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Abstract

Sine Cosine Algorithm (SCA) finds the best solution to 
the optimization problem by the periodicity of sine and cosine 
trigonometric functions. However, it is computationally 
intensive and contains many parameters to be determined. 
Fortunately, there are FPGA platforms that can be used to 
overcome these limitations by improving latency. Sine and 
cosine calculation in library functions is very complex and 
time-consuming. Therefore, this paper proposes a hardware-
accelerated CORDIC algorithm to improve the sine cosine 
trigonometric function that needs to be computed in the 
SCA algorithm. The proposed algorithm (HSCA) combines 
the accelerated SCA algorithm and the CORDIC algorithm. 
HSCA performance is tested by using six test functions run 
on the FPGA. The experimental results show that HSCA is 
3.25 times faster and 33% fewer resource utilizations for 
solving optimization problems, and runs significantly faster 
on FPGAs with IP cores than on Soc chips in FPGAs. The 
performance of the HSCA algorithm is demonstrated by 
applying it to the TDOA localization problem.

Keywords: Sine Cosine Algorithm, Filed Programmable 
Gate Arrays, Vivado HLS tool, Optimization techniques, 
TDOA

1  Introduction

Sine Cosine Algorithm (SCA) [1-2] is a novel heuristic 
optimization algorithm proposed in recent years, which 
oscillates the optimization based on the mathematical model 
of sine and cosine functions. It has the advantages of a few 
parameters, a simple structure, and easy implementation. 
SCA has few parameters simple algorithm structure and still 
finds the appropriate optimal solution for handling complex 
problems [3]. SCA has been widely used in scientific research 
and industry. SCA has been used to solve computation 
problems such as future selection [4]. SCA is used in neural 
networks to optimize neural network problems [5]. SCA also 
provides optimal solutions for complex applications, such as 
path planning [6], power systems [7], machine learning [8], 

and wireless sensor network problems [9-13] that may not be 
able to meet real-time requirements. 

There are many studies on improving the convergence 
speed, finding accuracy, and reducing falling into local 
optimum [14-17]. However, there are few kinds of research 
on improving the execution speed of SCA algorithms 
and reducing the resource utilization of SCA. Therefore, 
this paper proposes SCA running on the FPGA platform 
to improve the algorithm execution efficiency using the 
hardware acceleration technique.

In recent years, the performance improvement of general-
purpose processors such as CPUs has slowed down, and to 
continue to meet the growing demand for energy-efficient 
computing in various industries, FPGAs, and representative 
devices for reconfigurable computing systems, have received 
widespread attention overnight in many emerging hot areas. 
Nowadays, FPGAs are introduced in the R&D process of 
many fields, such as artificial intelligence, extensive data 
analysis, network communication, and image processing. 
FPGAs have become a mainstream general-purpose 
computing technology. In cloud computing, numerous 
studies and industrial applications [18-19] have proven that 
FPGA technology can effectively improve the processing 
performance of various cloud loads while reducing power 
consumption [20]. In the field of edge computing, FPGAs are 
similarly widely used. Hsu-Chih Huang proposes a parallel 
meta-heuristic particle swarm optimization (PPSO) algorithm 
based on field-programmable gate arrays (FPGAs) [21]. The 
PPSO consists of three parallel PSOs and a communication 
operator in an FPGA chip. Pradeep R. Fernando reported on 
designing an IP core that implements a generic GA engine 
to solve these problems [22]. Specifically, the proposed 
GA IP core can be customized according to population 
size, number of generations, crossover and variation rates, 
random number generator seeds, and fitness functions. In 
2020, Ahmed Hassanein presented a field-programmable 
gate array (FPGA)-based parallel BSO processor [23]. The 
development includes sequential modeling algorithms, 
deriving parallel versions, evaluating functions against a rich 
set of benchmarks, and performing thorough verification. 
Qiangqiang Jiang proposed a method for efficient 
implementation of parallel WOA on FPGA, called FPWOA 
[24]. It is developed for FPGA architecture features according 
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to the parallelization characteristics of the WOA algorithm. 
While pursuing higher data processing capability, edge 
computing also requires processors with miniaturization, low 
power consumption, and the ability to respond to various 
application scenarios flexibly. Soc FPGAs [25], which have 
become popular in recent years, fully cater to the above-level 
requirements by integrating ARM hard-core processors and 
FPGAs on a single chip. To date, SoC FPGA [26] products 
are widely used in smart cameras, autonomous vehicles, 
drones, video cameras, intelligent voice assistants, and other 
home electronics.

System development with FPGAs requires a lot of 
hardware fundamentals and programming in Verilog/VHDL, 
which is undoubtedly a vast learning cost for software 
engineers. Fortunately, developers can now use the High-
Level synthesis [27] tool to develop hardware programs. 
HLS is a technique that automatically translates behavior 
described in a high-level language into hardware with the 
same functionality, hence the behavior-level synthesis. 
This technique intends to make hardware design much 
less complex so that circuits can be defined directly at a 
higher level of abstraction, significantly reducing hardware 
development time [28]. The purpose of high-level synthesis 
is to allow developers to focus less on hardware and 
algorithm-level design and implementation. Nowadays, high-
level synthesis tools usually choose C, C++, OpenCL, and 
other languages as input [29]. These high-level languages 
have a higher level of abstraction and are. Therefore, more 
These high-level languages are more expressive and more 
efficient than low-level languages [30].  However, since these 
high-level languages do not contain timing information, they 
cannot be converted into circuit implementations.

Figure 1. Flowchart of HLS

In Figure 1, HLS can be divided into three main 
processes: Allocation, Scheduling, and Binding. The 
Allocation step determines hardware resources, such as 
addition, multiplication, and registers. The Scheduling 
determines what operations are executed at each clock 
cycle. The Binding is to assign the hardware to each 
operation. The final output is a Verilog/VHDL file directly 

describing the hardware circuit. The advantage of using 
HLS is to automate the conversion from high-level language 
to hardware language and to design hardware with less 
resource consumption and faster computing speed through 
optimization. HLS makes it possible for software engineers 
to participate in hardware development.

Section 2 briefly introduces the SCA algorithm concept 
and the CORDIC Algorithm’s basic concepts. Section 3 
provides optimization methods to optimize the SCA and 
CORDIC algorithm of SCA. Section 4 shows the schematic 
designed implementation of HSCA on FPGA; In Section 
5, the results of experiments are presented and discussed. 
Finally, Section 6 summarizes all the work in this paper and 
describes the future directions for in-depth research.

2  Sine Cosine Algorithm

SCA achieves the global search by fluctuating outward 
and completes the local development by fluctuating toward 
the optimal solution to gradually converge to the optimal 
global solution, which has the advantages of simple 
structure, high flexibility, few initial parameters, and easy 
implementation [31-32].

Description of the standard SCA algorithm: If the size of 
the population is  and has a D-dimensional search space, 

the  individual  in this search space can 
map the solution of the optimization problem to the position 
of each individual. Firstly, the positions of individuals in 
the search space are generated randomly. Then the objective 
function is used to calculate the fitness values of all 
individuals, and the current optimal individual and position 
are found after sorting. The iterative process of individual 
updating is expressed as follows:

(1)

In Equation (1),  is the number of current iteration. 

 denotes the optimal individual position obtained in 

the  iteration. ,  and  are random factors with the 

corresponding values in the ranges , and 

 respectively.  determines the distance moved during 

the iteration;  is the random weight coefficient assigned to 

the current optimal solution;  is the switching condition of 
the iterative equation of the sine and cosine function.

 denotes the control factor, whose value is linearly 
decreasing and controls the fluctuation amplitude of the sine 
and cosine function and also determines the direction of 
movement of the iteration. If , the solution will move 
from the current solution towards the region of the optimal 
solution position, and if , it will move in the opposite 
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direction, and the expression of the control factor is as 
follows:

                                (2)

The  is a positive constant.  denotes the maximum 
number of iterations.

3  SCA and CORDIC Optimization

3.1 Optimization SCA 
The detailed steps of SCA are analyzed and discussed. 

The main steps of the SCA algorithm are illustrated in Figure 
2. The subsections analyze each part of the SCA in detail and 
optimize it using the HLS optimization tools.
3.1.1 Population Initialization Step 

In the beginning, SCA generates random populations 
(candidate solutions). The initial value of each dimension of 
the particle is random, and the range of values is determined 
by the solution space of the problem to be solved. The inner 
loop initializes each dimension of the particle using a random 
number generated by a random number generator, which 
LFSR implements. The outer loop in Figure 2 contains the 
fitness function used to calculate the fitness value of each 
particle in the population. The fitness function will evaluate 
each solution, which will result in a fitness value of the 
solution, and the fitness value will determine the excellence 
of the solution. The fitness function in this paper consists of 6 
test functions containing unimodal, multimodal, and complex 
problems.

Figure 2. Population initialize pseudo code

 

Figure 3. Loop unrolling

Figure 4. Loop pipelining

HLS detects as much parallelism in the code as possible 
to reduce latency [33]. The loop pipeline optimization 
allows the loop operations to be pipelined and the operations 
within the loop to overlap, as shown in Figure 4. Operations 
in a single for-loop that have no data dependencies can be 
optimized using unroll. Therefore, in Figure 3, we use loop 
unroll to optimize the inner for loop that initializes each 
particle’s D-dimensional value.
3.1.2 Particle Updating Step 

The particle update is calculated for each dimension of 
the particle using Equation (1) to obtain the new value. This 
step is the most time-consuming part of the whole algorithm 
execution. The pseudo of population updating is shown in 
Figure 5.

Figure 5. Population update pseudo code

Since the calculation of Equation (1) has sine and cosine 
trigonometric functions, and the particle size in this paper 
is 10-30 dimensions, unrolling expansion will have a vast 
resource consumption. Therefore, the inner loop can be 
optimized using a pipeline so that all dimensions of a particle 
can be computed in a streamlined manner, where the sine 
and cosine trigonometric functions are executed using the 
hardware-accelerated CORDIC algorithm.

3.2 Optimization CORDIC 
The CORDIC algorithm [34] is mainly for solving 

the problem of real-time computation. It is well suited for 
hardware implementation because it can eventually be 
decomposed into a series of simple algorithms implemented 
by addition, subtraction, shift, and lookup tables. Adding and 
subtracting is still accessible with embedded devices with 
weak computing power, such as microcontrollers or FPGAs 
[35]. However, it takes some effort to calculate trigonometric 
functions (sin, cos, tan) or even complex functions like 
hyperbolic, exponential, and logarithmic. Usually, these 
functions need to be converted to hardware-friendly through 
techniques such as lookup tables or approximations. This 
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algorithm is efficient in FPGAs and is often used in hardware 
algorithm implementations.

However, the CORDIC algorithm takes various forms, 
including three coordinate forms and two rotation modes, 
which correspond to different primitive function operation 
structures. Although J. Walther in 1971 gave agreed 
mathematical expressions for the CORDIC algorithm in three 
coordinate systems [36], which can be easily implemented 
in software programming for different CORDIC operations 
in practical applications, especially in the frontend of 
signal processing in the physical layer of communication, 
CORDIC operations often need to be implemented in FPGA 
hardware. The conventional practice is to design specific 
RTL code according to the requirements of different function 
operations, which leads to a significant limitation of code 
flexibility and portability.

The CORDIC algorithm uses a constant approximation 
method, and it only requires a simple shift and addition 
and subtraction to complete the numerical calculation 
of trigonometric functions. This algorithm improves the 
operational familiarity of the function and, at the same time, 
saves the FPGA resources. Thus, it is widely used in FPGA 
development. 

Calculating the values of  and  can be 

transformed into finding the coordinate position  

of a point  after rotating  around the coordinate 
origin, by the coordinate rotation transformation formula:

 (3)

The coordinate rotation transformation can be equated to 
a series of coordinate rotation changes with direction di and 
angle :

                                                             (4)

                                                                  (5)

                        (6)

Substituting Equation (4) into Equation (3), the following 
equation is obtained:

                                         (7)

If the value of  is restricted to a power of 2, 
then the rotation operation can be reduced to data shifting 
(multiplication) and addition. Specifically, it can be set to 

. The rotation matrix then becomes:

         (8)

K(n) tends to stabilize as n increases. The value of K can 
be obtained as follows:

             (9)

To simplify the calculation one can also take  as  

and  as . We can obtain the sin, cosine matrix:

   (10)

Here, the CORDIC algorithm starts from the positive 
of the x-axis, which corresponds to an angle of  degrees, 
and then performs four rotations either clockwise or 
counterclockwise, each with a smaller and smaller angle, 
to finally obtain the target angle . Once the rotation 
is completed, the angle obtained is very close to the 
theoretical one. If the length of the vector is K, then the final 
vector components in x, y correspond to  and , 
respectively. The key to improving the CORDIC algorithm is 
to improve the computational efficiency of the above process.

4  Design and Implementation of SCA on 
FPGA

The SCA is suitable for use in general computing 
environments. The prototype implementation of the HSCA 
IP core is based on the Zynq [37] FPGA platform, as shown 
in Figure 6. The PL part of the Zynq is the FPGA, where the 
HSCA IP core can be integrated. The axi-lite [38] peripheral 
bus is applied to integrate the HSCA IP core and the DMA as 
devices in the system. At the same time, The DMA is used to 
connect the HSCA IP core to the PS high-performance bus 
port for direct access to DDR memory via the axis protocol. 
This way, the HSCA IP core is independent of the PS and can 
leave PS resources to other processes.

The PS part of Zynq is a dual-core ARM CPU, which 
can run a Linux OS for system and data transfer control. 
The PS acts as a front-end to receive the parameters of the 
SCA entered by the user and write them to the memory. In 
our proposed work, the specification is done in C using the 
Vivado HLS tool. These specifications are then translated into 
hardware images and programmed on the FPGA for software 
end functions.

The modules in Figure 6 are emulated according to the 
user-specified HSCA operator. All modules are written using 
the Vivado HLS tool. The individual modules in the HSCA 
designed in Figure 6 are described as follows:

The main task of the initialization module is to 
obtain from DDR memory the parameters needed for the 
algorithm’s execution, such as the number of populations, 
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dimensions, and upper and lower bounds of the solution 
space. When the initialization module is called, it generates 
the initial population and some initial variables based on the 
parameters. It sends them to the PUM after the initialization 
module is executed.

After receiving the initial population from the initi-
alization module, the particle update module calls FM to 
evaluate the population for fitness. The PUM module uses 
parallelism to speed up the update and evaluation of particles. 
Now, the PUM resets itself and repeats the selection process.

FM evaluates the particles received from the PUM and 
returns the fitness value to memory through the computation 

of the function. FM can be replaced with any problem that 
needs to be solved, and only the solution space boundaries 
and dimensions of the problem need to be known.

When the  CORDIC module  receives  the  angle 
information from the PUM input, it is based on the random 
value sent by the RNG. The initial θ starts with the positive 
half-axis of the X-axis, corresponding to an angle of 0 
degrees, and then performs clockwise or counterclockwise 
rotations, each with smaller and smaller angles, to finally 
obtain the target angle θ. The solution process can be viewed 
as a successive multiplication of matrices, which can be 
optimized using a similar technique process.

Figure 6. The schematic design of HSCA on FPGA

5  Experiment and Analysis

The optimized Verilog code of SCA by applying different 
optimization techniques was synthesized on Xilinx HLS 
software on the Zynq Ultrascale+ AXU2CG-E device. In 
order to verify the performance of the proposed HSCA 
algorithm, six representative benchmark functions are 
selected for testing and compared with the standard SCA 
algorithm and the improved SCA using library functions sine 
and cosine. The descriptions of the benchmark functions are 
shown in Table 2.

In Table 1, the typical CORDIC algorithm uses 0 DSP 
compared to the Sine and Cosine functions in the library, 
while the Sine Cosine function uses 86 DSPs. It also reduces 
the occupancy of LUTs by 84% and FFs by 86%. The latency 
is reduced by 87% for the improved CORDIC algorithm, 
but the LUT footprint is increased because the optimization 
requires more LUTs. The CORDIC algorithm has improved 
in latency, LUT, and DSP utilization.

In Table 2, f1-f5 are unimodal functions, f6-f9 are 
multimodal functions, and f10 are complex functions. These 
three types of test functions can represent most problems in 

the real world. In order to ensure the fairness of experiments, 
each function is executed 30 times, and the execution 
times are averaged. Each function is tested with uniform 
parameters, a maximum number of iterations of 1000, and a 
population size of 100.

Table 3 obtains this result for the algorithm with 30 
particles and 1000 max iterations. The HSCA executed on 
FPGA significantly improved each function. Among them, it 
is at least 16 times faster on the unimodal function, especially 
on the f1 function, where HSCA executes only 12ms, which 
is 27 times faster compared to the execution speed of DE. 
When optimizing the multimodal function, the improvement 
is 11 and 10 times for f4 and f5, respectively, and 20 times 
for f3. The reason is that the f4 and f5 functions include 
the calculation of the cosine function, which increases 
the complexity of the calculation and leads to an increase 
in execution time. When solving complex problems, the 
algorithm still has about 15 times improvement because 
the algorithm is executed on the hardware circuit of FPGA, 
the operations for data are obtained from registers, and the 
circuit for performing basic operations can also be executed 
in parallel.
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Table 1. Latency and resources utilization of CORIDC algorithm and sine, cosine function

Name Sine, Cosine library 
functions

Typical CORDIC without 
optimization

Improved CORDIC 
algorithm

Latency (ns) 35 38 5
LUT 5661 940 2474
FF 2045 290 253

DSP 86 0 0

Table 2. Benchmark functions

Func Expression Range

0 [-10,10]

0 [-2.048,2.048]

0 [-10,10]

0 [-10,10]

0 [-100,100]

0 [-5,5]

0 [-32.768,32.768]

0 [-5.12,5.12]

0 [-600,600]

-39.16599 [-5,5]

Table 3. Execution time comparison of each related algorithm (ms)

Function SCA GWO PSO DE HSCA Speed Up
F1 460 630 351 332 12 27
F2 539 697 549 492 29 16
F3 542 732 447 510 34 13
F4 446 657 358 360 21 17
F5 472 660 365 375 17 21
F6 102 134 80 106 4 20
F7 648 785 484 658 44 11
F8 653 789 539 711 53 10
F9 654 814 563 758 75 7
F10 535 686 427 484 28 15
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Table 4. Latency and resources utilization of SCA

Name Typical SCA without
optimization

Typical SCA with 
HLS optimization

Improved SCA with  
CORDIC optimization

Clock Cycles 16802207 10265107 5162007
Clk. Per(ns) 10 10 10
Latency(ms) 16.8 10.27 5.16

LUT 18321 (38%) 19581 (42%) 10481 (22%)
FF 9292 (10%) 8033 (8%) 3766 (4%)

BRMS 72 (48%) 19 (12%) 11 (7%)
DSP 195 (81%) 163 (67%) 29 (12%)

Power(w) 2.7 2.641 2.434
Speed Up 1 1.61 3.25

Table 5. Comparison for the running Times and results of SCA and HSCA (Population size is 256)

Function
SCA HSCA

Speed Up
Mean Time(s) Mean Time(s)

F1 5.27E-01 2.184 4.02E-01 0.353 6.187
F2 3.93E+01 2.388 5.97E+01 0.542 4.406
F3 7.02E+01 2.438 7.26E+01 0.358 6.810
F4 2.51E+00 2.195 3.76E+00 0.365 6.014
F5 2.05E+00 2.213 6.23E+03 0.359 6.614
F6 1.03E+00 2.264 1.03E+00 0.381 5.942
F7 2.41E+00 4.652 2.74E-05 0.481 9.671
F8 1.70E+01 3.667 6.04E+00 0.515 7.120
F9 1.00E+01 5.672 1.02E+00 0.524 10.824
F10 -2.91E+02 3.370 -3.54E-02 0.426 7.910

Table 6. Comparison for the running Times and results of SCA and HSCA (Population size is 512)

Function
SCA HSCA

Speed Up
Mean Time(s) Mean Time(s)

F1 4.85E-01 5.774 4.54E-01 0.646 8.938
F2 3.32E+01 5.081 3.76E+01 0.929 5.469
F3 2.88E+00 5.776 2.52E+00 0.661 8.738
F4 2.21E+00 5.390 1.76E+00 0.688 7.834
F5 4.56E-01 4.394 1.46E+00 0.761 5.774
F6 1.03E+00 6.396 1.03E+00 0.667 9.589
F7 2.25E+00 7.462 2.33E+00 0.849 8.789
F8 2.01E+01 9.491 1.65E+01 1.039 9.135
F9 1.00E+00 11.305 1.04E+00 1.156 9.779
F10 -2.99E+02 8.906 -3.12E+02 0.914 9.744
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The combined results before and after SCA improvement 
are shown in Table 4. After the improvement of a typical 
SCA, it can be seen that 61% reduces the Latency, and the 
execution speed is increased by 1.61 times. 4% increases 
the resource usage of the LUT because the FPGA needs 
to use more lookup tables to find data after optimizing the 
loop parallelism. At the same time, parallelism increases 
the reuse rate of hardware resources, leading to a decrease 
in DSP utilization.  For typical SCA and HLS-optimized 
SCA, the sine and cosine functions in the library file are 
used. The improved SCA is further optimized using the 
CORDIC algorithm, which further pipelining the operation 
process of solving trigonometric functions, reduces the DSP 
occupancy, and further improves the execution efficiency 
of the algorithm to 3.25 times.  FPGA power consumption 
is divided into static power consumption and dynamic. 
Static power consumption is when the device is set up and 
not running. Dynamic power consumption is the average 
power obtained from user logic switch utilization and 
switching activities. The main difference between the power 
consumption of the three strategies in Table 4 is focused on 
the dynamic power consumption component. Because static 
power consumption is the ‘thermal power’ generated at the 
point on the FPGA, including any power loss on the device, 
this component accounts for about 10% of the total power 
consumption. The algorithm program of Typical SCA is 
not optimized, so the program execution steps and resource 
consumption are higher compared to HLS-optimized SCA, 
as shown by the experimental results. For HSL-optimized 
SCA, the parallelism of the algorithm execution process 
is increased, resulting in less resource consumption, less 
dynamic power consumption in this part of the device, and 
more efficient execution. Improved SCA with CORDIC 
optimization reduces the program’s complexity and decreases 
resource utilization because the sin and cos functions are 
not used. HLS also optimizes the algorithm to reduce the 
execution time. These two parts of optimization reduce the 
dynamic power consumption and achieve the purpose of 
reducing power consumption.

The execution time and results of Typical SCA and 
FPGA implementation of parallel SCA simplified as HSCA, 
respectively, are shown in Table 5 to Table 6. The maximum 
number of iterations is set to 1000. The dimensionality of 
all tested functions is set to 256. The number of populations 
is set to 256 and 521. In addition, mean and time are 
the average results and running times obtained from 30 
independent runs of each function. Comparing Tables 5 to 
Table 6 shows that as the population size increases, both 
SCA and HSCA find better solutions, which indicates that 
the population size affects the algorithm’s ability to find 
the best solution. The SCA provided excellent optimization 
ability on the unimodal function when the population size 
was 256. On the contrary, HSCA achieved superior results 
on the multimodal function. When the population size is 512, 
more particles make the difference between SCA and HSCA 
in the unimodal function, and the multimodal function is not 
apparent. Among them, HSCA achieved five optimal results. 
Overall, comparisons of SCA and HSCA utilized to solve 
ten benchmark functions reveal the efficient optimization 

of HSCA. It can be seen from Table 5 to Table 6 that the 
running time of both SCA and HSCA doubles as the number 
of particles doubles. Moreover, for the same number of 
particles, both SCA and HSCA have less execution time 
in the unimodal function than in the multimodal function. 
Multimodal functions have higher arithmetic complexity than 
unimodal functions. It is concluded from the execution time 
that HSCA is more suitable for large-scale complex problems 
and can significantly improve algorithm efficiency and reduce 
power consumption.

6  HSCA for TDOA Localization Problem

The TDOA localization method determines the location of 
the target node by measuring the propagation time difference 
of the radio wave from the target node propagation signal to 
multiple anchor nodes. Multiple TDOA measurements form a 
hyperbolic system of equations that is nonlinear. It is difficult 
to solve. In this paper, this hyperbolic equation is solved by 
HSCA algorithm.

Figure 7. Anchor node distribution

Assume that the anchor nodes are distributed in 3D space 
in a Y-shape, as shown in Figure 7.  is the location 

of the target node  to be estimated, and  is the 

location of the known anchor node . The distance from  

to  is .  denotes the exact distance difference between 

the distance difference from u to  and the distance 

difference from , and the measured value is noted as .

 

(11)

  
(12)

Where,  is the electromagnetic wave propagation 

velocity,  is the measured value of TDOA.  is the 
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noise at the time of TDOA measurement, where the noise 
is a Gaussian white noise with independent homogeneous 
distribution of variance . 

                        (13)

      (14)

                       (15)

where , the maximum likelihood method is used to 

estimate . Since  follows a Gaussian distribution 

with mean  and variance , the likelihood 
function is as follows.

           (16)

Finding the coordinates of the point u that maximizes the 
likelihood function is equivalent to finding Equation (16).

        (17)

The fitness function is: 

       (18)

In this paper, the MSE (Mean-Square Error) is used as a 
measure of positioning accuracy.

                          (19)

Where,  is the optimal solution obtained by the 
optimization algorithm. The experiment uses 100 particles, 
and the maximum value of iterations is 500. The convergence 
curve of the algorithm localization results at the total noise 
error of -20 dB is shown in Figure 8.

In Figure 8, it is shown that the HSCA algorithm 
converges faster and uses fewer iterations for TDOA 
localization. When the number of iterations reaches 200, the 
results obtained by the HSCA algorithm are completely close 
to the real target position.

Figure 8. Convergence curve of each algorithm

7  Conclusion

This paper presents HSCA, based on an FPGA platform 
running using HLS software implementation. Then, the 
circular optimization methods in HLS, which include 
pipeline and unrolled, are used to optimize the HSCA, 
and the optimized CORDIC algorithm is used to compute 
the trigonometric functions. The experimental results 
show that the HSCA algorithm can speed up at least ten 
times compared to other algorithms and at least 3.25 times 
compared to a typical SCA while resource usage is reduced. 
Finally, HSCA is applied to TDOA localization and achieves 
fast convergence speed and accuracy. In future work, it is 
planned. To parallelize the algorithm to improve its execution 
efficiency [39-42]. In addition, additional optimization 
strategies will be considered to reduce power and system 
energy consumption [43-46].
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