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Abstract

Processing small data in machine learning often leads 
to challenges like low accuracy and overfitting. To address 
these issues effectively, it is essential to assess the integrity of 
the underlying problem. One effective approach to tackling 
such challenges is to adopt a top-down strategy, focusing on 
adjusting and creating a suitable framework. In this paper, 
various techniques will be employed to fine-tune the model 
for optimization. Experiments will be conducted on six 
distinct datasets to enhance the model’s accuracy and prevent 
overfitting.
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1  Introduction

With the advance on information and communication 
technology, a significant amount of data has been generated. 
However, not all datasets are large enough to train robust 
models. For instance, in our study of certain medical datasets, 
we found that the total number of data points was fewer than 
200. When attempting to train a simple model with this data, 
we observed significant overfitting, indicating that the model 
was not optimal. From a data science perspective, it is crucial 
to have sufficient data to train models effectively and improve 
their accuracy. Although it is challenging to define the exact 
amount of data needed for model training, it is generally 
observed that reducing the amount of data in a dataset leads 
to decreased accuracy. This clearly demonstrates that having 
more data typically results in better performance.

Dealing with small datasets poses a significant challenge 
because the limited data volume leads to low accuracy, and 
the training approach itself becomes problematic. Even trying 
various models with different characteristics cannot resolve 
the issue of limited data. We have realized that the root of 
the problem lies not in the model itself but in addressing the 
issue of training with small datasets, specifically the problem 
of overfitting. Overfitting occurs when the model performs 
well on the training set but fails to generalize to the test set.

The primary objective of this thesis is to demonstrate 
the robustness achievable by implementing a framework 
designed to address the challenges posed by small datasets. 

The focus is on developing a formulation that can effectively 
solve these problems. By working with six different types of 
datasets, we illustrate that this formulation can resolve most 
issues associated with limited data. The solution involves 
a modular formulation that enhances robustness, defined in 
terms of accuracy and reliability.

The remaining sections of this thesis are organized as 
follows: Section 2 presents a review of related literature. 
Section 3 introduces the methodology and data processing 
techniques used to establish the formulation, highlighting 
the core methods and experimental procedures. Section 4 
presents the experimental results, and Section 5 concludes 
the paper.

2  Literature Review

Effective problem-solving for small data has been a 
significant area of research. According to related literature 
[1-2], there is a view that data augmentation can enhance 
small datasets by generating additional data. However, this 
framework, which relies on data generation, often proves 
ineffective for small datasets due to insufficient feature 
capture, leading to adverse effects such as reduced precision. 
Therefore, relying solely on data augmentation techniques, 
including Generative Adversarial Networks (GANs), is not 
considered reliable for addressing the challenges of limited 
data.

Moreover, many studies, such as [3-5], address datasets 
with thousands or even tens of thousands of samples, which 
is vastly different from our scenario of having fewer than 200 
data points. In recent years, Few-Shot Learning (FSL) has 
emerged as a promising technique for handling small data 
problems. FSL modifies the last layer of the model to use a 
comparative approach, such as 3-way-2-shot, where “way” 
refers to the number of classification categories, and “shot” 
refers to the number of examples provided for each category. 
For instance, a 3-way-2-shot involves three categories, 
each with two reference photos for similarity comparison, 
requiring six photos to assist in the judgment.

While FSL offers some improvements over direct 
classification, it still struggles with tiny datasets. The models 
used in FSL are often small, and their recognition capabilities 
are limited. Additionally, the large amount of data typically 
required for effective FSL models makes this approach 
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less feasible for our needs. We found that FSL techniques, 
even those claiming state-of-the-art performance [6], are 
often constrained by the small size of the models and the 
substantial data requirements.

An alternative and the more promising solution is transfer 
learning [7-8]. Transfer learning involves leveraging a pre-
trained model on a large dataset and fine-tuning it on the 
small dataset of interest. The accuracy of models under 
Transfer Learning can be significantly improved, especially 
when using large-scale pre-trained models. For example, 
Scaling Vision Transformers proposed by Google [10] have 
shown that using a small number of samples per class can 
yield better results. Although Vision Transformers (ViT-G) 
are very large models, this approach demonstrates the 
potential of achieving high accuracy with small datasets 
through Transfer Learning.

Furthermore, comparing Few-Shot Learning with direct 
Transfer Learning, we found that the latter often yields better 
performance. Direct Transfer Learning has proven more 
effective, as the architectural adjustments required for FSL 
are not always feasible or efficient for very small datasets [9, 
11-12].

In conclusion, while Few-Shot Learning offers some 
advantages, Transfer Learning provides a more robust and 
reliable solution for addressing the challenges of small data. 
By utilizing large pre-trained models and fine-tuning them, it 
is possible to achieve high accuracy even with limited data.

3  The Recipe Building Techniques and 
Data Processing

The complete formulation was generated and is defined 
as shown in Figure 1 below.

Figure 1. Organization chart

Architectures generally contain multiple models and 
offer a variety of additional methods. Within these methods, 
numerous parameters can be adjusted. The process follows 
a top-down approach, starting with the selection of the 
architecture, evaluating the methods to be used, and finally 
adjusting the necessary parameters.

Selecting an architecture is a crucial step because once 
chosen, it is challenging to change it without starting over. 
Therefore, careful consideration is needed during this 
selection. A well-designed architecture provides a range of 
options for fine-tuning. Architectures are inherently tied 
to models, which are critical for achieving high-resolution 
accuracy. Hence, it is essential to determine the available 
models and methods.

Some architectures offer implementation-style parameter 
setups or specialized profiles for easy adjustments, enabling 
users to start quickly. Familiarity with the chosen architecture 
and models is vital. After selecting a method, we typically 
test the suitability of parameters, often requiring multiple 
adaptations.

According to our experimental results, we employed a 
progressive improvement mechanism to adapt methods and 
parameters, ensuring optimal results.

3.1 Tips for Building Recipes
Skills are divided into two aspects, one from the 

theoretical aspect and the other from the practical aspect, 
which are complementary and indispensable.

The theoretical aspect is divided into two parts:

1. Understand the nature and problem of data
2. Understand the algorithms and how to be composed

The so-called data nature part is to explore from the 
nature of the data, the data collected and labeled as a data 
set, and the data needs to have an algorithm to operate, and 
the actual data composition itself will have many conditions, 
such as the data itself has a lack of, or the data itself labeling 
problems. If the data is not fully labeled, the problem of 
missing labels should be checked whether there are other 
problems in the data itself, and if there are, it is necessary to 
deal with them through the algorithm, then it can be quickly 
solved and improve the effect.

The practical side is divided into several steps:

1. Decide the general direction (method) first, then 
decide the parameters.

2. Observation of fine-tuning parameters, as well as 
logging of modified parameters and results, and 
observation of changes.

3. Using WandB [13] observe the curvature change.

Usually, the number of parameters that can be adjusted 
will be large. Blindly adjusting them can be confusing. 
To avoid adjusting parameters without a basis, it is 
recommended to group adjustments into larger targets. For 
example, adjusting the Learning Rate Scheduler (LRS) as a 
group. There are many parameters that need to be changed 
depending on the actual situation. Since each dataset has 
different properties, understanding the characteristics of the 
data itself can help you make more informed adjustments. 
You might, for instance, set the Learning Rate Scheduler to 
take a slow descent.

If the pre-training weights produce overfitting and drop to 
a suboptimal local minimum, it is important to note that when 
using pre-training weights, the Learning Rate Scheduler 
setting should not be too aggressive. Fine-tuning requires 
control, rather than retraining the model, so each adjustment 
must be carefully considered. This is a crucial method and 
parameter setting that must be reviewed each time.

This tool [13] provides a graphical representation, 
enabling you to clearly see the differences and the impact of 
adjusting certain parameters. Whether the results are good 
or bad can be seen at a glance. It is easy to compare values 
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and observe graph curve changes to understand phenomena. 
Additionally, the tool provides CPU and GPU utilization 
statistics, allowing you to monitor actual usage percentages 
and execution in real-time.

3.2 Small Data Formulation Process
First of all, we need to understand the issues that arise 

from having a small amount of data. The main problem 
is the tendency to overfit. Even with transfer learning, the 
limited data available for training can lead to overfitting. To 
avoid this, the logical approach is to obtain as much data as 
possible. However, if acquiring more data is not feasible, we 
must consider methods to prevent overfitting.

Simply put, overfitting results in high training accuracy 
but poor validation or testing accuracy because the model 
lacks the ability to generalize. The model may only recognize 
specific data patterns rather than understanding broader 
classifications. Therefore, this paper proposes Cross-
Validation (CV) and Dropout [20] as methods to avoid 
overfitting.

Cross-Validation involves dividing the data into several 
parts, using different parts for training and validation in 
turns, and finally averaging the results from models trained 
on different data combinations. This method helps prevent 
the model from relying too heavily on specific predictions, 
making it particularly effective for small datasets. Dropout, 
on the other hand, involves randomly discarding a portion of 
neurons during training. This reduces the model’s dependency 
on neurons output, mitigating the impact of small data size 
on learning. The appropriate dropout rate must be determined 
through empirical testing.

For Cross-Validation, the number of partitions (or folds) 
must be considered. Generally, ten-folds or five-folds Cross-
Validation is used. If the dataset is sufficiently large, ten 
folds can be employed. For very small datasets, five folds 
are recommended. When dividing data into more folds, the 
amount of training data increases while the validation data 
decreases. Conversely, fewer folds mean more validation data 
but less training data. Increasing the validation data in the 
case of very small datasets helps in selecting better models 
rather than simply increasing training accuracy.

In addition, we need to pay attention to the input image 
size and model selection. Generally speaking, larger images 
are better, but this is not always the case. Special attempts 
should be made to determine the appropriate parameters, with 
the Learning Rate Scheduler being a particularly important 
parameter that requires careful adjustment.

When dealing with a small amount of data, the model 
training process will utilize every piece of data in the dataset 
for each epoch. In this context, the number of epochs needs 
to be sufficiently large because training with little data can 
be very ineffective. Therefore, more epochs are needed to 
achieve higher accuracy. However, this also increases the risk 
of overfitting. To mitigate this, the Learning Rate Scheduler 
should be adjusted to avoid over-learning, with careful 
observation of the decline rate as the number of epochs 
increases.

The training set results provide the basis for the model’s 
learning, while the validation set helps judge the model’s 
generalization ability. Ultimately, the test set results 

determine the real generalization ability of the model. 
Therefore, the Learning Rate Scheduler should be fine-
tuned based on the actual results from the test set to ensure it 
matches the real situation.

Lastly, we need to consider image enhancement. Since 
each dataset has unique characteristics, not every type 
of enhancement will be suitable. Different enhancement 
methods should be tested to determine which ones can be 
effectively combined. However, it’s important to note that 
image enhancement may not always yield good results 
consistently.

We recommend addressing image enhancement as 
the final step because it introduces a certain degree of 
randomness. This randomness can lead to inconsistent 
results, making it easy to misjudge the effectiveness of 
the enhancement. Therefore, image enhancement should 
be carefully evaluated after other parameters have been 
optimized.

3.3 Data Processing
The principles of dataset processing are consistent, so the 

following rules are in place. Each rule is set to ensure that 
the purpose of the experiment is met. The number of cross-
validation is defined in terms of the observation data (number 
of training validation sets included), the maximum image 
size, and the reduction of the number of categories.

1. Number of observations and distribution of data (n 
per category)

2. Observation data size must match the available size 
of approximately 512*512.

3. Fixed after reducing the number of randomly selected 
categories.

4. Random selection of training and validation data n 
strokes per category multiplied by the number of 
categories is fixed.

5. Split the data into CV5 and CV10 or CVn.

4  Experiment Results

4.1 Datasets
There are six datasets used in this paper:

1. CUB [14]
2. Caltech256 [15]
3. Flower102 [16]
4. Covid19 [17]
5. Polyp [18]
6. Chaoyang [19]

CUB is a bird dataset with 11,788 total data and 200 
categories; Caltech256 is a dataset specifically collected 
by the California Polytechnic University with 30,607 total 
data and 257 categories; Flower102 is a flower dataset with 
8,189 total data and 102 categories; Covid19 is a chest The 
Covid19 dataset is a chest X-ray dataset with 317 total data 
and 3 categories; Polyp is a polyp dataset with 721 total data 
and 11 categories; and Chaoyang is a sunrise dataset with 
6160 total data and 4 categories. The first three species [14-
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16] are commonly seen datasets, and the last three [17-19] 
are medical datasets. The datasets are medical datasets, which 
are specially selected to be difficult to categorize, and the 
main purpose is to test their reliability, so it is necessary to 
look for datasets that are not recognizable by human beings, 
or that can be recognized only by specialists. Therefore, this 
is a test of the reliability that can be achieved even with a 
small amount of data.

4.2 Experimental Results
As shown in Figure 2, this is a representation of the bird 

dataset. The horizontal axis indicates accuracy, while the 
vertical axis represents different portions of the data. 

Fold2 refers to dividing the dataset into two equal 
portions. With only two samples, this means one sample for 
training and one for validation, resulting in each category 
being assessed by looking at just one image. Consequently, 
the results are predictably poor, with an accuracy of 17.6%.

Fold3 involves three samples per category, divided into 
three equal portions. Thus, there are two samples for training 
and one for validation.

Fold10 represents ten samples per category, divided into 
ten equal portions, with nine samples used for training and 
one for validation. and one piece of verification.

The progressive increase in the number of samples 
used for training (from one in Fold2 to nine in Fold10) 
significantly impacts the accuracy, highlighting the 
importance of having sufficient data for effective model 
training and validation.

• Verification is a piece of information.
• Training is Fold-1 data.

The more training data, the better the result. Using ten 
samples per category as the baseline proves to be an optimal 
number for executions. In the case of the bird dataset, 
dividing each category into 10 folds results in an accuracy 
of 82.9%. While this accuracy might not seem impressive at 
first glance, it is important to consider that the bird dataset 
contains 200 categories, making this a very reasonable result. 
However, as the number of folds is reduced, the performance 
noticeably deteriorates. This trend emphasizes the importance 
of maintaining an adequate number of samples per category. 
Therefore, an acceptable baseline would be ten samples per 
species.

Figure 2. Results of the bird dataset

As shown in Figure 3, this is the dataset for the California 
Polytechnic University, which is larger than the bird dataset. 
The results demonstrate a similar trend to the bird dataset: as 
the number of samples (or strokes) per category decreases, 
the results deteriorate. Therefore, having ten strokes per 

category is a supportable threshold. Furthermore, it can 
be observed that precision increases as the amount of data 
increases, leading to the conclusion that precision improves 
with the increase in data quantity.

Figure 3. Results of the Caltech University Dataset

As shown in Figure 4, this is a graphical representation 
of the number of different categories in the bird dataset. 
The number of categories has been reduced, leading to an 
improvement in accuracy. However, when the dataset is 
divided into five categories, the accuracy appears unusual at 
74.9%. This anomaly arises because the dataset is too small. 
If divided into deciles, each validation set would contain 
only one sample, making it difficult to capture the correct 
data distribution due to the small number of validation 
samples. Therefore, it is more effective to divide the data into 
five equal parts. This approach ensures a more substantial 
validation set, which helps in better capturing the data 
distribution and improving the overall accuracy.

Figure 4. Results of different parameters in the bird dataset

As shown in Figure 4, the bird dataset is divided into 
five equal parts. Each category contains ten samples, 
resulting in a training set of eight samples and a validation 
set of two samples. This division can be compared to the 
previous method of splitting the dataset into ten parts. It 
is observed that dividing into five parts does not degrade 
the performance. This stability is attributed to the more 
substantial validation set with two samples. When the dataset 
is small, it is crucial to avoid misjudgments in the validation 
set by increasing the number of validation samples. This 
approach helps prevent bias in model selection. Therefore, 
when dealing with a reduced amount of data, it is essential to 
have a larger validation set to ensure accurate and unbiased 
model evaluation. 

As shown in Figure 5, this result was obtained from 
running tests on six different datasets. Each dataset 
maintained its original number of categories, with each 
category consisting of ten samples, and the tests were 
conducted over 300 epochs. The results are based on the 
average of five cross-validation iterations. It was found that 
the range of accuracy varied widely due to the differing 
number of categories in each dataset. When each category 
has ten samples and there are only three categories, running 
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for 300 epochs yields very good results, as illustrated on the 
right side of Figure 5. The primary issue with small datasets 
is their instability. However, due to the balancing effect of 
cross-validation, the results for the three-category dataset 
are optimal, ensuring high accuracy. Nonetheless, stability 
is influenced by the inherent characteristics of the datasets, 
which can lead to varying degrees of accuracy.

Figure 5. Results of six different datasets

When each category consists of ten samples and runs for 
300 epochs, each dataset maintains its original number of 
categories. The average value presented is the mean result 
of five cross-validation iterations, and the standard deviation 
is expressed as a percentage. A smaller standard deviation 
indicates that the five values are very close to each other. 
However, if one-fold performs poorly during testing, it is 
considered an outlier, resulting in a higher standard deviation. 
A large standard deviation signifies instability, highlighting 
the need for cross-validation, especially when the dataset 
is small. Cross-validation helps to mitigate excessive 
result deviations, ensuring more reliable and consistent 
performance. As illustrated in Figure 6, cross-validation is 
essential; without it, the results would fluctuate, showing 
good outcomes at times and poor outcomes at others.

Figure 6. Box plot results (10 for each category)

As shown in Figure 7, the result of running 300 epochs 
with three data points of each type indicates that the 
Caltech256 dataset has a higher standard deviation of nearly 
5%. This increase is caused by an outlier, highlighting the 
instability factor when dealing with very small datasets. Such 
instability can occasionally lead to significant deviations, 
emphasizing the necessity of cross-validation, particularly 
when the dataset is limited. Cross-validation is crucial to 
mitigate bias and enhance the robustness of the model. While 
achieving high accuracy with a small number of categories 
is relatively straightforward, ensuring stability requires 
implementing cross-validation techniques. This approach 
helps avoid biases that can arise from small sample sizes, 
ensuring more reliable and consistent performance across 
different data subsets.

Figure 7. Box plot results (three strokes for each type)

5  Conclusion

From the experimental results, when using ten samples 
per category, the accuracy significantly decreases as the 
number of categories increases. Conversely, when the 
number of categories is very small, the accuracy reaches a 
very high level, indicating the system’s strong performance 
in categorization. Therefore, in the extreme case of ten 
samples per category, good accuracy is achievable for three 
categories.

Another critical aspect observed is the stability of the 
model. Cross-validation is essential to avoid bias, especially 
in scenarios with a small amount of data. Cross-validation 
ensures that the model remains robust and reliable by 
mitigating the effects of data variability.

A special dataset, the Chaoyang dataset, was selected 
for this thesis. Despite having a large amount of data, this 
dataset failed to achieve the required accuracy (50.6%). 
This result highlights the importance of data quality, as the 
inherent quality of the data significantly impacts the model’s 
performance.
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