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Abstract

In recent years, deep learning has achieved significant 
advancements in medical image segmentation, primarily 
focusing on CNN structures and Transformer-based 
architectures. However, these network architectures often 
suffer from high computational complexity and a large 
number of parameters. To address these challenges, this paper 
proposes a lightweight, novel structured network called LUT-
SLS, based on U-Net and Transformer. Firstly, the overall 
structure integrates U-Net and Transformer, which effectively 
captures long-range dependencies in image relationships and 
contextual information, thereby improving segmentation 
accuracy. Secondly, a novel PLTS module is designed, which 
replaces the traditional self-attention mechanism with average 
pooling operations to extract global features and local 
details. Additionally, a novel MMLP structure is introduced, 
incorporating residual depth-separable operations into the 
traditional fully-connected framework. This enhances the 
processing of pooled features and further improves feature 
expression capability. Finally, the encoder and decoder parts 
are connected by the MSBN module, which facilitates the 
extraction of deep features while fusing encoder features. 
Experimental results demonstrate that the proposed model 
achieves competitive advantages in balancing the number 
of parameters, computational complexity, and performance 
compared to current leading models on multiple public 
datasets. This solution enables model deployment on IoT 
terminals, assisting doctors in making more accurate clinical 
decisions.

Keywords:  Medica l  image segmenta t ion ,  U-Net , 
Transformer, Lightweight network, Skin lesions

1  Introduction

Medical image segmentation is a crucial step in medical 
image processing, significantly enhancing the accuracy of 
early disease detection and diagnosis. Researchers have 
developed various image processing techniques [1-4], such 
as the Otsu algorithm [4] and Canny edge detection [2], and 
widely applied them to image segmentation tasks. However, 

these methods rely on hand-designed features and thresholds, 
which are insufficient for complex scenes, necessitating more 
accurate and efficient segmentation techniques. In recent 
years, deep learning technology has rapidly advanced, with 
deep convolutional neural networks becoming the mainstream 
methods for medical image segmentation [5-7]. Among these, 
U-Net [7] stands out as a classical deep learning model. 
Its effective structure, along with its variants, has achieved 
remarkable results in medical image segmentation tasks [8-9]. 
For example, U-Net++ [9] improves model performance by 
introducing a nested U-Net structure, while Attention U-Net 
[8] enhances the model’s focus on important image regions 
by incorporating an attention mechanism. Additionally, 
methods like [10-11] have been proposed to achieve more 
efficient segmentation through deeply separable convolution. 
Despite their success, U-Net networks have limitations, such 
as low processing efficiency for large-size images and limited 
ability to model global context. To address these issues, 
researchers have proposed dynamically adjusting convolution 
techniques [12-14], resulting in more efficient inference and 
better performance in handling large and complex images.

Meanwhile, researchers have also proposed a series 
of novel segmentation networks based on Transformers 
[15-19] to address the limitations of U-Net from a 
different perspective. Among these, the Swin Transformer 
[18], introduced by Liu et al. in 2021, is an innovative 
segmentation network that adopts a hierarchical visual 
Transformer structure with a shift window to capture the 
global information of an image. Additionally, Chen et al. 
proposed the SwinUNet model [15] in 2022, which combines 
the U-Net structure with the Swin Transformer and applies 
it to multi-organ segmentation, effectively improving 
segmentation performance and efficiency. There are also other 
Transformer-based models designed for specific tasks [20-
23], such as TransBTS [23] and Swin UNETR [21] for brain 
tumor segmentation, and TransDeepLab [20] for medical 
image segmentation. Despite their strong performance, 
Transformer-based models have some disadvantages. One 
major issue is their high computational complexity. The 
self-attention mechanism of Transformer models requires 
substantial computational resources to process each position 
in the image, which can result in an excessive computational 
burden when dealing with large medical images. To mitigate 
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this, some researchers have proposed pruning techniques [24-
25] to reduce the computational complexity of the models. 
While these methods have made significant progress in 
enhancing model performance and achieving lightweight 
structures, they may still face challenges such as network 
incompatibility or limited generalizability to other task 
domains.

To address the computational efficiency and performance 
challenges in medical image segmentation, this paper 
proposes a new lightweight network structure, LUT-SLS, 
specifically designed for skin lesion segmentation. LUT-
SLS strikes a balance between computational efficiency and 
segmentation accuracy by incorporating both U-Net and 
Transformer elements, capturing long-range dependencies 
and contextual information in the images. The proposed 
structure includes several innovative components: a PLTS 
module (see Figure 1(a)) designed to reduce the number of 
parameters and computational complexity while maintaining 
high performance by using a lower number of channels and 
replacing the traditional self-attention mechanism with an 
average pooling operation; an MMLP structure that enhances 
the processing of pooled features through a residual depth-
separable operation built on top of the traditional fully-
connected layer, improving feature expression capabilities; 
and an MSBN module that connects the encoder and decoder 
parts, enabling further extraction of deep features while 
effectively fusing encoder features. 

The rest of the paper is organized as follows: Section 2 
discusses related work, Section 3 provides a mathematical 

explanation of the model and describes the proposed method, 
Section 4 presents experimental results and specific details, 
Section 5 conducts ablation and comparative experiments 
with multi-channel analysis, and Section 6 summarizes the 
findings.

2  Related Works
2.1 U-Net Network Architecture

The U-Net model is a classical convolutional neural 
network widely used in medical image segmentation tasks. It 
features an encoder-decoder structure, with skip connections 
that link the bottom features to the top features to preserve 
richer spatial information. However, multiple down-sampling 
operations in the U-Net model can lead to resolution loss 
and boundary blurring. To further improve segmentation 
performance, dense skip connections [26] and multi-scale 
skip connections [27] have been employed to enhance the 
model’s expressive power. Additionally, incorporating various 
attention mechanisms—such as channel attention [28] and 
spatial attention [29]—enables the model to selectively focus 
on the most relevant or information-rich parts of the input 
data, thereby improving the overall segmentation effect.

Recent studies have explored combining the U-Net 
architecture with Transformer networks [30-31] and 
multilayer perceptron to apply these fused architectures 
across various domains. Building on this concept, we have 
designed a lightweight network model that leverages the 
symmetric encoder-decoder architecture of U-Net.

 

                                     (a) PLTS structure                         (b) Transformer structure                   (c) Meta-Former structure

Figure 1. U-Net network architecture
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2.2 Transformer Structure
Due to Transformer’s powerful modeling capabilities in 

natural language processing, it has sparked a revolution in 
computer vision. Traditional convolutional neural networks 
are limited by local induction bias and can only capture 
feature information within a local range. In contrast, the VIT 
(Vision Transformer) structure, a variant of Transformer, 
can capture global information through the self-attention 
mechanism (see Figure 1(b)). However, this global sensing 
capability often comes with significant computational and 
complexity overhead. To address this issue, researchers 
have proposed various improvement strategies. These 
include the introduction of local windows and cross-window 
communication to achieve sparse connectivity and adaptively 
learning model parameters [32]. Additionally, methods 
such as axial attention [33], separable attention [34], and 
fully convolutional structures [35] have been developed. 
These strategies enhance the model’s computational 
efficiency, memory efficiency, and adaptability. To further 
achieve lightweight models, Meta-Former [36] posited that 
Transformer’s success does not entirely depend on the self-
attention mechanism. They demonstrated that the Token 
Mixer module could be replaced by a pure MLP or other 
structures and verified this assumption with a simple pooling 
operation (see Figure 1(c)).

Building on this concept, this paper presents a lightweight 
network model based on the Pool-Former architecture. This 
model significantly reduces the number of parameters and 
computational complexity while maintaining accuracy.

2.3 Bottleneck
The design of the bottleneck section typically employs 

a Transformer structure and a multi-scale spatial pyramid 
[37], which aids in extracting more informative feature 
representations and enhances the model’s focus on critical 
features. To lighten the overall structure, we propose a 
bottleneck section based on a multi-scale spatial pyramid 
structure in this paper. This design captures contextual and 
detailed information more comprehensively by extracting 
and fusing information from different layers of feature 
maps. In the context of medical imaging for dermatology 
segmentation, this bottleneck structure adapts better to 
dermatology regions of varying sizes and shapes, improving 
the perception of details and boundaries. Consequently, 
it helps the network better understand the complexity of 
dermatologic diseases, thereby enhancing segmentation 
performance.

3  Methods

Building on these studies and considering the diversity of 
skin lesions along with the complex background and noise in 
the images, we propose a new network structure (see Figure 
2) designed to accurately capture the features of skin lesions 
and improve segmentation accuracy. In this section, we 
provide a mathematical explanation of the model and detail 
the overall network structure, along with the key technical 
aspects of each module.

Figure 2. Overall structure of the model

3.1 Problem and Mathematical Description
For the skin lesion segmentation optimization problem, 

our goal is to minimize the objective function by optimizing 
the model parameters within the given parameter range 
constraints. We define the optimization problem as follows:

min max

Minimize  ( , ( ; )) ( ),

s.t. 

i i
i

L y f x Rθ θ λ θ

θ θ θ

+

≤ ≤

∑
               (1)

where θ denotes the model parameters, xi denotes the ith 
input image, yi denotes the label corresponding to the ith 
input image, f(xi; θ) is the image segmentation model defined 
by the model parameter which maps the input image to the 
predicted segmentation result, L(∙,∙) is the loss function used 
to measure the difference between the predicted result and the 
true label, R(θ) is the regularization term used to constrain 
the model parameters and to control the model’s complexity, 
and λ is the regularization coefficient used to balance the 
weights between the loss function and regularization.
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To satisfy the parameter range constraints, we introduce 
upper and lower bounds for the parameters. These bounds 
ensure that the parameters stay within an acceptable range. 
Specifically, θmin represents the lower bound, while θmax 
represents the upper bound of the parameter.

The optimization objective is to achieve optimal image 
segmentation by minimizing the objective function through 
adjustments to the model parameters. During this process, the 
gradient descent algorithm is employed to update the model 
parameters, ensuring that constraints are considered at each 
iteration.

3.2 Network Design
LUT-SLS is designed based on the U-Net structure, as 

illustrated in Figure 2. The entire model consists of three 
modules: (i) the convolution module, (ii) the PLTS module, 
and (iii) the MSBN module. The convolution module 
encompasses the structure of the first two layers, while the 
last three layers comprise the PLTS structure. The MSBN 
module is situated between the last layer of the encoder 
and the decoder. Similar to U-Net, LUT-SLS employs skip 
connections between each layer to integrate low-level image 
details with high-level semantic information, enhancing 
feature fusion and improving segmentation accuracy.

 3.3 Convolution Module
The input feature map is first passed through a 1×1 

extended convolutional layer, which increases the number of 
channels and enhances the network’s expressive power. The 
expansion factor determines the ratio of output channels to 

input channels. The output from the extended convolutional 
layer is then fed into a depth-separable convolutional layer, 
which includes the SE module to adaptively learn channel 
weights. These weights are applied to the output of the depth-
separable convolution to adjust the feature map in a weighted 
manner. Skip connections are used to perform element-wise 
summation of the inputs and outputs of the convolutional 
module. Additionally, Drop-Connect operations are employed 
to reduce overfitting and lower the network’s complexity.

3.4 PLTS Module
In deep learning, balancing high computational 

complexity and model performance is a common challenge. 
To address this issue, we propose the PLTS module, which 
includes residual depth-separable convolution, the TPLM 
structure, and the MMLP structure (see Figure 3).

First, the transformation and preservation of features are 
accomplished using residual depth-separable convolution 
structures. Depth-separable convolution is an efficient 
operation that significantly reduces computational load and 
the number of parameters by separating spatial convolution 
from channel convolution. This design enables the network to 
maintain high performance while minimizing computational 
complexity. Additionally, residual concatenation preserves 
a portion of the input feature information by summing it 
with the output of the convolutional layer, helping to prevent 
gradient vanishing during the training process.

( ), n d h
dsY X Conv X X R × ×= + ∈                        (2)

(a) The residual depth separable convolution structure (b) The TPLM structure (c) The MMLP structure 

Figure 3. Schematic diagram of the PLTS module
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Second, the TPLM module down-samples the input 
features through average pooling operations to capture 
global contextual information. Average pooling is a simple 
yet effective down-sampling method that reduces the spatial 
dimensions of the features, thereby lowering computational 
complexity. By calculating the average value of each feature 
channel and using it as the output value, this method extracts 
more representative feature representations. Compared to 
the self-attention mechanism in traditional Transformer 
models, average pooling has a significant advantage in terms 
of computational efficiency while still capturing global 
contextual information effectively.

AvgPool( )Z Y Y= +                                (3)

Finally, the MMLP module learns representations of 
the input features through a series of transformations and 
nonlinear operations. This structure begins with a 1×1 
convolution operation, followed by a depth-separable 
convolutional layer utilizing the GELU activation function 
to introduce nonlinearity, and concludes with another 1×1 
convolution to complete the feature transformations. This 
sequence of operations enables the network to learn higher-
level feature representations. Compared to traditional 
MLP, the MMLP reduces computational complexity while 
maintaining strong performance.

( )( )( )( )1 1 ds 1 1Conv GELU Conv ConvO Z Z× ×= +          (4)

where X represents the input matrix; n denotes the batch size; 
d denotes the product of the height and width of the feature 
map; h denotes the dimension of each feature; Convds denotes 
the depth separable convolution operation; AvgPool(∙) 
denotes average pooling operation. Conv1×1(∙) denotes 1×1 
convolution operation; and GELU(∙) denotes the activation 
function.

3.5 Attention Module
The attention method employed in this paper is SE 

channel attention, which enhances the network’s response 
to different channels by adaptively adjusting the importance 
of channel features. This approach improves the model’s 
expressive and generalization capabilities. The SE channel 
attention operates through two key steps: compression and 
excitation. During the compression phase, each channel’s 
feature map is converted into a scalar using a global average 
pooling operation. In the excitation phase, a small fully 
connected network is introduced to weight each channel by 
learning the excitation weights. These weights indicate the 
importance of each channel for extracting useful information, 
allowing for adaptive tuning of channel features.

out ReshapeF =

( )( )( )( )( )inReshape Glo gMLP galAv Pool Fσ

( )( )( )( )gapMLPReshape Reshape fσ=

( )( )( )gape Ms Le hap PR fσ ′=

( )( )( ))2 1( gapfReshape σ α α ′=

( )mgapReshap fe=

outF=                                                                     (5)

in outF F F= ∗                                                           (6)

Algorithm 1. Channel attention
Input: Characterization data Fin

Output: channel attention weights Fout

Function SEAttention(Fin)
01: fgap ← The input features of B × H × W × C are subjected to  

a global average pooling operation
02: f ' 

gap ← For the fgap  Perform a Reshape operation to convert  
the feature to a B×C form

03:  fmgap ← sends the f ' 
gap Feed into the MLP to calculate

04: Fout ← For the fmgap Reshape operation is performed  
to transform the features into B×C×1×1 form to get the  
channel attention weights

05: F  ← Combine the original input features Fin  and channel 
attention weights Fout  and multiply them together to get the 
new feature

06: Return F
end Fnction

3.6 MSBN Module
Skin images often exhibit significant variations in 

lesion size and shape, making it challenging for traditional 
segmentation methods to efficiently handle lesion 
information at different scales. Additionally, different 
channels may contain varying key information crucial for 
accurate segmentation results. To address these issues, this 
paper introduces the MSBN module, designed to tackle the 
problems of multi-scale and channel importance modeling in 
skin image segmentation. This module enables the network to 
better understand and characterize the details and structures 
of skin lesions, resulting in more accurate skin lesion 
segmentation results.

The module captures the multi-scale information of the 
input features through a multi-level spatial pyramid pooling 
strategy (see Figure 4). The input features are first passed 
through four maximum pooling levels, with the kernel size 
of each pooling level divided into 2, 3, 4, and 6 to obtain 
different levels of feature representations, and furthermore, 
the SE channel attention mechanism is used in each pooling, 
which weights the channel attention of each pooled feature 
map, and adaptively adjusts the importance of each channel 
to increase the model’s focus on specific features. Second, 
after each pooling level, the dimensionality of the feature map 
is reduced to 1/C of the original dimensionality by applying 
deep convolution to each input channel independently and 
combining the outputs of the deep convolution by point-by-
point convolution, where C denotes the number of channels 
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in the original feature map. In order to enhance the model’s 
ability to perceive targets at different scales for skin lesions 
of different sizes, the pooled feature maps are restored to 
the original size by interpolation to ensure that the feature 
maps have the same spatial resolution. Finally, the processed 
multi-scale feature maps are pooled with the original feature 
maps to generate the final output feature maps. The operation 
of the MSBN module can be represented by the following 
mathematical expression:

( , ),  {2,3, 4,6}iP MaxPool F i i= ∈                      (7)

( ),  {2,3, 4,6}i iP SE P i= ∈                            (8)
 

( )( ) ,  {2,3,4,6}i iP wiseConv DepthwiseConv Pi iPo nt′= ∈  (9)

( ), , ,  {2,3,4,6}i iP Interpolate P H W i′′ ′= ∈               (10)

[ ]2 3 4 6, , , ,F F P P P P′ ′′ ′′ ′′ ′′=                              (11)

where i denotes the size of the pooling kernel, MaxPool 
denotes the maximum pooling operation, DepthwiseConv 
denotes the depth convolution operation, PointwiseConv 
denotes point-by-point convolution operation, Interpolate 
denotes interpolation operation, and “[]” denotes splicing 
operation.

Figure 4. Schematic diagram of the bottleneck module

4  Experimental Results
In order to verify the effectiveness and superiority of 

our proposed method in the task of dermatologic image 
segmentation, we conducted a series of experiments and 
evaluated and compared its performance in several aspects. 
In this section, we present in turn the dataset used, the 
experimental setup, the loss function, the evaluation metrics, 
and the experimental performance comparisons.

4.1 Datasets
In order to comprehensively evaluate the performance of 

our proposed dermatological image segmentation method, 
we selected two representative datasets as experimental 
benchmarks, namely the ISIC2018 Task1 dataset and the ph2 
dataset.

The ISIC2018 Task1 dataset is a competition dataset 
organized by the International Conference on Imaging of 
the Skin to advance research in the field of dermatology 
diagnosis and image analysis. The dataset contains 
dermatologic images from all over the world, covering many 
different types of skin lesions. Each image is equipped with a 
pixel-level segmentation mask, which is used as a reference 
standard for our model performance evaluation. Due to its 
large size and rich and diverse samples, the ISIC2018 Task1 
dataset is able to provide sufficient data support to evaluate 

the generalization and robustness of our approach.
Another dataset is the ph2 dataset, which is a dataset 

provided by the Spanish Institute of Dermatology. It contains 
dermatological images from actual clinical situations and 
focuses on the task of image segmentation for melanoma. 
Since the ph2 dataset provides high quality images with 
accurate segmentation labels and has a small size, it makes 
the model proposed in this paper more focused on specific 
skin lesion types.

By using two datasets, ISIC2018 Task1 and ph2, we are 
able to perform a comprehensive evaluation of our method 
in this paper in different data contexts. In the next sections, 
we will describe the experimental setup and methodology 
in detail, and verify the effectiveness and superiority of our 
method on these datasets through comparative experiments 
and performance evaluation.

4.2 Implementations Setting
The experiment was conducted on v100 server using 

Pytorch framework and python 3.9. For data preprocessing, 
random rotation, flipping, scaling and normalization 
were used to resize the images all to 512×512. The 
optimizer is Adam with an initial learning rate of 1e-4 and 
CosineAnnealingLR scheduler with a minimum learning 
rate of 1e-5 and momentum of 0.9. The batch size is 8 and 
a total of 100 batches were trained. The loss function is a 
combination of binary cross-entropy loss and Dice loss.
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4.3 Loss Function
In order to fully utilize the advantages of deep 

learning models and address the challenges in the task of 
dermatological image segmentation, we employ a fusion loss 
function that combines binary cross-entropy loss and Dice 
loss. The binary cross-entropy loss helps the model to better 
learn the distinction between target and background, while 
the Dice loss is able to emphasize the spatial consistency 
of the segmentation results. This combined loss function 
is designed to enhance the model’s accurate localization 
of skin lesion regions and further improve the quality of 
segmentation results. In the next section, we will introduce 
the specific calculation and usage of this combined loss 
function in detail.

( ) ( )1

1 ˆ[ log 1N
i i ii

BCE y y y
N =

= − + −∑ ( )ˆlog 1 ]iy−     (12)

( )1

1 1

2
1

n
i ii

n n
i ii i

input smooth
DiceLoss

input s

target

targ tet moo h
=

= =

∗ ∗ +
= −

+ +

∑
∑ ∑

    (13)

1 2Loss BCE DiceLossγ γ= ∗ +                     (14)

where N is the number of samples, yi is the target value 
for the ith sample, and ˆiy  is the predicted value for the ith 
sample. input and target denote the predicted and target 
values of the model, respectively, and smooth is a smoothing 
term to prevent the denominator from being zero. The final 
loss function is the weighted sum of the BCE loss and the 
Dice loss, γ1 and γ2 are 0.5 and 1, respectively.

4.4 Evaluation Indicators
In order to comprehensively evaluate the performance of 

the dermatological image segmentation method proposed in 
this paper, we introduce several commonly used evaluation 
metrics. These include IOU, Dice coefficient, accuracy, 
precision and recall.

First, IOU measures the proportion of overlapping parts 
between the segmentation result and the real label, which can 
quantify the consistency between the region segmented by the 
model and the real region, and the Dice coefficient predicts 
the similarity between the segmentation mask and the real 
label by calculating the similarity between the segmentation 
mask and the real label, and the closer the value of the 
calculation is to 1 means the more accurate the segmentation 
result is. Second, the accuracy rate is a metric to evaluate the 
correctness of the model’s segmentation for the whole image, 
which defines the proportion of correctly segmented pixels 
to the total pixels, and can reflect the overall performance of 
the model. Precision and recall, on the other hand, focus on 
evaluating the model’s performance in detecting skin lesion 
areas; precision measures the proportion of true positive 
samples among those predicted as positive by the model, 

while recall measures the model’s ability to successfully 
detect true positive samples.

These five evaluation metrics consider the accuracy, 
consistency and comprehensiveness of the segmentation 
results and can provide a comprehensive assessment of the 
segmentation performance. In the subsequent experimental 
results, we will analyze and discuss the performance of the 
model on these metrics in detail to verify the effectiveness 
and superiority of the method proposed in this paper in the 
task of dermatological image segmentation. 

( )
1

intersection output target
N

i i
i=

= ∧∑                  (15)

( )
1

union output target
N

i i
i=

= ∨∑                       (16)

where N is the number of samples, outputi and targeti denote 
the predicted value and target value of the ith sample, 
respectively, and ∧  and ∨  denote the bitwise-and and 
bitwise-or operations, respectively. intersection and union 
are used to compute the intersection and union of two binary 
images. Intersection is the number of pixels in both images 
that are 1, and union is the number of pixels in both images 
that are at least one of 1. TP is the number of true positives, 
TN is the number of true negatives, FP is the number of false 
positives, and FN is the number of false negatives. 

TPprecision
TP FP smooth

=
+ +

                     (17)

TPrecall
TP FN smooth

=
+ +

                      (18)

TP TN smoothaccuracy
N smooth
+ +

=
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                   (19)
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                    (20)
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1

IoUDice
IoU
∗

=
+

                                 (21)

4.5 Performance Comparison
In this paper, we compare several deep learning methods 

on two public datasets respectively, and it can be seen from 
Table 1 and Table 2 that the model proposed in this paper 
is better than or close to the other models in terms of the 
number of parameters, computation, and segmentation 
metrics. In order to further analyze the advantages of LUT-
SLS, we discuss the following aspects in detail:
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Table 1. Performance comparison on ISIC2018 dataset

Model Params GMac IOU Dice Precision Recall Acc
U-Net [7] 31.04 218.92  0.7568 0.8580 0.9100 0.8203 0.9455

U-Net++ [6] 9.16 138.60 0.7537 0.8518 0.8850 0.8419 0.9439
Attention U-Net [5] 34.88 266.58  0.7430  0.8427 0.8768 0.8350 0.9414

UNeXt [30] 1.47 2.28  0.7905 0.8806 0.8591 0.9111 0.9504
MALUNet [38] 1.93 1.92 0.7608 0.8622 0.7880 0.9607 0.9411

Ours 2.06 2.96 0.8059 0.8894 0.9079 0.8799 0.9563

Table 2. Performance comparison on PH2 dataset

Model Params GMac IOU Dice Precision Recall Acc
U-Net [7] 31.04 218.92  0.8703 0.9298 0.9297 0.9361 0.9602

U-Net++ [6] 9.16 138.60  0.8425 0.9125 0.8565 0.9489 0.9489
Attention U-Net [5] 34.88 266.58  0.8667 0.9276 0.9290 0.9310 0.9586

UNeXt_S [30] 0.25 0.41 0.8342 0.9083 0.9440 0.8808 0.9485
UNeXt [30] 1.47 2.28  0.8575 0.9223 0.8966 0.9544 0.9533

UNeXt_L [30] 3.99 5.67 0.8603 0.9240 0.9222 0.9296 0.9561
Ours 2.06 2.96 0.8792 0.9354 0.9185 0.9557 0.9624

Table 3. Results of ablation experiments on the ISIC2018 dataset

Model Params GMac IOU Dice Acc
U-Net [7] 31.04 218.92 0.8703 0.9298 0.9297

PLTS 2.58 5.86 0.7856 0.8767 0.9509
Conv+PLTS 2.05 2.96 0.7993 0.8852 0.9537

Conv+PLTS+MSBN 2.06 2.96 0.8792 0.9354 0.9185

Table 4. Multi-channel experimental results on the ph2 dataset

Channel Params GMac IOU Dice Acc
{32, 64, 128, 256, 512} 5.48 4.35 0.8497 0.9177 0.9513
{32, 64, 128, 160, 256} 2.06 2.96 0.8792 0.9354 0.9624
{16, 32, 64, 128, 160} 0.92 1.03 0.8614 0.9249 0.9574
{16, 32, 48, 64, 96} 0.33 0.57  0.8543 0.9204 0.9533
{8, 16, 24, 32, 64} 0.11 0.17 0.8252 0.9028 0.9452

Number of parameters and computation: U-Net has 
31.04M parameters and 218.92GMac of computation, 
Attention U-Net has 34.88M parameters and 266.58GMac 
of computation, while our model has only 2.06M parameters 
and 2.96GMac of computation, which is much smaller than 
all other models. This indicates that our model is more 
lightweight, which can save storage space and runtime, 
and is suitable for deployment in mobile devices or low-
configuration environments.

Segmentation metrics: the model proposed in this paper 
performs well on the IOU and Dice metrics, especially on 
the ISIC2018 dataset, as shown in Table 1. Comparing the 
IOU and Dice, our model improves 1.54% and 0.88% over 
UNeXt, respectively. As shown in Table 2, our model also 
achieves the highest IOU and Dice on the PH2 dataset, and 
also performs better on Precision and Recall. This indicates 
that our model can accurately recognize and segment skin 
lesion areas, and also exclude background noise and other 

interfering factors, which is very important for improving the 
accuracy and reliability of skin lesion diagnosis.

5  Discussion

To further explore the key factors and effectiveness of 
the dermatological image segmentation method proposed 
in this paper, we conducted a series of ablation experiments 
and multi-channel analysis. In the ablation experiments, 
we evaluated the impact of the key components of the 
method on the segmentation performance by removing 
them step by step. In addition, we conducted a multi-
channel comparison experiment to find the optimal channel 
combination to improve the accuracy of the segmentation 
results by evaluating the effects of different channels on the 
segmentation performance.
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5.1 Ablation Experiments
In this paper, U-Net is used as the baseline network, 

and as can be seen in Table 3, firstly the computation and 
complexity of the model is significantly reduced by using the 
PLTS module. Secondly, by using the convolution module 
and adjusting the framework structure of the whole model, 
the performance is improved and the computation is reduced 
at the same time. Finally the MSBN module is introduced to 
optimize the overall performance.

5.2 Multi-Channel Comparison Experiment
Based on the data in Table 4, it is found that as 

the number of channels increases, the parameters and 
computational complexity increase accordingly. When 
the number of channels is {32, 64, 128, 160, 256}, all 
the performance indicators reach the peak, while when 
the number of channels is {8, 16, 24, 32, 64}, all of these 
indicators decrease significantly. Therefore, the appropriate 
number of channels is selected according to different 
scenarios and requirements to achieve a balance between 
model complexity and performance.

6  Conclusion

In this study, we propose a lightweight Transformer 
network with a novel convolutional structure based on U-Net 
for medical image segmentation of skin lesions. The design 
of LUT-SLS integrates U-Net and Transformer frameworks 
and consists of three main modules: the convolution module, 
the PLTS module, and the MSBN module. These modules 
are combined within the five-layer U-Net structure to achieve 
effective modeling with reduced computation and complexity. 
Comparative experiments on several datasets demonstrate 
that our proposed structure optimizes comprehensive 
performance and outperforms current state-of-the-art 
methods.

Despite the progress made in dermatologic image 
segmentation, several areas require further exploration and 
improvement. Firstly, most current segmentation methods are 
validated and evaluated on specific datasets. Future research 
should focus on enhancing model generalization across 
different datasets to handle diverse real-world skin lesion 
scenarios. Secondly, dermatological image segmentation 
can benefit from incorporating other image modalities, such 
as infrared and multispectral images. Future research could 
integrate multimodal images to provide more comprehensive 
and accurate segmentation results.

In summary, while the field of dermatologic image 
segmentation faces many challenges, it also presents 
numerous opportunities. Through continuous research 
and innovation, we can further improve segmentation 
performance, offering more accurate and reliable support for 
clinical diagnosis and treatment.
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