 
dependency modeling. Each selection was based on their 
individual strengths observed in natural language processing 
and sequence data analysis, ensuring a holistic vulnerability 
detection approach.
(2) Loss Function

The optimization algorithm we choose here is the 
Adam (Adaptive Moment Estimation) algorithm, which 
is essentially RMSprop with a momentum item d. It can 
dynamically adjust the learning rate of each parameter by 
using the first-order moment estimation and second-order 
moment estimation of the gradient. 
(3) Train

This project divides the coded corpus into two parts, 80% 

of the data is used for training (including data enhancement 
samples), and 20% is used for testing. Then we use the 
training set for data enhancement. The trained classifier is 
then tested on samples from the test set, and its accuracy is 
recorded. There are mainly 11 hyperparameters in the training 
phase. After continuous experiments, we found the optimal 
parameter combination, as shown in Table 4.
4.3.3 Evaluation Indicator

In machine learning, the measurement and evaluation 
of models requires a reliable metric to facilitate later model 
iteration and optimization. This topic belongs to a typical 
binary classification problem. There are three leading 
measurement indicators: precision, recall and F1-Score, the 
definitions are as below.

TP (True Positive): The prediction is Positive, and the 
answer is True Positive.

FP (False Positive): The prediction is Positive, and the 
answer is Negative, so it is false Positive. 

TN (True Negative): The prediction is Negative, and the 
answer is true Negative.

FN (False Negative): The prediction is Negative, and the 
answer is Positive, so it is false.

Precision indicates that the model prediction is predicted 
as a loophole. Still, the number of samples the vulnerability 
accounted for the proportion of all samples with openness, as 
shown in formula 1.

TPPrecisin
TP FP

=
+

                              (1)

The recall rate indicates that the model prediction is 
predicted as a loophole. Still, the number of vulnerability 
samples accounts for the proportion of all pieces with 
loopholes, as shown in formula 2.

TPRecall
TP FN

=
+

                              (2)
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Table 7. Mutation matrix for code mutation after 10 rounds of random selection

Mutation round RDS IF CR Generate sample size Self-BLEU indicator
0 0 0 0 21854 -
1 1 1 1 72435 0.893
2 1 0 0 118563 0.912
3 0 1 1 403114 0.878
4 1 0 1 1512431 0.736
5 1 0 0 4837370 0.747
6 0 1 0 11125951 0.782
7 1 0 1 34490452 0.713
8 1 1 1 158656074 0.692
9 1 0 0 491833831 0.701
10 0 0 1 821362497 0.722

Table 8. Finally select the code mutation variation matrix for the exp6 experiment

Mutation round RDS IF CR Generate sample size Self-BLEU indicator
0 0 0 0 21854 -
1 1 0 1 39132 0.813
2 0 1 0 59821 0.774
3 0 0 1 77469 0.693
4 0 0 1 92435 0.719
5 1 1 0 212631 0.731
6 0 1 0 297640 0.706
7 1 0 0 565517 0.698
8 0 0 1 1074482 0.733
9 0 0 1 3878883 0.727
10 1 0 0 7085096 0.719

Figure 8. Convergence of data diversity index for high-order mutation of mutation operator selected randomly for ten times
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F1-score represents the average F1 value of accuracy and 
recall rate, a comprehensive model indicator, as shown in 
formula 3.

2F1 score= Precision Recall
Precision Recall
× ×

−
+

              (3)

4.4 Research Questions
Our study aims to answer the following four research 

questions:
RQ1: Whether the data enhancement method based 

on mutation can effectively expand the training data set?
RQ1 is to verify whether the data enhancement method 

based on code mutation can generate many enhanced samples 
on the actual data set Design, which meets the primary 
conditions of data enhancement.

RQ2: Whether expanding the training data set by 
simple copying and duplication can improve the detection 
accuracy of the model?

RQ2 is a study to avoid the impact of a large amount 
of data on the model detection effect and generate training 
samples of the same magnitude by simple copying and 
replication for comparison.

RQ3: Whether the way of data enhancement can 
improve the detection accuracy of the model?

RQ3 is to study the enhanced samples generated by RQ1 
and RQ2 and the unenhanced training samples together with 
multiple models for comparative experiments and compare 
the results to determine whether the detection accuracy of the 
model can be improved.

RQ4: Whether code mutation enhancement samples of 
different magnitudes can improve the detection accuracy 
of the model?

RQ4 is to study based on RQ1, RQ2, and RQ3 
experiments, using random sampling, extracting enhanced 
samples of different sets of numbers and mixing them with 
the original data collection, and then inputting the model to 
study and analyze the detection accuracy of the model, and to 
judge the detection accuracy of different magnitudes Whether 
surrogate mutation augmentation samples can improve the 
detection accuracy of the model.

RQ5: Can the data enhancement method based on 
code mutation improve the detection accuracy of the 
model in other real data sets?

RQ5 studies the generalization verification of data 
augmentation in this paper. Generalization here refers to 
verifying whether the data augmentation method based 
on code mutation is effective on other real datasets and 
experimenting with the REVEAL dataset.

RQ6: whether the data enhancement method in this 
article can be used across projects?

RQ6 is to study whether the data enhancement method 
based on code variation can be used across projects and 
explore the possibility of its cross-project use by analyzing 
the forms and characteristics of this data enhancement.

5  Results and Analysis

5.1 Response to RQ1
RQ1: Whether the data enhancement method based 

on mutation can effectively expand the training data set?
In this section, we address RQ1 by exploring the impact 

of data enhancement methods on deep learning vulnerabilities 
using the cleaned DEVIGN dataset, as shown in Table 5. We 
applied two data enhancement methods to this dataset and 
evaluated their effect on vulnerability detection accuracy 
across four network models: RNN, BIRNN, LSTM, and 
Bilstm.

First, it is necessary to test whether the three mutation 
operators apply to Devign’s original training set. The 
number of generated samples after a single code mutation is 
performed on the training set is shown in Table 6. The RDS 
mutation operator expanded the dataset by approximately 
1.81 times, IF mutation by about 1.33 times, and CR mutation 
by roughly 0.52 times, demonstrating the feasibility of data 
enhancement through code mutation. Once we confirmed 
the effectiveness of these operators, we performed multiple 
high-order mutations guided by the Self-BLEU text diversity 
index to find the optimal mutation path. Table 8 displays the 
mutation matrix for three mutation operators subjected to a 
10-order random selection for code mutation.

It’s important to note that the generated samples in this 
stage serve as input for the next step, leading to a significant 
increase in the number of generated models. The Self-BLEU 
diversity index gradually converged to around 0.7 with the 
growing number of generated samples, as shown in Table 
7. To determine the optimal mutation operator execution 
path and Self-BLEU convergence, we conducted ten rounds 
of random mutations. Table 8 presents the data variation 
matrices, and Figure 8 illustrates the convergence of the Self-
BLEU index for these rounds.

Following ten high-level code mutations, we selected 
the most diverse mutation matrices to create the final 
mutation samples for the training set. Our experiments 
showed that generating a substantial amount of data through 
transformation had a limited impact on diversity. To balance 
the number of rounds and diversity, we chose the ‘exp6’ 
order from the mutation matrix in Table 8, resulting in the 
selection of 92,435 enhanced sample data after the fourth-
order mutation.

In addressing RQ1, we significantly expanded the 
training data set while maintaining diversity. These diverse 
samples hold practical significance, enhancing the accuracy 
of vulnerability detection models across various network 
architectures. This methodological rigor not only contributes 
to academia but also promises valuable real-world 
applications in bolstering software security protocols.

Summary of RQ1

Through ten groups of 10-order code mutations of 
diversity indicators, a group of the most diverse mutation 
operators is selected for execution order and times. Ninety-
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two thousand four hundred thirty-five enhanced sample data 
are generated using 21,854 original data, which meets the 
expansion requirements—basic requirements of the dataset.

5.2 Response to RQ2
RQ2: Whether expanding the training data set by 

simple copying and duplication can improve the detection 
accuracy of the model?

To address RQ2, this section processes 92,435 enhanced 
sample data from the divided training set of the Design 
dataset using code mutation. To mitigate the impact of 
significantly increasing the training set, a control experiment 
introduced enhanced samples that replicated and shuffled the 
initial training set. The training parameters are consistent with 
the software vulnerability detection model mentioned earlier. 
The three enhanced sample sets, Devignorigin, Devignmutate, and 
Devigncopy, are input into RNN, BiRNN, LSTM, and BiLSTM 
models for training.  Ten rounds of iterative testing were 
conducted on the test set in binary classification experiments, 
and results were statistically analyzed and visualized using 
box plots in Figure 9 to Figure 11.

Table 9 presents the index values of the three training 
sets after training. Devignorigin serves as the baseline, while 
Devignmutate and Devigncopy are the enhanced training sets. 
Results indicate that although Devigncopy contains a similar 
number of samples as Devignmutate, F1 scores across the three 
vulnerability detection models remain around 0.55. This 
suggests that simply copying and expanding the training set 
is insufficient to enhance the vulnerability detection model’s 
effectiveness.

Examining RQ2, we amplified the training dataset by 
duplicating samples and analyzed their impact on model 
accuracy. Despite similar sample numbers, F1 scores around 
0.55 indicated limited effectiveness. Simple copying fell 
short, emphasizing the necessity for more sophisticated 
methods in model improvement.

Summary of RQ2

The effect of expanding the training set samples by simple 
copy and replication on the model is negligible compared to 
using training samples without data enhancement.

5.3 Response to RQ3
RQ3: Whether the way of data enhancement can 

improve the detection accuracy of the model?
To answer RQ3, the data in this part is obtained from the 

previous experiments. Observation Table 9 shows the values 
of various indicators after the training of the three training 
sets. The F1 score of the detection model using Devignmutate 
is 14.79% higher than that of the model using Devginorigin, 
which is accurate. The rate has increased by 21.73%, and the 
recall rate has not improved much compared with the other 
two indicators, which is 8%.

In addressing RQ3, our experiments reveal significant 
enhancements in the detection model’s F1 score, the overall 
results underscore the effectiveness of our proposed code 
mutation-based data enhancement method in enhancing 
binary classification tasks.

Figure 9. Devignorigin dataset deep learning vulnerability detection experiment box plot

Figure 10. Box plot of deep learning vulnerability detection experiment using Devignmutate training set

Figure 11. Using the Devigncopy box training set for deep learning vulnerability detection experiment box line
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Table 9. Using the Devgin dataset to study the effect of data enhancement on deep learning vulnerability detection research experiment 
results

Training dataset Model Precision Recall F1-Score

Devignorigin

RNN 0.491 0.541 0.514
BiRNN 0.513 0.562 0.536
LSTM 0.502 0.563 0.531

BiLSTM 0.537 0.604 0.569

Devignmutate

RNN 0.603 0.641 0.621
BiRNN 0.621 0.563 0.590
LSTM 0.626 0.607 0.616

BiLSTM 0.637 0.644 0.641

Devigncopy

RNN 0.511 0.532 0.521
BiRNN 0.594 0.502 0.544
LSTM 0.563 0.537 0.549

BiLSTM 0.612 0.489 0.543

Summary of RQ3

The data enhancement method proposed in this paper 
through code mutation can improve the experimental results 
of the binary classification task to a certain extent, reflected 
in multiple classification indicators.

5.4 Response to RQ4
RQ4: Whether code mutation enhancement samples of 

different magnitudes can improve the detection accuracy 
of the model?

To address RQ4, we examined the final part of the 
experiment. Our analysis revealed two key findings. Firstly, 
enhancing various aspects of code without changing 
semantics in the training set improves the accuracy of the 
detection model. Secondly, data enhancement contributes by 
increasing the training set’s size, often leading to improved 
model accuracy due to the availability of more training data.

To investigate the impact of data augmentation on models 
with different training set sizes, we created enhanced samples 
of various sizes using Devginmutate from the previous 
section. The original data was randomly sampled to create 
training sets of different magnitudes (as shown in Table 10), 
ranging from 1N to 5N, underwent code mutation and ANN 
retrieval recall-based enhancement before being input into 

multiple network models to assess vulnerability detection 
accuracy.

Figure 12 illustrates how different training set sizes affect 
the F1 score of the detection model using the code mutation-
based enhancement method. The x-axis represents the data 
size, ranging from 1N to 5N, achieved by mixing original 
samples with enhanced selections. The y-axis represents 
the F1 score, an evaluation index for the model. The figure 
shows a significant improvement in model performance 
for Devginmutate enhanced models with smaller samples. 
However, this performance improvement gradually 
diminishes as the size of enhanced samples increases. The 
optimal number of enhanced samples for Devginmutate 
models is approximately 3N, with further expansion not 
yielding better results.

Table 10. Different magnitudes of training set data distribution

Training set size Devginmutate Sampling number

1N 18487
2N 36974
3N 55461
4N 73948
5N 92435

Figure 12. The influence of different magnitudes of enhanced samples on the model effect under the method of code mutation enhancement
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Our investigation into varying data augmentation 
magnitudes (1N to 5N) yielded crucial insights. Enhancing 
different aspects of code, without altering semantics, 
significantly improved detection accuracy. Furthermore, 
augmenting data increased training set size, enhancing 
model accuracy due to richer training data. These findings 
emphasize the delicate balance required for effective data 
augmentation, particularly in resource-constrained scenarios.

Summary of RQ4

Although the variation range of the model’s evaluation 
index F1 score is small (less than ten percentage points), 
it can be found that in the case of small samples and low 
resources, the data enhancement method in this paper can 
effectively improve the accuracy of the model to a certain 
extent, but adding too many augmented samples may not 
help much.

5.5 Response to RQ5
RQ5: Can the data enhancement method based on 

code mutation improve the detection accuracy of the 
model in other real data sets?

To answer RQ5, the experiments in this part use the 
REVEAL security vulnerability data set of the whole open-
source project in the experimental research of security 
vulnerability detection. Because the data set has specific 
data class imbalance problems, the code samples containing 
vulnerabilities and the code samples without Vulnerable code 
samples should be as balanced as possible in number. Table 

11 shows the division of the balanced training set, verification 
set, and test set, and then this experiment will conduct data 
enhancement experiments on the divided training set.

Do the same data enhancement processing for the RQ1 
part of the REVEAL training set after sampling and division, 
and the number of REVEALmutate in the enhanced sample set 
is shown in Table 12.

Input the enhanced sample sets REVEALorigin and 
REVEALmutate described above in this section into the RNN, 
BiRNN, LSTM, and BiLSTM models for training. Since the 
training process is similar to the experiment in RQ1, Table 13 
directly shows the experimental results.

Table 13 shows the results of model-checking experiments 
on the REVEAL training set after enhancement. Because the 
scale of the REVEAL dataset itself is not large, even if the 
samples are enhanced and expanded, the improvement of the 
detection effect of the model is limited. However, compared 
with REVEALorigin, the accuracy of REVEALmutate increased 
by about 16.86%, the recall rate increased by approximately 
24.86%, and the F1 score increased by approximately 
21.78%.

In addressing RQ5, we extended our study to the 
REVEAL security vulnerability dataset. Despite the dataset’s 
inherent limitations due to class imbalances, our code 
mutation-based data augmentation proved effective. These 
consistent enhancements underscore the method’s stability 
across diverse datasets, showcasing its generalizability in 
improving model performance. This broad applicability 
enhances the method’s practical utility in real-world 
vulnerability detection scenarios.

Table 11. REVEAL data set sampling division system situation

Training set Verification set Test set
Numbers of samples related to the vulnerability 1822 227 227

Numbers of samples related to the non-vulnerability 1778 233 233
Total 3600 460 460

Table 12. REVEAL training set for data enhancement

Vulnerability related samples Non-vulnerability related samples Total
REVEALorigin 1822 1778 3600
REVEALmutate 7664 7467 15131

Table 13. Experimental results of research on the effect of data enhancement on deep learning vulnerability detection

Training dataset Model Precision Recall F1-Score

REVEALorigin

RNN 0.277 0.339 0.305
BiRNN 0.346 0.267 0.301
LSTM 0.487 0.403 0.441

BiLSTM 0.491 0.371 0.422

REVEALmutate

RNN 0.363 0.298 0.327
BiRNN 0.489 0.414 0.448
LSTM 0.497 0.518 0.507

BiLSTM 0.522 0.493 0.507
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Table 14. Analysis of data augmentation methods

Code-based mutation
Granularity of operation Codes

Operation logic Vulnerable code is still vulnerable code after mutation
Whether across projects and languages No

Summary of RQ5

The data augmentation method based on code mutation 
has stable performance on multiple datasets, which shows 
that the data augmentation method proposed in this paper has 
certain generality.

5.5 Response to RQ6
RQ6: whether the data enhancement method in this 

article can be used across projects?
To answer RQ6, the data in this part is based on the 

evaluation of the effectiveness of the RQ1 data enhancement 
method and the analysis of the enhancement experiment on 
the RQ5 auxiliary data set REVEAL. The data enhancement 
method based on code mutation is effective on multiple data 
sets and detection models. Solid performance. Table 14 is 
used to analyze the data enhancement method based on code 
mutation to explore its applicable specific scenarios.

From the analysis of the above Table 14, it can be seen 
that the data enhancement method of the code mutation 
sampled in this paper is mutated based on C language 
grammar and logic. Although the mutation strategy can be 
reproduced in other languages, the realization of cross-project 
mutation is currently Unrealistic.

Summary of RQ6

The data augmentation method based on code mutation to 
achieve cross-project transformation is currently not realistic.

6  Conclusion and Future Work

This paper presents a mutation-based data enhancement 
approach to improve software vulnerability detection 
by generating diverse training samples through multiple 
mutation rounds. Our method significantly enhances the 
detection accuracy of deep neural networks when applied to 
open-source datasets, showcasing the effectiveness of code 
mutation in addressing data imbalance issues.

In the future, we plan to optimize mutation operators 
further and explore cross-project data enhancement. 
Additionally, expanding the application of this method to 
other programming languages and more complex software 
systems will be an important direction for future research.
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