
Efficient FPGA Implementation of Sine Cosine Algorithm using High Level Synthesis 865

*Corresponding Author: Shu-Chuan Chu; E-mail: scchu0803@gmail.com
DOI: https://doi.org/10.70003/160792642024112506007

Efficient FPGA Implementation of Sine Cosine Algorithm using
High Level Synthesis

Jeng-Shyang Pan1,4, Si-Qi Zhang1, Shu-Chuan Chu1*, Chia-Cheng Hu2, Jie Wu3

1 College of Computer Science and Engineering, Shandong University of Science and Technology, China
2 College of Artificial Intelligence, Yango University, China

3 School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China
4 Department of Information Management, Chaoyang University of Technology, Taiwan

jengshyangpan@gmail.com, zhangsiqichn@gmail.com, scchu0803@gmail.com, jjhwu@ksts.seed.net.tw, wujie@zzuli.edu.cn

Abstract

Sine Cosine Algorithm (SCA) finds the best solution to
the optimization problem by the periodicity of sine and cosine
trigonometric functions. However, it is computationally
intensive and contains many parameters to be determined.
Fortunately, there are FPGA platforms that can be used to
overcome these limitations by improving latency. Sine and
cosine calculation in library functions is very complex and
time-consuming. Therefore, this paper proposes a hardware-
accelerated CORDIC algorithm to improve the sine cosine
trigonometric function that needs to be computed in the
SCA algorithm. The proposed algorithm (HSCA) combines
the accelerated SCA algorithm and the CORDIC algorithm.
HSCA performance is tested by using six test functions run
on the FPGA. The experimental results show that HSCA is
3.25 times faster and 33% fewer resource utilizations for
solving optimization problems, and runs significantly faster
on FPGAs with IP cores than on Soc chips in FPGAs. The
performance of the HSCA algorithm is demonstrated by
applying it to the TDOA localization problem.

Keywords: Sine Cosine Algorithm, Filed Programmable
Gate Arrays, Vivado HLS tool, Optimization techniques,
TDOA

1 Introduction

Sine Cosine Algorithm (SCA) [1-2] is a novel heuristic
optimization algorithm proposed in recent years, which
oscillates the optimization based on the mathematical model
of sine and cosine functions. It has the advantages of a few
parameters, a simple structure, and easy implementation.
SCA has few parameters simple algorithm structure and still
finds the appropriate optimal solution for handling complex
problems [3]. SCA has been widely used in scientific research
and industry. SCA has been used to solve computation
problems such as future selection [4]. SCA is used in neural
networks to optimize neural network problems [5]. SCA also
provides optimal solutions for complex applications, such as
path planning [6], power systems [7], machine learning [8],

and wireless sensor network problems [9-13] that may not be
able to meet real-time requirements.

There are many studies on improving the convergence
speed, finding accuracy, and reducing falling into local
optimum [14-17]. However, there are few kinds of research
on improving the execution speed of SCA algorithms
and reducing the resource utilization of SCA. Therefore,
this paper proposes SCA running on the FPGA platform
to improve the algorithm execution efficiency using the
hardware acceleration technique.

In recent years, the performance improvement of general-
purpose processors such as CPUs has slowed down, and to
continue to meet the growing demand for energy-efficient
computing in various industries, FPGAs, and representative
devices for reconfigurable computing systems, have received
widespread attention overnight in many emerging hot areas.
Nowadays, FPGAs are introduced in the R&D process of
many fields, such as artificial intelligence, extensive data
analysis, network communication, and image processing.
FPGAs have become a mainstream general-purpose
computing technology. In cloud computing, numerous
studies and industrial applications [18-19] have proven that
FPGA technology can effectively improve the processing
performance of various cloud loads while reducing power
consumption [20]. In the field of edge computing, FPGAs are
similarly widely used. Hsu-Chih Huang proposes a parallel
meta-heuristic particle swarm optimization (PPSO) algorithm
based on field-programmable gate arrays (FPGAs) [21]. The
PPSO consists of three parallel PSOs and a communication
operator in an FPGA chip. Pradeep R. Fernando reported on
designing an IP core that implements a generic GA engine
to solve these problems [22]. Specifically, the proposed
GA IP core can be customized according to population
size, number of generations, crossover and variation rates,
random number generator seeds, and fitness functions. In
2020, Ahmed Hassanein presented a field-programmable
gate array (FPGA)-based parallel BSO processor [23]. The
development includes sequential modeling algorithms,
deriving parallel versions, evaluating functions against a rich
set of benchmarks, and performing thorough verification.
Qiangqiang Jiang proposed a method for efficient
implementation of parallel WOA on FPGA, called FPWOA
[24]. It is developed for FPGA architecture features according

866 Journal of Internet Technology Vol. 25 No. 6, November 2024

to the parallelization characteristics of the WOA algorithm.
While pursuing higher data processing capability, edge
computing also requires processors with miniaturization, low
power consumption, and the ability to respond to various
application scenarios flexibly. Soc FPGAs [25], which have
become popular in recent years, fully cater to the above-level
requirements by integrating ARM hard-core processors and
FPGAs on a single chip. To date, SoC FPGA [26] products
are widely used in smart cameras, autonomous vehicles,
drones, video cameras, intelligent voice assistants, and other
home electronics.

System development with FPGAs requires a lot of
hardware fundamentals and programming in Verilog/VHDL,
which is undoubtedly a vast learning cost for software
engineers. Fortunately, developers can now use the High-
Level synthesis [27] tool to develop hardware programs.
HLS is a technique that automatically translates behavior
described in a high-level language into hardware with the
same functionality, hence the behavior-level synthesis.
This technique intends to make hardware design much
less complex so that circuits can be defined directly at a
higher level of abstraction, significantly reducing hardware
development time [28]. The purpose of high-level synthesis
is to allow developers to focus less on hardware and
algorithm-level design and implementation. Nowadays, high-
level synthesis tools usually choose C, C++, OpenCL, and
other languages as input [29]. These high-level languages
have a higher level of abstraction and are. Therefore, more
These high-level languages are more expressive and more
efficient than low-level languages [30]. However, since these
high-level languages do not contain timing information, they
cannot be converted into circuit implementations.

Figure 1. Flowchart of HLS

In Figure 1, HLS can be divided into three main
processes: Allocation, Scheduling, and Binding. The
Allocation step determines hardware resources, such as
addition, multiplication, and registers. The Scheduling
determines what operations are executed at each clock
cycle. The Binding is to assign the hardware to each
operation. The final output is a Verilog/VHDL file directly

describing the hardware circuit. The advantage of using
HLS is to automate the conversion from high-level language
to hardware language and to design hardware with less
resource consumption and faster computing speed through
optimization. HLS makes it possible for software engineers
to participate in hardware development.

Section 2 briefly introduces the SCA algorithm concept
and the CORDIC Algorithm’s basic concepts. Section 3
provides optimization methods to optimize the SCA and
CORDIC algorithm of SCA. Section 4 shows the schematic
designed implementation of HSCA on FPGA; In Section
5, the results of experiments are presented and discussed.
Finally, Section 6 summarizes all the work in this paper and
describes the future directions for in-depth research.

2 Sine Cosine Algorithm

SCA achieves the global search by fluctuating outward
and completes the local development by fluctuating toward
the optimal solution to gradually converge to the optimal
global solution, which has the advantages of simple
structure, high flexibility, few initial parameters, and easy
implementation [31-32].

Description of the standard SCA algorithm: If the size of
the population is and has a D-dimensional search space,

the individual in this search space can
map the solution of the optimization problem to the position
of each individual. Firstly, the positions of individuals in
the search space are generated randomly. Then the objective
function is used to calculate the fitness values of all
individuals, and the current optimal individual and position
are found after sorting. The iterative process of individual
updating is expressed as follows:

(1)

In Equation (1), is the number of current iteration.

 denotes the optimal individual position obtained in

the iteration. , and are random factors with the

corresponding values in the ranges , and

 respectively. determines the distance moved during

the iteration; is the random weight coefficient assigned to

the current optimal solution; is the switching condition of
the iterative equation of the sine and cosine function.

 denotes the control factor, whose value is linearly
decreasing and controls the fluctuation amplitude of the sine
and cosine function and also determines the direction of
movement of the iteration. If , the solution will move
from the current solution towards the region of the optimal
solution position, and if , it will move in the opposite

Efficient FPGA Implementation of Sine Cosine Algorithm using High Level Synthesis 867

direction, and the expression of the control factor is as
follows:

 (2)

The is a positive constant. denotes the maximum
number of iterations.

3 SCA and CORDIC Optimization

3.1 Optimization SCA
The detailed steps of SCA are analyzed and discussed.

The main steps of the SCA algorithm are illustrated in Figure
2. The subsections analyze each part of the SCA in detail and
optimize it using the HLS optimization tools.
3.1.1 Population Initialization Step

In the beginning, SCA generates random populations
(candidate solutions). The initial value of each dimension of
the particle is random, and the range of values is determined
by the solution space of the problem to be solved. The inner
loop initializes each dimension of the particle using a random
number generated by a random number generator, which
LFSR implements. The outer loop in Figure 2 contains the
fitness function used to calculate the fitness value of each
particle in the population. The fitness function will evaluate
each solution, which will result in a fitness value of the
solution, and the fitness value will determine the excellence
of the solution. The fitness function in this paper consists of 6
test functions containing unimodal, multimodal, and complex
problems.

Figure 2. Population initialize pseudo code

Figure 3. Loop unrolling

Figure 4. Loop pipelining

HLS detects as much parallelism in the code as possible
to reduce latency [33]. The loop pipeline optimization
allows the loop operations to be pipelined and the operations
within the loop to overlap, as shown in Figure 4. Operations
in a single for-loop that have no data dependencies can be
optimized using unroll. Therefore, in Figure 3, we use loop
unroll to optimize the inner for loop that initializes each
particle’s D-dimensional value.
3.1.2 Particle Updating Step

The particle update is calculated for each dimension of
the particle using Equation (1) to obtain the new value. This
step is the most time-consuming part of the whole algorithm
execution. The pseudo of population updating is shown in
Figure 5.

Figure 5. Population update pseudo code

Since the calculation of Equation (1) has sine and cosine
trigonometric functions, and the particle size in this paper
is 10-30 dimensions, unrolling expansion will have a vast
resource consumption. Therefore, the inner loop can be
optimized using a pipeline so that all dimensions of a particle
can be computed in a streamlined manner, where the sine
and cosine trigonometric functions are executed using the
hardware-accelerated CORDIC algorithm.

3.2 Optimization CORDIC
The CORDIC algorithm [34] is mainly for solving

the problem of real-time computation. It is well suited for
hardware implementation because it can eventually be
decomposed into a series of simple algorithms implemented
by addition, subtraction, shift, and lookup tables. Adding and
subtracting is still accessible with embedded devices with
weak computing power, such as microcontrollers or FPGAs
[35]. However, it takes some effort to calculate trigonometric
functions (sin, cos, tan) or even complex functions like
hyperbolic, exponential, and logarithmic. Usually, these
functions need to be converted to hardware-friendly through
techniques such as lookup tables or approximations. This

868 Journal of Internet Technology Vol. 25 No. 6, November 2024

algorithm is efficient in FPGAs and is often used in hardware
algorithm implementations.

However, the CORDIC algorithm takes various forms,
including three coordinate forms and two rotation modes,
which correspond to different primitive function operation
structures. Although J. Walther in 1971 gave agreed
mathematical expressions for the CORDIC algorithm in three
coordinate systems [36], which can be easily implemented
in software programming for different CORDIC operations
in practical applications, especially in the frontend of
signal processing in the physical layer of communication,
CORDIC operations often need to be implemented in FPGA
hardware. The conventional practice is to design specific
RTL code according to the requirements of different function
operations, which leads to a significant limitation of code
flexibility and portability.

The CORDIC algorithm uses a constant approximation
method, and it only requires a simple shift and addition
and subtraction to complete the numerical calculation
of trigonometric functions. This algorithm improves the
operational familiarity of the function and, at the same time,
saves the FPGA resources. Thus, it is widely used in FPGA
development.

Calculating the values of and can be

transformed into finding the coordinate position

of a point after rotating around the coordinate
origin, by the coordinate rotation transformation formula:

 (3)

The coordinate rotation transformation can be equated to
a series of coordinate rotation changes with direction di and
angle :

 (4)

 (5)

 (6)

Substituting Equation (4) into Equation (3), the following
equation is obtained:

 (7)

If the value of is restricted to a power of 2,
then the rotation operation can be reduced to data shifting
(multiplication) and addition. Specifically, it can be set to

. The rotation matrix then becomes:

 (8)

K(n) tends to stabilize as n increases. The value of K can
be obtained as follows:

 (9)

To simplify the calculation one can also take as

and as . We can obtain the sin, cosine matrix:

 (10)

Here, the CORDIC algorithm starts from the positive
of the x-axis, which corresponds to an angle of degrees,
and then performs four rotations either clockwise or
counterclockwise, each with a smaller and smaller angle,
to finally obtain the target angle . Once the rotation
is completed, the angle obtained is very close to the
theoretical one. If the length of the vector is K, then the final
vector components in x, y correspond to and ,
respectively. The key to improving the CORDIC algorithm is
to improve the computational efficiency of the above process.

4 Design and Implementation of SCA on
FPGA

The SCA is suitable for use in general computing
environments. The prototype implementation of the HSCA
IP core is based on the Zynq [37] FPGA platform, as shown
in Figure 6. The PL part of the Zynq is the FPGA, where the
HSCA IP core can be integrated. The axi-lite [38] peripheral
bus is applied to integrate the HSCA IP core and the DMA as
devices in the system. At the same time, The DMA is used to
connect the HSCA IP core to the PS high-performance bus
port for direct access to DDR memory via the axis protocol.
This way, the HSCA IP core is independent of the PS and can
leave PS resources to other processes.

The PS part of Zynq is a dual-core ARM CPU, which
can run a Linux OS for system and data transfer control.
The PS acts as a front-end to receive the parameters of the
SCA entered by the user and write them to the memory. In
our proposed work, the specification is done in C using the
Vivado HLS tool. These specifications are then translated into
hardware images and programmed on the FPGA for software
end functions.

The modules in Figure 6 are emulated according to the
user-specified HSCA operator. All modules are written using
the Vivado HLS tool. The individual modules in the HSCA
designed in Figure 6 are described as follows:

The main task of the initialization module is to
obtain from DDR memory the parameters needed for the
algorithm’s execution, such as the number of populations,

Efficient FPGA Implementation of Sine Cosine Algorithm using High Level Synthesis 869

dimensions, and upper and lower bounds of the solution
space. When the initialization module is called, it generates
the initial population and some initial variables based on the
parameters. It sends them to the PUM after the initialization
module is executed.

After receiving the initial population from the initi-
alization module, the particle update module calls FM to
evaluate the population for fitness. The PUM module uses
parallelism to speed up the update and evaluation of particles.
Now, the PUM resets itself and repeats the selection process.

FM evaluates the particles received from the PUM and
returns the fitness value to memory through the computation

of the function. FM can be replaced with any problem that
needs to be solved, and only the solution space boundaries
and dimensions of the problem need to be known.

When the CORDIC module receives the angle
information from the PUM input, it is based on the random
value sent by the RNG. The initial θ starts with the positive
half-axis of the X-axis, corresponding to an angle of 0
degrees, and then performs clockwise or counterclockwise
rotations, each with smaller and smaller angles, to finally
obtain the target angle θ. The solution process can be viewed
as a successive multiplication of matrices, which can be
optimized using a similar technique process.

Figure 6. The schematic design of HSCA on FPGA

5 Experiment and Analysis

The optimized Verilog code of SCA by applying different
optimization techniques was synthesized on Xilinx HLS
software on the Zynq Ultrascale+ AXU2CG-E device. In
order to verify the performance of the proposed HSCA
algorithm, six representative benchmark functions are
selected for testing and compared with the standard SCA
algorithm and the improved SCA using library functions sine
and cosine. The descriptions of the benchmark functions are
shown in Table 2.

In Table 1, the typical CORDIC algorithm uses 0 DSP
compared to the Sine and Cosine functions in the library,
while the Sine Cosine function uses 86 DSPs. It also reduces
the occupancy of LUTs by 84% and FFs by 86%. The latency
is reduced by 87% for the improved CORDIC algorithm,
but the LUT footprint is increased because the optimization
requires more LUTs. The CORDIC algorithm has improved
in latency, LUT, and DSP utilization.

In Table 2, f1-f5 are unimodal functions, f6-f9 are
multimodal functions, and f10 are complex functions. These
three types of test functions can represent most problems in

the real world. In order to ensure the fairness of experiments,
each function is executed 30 times, and the execution
times are averaged. Each function is tested with uniform
parameters, a maximum number of iterations of 1000, and a
population size of 100.

Table 3 obtains this result for the algorithm with 30
particles and 1000 max iterations. The HSCA executed on
FPGA significantly improved each function. Among them, it
is at least 16 times faster on the unimodal function, especially
on the f1 function, where HSCA executes only 12ms, which
is 27 times faster compared to the execution speed of DE.
When optimizing the multimodal function, the improvement
is 11 and 10 times for f4 and f5, respectively, and 20 times
for f3. The reason is that the f4 and f5 functions include
the calculation of the cosine function, which increases
the complexity of the calculation and leads to an increase
in execution time. When solving complex problems, the
algorithm still has about 15 times improvement because
the algorithm is executed on the hardware circuit of FPGA,
the operations for data are obtained from registers, and the
circuit for performing basic operations can also be executed
in parallel.

870 Journal of Internet Technology Vol. 25 No. 6, November 2024

Table 1. Latency and resources utilization of CORIDC algorithm and sine, cosine function

Name Sine, Cosine library
functions

Typical CORDIC without
optimization

Improved CORDIC
algorithm

Latency (ns) 35 38 5
LUT 5661 940 2474
FF 2045 290 253

DSP 86 0 0

Table 2. Benchmark functions

Func Expression Range

0 [-10,10]

0 [-2.048,2.048]

0 [-10,10]

0 [-10,10]

0 [-100,100]

0 [-5,5]

0 [-32.768,32.768]

0 [-5.12,5.12]

0 [-600,600]

-39.16599 [-5,5]

Table 3. Execution time comparison of each related algorithm (ms)

Function SCA GWO PSO DE HSCA Speed Up
F1 460 630 351 332 12 27
F2 539 697 549 492 29 16
F3 542 732 447 510 34 13
F4 446 657 358 360 21 17
F5 472 660 365 375 17 21
F6 102 134 80 106 4 20
F7 648 785 484 658 44 11
F8 653 789 539 711 53 10
F9 654 814 563 758 75 7
F10 535 686 427 484 28 15

Efficient FPGA Implementation of Sine Cosine Algorithm using High Level Synthesis 871

Table 4. Latency and resources utilization of SCA

Name Typical SCA without
optimization

Typical SCA with
HLS optimization

Improved SCA with
CORDIC optimization

Clock Cycles 16802207 10265107 5162007
Clk. Per(ns) 10 10 10
Latency(ms) 16.8 10.27 5.16

LUT 18321 (38%) 19581 (42%) 10481 (22%)
FF 9292 (10%) 8033 (8%) 3766 (4%)

BRMS 72 (48%) 19 (12%) 11 (7%)
DSP 195 (81%) 163 (67%) 29 (12%)

Power(w) 2.7 2.641 2.434
Speed Up 1 1.61 3.25

Table 5. Comparison for the running Times and results of SCA and HSCA (Population size is 256)

Function
SCA HSCA

Speed Up
Mean Time(s) Mean Time(s)

F1 5.27E-01 2.184 4.02E-01 0.353 6.187
F2 3.93E+01 2.388 5.97E+01 0.542 4.406
F3 7.02E+01 2.438 7.26E+01 0.358 6.810
F4 2.51E+00 2.195 3.76E+00 0.365 6.014
F5 2.05E+00 2.213 6.23E+03 0.359 6.614
F6 1.03E+00 2.264 1.03E+00 0.381 5.942
F7 2.41E+00 4.652 2.74E-05 0.481 9.671
F8 1.70E+01 3.667 6.04E+00 0.515 7.120
F9 1.00E+01 5.672 1.02E+00 0.524 10.824
F10 -2.91E+02 3.370 -3.54E-02 0.426 7.910

Table 6. Comparison for the running Times and results of SCA and HSCA (Population size is 512)

Function
SCA HSCA

Speed Up
Mean Time(s) Mean Time(s)

F1 4.85E-01 5.774 4.54E-01 0.646 8.938
F2 3.32E+01 5.081 3.76E+01 0.929 5.469
F3 2.88E+00 5.776 2.52E+00 0.661 8.738
F4 2.21E+00 5.390 1.76E+00 0.688 7.834
F5 4.56E-01 4.394 1.46E+00 0.761 5.774
F6 1.03E+00 6.396 1.03E+00 0.667 9.589
F7 2.25E+00 7.462 2.33E+00 0.849 8.789
F8 2.01E+01 9.491 1.65E+01 1.039 9.135
F9 1.00E+00 11.305 1.04E+00 1.156 9.779
F10 -2.99E+02 8.906 -3.12E+02 0.914 9.744

872 Journal of Internet Technology Vol. 25 No. 6, November 2024

The combined results before and after SCA improvement
are shown in Table 4. After the improvement of a typical
SCA, it can be seen that 61% reduces the Latency, and the
execution speed is increased by 1.61 times. 4% increases
the resource usage of the LUT because the FPGA needs
to use more lookup tables to find data after optimizing the
loop parallelism. At the same time, parallelism increases
the reuse rate of hardware resources, leading to a decrease
in DSP utilization. For typical SCA and HLS-optimized
SCA, the sine and cosine functions in the library file are
used. The improved SCA is further optimized using the
CORDIC algorithm, which further pipelining the operation
process of solving trigonometric functions, reduces the DSP
occupancy, and further improves the execution efficiency
of the algorithm to 3.25 times. FPGA power consumption
is divided into static power consumption and dynamic.
Static power consumption is when the device is set up and
not running. Dynamic power consumption is the average
power obtained from user logic switch utilization and
switching activities. The main difference between the power
consumption of the three strategies in Table 4 is focused on
the dynamic power consumption component. Because static
power consumption is the ‘thermal power’ generated at the
point on the FPGA, including any power loss on the device,
this component accounts for about 10% of the total power
consumption. The algorithm program of Typical SCA is
not optimized, so the program execution steps and resource
consumption are higher compared to HLS-optimized SCA,
as shown by the experimental results. For HSL-optimized
SCA, the parallelism of the algorithm execution process
is increased, resulting in less resource consumption, less
dynamic power consumption in this part of the device, and
more efficient execution. Improved SCA with CORDIC
optimization reduces the program’s complexity and decreases
resource utilization because the sin and cos functions are
not used. HLS also optimizes the algorithm to reduce the
execution time. These two parts of optimization reduce the
dynamic power consumption and achieve the purpose of
reducing power consumption.

The execution time and results of Typical SCA and
FPGA implementation of parallel SCA simplified as HSCA,
respectively, are shown in Table 5 to Table 6. The maximum
number of iterations is set to 1000. The dimensionality of
all tested functions is set to 256. The number of populations
is set to 256 and 521. In addition, mean and time are
the average results and running times obtained from 30
independent runs of each function. Comparing Tables 5 to
Table 6 shows that as the population size increases, both
SCA and HSCA find better solutions, which indicates that
the population size affects the algorithm’s ability to find
the best solution. The SCA provided excellent optimization
ability on the unimodal function when the population size
was 256. On the contrary, HSCA achieved superior results
on the multimodal function. When the population size is 512,
more particles make the difference between SCA and HSCA
in the unimodal function, and the multimodal function is not
apparent. Among them, HSCA achieved five optimal results.
Overall, comparisons of SCA and HSCA utilized to solve
ten benchmark functions reveal the efficient optimization

of HSCA. It can be seen from Table 5 to Table 6 that the
running time of both SCA and HSCA doubles as the number
of particles doubles. Moreover, for the same number of
particles, both SCA and HSCA have less execution time
in the unimodal function than in the multimodal function.
Multimodal functions have higher arithmetic complexity than
unimodal functions. It is concluded from the execution time
that HSCA is more suitable for large-scale complex problems
and can significantly improve algorithm efficiency and reduce
power consumption.

6 HSCA for TDOA Localization Problem

The TDOA localization method determines the location of
the target node by measuring the propagation time difference
of the radio wave from the target node propagation signal to
multiple anchor nodes. Multiple TDOA measurements form a
hyperbolic system of equations that is nonlinear. It is difficult
to solve. In this paper, this hyperbolic equation is solved by
HSCA algorithm.

Figure 7. Anchor node distribution

Assume that the anchor nodes are distributed in 3D space
in a Y-shape, as shown in Figure 7. is the location

of the target node to be estimated, and is the

location of the known anchor node . The distance from

to is . denotes the exact distance difference between

the distance difference from u to and the distance

difference from , and the measured value is noted as .

(11)

(12)

Where, is the electromagnetic wave propagation

velocity, is the measured value of TDOA. is the

Efficient FPGA Implementation of Sine Cosine Algorithm using High Level Synthesis 873

noise at the time of TDOA measurement, where the noise
is a Gaussian white noise with independent homogeneous
distribution of variance .

 (13)

 (14)

 (15)

where , the maximum likelihood method is used to

estimate . Since follows a Gaussian distribution

with mean and variance , the likelihood
function is as follows.

 (16)

Finding the coordinates of the point u that maximizes the
likelihood function is equivalent to finding Equation (16).

 (17)

The fitness function is:

 (18)

In this paper, the MSE (Mean-Square Error) is used as a
measure of positioning accuracy.

 (19)

Where, is the optimal solution obtained by the
optimization algorithm. The experiment uses 100 particles,
and the maximum value of iterations is 500. The convergence
curve of the algorithm localization results at the total noise
error of -20 dB is shown in Figure 8.

In Figure 8, it is shown that the HSCA algorithm
converges faster and uses fewer iterations for TDOA
localization. When the number of iterations reaches 200, the
results obtained by the HSCA algorithm are completely close
to the real target position.

Figure 8. Convergence curve of each algorithm

7 Conclusion

This paper presents HSCA, based on an FPGA platform
running using HLS software implementation. Then, the
circular optimization methods in HLS, which include
pipeline and unrolled, are used to optimize the HSCA,
and the optimized CORDIC algorithm is used to compute
the trigonometric functions. The experimental results
show that the HSCA algorithm can speed up at least ten
times compared to other algorithms and at least 3.25 times
compared to a typical SCA while resource usage is reduced.
Finally, HSCA is applied to TDOA localization and achieves
fast convergence speed and accuracy. In future work, it is
planned. To parallelize the algorithm to improve its execution
efficiency [39-42]. In addition, additional optimization
strategies will be considered to reduce power and system
energy consumption [43-46].

References

[1] S. Mirjalili, SCA: a sine cosine algorithm for solving
optimization problems, Knowledge-based systems, Vol.
96, pp. 120-133, March, 2016.

[2] A. B. Gabis, Y. Meraihi, S. Mirjalili, A. Ramdane-
Cherif, A comprehensive survey of sine cosine
algorithm: variants and applications, Artificial
Intelligence Review, Vol. 54, No. 7, pp. 5469-5540,
October, 2021.

[3] P. Liao, C. Sun, G. Zhang, Y. Jin, Multi-surrogate
multi-tasking optimization of expensive problems,
Knowledge-Based Systems, Vol. 205, Article No.
106262, October, 2020.

[4] A. I. Hafez, H. M. Zawbaa, E. Emary, A. E. Hassanien,
Sine cosine optimization algorithm for feature selection,
2016 international symposium on innovations in
intelligent systems and applications (INISTA), Sinaia,
Romania, 2016, pp. 1-5.

[5] S. Loussaief, A. Abdelkrim, Convolutional neural
network hyper-parameters optimization based on

874 Journal of Internet Technology Vol. 25 No. 6, November 2024

genetic algorithms, International Journal of Advanced
Computer Science and Application, Vol. 9, No. 10, pp.
252-266, 2018.

[6] P. K. Das, Hybridization of kidney-inspired and sine–
cosine algorithm for multi-robot path planning, Arabian
Journal for Science and Engineering, Vol. 45, No. 4, pp.
2883-2900, April, 2020.

[7] K. Dasgupta, P. K. Roy, V.Mukherjee, Power flow based
hydro-thermal-wind scheduling of hybrid power system
using sine cosine algorithm, Electric Power Systems
Research, Vol. 178, Article No. 106018, January, 2020.

[8] J. Xia, D. Yang, H. Zhou, Y. Chen, H. Zhang, T. Liu, A.
A. Heidari, H. Chen, Z. Pan, Evolving kernel extreme
learning machine for medical diagnosis via a disperse
foraging sine cosine algorithm, Computers in Biology
and Medicine, Vol. 141, Article No. 105137, February,
2022.

[9] S. Zhang, F. Fan, W. Li, S.-C. Chu, J.-S. Pan, A parallel
compact sine cosine algorithm for tdoa localization of
wireless sensor network, Telecommunication Systems,
Vol. 78, No. 2, pp. 213-223, October, 2021.

[10] Q.-W. Chai, S.-C. Chu, J.-S. Pan, P. Hu, W.-M. Zheng, A
parallel woa with two communication strategies applied
in dv-hop localization method, EURASIP Journal on
Wireless Communications and Networking, Vol. 2020,
No. 1, pp. 1-10, February, 2020.

[11] S.-C. Chu, Z.-G. Du, J.-S. Pan, Symbiotic organism
search algorithm with multi-group quantum-behavior
communication scheme applied in wireless sensor
networks, Applied Science, Vol. 10, No. 3, Article No.
930, February, 2020.

[12] J.-S. Pan, T.-K. Dao, T.-S. Pan, T.-T. Nguyen, S.-
C. Chu, J. F. Roddick, An improvement of flower
pollination algorithm for node localization optimization
in wsn, Journal of Information Hiding and Multimedia
Signal Processing, Vol. 8, No. 2, pp. 486-499, March,
2017.

[13] S. C. Chu, T.-K. Dao, J. S. Pan, T.-T. Nguyen,
Identifying correctness data scheme for aggregating
data in cluster heads of wireless sensor network based
on naive bayes classification, EURASIP Journal on
Wireless Communications and Networking, Vol. 2020,
No. 1, pp. 1-15, February, 2020.

[14] M. A. Elaziz, D. Oliva, S. Xiong, An improved
opposition-based sine cosine algorithm for global
optimization, Expert Systems with Applications, Vol. 90,
pp. 484-500, December, 2017.

[15] S. Gupta, K. Deep, Improved sine cosine algorithm with
crossover scheme for global optimization, Knowledge-
Based Systems, Vol. 165, pp. 374-406, February, 2019.

[16] S. Xiao, H. Wang, W. Wang, Z. Huang, X. Zhou, M.
Xu, Artificial bee colony algorithm based on adaptive
neighborhood search and gaussian perturbation, Applied
Soft Computing, Vol. 100, Article No. 106955, March,
2021.

[17] J. Li, D.-D. Xiao, T. Zhang, C. Liu, Y.-X. Li, G.-G.
Wang, Multi-swarm cuckoo search algorithm with
q-learning model, The Computer Journal, Vol. 64, No.
1, pp. 108-131, January, 2021.

[18] E . Monmasson, M. N. Ci rs tea , FPGA des ign
methodology for industrial control systems—a review,
IEEE transactions on industrial electronics, Vol. 54, No.
4, pp. 1824-1842, August, 2007.

[19] J. S. Pan, X.-X. Sun, S.-C. Chu, A. Abraham, B. Yan,
Digital watermarking with improved sms applied for qr
code, Engineering Applications of Artificial Intelligence,
Vol. 97, Article No. 104049, January, 2021.

[20] V. George, H. Zhang, J. Rabaey, The design of a low
energy FPGA, Proceedings of the 1999 International
Symposium on Low Power Electronics and Design, San
Diego, CA, 1999, pp. 188-193.

[21] H.-C. Huang, FPGA-based parallel metaheuristic PSO
algorithm and its application to global path planning
for autonomous robot navigation, Journal of Intelligent
& Robotic Systems, Vol. 76, No. 3-4, pp. 475-488,
December, 2014.

[22] P. R. Fernando, S. Katkoori, D. Keymeulen, R.
Zebulum, A. Stoica, Customizable FPGA IP core
implementat ion of a general -purpose genet ic
algorithm engine, IEEE Transactions on Evolutionary
Computation, Vol. 14, No. 1, pp. 133-149, February,
2010.

[23] A. Hassanein, M. El-Abd, I. Damaj, H. U. Rehman,
Parallel hardware implementation of the brain storm
optimization algorithm using FPGAs, Microprocessors
and Microsystems, Vol. 74, Article No. 103005, April,
2020.

[24] Q. Jiang, Y. Guo, Z. Yang, X. Zhou, A parallel whale
optimization algorithm and its implementation
on FPGA, 2020 IEEE Congress on Evolutionary
Computation (CEC), Glasgow, UK, 2020, pp. 1-8.

[25] G. Korcyl, P. Bialas, C. Curceanu, E. Czerwiński, K.
Dulski, B. Flak, Evaluation of single-chip, real-time
tomographic data processing on FPGA soc devices,
IEEE transactions on medical imaging, Vol. 37, No. 11,
pp. 2526-2535, November, 2018.

[26] K. Wang, N. Xu, K. Hu, An FPGA fast combination
placement optimization algorithm research, 2017 IEEE
2nd Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), Chongqing,
China, 2017, pp. 1258-1262.

[27] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A.
Canis, A survey and evaluation of FPGA high-level
synthesis tools, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 35, No.
10, pp. 1591-1604, October 2016.

[28] V. Krishnan, S. Katkoori, A genetic algorithm for the
design space exploration of datapaths during high-
level synthesis, IEEE transactions on evolutionary
computation, Vol. 10, No. 3, pp. 213-229, June, 2006.

[29] A. Cornu, S. Derrien, D. Lavenier, Hls tools for
FPGA: Faster development with better performance,
International Symposium on Reconfigurable Computing:
Architectures, Tools and Applications, Belfast, UK,
2011, pp. 67-78.

[30] C. Li, Y. Bi, Y. Benezeth, D. Ginhac, F. Yang, High-
level synthesis for fpgas: code optimization strategies
for real-time image processing, Journal of Real-Time

Efficient FPGA Implementation of Sine Cosine Algorithm using High Level Synthesis 875

Image Processing, Vol. 14, No. 3, pp. 701-712, March,
2018.

[31] H. Wang, W. Wang, Z. Wu, Particle swarm optimization
with adaptive mutation for multimodal optimization,
Applied Mathematics and Computation, Springer, Vol.
221, pp. 296-305, September, 2013.

[32] Q. Yang, S.-C. Chu, J.-S. Pan, C.-M. Chen, Sine cosine
algorithm with multigroup and multistrategy for solving
CVRP, Mathematical Problems in Engineering, Vol.
2020, No. 1, pp. 1-10, March, 2020.

[33] R. M. Rizk-Allah, R. A. El-Sehiemy, G.-G. Wang, A
novel parallel hurricane optimization algorithm for
secure emission/economic load dispatch solution,
Applied Soft Computing, Vol. 63, pp. 206-222, February,
2018.

[34] B. Lakshmi, A. S. Dhar, Cordic architectures: A survey,
VLSI design, Vol. 2010, No. 1, pp. 1-19, March, 2010.

[35] R. Andraka, A survey of cordic algorithms for FPGA
based computers, Proceedings of the 1998 ACM/SIGDA
Sixth International Symposium on Field Programmable
Gate Arrays, Monterey, CA, 1998, pp. 191-200.

[36] J. S. Walther, A unified algorithm for elementary
functions, g): Proceedings of spring joint computer
conference, Atlantic City New Jersey, 1971, pp. 379-
385. 1971.

[37] S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V.
Rajagopalan, R. Wittig, A 16-nm multiprocessing
system-on-chip field-programmable gate array platform,
IEEE Micro, Vol. 36, No. 2, pp. 48-62, March-April,
2016.

[38] M. Ramirez, M. Daneshtalab, J. Plosila, P. Liljeberg,
Noc-axi interface for fpga-based mpsoc platforms, 22nd
International Conference on Field Programmable Logic
and Applications (FPL), Oslo, Norway, 2012, pp. 479-
480.

[39] C. Sun, Y. Jin, R. Cheng, J. Ding, J. Zeng, Surrogate-
assisted cooperative swarm optimization of high-
dimensional expensive problems, IEEE Transactions on
Evolutionary Computation, Vol. 21, No. 4, pp. 644-660,
August, 2017.

[40] X. Xue, A compact firefly algorithm for matching
biomedical ontologies, Knowledge and Information
Systems, Vol. 62, No. 7, pp. 2855-2871, July, 2020.

[41] X. Xue, Compact memetic algorithm-based process
model matching, Soft Computing, Vol. 23, No. 13, pp.
5249-5257, July, 2019.

[42] X. Zou, L. Wang, Y. Tang, Y. Liu, S. Zhan. F. Tao,
Parallel design of intelligent optimization algorithm
based on FPGA, The International Journal of Advanced
Manufacturing Techonology, Vol. 94, No. 9-12, pp.
3399-3412, February, 2018.

[43] S.-C. Chu, T.-T Wang, A. R. Yildiz, J.-S. Pan, Ship
rescue optimization: a new metaheuristic algorithm
for solving engineering problems, Journal of Internet
Technology, Vol. 25, No. 1, pp. 61-78, January, 2024.

[44] M. Zhu, S.-C. Chu, Q. Yang, W. Li, J.-S. Pan, Compact
sine cosine algorithm with multigroup and multistrategy

for dispatching system of public transit vehicles,
Journal of Advanced Transportation, Vol. 2021, pp.
1-16, March, 2021.

[45] E. Alqudah, A. Jarrah, Parallel implementation of
genetic algorithm on fpga using vivado high level
synthesis, International Journal of Bio-Inspired
Computation, Vol. 15, No. 2, pp. 90-99, March, 2020.

[46] Z.-C. Dou, S.-C. Chu, Z. Zhuang, A. R. Yildiz, J.-S.
Pan, GBRUN: a gradient search-based binary runge
kutta optimizer for feature selection, Journal of Internet
Technology, Vol. 25, No. 3, pp. 341-353, May, 2024.

Biographies

Jeng-Shyang Pan received the B.S.
degree in electronic engineering from the
National Taiwan University of Science
and Technology in 1986, the M.S. degree
in communication engineering from
National Chiao Tung University, Taiwan,
in 1988, and the Ph.D. degree in electrical
engineering from the Universi ty of

Edinburgh, U.K., in 1996. He is currently the Professor of
Shandong University of Science and Technology. He is the
IET Fellow, U.K., and has been the Vice Chair of the IEEE
Tainan Section and Tainan Chapter Chair of IEEE Signal
Processing Society. His current research interest includes the
information hiding, artificial intelligence and wireless sensor
networks.

Si-Qi Zhang received her B.S. degree from
Nanyang Institute of Technology, China, in
2020. He is currently pursuing the master
degree with the Shandong University of
Science and Technology, Qingdao, China.
His recent research interests include swarm
intelligence, node location, and FPGA.

Shu-Chuan Chu received a Ph.D. degree
in 2004 from the School of Computer
Science, Engineering and Mathematics,
Flinders University of South Australia. She
joined Flinders University in December
2009 after 9 years at the Cheng Shiu
Universi ty, Taiwan. She has been a
Research Fellow and Associate Professor

in the College of Science and Engineering of Flinders
University, Australia since December 2009. Currently, she
is a Research Fellow with a Ph.D. advisor in the College of
Computer Science and Engineering of Shandong University
of Science and Technology from September 2019. She
also serves as an editorial board member for Engineering
Applications of Artificial Intelligence (EAAI), Journal of
Internet Technology (JIT) and Research Reports on Computer
Science (RRCS). Her research interests are mainly in Swarm
Intelligence, Intelligent Computing, and Wireless Sensor
Networks.

876 Journal of Internet Technology Vol. 25 No. 6, November 2024

Chia-Cheng Hu received the M.S. degree
in Engineer Science from National Cheng
Kung University in 1995. He received his
Ph.D. in department of Computer Science
and Information Engineering, National
Taiwan University, Taiwan in 2005. He is
currently a Professor with the College of
Artificial Intelligence, Yango University.

Jie Wu received the M.Eng. degree in
electrical engineering from the Hubei
University of Technology, Wuhan, China,
in 2005, and the Ph.D. degree from the
VŠB-Technical University of Ostrava,
Czech Republic, in 2012. He worked with
the Hubei University of Technology. Since
2017, he has been a Visiting Professor with

the Department of Electrical and Computer Engineering,
University of Kentucky, Lexington, KY, USA. He is currently
an Associate Professor with the Zhengzhou University of
Light Industry, Zhengzhou, China. He works in a multi-
disciplinary environment involving artificial intelligence and
electrical engineering.

