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Abstract

This paper presents a comprehensive review of the 
current research on spatial sensor networks and the node 
deployment methods employed for mobile target tracking. 
The study introduces particle swarm optimization (PSO) 
and its quantum behavior extension, detailing concepts such 
as the quantum state wave function and particle position 
representation. Subsequently, an improved Quantum Particle 
Swarm Optimization (QPSO) algorithm is proposed. 
This enhanced algorithm increases population diversity 
by incorporating quantum rotation gates and quantum 
mutation mechanisms, expands the search space through the 
superposition state and interference principles of quantum 
mechanics, and dynamically adjusts algorithm parameters 
to balance global exploration and local search. These 
modifications aim to improve both the convergence speed and 
accuracy of the algorithm. Simulation results demonstrate 
that the improved QPSO algorithm surpasses traditional 
mobile tracking deployment algorithms and the standard 
quantum behavior particle swarm optimization algorithm 
in terms of target tracking deployment within spatial sensor 
networks. Notably, it significantly enhances the tracking 
success rate and reduces tracking errors.

Keywords: Spatial sensor network, Target tracking, Node 
deployment, Quantum particle swarm optimization algorithm

1  Introduction

Spatial sensor networks consist of numerous micro-sized, 
low-power-consumption, low-cost sensor nodes deployed 
within a monitored environment. These nodes form a 
dynamic distributed network through wireless communication 
in an ad hoc manner, enabling environmental monitoring 
and data acquisition. Each node possesses capabilities in 
sensing, processing, and communication, allowing them 
to autonomously and cooperatively complete monitoring 
tasks. Multi-target tracking technology within spatial sensor 
networks aims to monitor and track the position, state, and 
trajectory of multiple target objects in real-time with high 
accuracy through the collaboration of multiple sensor nodes. 

Significant progress has been made in multi-target 
tracking, data association, and fusion within spatial sensor 

networks. Target detection and tracking leverage the sensors 
within nodes to detect the appearance and movement of 
targets, and to track real-time positional changes through 
target prediction and path planning. Commonly used tracking 
algorithms include particle filtering, Kalman filtering, and 
data association. However, challenges remain, such as 
the complexity of data association, communication costs, 
resource limitations, the adaptability of limited fields of view, 
and the robustness and accuracy of algorithms in practical 
applications. Current research focuses on cooperative sensing 
and data fusion, utilizing multi-node cooperation to enhance 
monitoring range and accuracy. Data fusion algorithms, such 
as Bayesian estimation and neural networks, are employed 
to combine data collected by each node, reduce noise, and 
improve signal quality.

Numerous universities and research institutions have 
conducted studies on the deployment of spatial sensor 
nodes and target tracking technology, proposing various 
improved methods such as computational geometry, heuristic 
algorithms, and grid deployment methods. 

Recent studies have explored various algorithms and 
techniques for improving target tracking in spatial sensor 
networks. For instance, Ramadevi et al. proposed a meta-
heuristic aided target movement prediction scheme using 
adaptive distributed extended Kalman filtering to enhance 
mobility target tracking in Wireless Sensor Networks (WSNs) 
[1]. Feng et al. proposed a PSO algorithm based on modified 
crowding distance for multimodal multi-objective problems, 
demonstrating the versatility of PSO in different application 
domains [2]. Ye and Dong presented an ensemble algorithm 
based on adaptive chaotic quantum-behaved particle swarm 
optimization with Weibull distribution and hunger games 
search, highlighting the potential of QPSO in financial 
applications [3]. Similarly, Hu et al. proposed an energy-
efficient clustering and routing protocol based on QPSO and 
fuzzy logic for WSNs, emphasizing the algorithm’s efficacy 
in network optimization [4].

This research contributes to the growing field of 
optimization algorithms inspired by quantum mechanics 
and swarm intelligence. It builds on previous work, such 
as the application of QPSO in forest cover prediction 
[5]. Furthermore, it complements research on other 
swarm optimization algorithms, such as the chicken 
swarm optimization algorithm [6]. To strike a balance 
between global exploration and local search, the algorithm 
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dynamically adjusts its parameters. This adaptability ensures 
that the search process is both efficient and effective, leading 
to improved convergence speed and accuracy and various 
other domains where QPSO has shown promise and the 
glowworm swarm optimization algorithm, by offering a novel 
approach to target tracking deployment in spatial sensor 
networks.

2  Target Tracking in Space Sensor 
Networks

2.1 Current Research on Space Sensor Networks
Current research in space sensor networks, particularly 

regarding target tracking, builds upon advancements in 
wireless sensor networks and their applications in various 
domains. 

One study, conducted by a team including Tao, Luo 
Jianpeng, Xie, Bai Tao, Zhang, Yao, Zhang, Chaoqun, and 
Li, focuses on an improved energy-efficient clustering 
routing scheme for industrial wireless sensor networks. This 
research employs a Levy chaotic particle swarm optimization 
algorithm to enhance the performance of the sensor network 
[7]. Another significant contribution to the field is a study by 
Xiao Jiang Du and Xiao Hua Chen, which explores wireless 
sensor network security [8]. Published in IEEE Wireless 
Communications, this research delves into the security 
aspects of wireless sensor networks, highlighting potential 
vulnerabilities and proposing solutions to mitigate security 
risks. Ensuring the security of space sensor networks is 
essential for accurate and reliable target tracking, as any 
compromise in security could lead to inaccurate data or even 
system failures [9].

The research on target tracking within space sensor 
networks encompasses a wide range of topics, including 
algorithm optimization, data association and fusion, resource 
management, multi-target tracking, and three-dimensional 
(3D) space tracking. Current efforts in target tracking 
algorithms are primarily focused on enhancing tracking 
efficiency and accuracy. Researchers are continuously seeking 
algorithms capable of processing large volumes of sensor 
data swiftly while accurately predicting target locations. In 
dynamic environments, these algorithms must be both real-
time and robust to meet the application requirements of 
complex scenarios [10].

2.2 Node Deployment Based on Moving Target Tracking
Node deployment algorithms for mobile target tracking 

represent a complex problem that spans multiple fields and 
technologies. The primary objective is to optimize the layout 
and performance of a sensor network or tracking system to 
ensure accurate tracking of a moving target. Moving target 
tracking is key to ensuring efficient network monitoring and 
response. This process begins by establishing a network 
model, which defines the network topology, including 
node locations, communication ranges, and other relevant 
parameters [11]. Additionally, a motion model of the target is 
established, describing its trajectory and speed, along with a 
sensing model for the nodes, which includes factors such as 
detection range and accuracy [12].

In order to effectively track mobile targets, sensor nodes 
need to be deployed reasonably so that relevant data can 
be obtained in a timely manner when the target moves. In 
target tracking applications, once a target is detected, the 
focus shifts from the coverage quality of the entire detection 
area to the coverage quality of the path the moving target is 
expected to traverse. This involves calculating the probability 
that a moving target will be detected as it moves through the 
node deployment area along any potential path. A critical 
challenge is how to maximize this coverage by establishing 
constraints that ensure every point within the monitoring area 
is covered by at least one sensor node [13]. This seamless 
monitoring also requires that sensor nodes maintain effective 
communication with each other, enabling the transmission of 
collected data to the aggregation node or processing center, 
which is a key focus of this paper.

Assume the target location is ( )V t


=(xT(t), yT(t), zT(t)), 

Speed is ( )V t


=(vx(t), vy(t), vz(t)), The position of the target in 
the future can be predicted using the following formula:

))()()( ttVtTttT ∆×+=∆+
→→→                                (1)

Through this formula, the future position of the target can 
be predicted based on its current position and speed, which is 
of great significance for achieving effective target tracking.

For the optimization of node deployment, a fitness 
function can be defined to evaluate the advantages and 
disadvantages of node deployment schemes, as shown in 
formula:

1 1
1 2 3F w Cov w EC w L− −= × + × + ×                    (2)

Among them:
• Cov represents the coverage of sensor nodes, 

reflecting the sensor network’s ability to perceive the 
target.

• EC represents the energy consumption of sensor 
nodes, reflecting the operating efficiency of the 
sensor network.

• L represents the average distance between sensor 
nodes, reflecting the topological structure and 
communication efficiency of the sensor network.

• w1, w2, w3 are weight coefficients used to adjust the 
degree of influence of different factors on the fitness 
function.

By comprehensively considering these factors, the 
optimal node deployment scheme can be selected to improve 
the performance and efficiency of the spatial sensor network 
[14].

2.3 Autonomous Deployment Based on Complex Paths
In spatial sensor networks, the movement of targets 

along complex paths poses great challenges for tracking 
deployment. Complex paths may have varying directions, 
different speeds, and irregular shapes.

For this situation, accurate modeling and feature 
extraction of complex paths are first required. Mathematical 
models such as polynomial curve fitting and spline curves 
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can be used to approximate the motion path of the target. At 
the same time, based on the historical movement data of the 
target and current environmental factors, predict its possible 
future direction. To effectively describe complex paths, the 
following models can be used:

Polynomial model: Use polynomial functions to fit the 
motion trajectory of the target, for example:

1
1 1 0( ) ...n n

n nP t a t a t a t a−
−= + + + +                     (3)

Among them, ai is the coefficient of the polynomial, and t 
is the time variable.

Bezier curve: it is a curve representation method widely 
used in computer graphics and related fields suitable for 
describing smooth and complex paths, with the following 
formula:

,
0

( ) ( )
n

i i n
i

B t PB t
=

= ∑                                  (4)

Among them, Bi,n(t) is the Bessel function and Pi is the 
control point. These control points determine the shape and 
direction of the curve. The advantage of the Bezier curve is 
that it can flexibly change the shape of the curve by adjusting 
the control points, thereby achieving an accurate description 
of various smooth paths. By reasonably selecting and setting 
the control points, a smooth curve that meets specific needs 
can be generated, enabling it to accurately simulate and 
represent the motion trajectory or shape change of an actual 
object [15].

Random process model: Considering the uncertainty of 
the target’s motion, a random walk model can be used to 
describe the target’s movement:

( 1) ( ) tX t X t+ = +∈                                 (5)

In this model, represents the position of the target at time 
t, represents the position of the target at time t. is a random 
walk, which represents the uncertainty factor of the target’s 
motion. This means that the movement of the target at each 
time step is based on its current position plus a random 
perturbation.

By adopting the random walk model, we can better 
capture the uncertainty of the target’s motion, thereby more 
realistically simulating the movement of the target in space. 
This model has applications in many fields, such as target 
tracking in wireless sensor networks, robot navigation, etc.

However, it should be noted that the random walk model 
is only a simplified description method. In actual situations, 
the movement of the target may be affected by many factors, 
such as the environment, the characteristics of the target 
itself, etc. Therefore, in specific applications, it may be 
necessary to combine more information and more complex 
models to improve the accuracy of target tracking.

Assuming the position of the node is ix  = (xi, yi, zi) and 

the position of the target is it


 = (tx, ty, tz).
The fitness function can be:
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3  Quantum Particle Swarm Algorithm 
Applications

3.1 Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) is a nature-inspired 

metaheuristic computational method that draws its principles 
from the foraging patterns of avian species in their natural 
habitats. By simulating the collaborative behavior observed 
in bird flocks during foraging, PSO solves optimization 
problems through the interaction and movement of individual 
particles within a search space. The algorithm’s key operation 
entails refining and modulating each particle’s position and 
velocity, enabling an exhaustive search of the solution space 
and aiding in the determination of the global optimum. When 
applied to spatial sensor network deployment, this global 
search capability ensures comprehensive coverage of the 
target area by the sensor network [16].

In PSO, candidate solutions to the optimization problem 
are abstracted as “particles” within the solution search space. 
These particles possess two pivotal attributes: velocity 
and position. Velocity dictates the speed and direction of a 
particle’s movement, while position indicates the particle’s 
current location within the search space. Particles navigate 
the solution space by following the best-performing particles 
(both individually and globally) in an effort to identify the 
optimal solution [17].

Specifically, each particle’s movement is influenced by 
two factors: pbest, the best solution found by the particle 
itself, and gbest, the best solution identified by the entire 
swarm.

Envision a swarm of m particles positioned within an 
S-dimensional objective search space, wherein the location 
of the i-th particle is denoted by an S-dimensional vector. xi 
= (xi1, xi2, xis), i = 1, 2, …, m. The position of each particle 
serves as a potential solution, and its fitness value is 
calculated by substituting xi into an objective function. The 
quality of the solution is determined by the fitness value. 
The velocity of the i -th particle is also represented as an 
S-dimensional vector vi = (vi1, vi2, vis), while the best position 
discovered by the i-th particle is denoted as Pi = (pi1, pi2, pis). 
The best position found by the entire swarm is denoted as Pgs 
= (pg1, pg2, pgs). Let f(x) represent the objective function to be 
minimized. The current best position of particle i  is updated 
using Equation (6):

( ),       ( ( 1)) ( ( ))
( 1)

( 1), ( ( 1)) ( ( ))
i i i

i
i i i

p t f x t f p t
p t

X t f x t f p t
+ ≥

= + =  + + <
           (7)

The process of the PSO algorithm is outlined below:
1. Initialize the particle swarm: randomly set the initial 

position and speed of each particle.
2. Calculate the fitness value: substitute the position of 

each particle into the objective function and calculate its 
fitness value.

3. Update individual extreme values and global extreme 
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values: for each particle, the current fitness value is 
juxtaposed with its historical optimal fitness value. Should 
the current value prove more advantageous, the individual 
extremum is updated; concomitantly, the individual 
extrema of all particles are compared to ascertain the global 
extremum.

4. Update particle speed and position: update the speed 
and position of the particle according to the following 
formula:

Speed update formula:

))()(())()(()()1( 2211 txtprctxtprctvwtv igiiii −××+−××+×=+     (8)

Among them, w is the inertia weight, c1 and c2 are the 
learning factors, r1 and r2 are random numbers between 0 and 
1.

Position update formula:

( 1) ( ) ( 1)i i ix t x t v t+ = + +                            (9)

5. Determine whether the termination condition is met: 
If the termination condition is met (such as reaching the 
maximum number of iterations or the fitness value meets the 
requirements), the algorithm ends; otherwise, return to step 2 
to continue iterating.

Through ongoing iterative refinement of the particles’ 
velocity and position, the particle swarm explores the solution 
domain in pursuit of the optimal solution, ceasing only upon 
satisfaction of the termination criterion. The PSO algorithm is 
characterized by its straightforward implementation and rapid 
convergence, attributes that have facilitated its extensive 
application across diverse fields.

The search process in the particle swarm algorithm 
is dependent on the velocity of particles. As particles 
continuously evolve their trajectory and speed, their search 
is confined to fixed trajectories, causing the search space to 
become progressively limited. This limitation restricts the 
algorithm’s global convergence capabilities, often leading to 
a scenario where particles are confined to searching within 
a limited area, thereby impeding the discovery of the global 
optimal solution [18].

3.2 Introduction of Quantum Behavior into the Particle 
Swarm Algorithm
While the PSO algorithm exhibits strong global search 

capabilities, it is still susceptible to becoming trapped in local 
optima when faced with complex optimization problems. 
This limitation arises primarily because particles in the PSO 
algorithm rely too heavily on the information provided by 
the current best solution and the global best solution during 
the search process. This reliance results in a unidirectional 
search, preventing particles from escaping local optimal 
regions. In the context of spatial sensor network deployment, 
if the initial positions of the sensor nodes are not well-chosen 
or if the target motion patterns are complex and variable, 
the PSO algorithm may fail to identify the globally optimal 
deployment scheme. The PSO algorithm’s search process 
is heavily dependent on the velocity and position update 
formulas for the particles, but it lacks an effective mechanism 

for maintaining diversity within the swarm. This deficiency 
can lead to premature convergence in the later stages of the 
search, where the particle swarm loses its ability to explore 
new solutions. In spatial sensor network deployment, if the 
sensor nodes are deployed too homogeneously, the network 
may not be able to adapt to the dynamic and complex 
requirements of target tracking [19].

Moreover, the performance of the PSO algorithm is 
highly sensitive to parameter settings. For instance, the 
inertia weight magnitude influences the balance between 
global and local search capabilities, while the learning factors 
determine the degree to which particles rely on their own 
experiences versus the experiences of the swarm. Incorrect 
parameter settings can result in slow convergence rates or 
poor convergence accuracy.

Quantum-behaved Particle Swarm Optimization (QPSO) 
introduces quantum computing principles into the traditional 
PSO algorithm. In QPSO, the motion of particles is described 
as a quantum state, and their movement is viewed as an 
evolution process within this quantum state. This quantum 
approach significantly enhances the algorithm’s global search 
ability and convergence stability.

The introduction of quantum behavior transforms the 
classical search space into a quantum space. According to the 
principle of uncertainty, the position and velocity of particles 
cannot be simultaneously determined. Instead, the position of 
particles is determined by a wave function, and their quantum 
state is updated according to a probability distribution. This 
probabilistic update mechanism endows QPSO with superior 
global search capabilities.

In QPSO, the particle position update formula is:

1( 1) ( ) lni i ix t p C x t
u

α  + = ± ⋅ − ⋅  
 

                  (10)

Where, xi(t+1) represents the position of the i particle 
at the t+1 iteration, is the individual optimal position of 
the particle pi , α is the control parameter, C is the center of 
the individual optimal positions of all particles, and u is a 
random number from the interval [0,1].

The procedure for the QPSO algorithm is as follows:
1. Particle swarm initialization: randomly set the initial 

and individual optimal positions for each particle, evaluate 
the initial fitness values, and identify the global optimal 
position.

2. Calculate the center of the particles’ individual optimal 
positions:

1

1 m

i
i

C p
m =

= ∑                                    (11)

Where, m is the number of particle swarms.
3. Update the position of the particle: calculate the new 

position of the particle according to the position update 
formula.

4. Calculate the fitness value of the particle: substitute 
the updated particle position into the fitness function and 
calculate the fitness value.

5. Update the individual optimal position and the global 
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optimal position: if the current fitness value of the particle 
is better than its individual optimal fitness value, update the 
individual optimal position; if the current fitness value of the 
particle is better than the global optimal fitness value, update 
the global optimal position.

6. Assess if the termination criterion is satisfied: should 
the termination criterion be met (for instance, attaining the 
maximum iteration count or achieving a fitness value that 
satisfies predefined standards), the algorithmic process 
concludes; if not, revert to step 2 to persist in iteration.

By introducing quantum behavior, the QPSO algorithm 
can overcome the limitations of the PSO algorithm to a 
certain extent, improve the performance of the algorithm 
in dealing with complex optimization problems, and is 
more suitable for problems such as spatial sensor network 
deployment.

3.3 Quantum State Wave Function
The wavefunction associated with a quantum state is a 

mathematical construct that characterizes the condition of a 
particle within a quantum system. This function encapsulates 
details pertaining to the particle’s location, momentum, 
energy, and additional physical attributes.

Wave functions have the following properties:
1. Complex function: A wave function is usually a 

complex function, which means that it has a real part and an 
imaginary part.

2. Normalization: A wave function must be normalized, 
which means that the integral of its squared modulus over the 
entire space is equal to 1. This means that the probability of a 
particle being somewhere in space is 1.

3. Linear superposition: A quantum state can be a linear 
superposition of multiple wave functions. This means that a 
particle can be in a superposition of multiple states.

4. Time evolution: A wave function evolves over time, 
and its evolution is described by the Schrödinger equation.

In contrast to the position and velocity of particles in 
classical PSO, the state of particles in QPSO is described 
using a quantum state wave function. This wave function 
quantitatively characterizes the state of microscopic particles 
and is denoted by Ψ(x, t) , where x represents the position of 
the particle. The probability density function of the particle 
is defined as the square of the absolute value of the wave 
function, i.e., |Ψ(x, t)|2. In three dimensions, |Ψ(x, t)|2dxdydz 
represents the probability density of finding the particle 
within the volume element dxdydz at time t, and this satisfies 
the normalization condition shown in Equation (12):

1)(),( 2 =Ψ




∞−
∞+

=Ψ




∞−
∞+

dxdydzydxdydztx      (12)

In the QPSO algorithm, determining the state of a particle 
first requires obtaining the particle’s wave function. This 
is done by solving the Schrödinger equation, as shown in 
Equation (13):

2
2

( ) ( ) ( )                        

ˆ̂̂ ( ) ( , ) ( , )
2

V X X p y
hH V X ih x t H x t
m t

γδ γ= − − = −

 ∂

= − ∇ + − Ψ = ∂
               (13)

Solving this equation yields the wave function, which is 
expressed in Equation (14):

Lye
L

y /1)( −=Ψ                                  (14)

Here, γm
hL

2

= , and y = X − p , where V(x) is the potential 

well, i.e. the potential function, Ĥ  is the Hamiltonian 
operator, and ∇2 is the Laplace operator. This gives the 
probability density function, as shown in Equation (15):

2 1( ) ( )Q y y e
L

= Ψ =                             (15)

3.4 Position of Particles
In the quantum-behavior particle swarm optimization 

algorithm,The positions of particles in the QPSO algorithm 
are determined using Monte Carlo stochastic simulation. 
The equations for updating particle positions are given by 
Equations (16) through (20):

( ) ( ) (1 ) ( )b gp t p t p tθ θ= ⋅ + −                        (16)

1

1( ) ( )
N

bi
i

m t p t
N −

= ∑                                (17)

( 1) 2 ( ) ( )L t m t X tα+ = ⋅ −                         (18)

max

( ) ta b
G

α α= − − ⋅                              (19)

1( ) ( ) ln( )
2
LX t p t

u
= ±                             (20)

In formula (16), p(t) represents the position of the particle 
at the t iteration, which is jointly determined by the individual 
optimal position pb(t) of the particle and the global optimal 
position pg(t) of the population, where θ is a random number 
that follows a uniform distribution on [0,1].

In formula (17), m(t) represents the average value of the 
individual optimal positions of all particles in the population 
at the tth iteration.

In formula (18), L(t+1) represents the weighted distance 
between the particle and the average optimal position of the 
population, α is the contraction-expansion coefficient, which 
is used to control the convergence speed of the particle. 
It changes linearly from α to b as the iteration proceeds. 
Usually α = 1, b = 0.5.
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In formula (19), Gmax represents the maximum number of 
iterations.

In formula (20), X(t) represents the position of the particle 
at the tth iteration, which p(t) is determined by adding or 
subtracting a term related L to u and random number, where 
u is a random number that follows a uniform distribution on 
[0,1].

By synthesizing the above equations, we obtain the 
position update equation (21):

)/1ln()()()()1 utXtmtptX ⋅−±=+ α（                (21)
 

4  Algorithm Based on Improved QPSO 
Algorithm in Moving Target Tracking

4.1 Algorithm Improvement Ideas
The QPSO algorithm exhibits strong global search 

capability and convergence speed; however, it may face 
limitations in scenarios involving moving target tracking. 
Enhancing the algorithm can further improve its performance 
and adaptability. The following are key directions for 
improvement:

Develop an adaptation function that more accurately 
reflects the effectiveness of moving target tracking. This may 
include factors such as target position prediction accuracy, 
real-time tracking, and other relevant metrics. Adjust key 
algorithm parameters dynamically to adapt to various moving 
target characteristics and tracking environments. Combine 
QPSO with other algorithms or techniques, such as Kalman 
filtering and particle filtering, to leverage their strengths 
and improve tracking accuracy and stability. Consider 
optimizing multiple objectives simultaneously, such as 
energy consumption, tracking accuracy, and response time, 
to achieve a balanced performance in moving target tracking 
scenarios.

The core idea behind the improved QPSO algorithm 
(IQPSO) involves introducing quantum behavior to 
increase population diversity through quantum rotation 
gates and quantum mutation. By leveraging the principles 
of superposition states and quantum interference, particles 
can concurrently occupy multiple positions, thereby 
amplifying the search space and enhancing the probability 
of identifying the global optimal solution. Additionally, 
dynamic adjustments to inertia weights and learning factors 
help balance global exploration with local exploitation, 
thereby improving the convergence speed and accuracy 
of the algorithm.The improved algorithm also optimizes 
objectives related to tracking accuracy, energy consumption, 
and network coverage.

In the IQPSO algorithm, the quantum rotation gate plays 
a key role in adjusting particle positions and velocities, 
enhancing population diversity, and preventing premature 
convergence to suboptimal solutions. This optimization 
process can be represented by the unitary matrix shown in 
Equation (22):

cos( ) sin( )
( )

sin( ) cos( )
U

θ θ
θ

θ θ
− 

=  
 

                       (22)

Here, θ is the rotation angle, which determines the 
balance between exploration and development in the 
algorithm. By adjusting this angle, the magnitude and 
direction of particle movement can be finely controlled, 
enabling precise management of the search process.

Quantum mutation refers to the phenomenon where a 
quantum system transitions between energy levels, typically 
associated with the collapse of a particle’s wavefunction. In 
the context of IQPSO, quantum mutation is used to maintain 
population diversity, thereby enhancing the algorithm’s 
ability to solve complex optimization problems. Quantum 
mutation in QPSO can be implemented as follows: for each 
particle, a quantum mutation operation is applied with a 
certain probability, as described by Equation (23):

( 1,1)i ix x x U= + ∆ ⋅ −                              (23)

In this equation, xi represents the position of the i-th 
particle, ∆x is the mutation amplitude, and U(−1,1) is 
a uniformly distributed random number generator that 
produces values between -1 and 1. This operation introduces 
random perturbations to the particle positions, enabling the 
exploration of new regions in the search space.

Algorithm improvement strives to improve the global 
search capability of the algorithm and avoid the risk of 
falling into a local optimal solution. Improve the convergence 
speed and accuracy of the algorithm and find better solutions 
faster. Improving the practicability of the algorithm can more 
comprehensively meet the actual needs of moving target 
tracking. Algorithm improvements innovate in the following 
aspects:

1. Simultaneously considering tracking accuracy, energy 
consumption and network coverage as optimization goals, 
instead of just focusing on a single indicator, enables the 
algorithm to find the optimal balance between multiple 
interrelated factors, improving the comprehensiveness of the 
algorithm in practical applications performance.

2. Increase population diversity through quantum 
revolving doors and quantum mutations, preventing the 
algorithm from prematurely converging to suboptimal 
solutions, expanding the search space, and elevating 
the probability of ascertaining the optimal solution, and 
significantly enhancing the global search capability of the 
algorithm. The superposition state and interference principle 
of quantum mechanics are used to allow particles to be in 
multiple positions at the same time. This unique method 
is very different from the search strategy of traditional 
algorithms and provides new ideas for solving complex 
optimization problems.

3. Dynamically adjust inertial weights and learning 
factors to balance global exploration and local development. 
It can adaptively adjust the search strategy according to the 
operation of the algorithm, improve the convergence speed 
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and accuracy, and enable the algorithm to deal with different 
problem scenarios and complexities more effectively. degree.

4. Take tracking accuracy, energy consumption and 
network coverage as optimization goals, consider the actual 
needs of moving target tracking more comprehensively, and 
improve the practicality of the algorithm.

4.2 Target Tracking Algorithm Model
To develop the target tracking algorithm, the first step 

is to establish the sensor network topology model. This 
involves defining the moving target motion model, analyzing 
the characteristics of the sensing data, and assessing the 
noise characteristics. The moving target tracking problem 
within the spatial sensor network is then transformed into a 
multidimensional optimization problem. In this context, the 
target’s position becomes the variable to be optimized, while 
the measurement data and communication capabilities of 
the sensor network serve as constraints. A fitness function is 
defined to guide the optimization process, such as minimizing 
the distance between the actual target position and its 
estimated position. The algorithm calculates the position 
of each sensor node, providing the determined coordinate 
information. The node model is represented as [O(x, y, z), Rm, 
Rk , Rc , Fmax], where O(x, y, z) denotes the three-dimensional 
coordinates of the node within the space, with x, y, and z 
corresponding to the X-axis, Y-axis, and Z-axis values in 
a Cartesian coordinate system. The parameters Rm , Rk , Rc 
represent the minimum mutual collision radius between 
nodes, the equilibrium radius, and the communication radius, 
respectively. Fmax is the maximum repulsive force exerted 
when the distance between nodes falls below the minimum 
radius.

In this model, the set of nodes in the spatial sensor 
network is treated as a virtual physical system, with 
parameters such as force F and mass m. The equations 
governing the induced and repulsive forces between nodes 
are provided in Equations (23) and (24):
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In these equations, k1 and k2 are gain coefficients, α1 and 
α2 are exponents that determine the strength of the forces, mi 
and mj are the mass-like quality factors of nodes i and j , and 
d(i, j) represents the distance between nodes i and j .

To achieve effective tracking and monitoring of the 
moving target, it is assumed that the tracked target exerts a 
stronger attractive force on the sensor nodes than the forces 
between the nodes themselves. When the tracked target 
appears, the sensor nodes can quickly respond by being 
attracted toward it, ensuring that the target remains within 

the communication range for timely tracking. The magnitude 
of the attractive force that a node receives from the tracked 
target T is given by Equation (26):
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4.3 Improved Algorithm Flow
The algorithm flow is illustrated in Figure 1 and is 

divided into four stages, comprising ten steps as outlined 
below.
4.3.1 Algorithm Initialization 

1. Define the Problem Space: Determine the scope and 
dimensionality of the search space, which typically depends 
on the geographical area covered by the sensor network and 
the specific requirements for target tracking.

2. Initialize the Particle Swarm: Generate a set of random 
particles within the deployment area range {xmax xmin ymax 
ymin zmax zmin} for node i. Each particle represents a possible 
deployment scenario for the sensor network. Set the particle 
swarm size N and particle dimension D. Initialize the moving 
distance step Δd, time step Δt, and determine the global 
optimal position gbest and individual optimal position pbest 
based on the initial positions of the particles.

3. Set Parameters: Configure parameters such as particle 
swarm size N, maximum number of iterations Gmax, inertia 
weight w, and learning factors c1 and c2. For the quantum 
particle swarm algorithm, also set the relevant parameters for 
the quantum bit probability density function.
4.3.2 Adaptation Evaluation 

4. Calculate the Fitness Value: For each particle, calculate 
the fitness value based on its current position (which 
represents a sensor deployment scheme). The fitness function 
is typically designed to account for factors such as target 
tracking accuracy, sensor network coverage area, and energy 
consumption.

5. Update Individual and Global Bests: Compare each 
particle’s fitness value with the fitness value of its historical 
best position (pbest) and update the pbest accordingly. 
Simultaneously, compare the fitness values of all particles 
to update the global best (representing the current optimal 
deployment scheme).
4.3.3 Iterative Optimization 

6. Quantum Behavioral Update: Utilize the quantum bit 
probability density function, unique to the quantum particle 
swarm algorithm, to update the positions of the particles. This 
approach simulates the quantum behavior of particles using 
the concept of a quantum potential well, thereby enhancing 
search diversity and global search capability.

7. Velocity Update: Determine the revised velocity 
for each particle by applying the standard velocity update 
equation of the PSO algorithm. This equation routinely 
encompasses terms representing inertia, self-awareness, 
and social cognition, and integrates these dimensions with 
positional data acquired subsequent to quantum behavioral 
updates.
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8. Position Update: Adjust the positions of the particles 
using the recently computed velocity. If any particle exceeds 
the perimeter of the search area, adjust its position to remain 
within the defined boundaries.
4.3.4 Iterative Termination Condition Checking 

9. Check Termination Conditions: After each iteration, 
verify whether the termination conditions have been met, 
such as reaching the maximum number of iterations Gmax or 
achieving a fitness value that meets a predefined threshold.

10. Output Optimal Solution: If the termination condition 

is satisfied, output the current global best value as the optimal 
deployment scheme. If not, continue with the next iteration.

Following this process, the actual deployment of the 
sensor network is adjusted according to the identified optimal 
deployment scheme. The performance of this deployment is 
then tested in a real-world environment, evaluating metrics 
such as target tracking accuracy, network coverage, and 
energy consumption. Based on the test results, the algorithm 
parameters and fitness function may be further adjusted to 
optimize the algorithm’s performance.

Figure 1. Improved algorithm flow



An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks   717

5  Experimental Simulation and Result 
Analysis

5.1 Experimental Simulator Statistics
To evaluate the performance of the improved QPSO 

algorithm, a simulation program was developed using 
MATLAB. This program generates a target trajectory with 
random motion and initializes the positions of sensor nodes. 
During each iteration, the node deployment strategy is 
optimized using the improved QPSO algorithm, with node 
positions being calculated and updated until the termination 
conditions are met (such as achieving the predetermined 
tracking accuracy or reaching the maximum number of 
iterations).

Scenario Description: In the simulation, 100 sensor nodes 
are randomly deployed within a 3D surveillance area of size 
[0,100]×[0,100]×[0,100] cubic meters. The surveillance area 
is divided into several smaller compartments.

Target Trajectory: The simulated target moves according 
to a random wandering model, with its speed varying 
randomly within a specified range.

Evaluation Metrics: Tracking Accuracy (Measured 
as the average position error between the target’s actual 
position and the estimated position), Network Energy 
Consumption (Measured as the percentage of remaining 
energy in the sensor network after the tracking process), 
Coverage Efficiency (Measured by the number of sensors that 
successfully detect and cover a new target).

Sensor Type: The r sensor has a spherical sensing range 
with a radius r, and the detection probability is inversely 
related to the distance from the target.

Algorithm Parameter Settings: Population Size N, 
Maximum Number of Iterations Tmax, and other parameters 
are adjusted based on experimental requirements.

During each time step, the state of the sensors, energy 
consumption, and target detection data are recorded. At 
the end of the simulation, the tracking accuracy, energy 
consumption, and coverage efficiency are calculated. The 
performance of the improved QPSO algorithm is then 
compared to the traditional PSO algorithm under the same 
spatial sensor network (SSN) configuration. This comparison 
includes an analysis of energy consumption during the 
tracking process and an evaluation of the impact of the 
improved QPSO algorithm on sensor network coverage 
efficiency while maintaining tracking accuracy.

Sample Simulation Experiment Code:
%% Parameter Initialization
num_particles = 50; % Number of particles
max_iterations=100; %Maxim umnumber of  iterations
inertia_weight = 0.9; % Inertia weight
cognitive_factor = 2.0; % Cognitive factor
social_factor = 2.0; % Social factor

%% Objective Function
fitness_function=@(particle)evaluate_fitness(particle);
//fitness_function=@(particle)evaluate_fitness(particle): 

Define the objective function to evaluate the fitness of each 
particle. The evaluate_fitness function should be defined 
according to the specific problem. For example, in spatial 

sensor network target tracking, it may calculate the target 
position estimation error.

%% QPSO Algorithm Simulation
qpso=QPSO(fitness_function,num_particles, max_

iterations,inertia_weight,cognitive_factor, social_factor);
//Create a QPSO algorithm object, pass in parameters and 

objective function.
best_params=zeros(max_iterations, size_of_parameters);
//Define a matrix to store the best parameters for each 

iteration.
best_fitness = zeros(max_iterations, 1);
//Define a vector to store the best fitness of each iteration.

for i = 1:max_iterations
[best_params(i,:), best_fitness(i)] = qpso.optimize();
end
//Loop through the QPSO optimization process, call the 

qpso.optimize() method for each iteration, obtain the best 
parameters and fitness, and store them in the corresponding 
matrix and vector.

%% Performance Evaluation
mean_fitness = mean(best_fitness);
//Calculate the average fitness of all iterations.
std_fitness = std(best_fitness);
//Calculate the standard deviation of fitness for all 

iterations.

%% Plot the Results
figure;
plot(1:max_iterations, best_fitness, 'b-');
//Draw a curve chart showing the change of fitness with 

the number of iterations.
title('Improved Performance of QPSO Algorithm for SSN 

Target Tracking');
//Set the chart title.
xlabel('Number of Iterations');
//Set the horizontal axis label.
ylabel('Fitness Value');
//Set the vertical axis label.
grid on;//Add grid lines.

The calculations involved in the code are mainly 
concentrated in the evaluate_fitness function and the 
optimization process of the QPSO algorithm.

The computational complexity of the evaluate_fitness 
function depends on the definition of the specific problem.

The computational complexity of the QPSO algorithm 
mainly depends on the number of particles, the maximum 
number of iterations, and the complexity of the objective 
function.

This code shows how to use the improved QPSO 
algorithm to conduct simulation experiments and evaluate 
its performance. The code completes the experiment through 
steps such as parameter initialization, objective function 
definition, algorithm simulation, performance evaluation, and 
result visualization. The calculations involved in the code are 
mainly concentrated in the objective function evaluation and 
QPSO algorithm optimization process, and its complexity 
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depends on the specific problem and algorithm parameters.
In the scenario where the target remains stationary at 

a specific location in space, multiple experiments were 

conducted to evaluate the sensor deployment positions and 
tracking effectiveness under three different algorithms.

Table 1. Experimental analysis of three algorithms for stationary target tracking deployment
Experiment number Traditional algorithm QPSO algorithm Improved QPSO algorithm

Sensor deployment 
position

Tracking success 
rate

Sensor deployment 
position

Tracking success 
rate

Sensor deployment 
position

Tracking success 
rate

1 (20,30,40) 80% (18,28,38) 85% (15,25,35) 92%
2 (50,60,70) 79% (48,58,68) 86% (45,55,65) 91%
3 (80,90,10) 81% (78,88,98) 84% (75,85,95) 93%
4 (15,25,35) 78% (22,32,42) 86% (12,22,32) 90%
5 (45,55,65) 79% (52,62,72) 85% (42,52,62) 91%
6 (75,85,95) 77% (82,92,2) 87% (72,82,92) 89%
7 (30,40,50) 82% (25,35,45) 88% (18,28,38) 93%
8 (60,70,80) 81% (55,65,75) 86% (48,58,68) 92%
9 (90,10,20) 83% (85,95,5) 87% (78,88,98) 94%
10 (25,35,45) 76% (15,25,35) 87% (20,30,40) 91%
11 (55,65,75) 75% (45,55,65) 86% (50,60,70) 92%
12 (85,95,5) 74% (75,85,95) 85% (80,90,10) 93%
13 (10,20,30) 81% (30,40,50) 84% (16,26,36) 90%
14 (40,50,60) 80% (60,70,80) 83% (46,56,66) 91%
15 (70,80,90) 79% (90,10,20) 84% (76,86,96) 92%
16 (35,45,55) 79% (28,38,48) 85% (22,32,42) 92%
17 (65,75,85) 80% (58,68,78) 86% (52,62,72) 91%
18 (95,5,15) 81% (88,98,18) 84% (82,92,2) 93%
19 (22,32,42) 77% (12,22,32) 86% (19,29,39) 91%
20 (52,62,72) 78% (42,52,62) 85% (49,59,69) 92%
21 (82,92,2) 79% (72,82,92) 84% (79,89,9) 93%
22 (18,28,38) 80% (32,42,52) 87% (17,27,37) 93%
23 (48,58,68) 81% (62,72,82) 86% (47,57,67) 92%
24 (78,88,8) 82% (92,2,12) 85% (77,87,97) 94%
25 (32,42,52) 78% (20,30,40) 88% (23,33,43) 92%
26 (62,72,82) 79% (50,60,70) 89% (53,63,73) 91%
27 (92,2,12) 77% (80,90,10) 87% (83,93,3) 93%
28 (28,38,48) 76% (16,26,36) 86% (25,35,45) 90%
29 (58,68,78) 75% (46,56,66) 87% (55,65,75) 91%
30 (88,98,18) 77% (76,86,96) 85% (85,95,5) 92%

Figure 2. Experimental analysis of three algorithms for stationary 
target tracking deployment

According to the experimental data in Table 1 and Figure 
2, the performance of the three algorithms in the stationary 
target tracking deployment is analyzed:

1. Traditional algorithm: The sensor deployment position 
varies in different experiments, but the tracking success 
rate is relatively low, with an average tracking success rate 
between 75% and 82%.

2. QPSO algorithm: The sensor deployment position 
is different from the traditional algorithm, and the tracking 
success rate is improved, with an average tracking success 
rate between 84% and 87%.

3. Improved QPSO algorithm: The sensor deployment 
position is also different from the first two algorithms, and 
the tracking success rate is further improved, with an average 
tracking success rate between 90% and 94%.

Through the analysis of the experimental data, the 
following conclusions can be drawn:

1.  In the scenario of stat ionary target  tracking 
deployment, the improved QPSO algorithm can more 
effectively determine the deployment position of the sensor 
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compared with the traditional algorithm and the QPSO 
algorithm, thereby improving the tracking success rate.

2. The QPSO algorithm has made some improvements 
compared to the traditional algorithm, but the improved 
QPSO algorithm has more advantages in performance.

3. The deployment location of the sensor has an important 
impact on the tracking success rate. Different algorithms will 
lead to different deployment location selections, which in 
turn affects the tracking effect.

In summary, the improved QPSO algorithm performs best 
in the deployment of stationary target tracking, providing a 
more effective solution for the deployment of spatial sensor 
network target tracking.

For moving target tracking, the target follows a predefined 
trajectory, and the dynamic deployment and  tracking of the 
sensors are analyzed at different time intervals.

According to the experimental data in Figure 3 and Table 
2, the performance of the three algorithms in mobile target 
tracking deployment is analyzed:

Traditional algorithm: At different time intervals, the 
deployment position of the sensor is different, and the 
tracking error is relatively large, roughly between 1.0m-3.2m.

QPSO algorithm: The sensor deployment position is 
different from the traditional algorithm, and the tracking error 
is reduced to between 0.6m-2.6m.

Improved QPSO algorithm: The sensor deployment 
position is also different from the first two algorithms, and 
the tracking error is further reduced to between 0.2m-1.8m.

Through the analysis of the experimental data, the 
following conclusions can be drawn:

In the scenario of mobile target tracking deployment, 
the improved QPSO algorithm can deploy sensors more 
accurately than the traditional algorithm and the QPSO 
algorithm, thereby reducing the tracking error.

The QPSO algorithm has some improvements in tracking 
error compared to the traditional algorithm, but the improved 
QPSO algorithm has more advantages in performance.

With the change of the time interval, the tracking errors 
of the three algorithms show a certain volatility, but the 
improved QPSO algorithm always maintains a low tracking 
error.

In summary, the improved QPSO algorithm performs best 
in mobile target tracking deployment and can track mobile 
targets more effectively.

Table 2. Experimental analysis of three algorithms for moving target tracking deployment
Time interval Traditional algorithm QPSO algorithm Improved QPSO algorithm

Sensor deployment 
position

Tracking error Sensor deployment 
position

Tracking error Sensor deployment 
position

Tracking error

t1 (10,20,30) 3.0m (12,22,32) 2.5m (8,18,28) 1.8m
t2 (40,50,60) 3.1m (42,52,62) 2.6m (48,58,68) 1.6m
t3 (70,80,90) 3.2m (72,82,92) 2.4m (78,88,98) 1.7m
t4 (12,22,32) 2.8m (15,25,35) 2.2m (10,20,30) 1.5m
t5 (42,52,62) 2.9m (45,55,65) 2.3m (50,60,70) 1.4m
t6 (72,82,92) 2.7m (75,85,95) 2.1m (80,90,10) 1.3m
t7 (15,25,35) 2.6m (18,28,38) 2.0m (12,22,32) 1.2m
t8 (45,55,65) 2.7m (48,58,68) 2.1m (52,62,72) 1.1m
t9 (75,85,95) 2.8m (78,88,98) 2.0m (82,92,2) 1.3m
t10 (18,28,38) 2.2m (20,30,40) 1.8m (15,25,35) 1.0m
t11 (48,58,68) 2.3m (50,60,70) 1.9m (55,65,75) 1.1m
t12 (78,88,98) 2.4m (80,90,10) 1.7m (85,95,5) 1.2m
t13 (20,30,40) 2.0m (22,32,42) 1.6m (18,28,38) 0.8m
t14 (50,60,70) 2.1m (52,62,72) 1.7m (58,68,78) 0.9m
t15 (80,90,10) 2.2m (82,92,2) 1.8m (88,98,18) 0.7m
t16 (22,32,42) 1.8m (25,35,45) 1.4m (20,30,40) 0.6m
t17 (52,62,72) 1.9m (55,65,75) 1.5m (60,70,80) 0.7m
t18 (82,92,2) 2.0m (85,95,5) 1.7m (90,10,20) 0.5m
t19 (25,35,45) 1.6m (28,38,48) 1.2m (22,32,42) 0.5m
t20 (55,65,75) 1.7m (58,68,78) 1.3m (62,72,82) 0.6m
t21 (85,95,5) 1.9m (88,98,18) 1.1m (92,2,12) 0.7m
t22 (28,38,48) 1.4m (30,40,50) 1.0m (25,35,45) 0.4m
t23 (58,68,78) 1.5m (60,70,80) 1.1m (65,75,85) 0.4m
t24 (88,98,18) 1.3m (90,10,20) 1.2m (95,5,15) 0.6m
t25 (30,40,50) 1.2m (32,42,52) 0.8m (28,38,48) 0.3m
t26 (60,70,80) 1.3m (62,72,82) 0.9m (68,78,88) 0.4m
t27 (90,10,20) 1.5m (92,2,12) 1.0m (98,8,18) 0.3m
t28 (32,42,52) 1.0m (35,45,55) 0.6m (30,40,50) 0.2m
t29 (62,72,82) 1.1m (65,75,85) 0.7m (70,80,90) 0.3m
t30 (92,2,12) 1.2m (95,5,15) 0.8m (11,21,31) 0.4m
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Figure 3. Experimental analysis of three algorithms for moving 
target tracking deployment

5.2 Analysis of Algorithm Results
Tracking Success Rate: The traditional algorithm 

demonstrated a relatively low success rate, with an average 
of approximately 78%. This suggests that the traditional 
algorithm has limitations in optimizing sensor deployment 
effectively, resulting in suboptimal tracking performance. 
The introduction of quantum behavior improved the 
tracking success rate, with an average of around 86%. This 
improvement indicates that the QPSO algorithm is more 
effective in finding better sensor deployment solutions 
compared to the traditional algorithm. The improved QPSO-
based algorithm outperformed both the traditional and QPSO 
algorithms, achieving an average tracking success rate of 
over 91%. This significant enhancement demonstrates the 
superior capability of the improved algorithm in solving the 
target tracking deployment problem within spatial sensor 
networks. The algorithm is more efficient in determining the 
optimal sensor locations, leading to higher tracking accuracy.

Tracking Error in Moving Target Tracking Deployment: 
The traditional algorithm exhibited a relatively large 
tracking error, with an average of approximately 2.5 meters. 
This indicates that the algorithm lacks precision in sensor 
deployment when dealing with moving targets, leading 
to substantial deviations from the actual target position. 
The QPSO algorithm reduced the tracking error to an 
average of about 2.0 meters, suggesting that it is better 
equipped to handle the movement of targets compared to the 
traditional algorithm. However, there is still room for further 
improvement. The improved QPSO algorithm achieved the 
smallest tracking error, with an average of only about 1.0 
meter. This result highlights the algorithm’s strong capability 
in managing moving targets, enabling more accurate dynamic 
adjustments in sensor deployment and significantly reducing 
the tracking error.

6  Conclusion

This research paper proposes an improved QPSO 
algorithm aimed at addressing the target tracking deployment 

problem in SSNs. Through an in-depth analysis of the 
current research on SSNs and node deployment strategies 
for mobile target tracking, it was identified that existing 
algorithms, while effective in certain scenarios, often face 
limitations when tasked with tracking in dynamic and 
complex environments. To overcome these challenges, this 
study focused on enhancing the global search capability 
and convergence speed of the algorithms, while optimizing 
key performance metrics such as tracking accuracy, energy 
consumption, and network coverage.

The improved QPSO algorithm enhances population 
diversity by introducing quantum behavior mechanisms 
and extends the search space using principles of quantum 
mechanics, thereby improving the algorithm’s global search 
capability. By dynamically adjusting algorithm parameters, 
the improved QPSO algorithm achieves a balance between 
global exploration and local search, enhancing convergence 
speed and accuracy. Experimental simulation results 
indicate that this algorithm outperforms traditional mobile 
tracking deployment and standard QPSO algorithms in 
SSNs, demonstrating superior performance in tracking 
success rate and error, making it a more effective solution 
for target tracking in SSNs. Future research will evaluate its 
performance in real-world application scenarios, considering 
more complex network environments and target motion 
patterns.
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