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Abstract

Two major factors contributing to human-induced 
traffic accidents are driver fatigue and distraction. To 
reduce the rate of occurrence of car accidents, some studies 
introduced systems that record biometric measurements, 
diver behavior, and driver’s physical features while driving. 
Data obtained from these systems are used to predict the 
driver concentration states. However, these attention-
detection systems face challenges in terms of applicability 
and accuracy in detecting negatively impacting driving 
behaviors. Contactless physical feature extraction and 
integration of deep learning are effective and applicable 
methods in this context. Therefore, this study proposes a 
method based on multi-feature processing in conjunction 
with you only look once (YOLO)-based object detection to 
classify driver attention. Experiments and validation were 
conducted using the open-source Yawn detection dataset 
(YawDD) and National Tsing Hua University drowsy driver 
detection dataset (NTHU-DDD). The proposed method not 
only outperforms those of certain studies and achieved high 
efficiency in detecting multi-emotion features of drivers and 
assisting driver attention.
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1  Introduction

In recent years, various measures to enhance driving 
safety performance have been continuously introduced. 
These include the global emphasis on autonomous vehicle 
automation and the development of a variety of driver-
assistance systems designed to improve both driving comfort 
and safety. However, these initiatives aim to effectively 
reduce the occurrence rate of human-induced traffic 
accidents.

The national highway traffic safety administration 
(NHTSA) estimates that approximately 25% of accidents 
are related to driver inattention [1]. Table 1 illustrates the 
definitions of inattention and fatigue provided by NHTSA, 
the American automobile association foundation for 
traffic safety (AAA FTS), and the European traffic safety 
commission (ETSC) [2]. The classification of inattention 

by NHTSA encompasses factors such as driver distraction, 
drowsiness, mental lapses, and fatigue. Conversely, according 
to AAA FTS research, driver attentiveness is categorized 
into five states: attentive, distracted, looked but not seen, 
sleepy, and unknown. Within this classification, looked but 
not seen is considered a form of distraction, while sleepiness 
falls under the broader category of fatigue. Furthermore, the 
broader definition of fatigue sometimes includes symptoms 
of drowsiness and is associated with normal and significant 
factors such as physical exertion, emotional stress, or 
sleep deprivation. Fatigue detection has been extensively 
researched; however, there is still no unified definition. 
Therefore, ETSC [2] classified fatigue into four states: 
complete awake, moderate sleepiness, severe sleepiness, and 
asleep, to provide a more comprehensive categorization.

Table 1. Definition of driver status

Organization Defined 
category Driver status

NHTSA
Inattention

Driver distraction, drowsiness, mental 
lapses, fatigue

AAA FTS Attentive, distracted, looked but not seen, 
sleepy, unknown

ETSC Fatigue Complete awake, moderate sleepiness, 
severe sleepiness, asleep

Table 2. Measurement methods for inattention or fatigue
Measurement Illustration

Biometric 
measurements

Physiological signal measurement instruments are used to 
measure various biological information, including brain 
electrical activity in the form of electroencephalogram 
(EEG), to assess fatigue status. Additionally, measurements 
of heart rate, pulse wave frequency, respiratory rate, and 
other physiological parameters are also obtained.

Driver 
performance

Determination is made based on features such as steering 
direction deviation, changes in speed, and the average time-
to-line crossing (the time it takes for a tire to move from 
leaving a lane boundary to contacting it again).

Physical 
characteristics

Monitoring the driver involves analyzing images, facial 
features (such as changes in the frequency of eye blinking or 
slower blink rates), yawning frequency, or head movements 
(such as nodding off).

When drivers experience distraction or fatigue, various 
observable characteristics may manifest, such as frequent 
yawning, impaired decision making, mood swings (e.g., 
sadness or irritability), slower reactions, difficulty in keeping 
eyes open, reduced ability to maintain focus, nodding or 
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head bobbing, shallow breathing, and accelerated heart 
rate. The manifestation of these characteristics can vary 
between individuals. Therefore, finding specific and effective 
methods to measure fatigue levels is worth exploring. 
Table 2 outlines three measurement methods for assessing 
distraction or fatigue. Notably, in measuring driver behavior 
through physical characteristics, Liang et al. [3] found that 
distraction could be determined by monitoring the frequency 
and duration of a driver’s gaze off the road. Furthermore, 
in a collaborative project between NHTSA and SAVE-IT, 
the duration of time when the driver’s eyes are off the road 
and the time when the driver’s head is oriented away from 
the road were identified as reliable indicators of the driver’s 
visual distraction.

In terms of market application, a monitoring system 
called Autopilot has been developed by the self-driving car 
benchmark company, Tesla, in recent years. Driver behavior 
is monitored by a cabin-style camera installed inside the 
rearview mirror of the vehicle. Researchers at Tesla used 
data from user in-car cameras and classified driver behaviors 
such as those shown in Table 2. In contrast, we employed 
an attention-assistance system that uses behavioral analysis 
and converts it into numerical values, allowing for a clear 
distinction of the current state of the driver and providing 
corresponding alerts.

Interference in biometric measurements can jeopardize 
driving safety, and inter-driver variations in driving habits can 
introduce measurement inaccuracies. Therefore, this study 
proposes a driving assistance system that uses in-car installed 
cameras to monitor and detect the physical characteristics of 
the driver. When the system detects instances of distracted 
driving, the images can be promptly analyzed through a 
model and alerts can be immediately issued to reduce the 
likelihood of human-induced traffic accidents.

2  Related Work

In the context of drivers, apart from performing feature 
extraction on the facial region of drivers, their emotions also 
play a crucial role as significant features. The facial emotions 
of drivers can provide important insights into the driving 
process, such as detecting fatigue and stress. In this regard, 
some studies have employed different models and methods 
to classify the emotional states of drivers. Feature extraction 
from the facial region of images can be achieved using 
discrete wavelet transformation (DWT) [4-5], which converts 
the original input image into four sub-bands to retain critical 
facial information. Alternatively, feature extraction is 
performed directly from the original input image, and entropy 
analysis is used to identify significant facial regions. Finally, 
an image is processed in a zigzag pattern using discrete 
cosine transformation (DCT) to extract features with higher 
variance, followed by facial emotion classification using 
these features.

Detection of eye closure has also been used as a basis for 
detecting fatigued drivers [6]. This method employs a model 
architecture involving face detection, feature extraction, 
and classification. Among the feature-extraction techniques 
compared, which included canny edge, local binary patterns, 

histogram of oriented gradient, Gabor filter, and normal 
gray image, it was demonstrated that the best performance 
(accuracy, F1-score) was achieved when using the histogram 
of oriented gradient features. In a study of eye movements 
and eyelids [7], it was acknowledged that closures could 
sometimes be inaccurately predicted due to environmental 
or emotional factors. Therefore, six parameters—percentage 
of eye closure, eye closure duration, blink frequency, nod 
frequency, facial position, and fixed gaze direction—were 
used by some researchers [8] to measure the level of fatigue 
and distraction using a fuzzy classifier. Subsequently, optical 
flow was employed to detect eye-blink features, and an alert 
was triggered after a period of no blinking information.

Regarding fatigue detection, an analysis of the 
relationship between stress and gaze spatial distribution 
(GazeDis), as well as average eye closure speed (AECS) 
for detecting and tracking eyes, was conducted [9]. The 
findings revealed that stress is positively correlated with 
GazeDis and percentage of large pupil dilation (PerLPD), 
and negatively correlated with AECS. Furthermore, fatigue 
was detected through head movements [10], which were 
considered as one of the indicators of early-stage fatigue. 
Nodding was determined by calculating the head pitch angle 
and exponentially weighted moving variance (EWVAR). 
Further, the calculated correlations between the results and 
drowsiness showed that the correlations were relatively 
insignificant compared to other features.

The correlation between sleepiness and other features was 
found to be relatively small compared to other characteristics. 
Concerning yawning detection [11], a threshold-based 
segmentation algorithm was employed for yawning detection, 
achieving an accuracy of 76%. Regarding driver behavior, 
Eskandarian et al. [12] identified the following features as 
highly correlated with fatigue:

1) Reflexive nodding when drivers check the rearview 
mirror.

2) Significant reduction in head movements.
3) A substantial increase in the frequency of drivers 

touching their faces, chin, head, ears, eyes, or thighs.
4) Noticeable increase in the frequency of eye blinking.
Driver distraction [3] can be determined by examining 

the frequency and duration of the driver’s gaze being away 
from the road. In a collaborative project between NHTSA and 
SAVE-IT, it was noted that both the duration of time that the 
eyes leave the road and the orientation of the head towards 
non-road areas are reliable indicators of the driver’s visual 
distraction. 

Two algorithms were previously developed based on 
eye information tracking [13]. One algorithm calculates the 
percent road center of the eyes. If the percent road center 
falls below 58% and accumulates for more than 1 minute, it 
is determined that the driver is in a distracted state. The other 
algorithm uses a 3D model that encompasses areas such as 
the dashboard, windshield, and rearview mirror. It counts 
instances where the driver’s gaze direction leaves the driving 
field for more than two seconds, classifying it as a distracted 
state. The results indicate that both methods effectively 
identify distracted driving states. A method for detecting 
drowsiness using eyelid closure and head nodding features 
was proposed [11], which triggers a warning of reduced 
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driving attention when the driver exhibits eyelid closure in 
40 out of the recent 60 captured images. Eyelid closure and 
head nodding are predicted using two finite-state machines to 
assess the current driver condition.

The advantages of this study [14] include addressing 
overfitting by reducing redundant information and employing 
the Pearson distance function to calculate classification 
loss, thereby effectively preventing overfitting. The results 
on the PASCAL VOC and FSOD datasets demonstrate 
outstanding performance and maintain stability across 
various scenarios. However, the study’s reliance on specific 
datasets may limit the generalizability of the method, and 
it entails higher computational complexity as it primarily 
improves upon existing fine-tuning and metric learning 
methods. Kamruzzaman et al. [15] propose a blockchain 
as a service (BaaS) based deep facial feature extraction 
(DFFE) architecture for evaluating student attention in online 
education. The primary advantages of this approach are its 
ability to precisely assess student attention, emotions, and 
behaviors, coupled with high performance and efficiency. 
Nonetheless, the study’s limitations include a restricted 
sample size and diversity, which affect the generalizability of 
the algorithm. Moreover, further enhancements are necessary 
to address specific challenges across different educational 
domains. In [16], a direct LL-mask band scheme was 
introduced for detecting and tracking moving objects using 
low-resolution images. Detecting moving objects in real 
environments is challenging due to noise from false motion, 
such as moving tree leaves. While many methods have been 
developed for controlled environments, DLLBS effectively 
reduces noise with low computing cost in both indoor and 
outdoor settings. Wang et al. [17] propose an optimized 
object detection technique called S2F-YOLO, specifically 
improved for fish classification. The model incorporates 
focal loss, effectively addressing sample imbalance issues, 
making it suitable for real-world applications requiring rapid 
detection. However, the model’s size and computational 
resource demands may limit its use in resource-constrained 
environments. Although most electronic consumer terminals 
lack sufficient computing power for AI-based image 
matching algorithms, they possess identification capabilities 
that allow them to automatically recognize individuals or 
objects connected to the network. Additionally, they feature 
intelligent characteristics, enabling the network system to 
self-feedback and perform intelligent control.

Following the above methods and literature, wherein 
yawning frequency and eye-blink rate have been used 
as indicators of fatigue, this study also adopted yawning 
frequency and eye-blink rate as the standards for detecting 
fatigued driving.

3  Proposed Methodology

The focus-detection system of this study was primarily 
implemented using object detection [18], image-recognition 
techniques, and integrated multi-feature technology. We 
employed you only look once (YOLO)v7 to detect and label 
driver behaviors within the car environment, recognize 
facial expressions, and extract various facial features. These 

extracted features were used in the proposed decision-making 
mechanism to classify driver focus levels.

In contemporary computer vision, object detection 
frameworks like YOLO and region-based convolutional 
neural networks (R-CNN) are pivotal. YOLO is often chosen 
over R-CNN-based methods due to its superior speed and 
simplicity performance. A critical advantage of YOLO 
lies in its real-time performance. In contrast, R-CNN [19] 
involves multiple stages: region proposal, feature extraction, 
and classification, making it slower. Despite improvements 
in fast R-CNN and faster R-CNN, these methods remain 
slower than YOLO. YOLO’s architecture is also significantly 
simpler and more integrated. It uses a unified approach, 
predicting bounding boxes and class probabilities in one 
evaluation, which simplifies both training and deployment. 
On the other hand, R-CNN requires separate training stages 
for different components, such as region proposals, bounding 
box regression, and classification. This multi-stage approach 
complicates implementation and tuning, making YOLO more 
straightforward.

In computational efficiency, YOLO is more resource-
effective. It avoids the repetitive convolutions over proposed 
regions characteristic of R-CNN methods. Even with 
optimizations in faster R-CNN, these methods still demand 
substantial computational resources due to their multi-
step process. While YOLO excels in speed and efficiency, 
it does involve a trade-off in accuracy, particularly in 
detecting smaller objects within dense scenes. However, 
newer versions like YOLOv7 have made significant strides 
in improving accuracy. Conversely, R-CNN methods are 
known for superior accuracy due to refined region proposals 
and detailed classification stages, making them preferable for 
accuracy-critical tasks such as medical imaging.

Figure 1. Focus-classification workflow

Figure 1 illustrates the focus-classification workflow 
proposed in this study. In this workflow, input image data are 
preprocessed and then fed into the multi-emotion features, 
and you only look once (YOLO)-based object-detection 
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method for focus decision making. Finally, the results are 
displayed, showing both normal and alert states as the 
outcome of focus classification. Detailed explanations of the 
multi-emotion feature and YOLO-based object-detection 
method is provided in the following sections. Through these 
two methods, the goal of focus-classification is achieved to 
enhance driver attention assistance.

3.1 Multi-Emotion Features
A driver emotion detection system necessitates real-

time collection and analysis of extensive data, including 
physiological signals, facial expressions, and voice patterns 
of the driver. Through network communication, this data 
is transmitted in real-time to edge and cloud computing 
platforms for more accurate emotion assessment, with 
the results then relayed back to the internet of vehicles 
(IoV) system [20]. This approach not only enhances the 
accuracy of emotion detection but also leverages long-term 
data accumulation for personalized optimization, thereby 
improving the driving experience. In the future, the system 
could also share driver emotion state data with other vehicles. 
For instance, if a driver’s emotional state indicates fatigue 
or stress, nearby vehicles can proactively respond by taking 
evasive actions or issuing alerts, thereby enhancing road 
safety and achieving intelligent traffic management.

According to the NHTSA definition of distracted driving, 
this study defined a distracted driving state as when a driver 
cannot maintain normal driving behavior or fails to maintain 
a focused eye gaze on the road ahead. However, based on the 
definition of fatigue states by AAA FTS, a driver is classified 
as fatigued when yawning and eye closure frequency exceed 
predefined thresholds. Additionally, we categorized the 
distracted state into three subcategories: normal (no yawning 
or high eye closure frequency), alert (yawning or high eye 
closure frequency), and fatigue (both yawning and high eye 
closure frequency).

This study used facial changes during driving as multiple 
emotion features, such as yawning and eye closure behaviors. 
This approach involved detecting the driver’s facial features 

and implementing them using physical measurements. 
Furthermore, to enhance fatigue-detection accuracy, multiple 
features were fused, and YOLOv7 was used for image 
recognition.

3.2 YOLO-based Object-detection Method
YOLO is a one-stage object-detection method. YOLO 

needs to perform only one pass of convolutional neural 
network on an image to determine the positions and classes 
of objects within the image, which significantly improves 
the speed of object recognition. The convolutional neural 
network architecture of YOLO is mainly based on the 
GoogleNet model and consists of 24 convolutional layers 
and 2 fully connected layers. However, what sets YOLO 
apart from GoogleNet is that it uses 1×1 convolutional layers 
before the 3×3 convolutional layers to reduce the number of 
filters. Figure 2 illustrates the YOLOv7 architecture.

In YOLOv7, when compared with state-of-the-art real-
time object-detection models, reduces the parameter count 
by approximately 40% and the computational workload by 
about 50%. YOLOv7 primarily focuses on two aspects of 
optimization. First, it employs extended-scaling methods to 
optimize parameters and computational workload within the 
model architecture. Second, YOLOv7 uses reparameterization 
techniques to replace the original modules and employs a 
dynamic label-assignment strategy to optimize the training 
process. This strategy efficiently assigns labels to different 
output layers. On the left side of Figure 2, the backbone 
describes the process from input to feature extraction, 
including the repetitive execution of convolution, batch 
normalization, SiLU/ReLU (CBS), as well as edge-enhanced 
local attention network (ELAN), and multi-scale positive 
interaction-enhanced local attention network (MPI-ELAN) 
units. The head on the right side of the figure illustrates the 
feature extraction performed through concatenation (CAT), 
upsampling (UP), and maximum pooling (MP). The final 
output is generated through repeated ELAN head (ELAN-H) 
and re-parameterized convolution (REP-CONV) layers.

Figure 2. YOLOv7-based architecture
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where ELAN denotes the edge-enhanced local attention 
network, MPI-ELAN is multi-scale positive interaction-
enhanced local attention network, CAT is concatenation, UP 
is upsampling, MP: maximum pooling, ELAN-H is ELAN 
head, REP-CONV is re-parameterized convolution, CBS 
denotes the convolution, batch normalization, SiLU/ReL, 
SiLU is sigmoid linear unit, ReL is rectified linear unit.

The model training process based on the YOLOv7-based 
architecture is described in training algorithm 1, as shown in 
Figure 3.

Figure 3.  Algorithm of YOLOv7 training process

From Algorithm 1, the entire training procedure can be 
divided into four stages: model initialization, training loop, 
validation (optional), and save model. The descriptions are as 
follows:
1. In the model initialization stage (lines 9-12):

Once the YOLOv7 model is created, its parameters 
(such as weights and biases) are initialized, along with 
other parameters such as the learning rate set to α. These 
parameters are then updated using a stochastic gradient 
descent (SGD) optimizer provided by PyTorch.
2. In the training loop stage (lines 14-29):

Several training epochs are set up. In each epoch, the 
model retrieves training samples and labels in batches from 
the data loader. For each batch, forward propagation is 
performed to predict the results, and then training losses, 
including bounding box loss, object loss, and classification 

loss, are calculated. Finally, this training loss is used for 
backpropagation and the parameters are updated by using 
SGD optimizer.
3. In the validation (optional) stage (lines 31-33):

The validation dataset is used to evaluate the performance 
of the YOLOv7 model. If it is observed that the validation 
loss does not improve, hyperparameters will be adjusted 
or an early stopping strategy will be employed to prevent 
overfitting and ensure the model’s generalization ability. This 
stage helps to assess and enhance the accuracy of the model.
4. In the save model stage (lines 35-37):

Upon the completion of the training process, the final 
model weights are saved using PyTorch’s torch.save function, 
which stores the YOLOv7 model’s state dictionary (state_
dict) into a file named ‘yolov7_final.pth’.

4  Experimental Results

4.1 Dataset and Evaluation Metrics
The yawning detection dataset (YawDD) [21] and 

National Tsing Hua university drowsy driver detection 
(NTHU-DDD) [22] datasets were used for evaluation in 
this study. YawDD consists of 2,000 images contributed by 
various drivers, capturing driver behaviors such as yawning 
and eye closing. It includes 723 yawning samples and 726 
samples of open and closed eyes, which were used to train 
the driver-fatigue behavior in this study.

On the contrary, NTHU-DDD dataset was collected from 
37 participants under various driving scenarios. NTHU-DDD 
uses active infrared (IR) illumination to capture infrared 
images at a resolution of 640x480 pixels in AVI format. The 
Night_BareFace and Night_Glasses scenarios were recorded 
at 15 frames per second, while the BareFace, Glasses, and 
Sunglasses scenarios were recorded at 30 frames per second. 
These datasets were divided into training, validation, and 
testing sets. The testing images were created by mixing 
images from different driving scenarios.

The evaluation metrics of mean average precision (mAP), 
precision, recall, and F1-score, which are three evaluation 
indicators used to assess the performance of the detection 
system, were employed in this study to assess the detection 
performance: 

Precision = TP / (TP + FP)                           (1)

Recall = TP / (TP + FN)                             (2)

F1 score = 2 * Precision * Recall / (Precision + Recall) (3)

where, TP (true positive) represents predictions that were 
correctly identified as positive, FP (false positive) represents 
predictions that were incorrectly identified as positive, 
and FN (false negative) represents predictions that were 
incorrectly identified as negative.

Additionally, a comparison was made with the methods 
used in other papers that used the same datasets. This allowed 
the determination of whether the approach used in this study 
offered advantages over existing methods on the datasets.
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4.2 Experimental Environment and Settings
This study was conducted in a Windows environment 

using the Anaconda software suite. Microsoft Visual 
Studio Code served as the development platform, and the 
programming language used was Python. Additionally, 
PyTorch was chosen as the deep-learning framework. The 
proposed methods were implemented within the PyTorch 
framework specifically using Torch version 1.2.0, and 
OpenCV version 3.4.1 was employed for various computer 
vision tasks. Training was conducted using the open-source 
YOLOv7 code available on GitHub. This combination of 
software libraries and frameworks facilitated the development 
and training of the models for the study.

To better align with the input requirements of the model, 
image sizes were set to 640x640. During the training task, the 
Adam optimization was employed with an initial learning rate 
of 102, and the training process lasted for 300 epochs with 
mosaic augmentation. Furthermore, all training procedures 
were conducted on an NVIDIA RTX 2070 GPU and an Intel 
i7-8750H CPU.

The data augmentation toolkit, Augmentor [23], was 
used to augment the dataset. Figure 4 illustrates the data 
augmentation that is a data analysis technique based on 
existing data that involves minor adjustments or synthesis 
of new data to prevent overfitting, particularly when dealing 
with small datasets. This technique involves applying 
operations such as affine transformations, rotation, brightness, 
contrast adjustments, and more to the existing data. The 
primary goal is to increase the diversity of the dataset and 
improve model accuracy.

            (a) Contrast method          (b) Affine transformation method

Figure 4. Data augmentation using augmenter [21]

4.3 Comparison
Figure 5 and Figure 6 illustrate the overall accuracy 

of the model evaluated using mAP. From Figure 5 and 
Figure 6, it is evident that the mAP achieved 91.75% for the 
YawDD dataset and 96.90% for the NTHU-DDD dataset. 
Furthermore, the average precision for detecting yawning 
and eye closure behaviors was found to be above 0.85 in both 
datasets.

Table 3 and Table 4 show the comparisons with other 
methods on YawDD and NTHU-DDD dataset, respectively. 
Table 3 shows that, compared to references [24-25], our 
proposed method consistently achieved better results in 
terms of recall, precision, and F1 Score on the same YawDD 
dataset. However, Table 4 shows that, in studies conducted 
using the NTHU-DDD dataset for training, our proposed 
method achieved higher precision compared to those in 

references [26-27]. The results show that our proposed 
combination of multi-emotion features with YOLOv7 
achieved high accuracy.

Figure 5. Evaluation of mAP on the YawDD dataset

Figure 7 illustrates the actual in-vehicle detection results 
of the driver’s mental state by the proposed model. The 
system can label the distracted or fatigued behavior of the 
driver inside the car. However, the system may not accurately 
determine the driver behavior or may miss object labeling 
in some situations such as occlusions, lighting effects, and 
object angles.

Figure 6. Evaluation of mAP on the NTHU-DDD dataset

Table 3. Comparison with other methods on the YawDD dataset
Methods Recall Precision F1 Score

YOLO + MLP [24] 0.58 0.54 65.80
YOLOv3 [25] 0.80 0.86 70.85

CN + DSST [26] 0.85 0.96 63.00
This work 0.97 0.96 96.50

Table 4. Comparison with other methods on the NTHU-DDD 
dataset

Methods Precision
DDD Network [12] 0.73

3D-DCNN [27] 0.92
This work 0.93
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                   (a) Yawning                      (b) Using a mobile phone

 (c) Detection affected by lighting    (d) Detection affected by the   
                                                                angle of the mobile phone

Figure 7. Actual in-vehicle state detection results

5  Conclusion

Currently, most driver attentiveness-detection methods 
primarily focus on detecting driver fatigue, with limited 
consideration for distracted driving. An approach based on 
multi-feature processing and YOLOv7 object detection was 
introduced in this study to effectively detect various driver 
states, including distracted driving and fatigue. Experimental 
results demonstrated that the proposed approach achieved 
recall, precision, F1 Score, and mean average precision of 
0.97, 0.96, 96.50, and 91.75%, respectively, on the YawDD, 
and precision and mean average precision of 0.93 and 96.9%, 
respectively, on the NTHU-DDD dataset. The method 
proposed in this study exhibited higher accuracy compared 
to other approaches. It achieved good results in detecting 
distracted driving and effectively recognized driver behavior 
in actual driving scenarios.
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