
An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 709

*Corresponding Author: Xincan Fan; E-mail: horsefxc@szpu.edu.cn
DOI: https://doi.org/10.70003/160792642024092505006

An Improved Quantum Particle Swarm Optimization Algorithm for
Target Tracking Deployment in Spatial Sensor Networks

Lisha Liu, Xincan Fan*

Department of Integrated Circuits, Shenzhen Polytechnic University, China
liulisha@szpu.edu.cn, horsefxc@szpu.edu.cn

Abstract

This paper presents a comprehensive review of the
current research on spatial sensor networks and the node
deployment methods employed for mobile target tracking.
The study introduces particle swarm optimization (PSO)
and its quantum behavior extension, detailing concepts such
as the quantum state wave function and particle position
representation. Subsequently, an improved Quantum Particle
Swarm Optimization (QPSO) algorithm is proposed.
This enhanced algorithm increases population diversity
by incorporating quantum rotation gates and quantum
mutation mechanisms, expands the search space through the
superposition state and interference principles of quantum
mechanics, and dynamically adjusts algorithm parameters
to balance global exploration and local search. These
modifications aim to improve both the convergence speed and
accuracy of the algorithm. Simulation results demonstrate
that the improved QPSO algorithm surpasses traditional
mobile tracking deployment algorithms and the standard
quantum behavior particle swarm optimization algorithm
in terms of target tracking deployment within spatial sensor
networks. Notably, it significantly enhances the tracking
success rate and reduces tracking errors.

Keywords: Spatial sensor network, Target tracking, Node
deployment, Quantum particle swarm optimization algorithm

1 Introduction

Spatial sensor networks consist of numerous micro-sized,
low-power-consumption, low-cost sensor nodes deployed
within a monitored environment. These nodes form a
dynamic distributed network through wireless communication
in an ad hoc manner, enabling environmental monitoring
and data acquisition. Each node possesses capabilities in
sensing, processing, and communication, allowing them
to autonomously and cooperatively complete monitoring
tasks. Multi-target tracking technology within spatial sensor
networks aims to monitor and track the position, state, and
trajectory of multiple target objects in real-time with high
accuracy through the collaboration of multiple sensor nodes.

Significant progress has been made in multi-target
tracking, data association, and fusion within spatial sensor

networks. Target detection and tracking leverage the sensors
within nodes to detect the appearance and movement of
targets, and to track real-time positional changes through
target prediction and path planning. Commonly used tracking
algorithms include particle filtering, Kalman filtering, and
data association. However, challenges remain, such as
the complexity of data association, communication costs,
resource limitations, the adaptability of limited fields of view,
and the robustness and accuracy of algorithms in practical
applications. Current research focuses on cooperative sensing
and data fusion, utilizing multi-node cooperation to enhance
monitoring range and accuracy. Data fusion algorithms, such
as Bayesian estimation and neural networks, are employed
to combine data collected by each node, reduce noise, and
improve signal quality.

Numerous universities and research institutions have
conducted studies on the deployment of spatial sensor
nodes and target tracking technology, proposing various
improved methods such as computational geometry, heuristic
algorithms, and grid deployment methods.

Recent studies have explored various algorithms and
techniques for improving target tracking in spatial sensor
networks. For instance, Ramadevi et al. proposed a meta-
heuristic aided target movement prediction scheme using
adaptive distributed extended Kalman filtering to enhance
mobility target tracking in Wireless Sensor Networks (WSNs)
[1]. Feng et al. proposed a PSO algorithm based on modified
crowding distance for multimodal multi-objective problems,
demonstrating the versatility of PSO in different application
domains [2]. Ye and Dong presented an ensemble algorithm
based on adaptive chaotic quantum-behaved particle swarm
optimization with Weibull distribution and hunger games
search, highlighting the potential of QPSO in financial
applications [3]. Similarly, Hu et al. proposed an energy-
efficient clustering and routing protocol based on QPSO and
fuzzy logic for WSNs, emphasizing the algorithm’s efficacy
in network optimization [4].

This research contributes to the growing field of
optimization algorithms inspired by quantum mechanics
and swarm intelligence. It builds on previous work, such
as the application of QPSO in forest cover prediction
[5]. Furthermore, it complements research on other
swarm optimization algorithms, such as the chicken
swarm optimization algorithm [6]. To strike a balance
between global exploration and local search, the algorithm

710 Journal of Internet Technology Vol. 25 No. 5, September 2024

dynamically adjusts its parameters. This adaptability ensures
that the search process is both efficient and effective, leading
to improved convergence speed and accuracy and various
other domains where QPSO has shown promise and the
glowworm swarm optimization algorithm, by offering a novel
approach to target tracking deployment in spatial sensor
networks.

2 Target Tracking in Space Sensor
Networks

2.1 Current Research on Space Sensor Networks
Current research in space sensor networks, particularly

regarding target tracking, builds upon advancements in
wireless sensor networks and their applications in various
domains.

One study, conducted by a team including Tao, Luo
Jianpeng, Xie, Bai Tao, Zhang, Yao, Zhang, Chaoqun, and
Li, focuses on an improved energy-efficient clustering
routing scheme for industrial wireless sensor networks. This
research employs a Levy chaotic particle swarm optimization
algorithm to enhance the performance of the sensor network
[7]. Another significant contribution to the field is a study by
Xiao Jiang Du and Xiao Hua Chen, which explores wireless
sensor network security [8]. Published in IEEE Wireless
Communications, this research delves into the security
aspects of wireless sensor networks, highlighting potential
vulnerabilities and proposing solutions to mitigate security
risks. Ensuring the security of space sensor networks is
essential for accurate and reliable target tracking, as any
compromise in security could lead to inaccurate data or even
system failures [9].

The research on target tracking within space sensor
networks encompasses a wide range of topics, including
algorithm optimization, data association and fusion, resource
management, multi-target tracking, and three-dimensional
(3D) space tracking. Current efforts in target tracking
algorithms are primarily focused on enhancing tracking
efficiency and accuracy. Researchers are continuously seeking
algorithms capable of processing large volumes of sensor
data swiftly while accurately predicting target locations. In
dynamic environments, these algorithms must be both real-
time and robust to meet the application requirements of
complex scenarios [10].

2.2 Node Deployment Based on Moving Target Tracking
Node deployment algorithms for mobile target tracking

represent a complex problem that spans multiple fields and
technologies. The primary objective is to optimize the layout
and performance of a sensor network or tracking system to
ensure accurate tracking of a moving target. Moving target
tracking is key to ensuring efficient network monitoring and
response. This process begins by establishing a network
model, which defines the network topology, including
node locations, communication ranges, and other relevant
parameters [11]. Additionally, a motion model of the target is
established, describing its trajectory and speed, along with a
sensing model for the nodes, which includes factors such as
detection range and accuracy [12].

In order to effectively track mobile targets, sensor nodes
need to be deployed reasonably so that relevant data can
be obtained in a timely manner when the target moves. In
target tracking applications, once a target is detected, the
focus shifts from the coverage quality of the entire detection
area to the coverage quality of the path the moving target is
expected to traverse. This involves calculating the probability
that a moving target will be detected as it moves through the
node deployment area along any potential path. A critical
challenge is how to maximize this coverage by establishing
constraints that ensure every point within the monitoring area
is covered by at least one sensor node [13]. This seamless
monitoring also requires that sensor nodes maintain effective
communication with each other, enabling the transmission of
collected data to the aggregation node or processing center,
which is a key focus of this paper.

Assume the target location is ()V t


=(xT(t), yT(t), zT(t)),

Speed is ()V t


=(vx(t), vy(t), vz(t)), The position of the target in
the future can be predicted using the following formula:

))()()(ttVtTttT ∆×+=∆+
→→→ (1)

Through this formula, the future position of the target can
be predicted based on its current position and speed, which is
of great significance for achieving effective target tracking.

For the optimization of node deployment, a fitness
function can be defined to evaluate the advantages and
disadvantages of node deployment schemes, as shown in
formula:

1 1
1 2 3F w Cov w EC w L− −= × + × + × (2)

Among them:
• Cov represents the coverage of sensor nodes,

reflecting the sensor network’s ability to perceive the
target.

• EC represents the energy consumption of sensor
nodes, reflecting the operating efficiency of the
sensor network.

• L represents the average distance between sensor
nodes, reflecting the topological structure and
communication efficiency of the sensor network.

• w1, w2, w3 are weight coefficients used to adjust the
degree of influence of different factors on the fitness
function.

By comprehensively considering these factors, the
optimal node deployment scheme can be selected to improve
the performance and efficiency of the spatial sensor network
[14].

2.3 Autonomous Deployment Based on Complex Paths
In spatial sensor networks, the movement of targets

along complex paths poses great challenges for tracking
deployment. Complex paths may have varying directions,
different speeds, and irregular shapes.

For this situation, accurate modeling and feature
extraction of complex paths are first required. Mathematical
models such as polynomial curve fitting and spline curves

An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 711

can be used to approximate the motion path of the target. At
the same time, based on the historical movement data of the
target and current environmental factors, predict its possible
future direction. To effectively describe complex paths, the
following models can be used:

Polynomial model: Use polynomial functions to fit the
motion trajectory of the target, for example:

1
1 1 0() ...n n

n nP t a t a t a t a−
−= + + + + (3)

Among them, ai is the coefficient of the polynomial, and t
is the time variable.

Bezier curve: it is a curve representation method widely
used in computer graphics and related fields suitable for
describing smooth and complex paths, with the following
formula:

,
0

() ()
n

i i n
i

B t PB t
=

= ∑ (4)

Among them, Bi,n(t) is the Bessel function and Pi is the
control point. These control points determine the shape and
direction of the curve. The advantage of the Bezier curve is
that it can flexibly change the shape of the curve by adjusting
the control points, thereby achieving an accurate description
of various smooth paths. By reasonably selecting and setting
the control points, a smooth curve that meets specific needs
can be generated, enabling it to accurately simulate and
represent the motion trajectory or shape change of an actual
object [15].

Random process model: Considering the uncertainty of
the target’s motion, a random walk model can be used to
describe the target’s movement:

(1) () tX t X t+ = +∈ (5)

In this model, represents the position of the target at time
t, represents the position of the target at time t. is a random
walk, which represents the uncertainty factor of the target’s
motion. This means that the movement of the target at each
time step is based on its current position plus a random
perturbation.

By adopting the random walk model, we can better
capture the uncertainty of the target’s motion, thereby more
realistically simulating the movement of the target in space.
This model has applications in many fields, such as target
tracking in wireless sensor networks, robot navigation, etc.

However, it should be noted that the random walk model
is only a simplified description method. In actual situations,
the movement of the target may be affected by many factors,
such as the environment, the characteristics of the target
itself, etc. Therefore, in specific applications, it may be
necessary to combine more information and more complex
models to improve the accuracy of target tracking.

Assuming the position of the node is ix = (xi, yi, zi) and

the position of the target is it


 = (tx, ty, tz).
The fitness function can be:







×+






×=

→→→

iii xEwtxdwf 21 , (6)

3 Quantum Particle Swarm Algorithm
Applications

3.1 Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) is a nature-inspired

metaheuristic computational method that draws its principles
from the foraging patterns of avian species in their natural
habitats. By simulating the collaborative behavior observed
in bird flocks during foraging, PSO solves optimization
problems through the interaction and movement of individual
particles within a search space. The algorithm’s key operation
entails refining and modulating each particle’s position and
velocity, enabling an exhaustive search of the solution space
and aiding in the determination of the global optimum. When
applied to spatial sensor network deployment, this global
search capability ensures comprehensive coverage of the
target area by the sensor network [16].

In PSO, candidate solutions to the optimization problem
are abstracted as “particles” within the solution search space.
These particles possess two pivotal attributes: velocity
and position. Velocity dictates the speed and direction of a
particle’s movement, while position indicates the particle’s
current location within the search space. Particles navigate
the solution space by following the best-performing particles
(both individually and globally) in an effort to identify the
optimal solution [17].

Specifically, each particle’s movement is influenced by
two factors: pbest, the best solution found by the particle
itself, and gbest, the best solution identified by the entire
swarm.

Envision a swarm of m particles positioned within an
S-dimensional objective search space, wherein the location
of the i-th particle is denoted by an S-dimensional vector. xi
= (xi1, xi2, xis), i = 1, 2, …, m. The position of each particle
serves as a potential solution, and its fitness value is
calculated by substituting xi into an objective function. The
quality of the solution is determined by the fitness value.
The velocity of the i -th particle is also represented as an
S-dimensional vector vi = (vi1, vi2, vis), while the best position
discovered by the i-th particle is denoted as Pi = (pi1, pi2, pis).
The best position found by the entire swarm is denoted as Pgs
= (pg1, pg2, pgs). Let f(x) represent the objective function to be
minimized. The current best position of particle i is updated
using Equation (6):

(), ((1)) (())
(1)

(1), ((1)) (())
i i i

i
i i i

p t f x t f p t
p t

X t f x t f p t
+ ≥

= + =  + + <
 (7)

The process of the PSO algorithm is outlined below:
1. Initialize the particle swarm: randomly set the initial

position and speed of each particle.
2. Calculate the fitness value: substitute the position of

each particle into the objective function and calculate its
fitness value.

3. Update individual extreme values and global extreme

712 Journal of Internet Technology Vol. 25 No. 5, September 2024

values: for each particle, the current fitness value is
juxtaposed with its historical optimal fitness value. Should
the current value prove more advantageous, the individual
extremum is updated; concomitantly, the individual
extrema of all particles are compared to ascertain the global
extremum.

4. Update particle speed and position: update the speed
and position of the particle according to the following
formula:

Speed update formula:

))()(())()(()()1(2211 txtprctxtprctvwtv igiiii −××+−××+×=+ (8)

Among them, w is the inertia weight, c1 and c2 are the
learning factors, r1 and r2 are random numbers between 0 and
1.

Position update formula:

(1) () (1)i i ix t x t v t+ = + + (9)

5. Determine whether the termination condition is met:
If the termination condition is met (such as reaching the
maximum number of iterations or the fitness value meets the
requirements), the algorithm ends; otherwise, return to step 2
to continue iterating.

Through ongoing iterative refinement of the particles’
velocity and position, the particle swarm explores the solution
domain in pursuit of the optimal solution, ceasing only upon
satisfaction of the termination criterion. The PSO algorithm is
characterized by its straightforward implementation and rapid
convergence, attributes that have facilitated its extensive
application across diverse fields.

The search process in the particle swarm algorithm
is dependent on the velocity of particles. As particles
continuously evolve their trajectory and speed, their search
is confined to fixed trajectories, causing the search space to
become progressively limited. This limitation restricts the
algorithm’s global convergence capabilities, often leading to
a scenario where particles are confined to searching within
a limited area, thereby impeding the discovery of the global
optimal solution [18].

3.2 Introduction of Quantum Behavior into the Particle
Swarm Algorithm
While the PSO algorithm exhibits strong global search

capabilities, it is still susceptible to becoming trapped in local
optima when faced with complex optimization problems.
This limitation arises primarily because particles in the PSO
algorithm rely too heavily on the information provided by
the current best solution and the global best solution during
the search process. This reliance results in a unidirectional
search, preventing particles from escaping local optimal
regions. In the context of spatial sensor network deployment,
if the initial positions of the sensor nodes are not well-chosen
or if the target motion patterns are complex and variable,
the PSO algorithm may fail to identify the globally optimal
deployment scheme. The PSO algorithm’s search process
is heavily dependent on the velocity and position update
formulas for the particles, but it lacks an effective mechanism

for maintaining diversity within the swarm. This deficiency
can lead to premature convergence in the later stages of the
search, where the particle swarm loses its ability to explore
new solutions. In spatial sensor network deployment, if the
sensor nodes are deployed too homogeneously, the network
may not be able to adapt to the dynamic and complex
requirements of target tracking [19].

Moreover, the performance of the PSO algorithm is
highly sensitive to parameter settings. For instance, the
inertia weight magnitude influences the balance between
global and local search capabilities, while the learning factors
determine the degree to which particles rely on their own
experiences versus the experiences of the swarm. Incorrect
parameter settings can result in slow convergence rates or
poor convergence accuracy.

Quantum-behaved Particle Swarm Optimization (QPSO)
introduces quantum computing principles into the traditional
PSO algorithm. In QPSO, the motion of particles is described
as a quantum state, and their movement is viewed as an
evolution process within this quantum state. This quantum
approach significantly enhances the algorithm’s global search
ability and convergence stability.

The introduction of quantum behavior transforms the
classical search space into a quantum space. According to the
principle of uncertainty, the position and velocity of particles
cannot be simultaneously determined. Instead, the position of
particles is determined by a wave function, and their quantum
state is updated according to a probability distribution. This
probabilistic update mechanism endows QPSO with superior
global search capabilities.

In QPSO, the particle position update formula is:

1(1) () lni i ix t p C x t
u

α  + = ± ⋅ − ⋅  
 

 (10)

Where, xi(t+1) represents the position of the i particle
at the t+1 iteration, is the individual optimal position of
the particle pi , α is the control parameter, C is the center of
the individual optimal positions of all particles, and u is a
random number from the interval [0,1].

The procedure for the QPSO algorithm is as follows:
1. Particle swarm initialization: randomly set the initial

and individual optimal positions for each particle, evaluate
the initial fitness values, and identify the global optimal
position.

2. Calculate the center of the particles’ individual optimal
positions:

1

1 m

i
i

C p
m =

= ∑ (11)

Where, m is the number of particle swarms.
3. Update the position of the particle: calculate the new

position of the particle according to the position update
formula.

4. Calculate the fitness value of the particle: substitute
the updated particle position into the fitness function and
calculate the fitness value.

5. Update the individual optimal position and the global

An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 713

optimal position: if the current fitness value of the particle
is better than its individual optimal fitness value, update the
individual optimal position; if the current fitness value of the
particle is better than the global optimal fitness value, update
the global optimal position.

6. Assess if the termination criterion is satisfied: should
the termination criterion be met (for instance, attaining the
maximum iteration count or achieving a fitness value that
satisfies predefined standards), the algorithmic process
concludes; if not, revert to step 2 to persist in iteration.

By introducing quantum behavior, the QPSO algorithm
can overcome the limitations of the PSO algorithm to a
certain extent, improve the performance of the algorithm
in dealing with complex optimization problems, and is
more suitable for problems such as spatial sensor network
deployment.

3.3 Quantum State Wave Function
The wavefunction associated with a quantum state is a

mathematical construct that characterizes the condition of a
particle within a quantum system. This function encapsulates
details pertaining to the particle’s location, momentum,
energy, and additional physical attributes.

Wave functions have the following properties:
1. Complex function: A wave function is usually a

complex function, which means that it has a real part and an
imaginary part.

2. Normalization: A wave function must be normalized,
which means that the integral of its squared modulus over the
entire space is equal to 1. This means that the probability of a
particle being somewhere in space is 1.

3. Linear superposition: A quantum state can be a linear
superposition of multiple wave functions. This means that a
particle can be in a superposition of multiple states.

4. Time evolution: A wave function evolves over time,
and its evolution is described by the Schrödinger equation.

In contrast to the position and velocity of particles in
classical PSO, the state of particles in QPSO is described
using a quantum state wave function. This wave function
quantitatively characterizes the state of microscopic particles
and is denoted by Ψ(x, t) , where x represents the position of
the particle. The probability density function of the particle
is defined as the square of the absolute value of the wave
function, i.e., |Ψ(x, t)|2. In three dimensions, |Ψ(x, t)|2dxdydz
represents the probability density of finding the particle
within the volume element dxdydz at time t, and this satisfies
the normalization condition shown in Equation (12):

1)(),(2 =Ψ




∞−
∞+

=Ψ




∞−
∞+

dxdydzydxdydztx (12)

In the QPSO algorithm, determining the state of a particle
first requires obtaining the particle’s wave function. This
is done by solving the Schrödinger equation, as shown in
Equation (13):

2
2

() () ()

ˆ̂̂ () (,) (,)
2

V X X p y
hH V X ih x t H x t
m t

γδ γ= − − = −

 ∂

= − ∇ + − Ψ = ∂
 (13)

Solving this equation yields the wave function, which is
expressed in Equation (14):

Lye
L

y /1)(−=Ψ (14)

Here, γm
hL

2

= , and y = X − p , where V(x) is the potential

well, i.e. the potential function, Ĥ is the Hamiltonian
operator, and ∇2 is the Laplace operator. This gives the
probability density function, as shown in Equation (15):

2 1() ()Q y y e
L

= Ψ = (15)

3.4 Position of Particles
In the quantum-behavior particle swarm optimization

algorithm,The positions of particles in the QPSO algorithm
are determined using Monte Carlo stochastic simulation.
The equations for updating particle positions are given by
Equations (16) through (20):

() () (1) ()b gp t p t p tθ θ= ⋅ + − (16)

1

1() ()
N

bi
i

m t p t
N −

= ∑ (17)

(1) 2 () ()L t m t X tα+ = ⋅ − (18)

max

() ta b
G

α α= − − ⋅ (19)

1() () ln()
2
LX t p t

u
= ± (20)

In formula (16), p(t) represents the position of the particle
at the t iteration, which is jointly determined by the individual
optimal position pb(t) of the particle and the global optimal
position pg(t) of the population, where θ is a random number
that follows a uniform distribution on [0,1].

In formula (17), m(t) represents the average value of the
individual optimal positions of all particles in the population
at the tth iteration.

In formula (18), L(t+1) represents the weighted distance
between the particle and the average optimal position of the
population, α is the contraction-expansion coefficient, which
is used to control the convergence speed of the particle.
It changes linearly from α to b as the iteration proceeds.
Usually α = 1, b = 0.5.

714 Journal of Internet Technology Vol. 25 No. 5, September 2024

In formula (19), Gmax represents the maximum number of
iterations.

In formula (20), X(t) represents the position of the particle
at the tth iteration, which p(t) is determined by adding or
subtracting a term related L to u and random number, where
u is a random number that follows a uniform distribution on
[0,1].

By synthesizing the above equations, we obtain the
position update equation (21):

)/1ln()()()()1 utXtmtptX ⋅−±=+ α（ (21)

4 Algorithm Based on Improved QPSO
Algorithm in Moving Target Tracking

4.1 Algorithm Improvement Ideas
The QPSO algorithm exhibits strong global search

capability and convergence speed; however, it may face
limitations in scenarios involving moving target tracking.
Enhancing the algorithm can further improve its performance
and adaptability. The following are key directions for
improvement:

Develop an adaptation function that more accurately
reflects the effectiveness of moving target tracking. This may
include factors such as target position prediction accuracy,
real-time tracking, and other relevant metrics. Adjust key
algorithm parameters dynamically to adapt to various moving
target characteristics and tracking environments. Combine
QPSO with other algorithms or techniques, such as Kalman
filtering and particle filtering, to leverage their strengths
and improve tracking accuracy and stability. Consider
optimizing multiple objectives simultaneously, such as
energy consumption, tracking accuracy, and response time,
to achieve a balanced performance in moving target tracking
scenarios.

The core idea behind the improved QPSO algorithm
(IQPSO) involves introducing quantum behavior to
increase population diversity through quantum rotation
gates and quantum mutation. By leveraging the principles
of superposition states and quantum interference, particles
can concurrently occupy multiple positions, thereby
amplifying the search space and enhancing the probability
of identifying the global optimal solution. Additionally,
dynamic adjustments to inertia weights and learning factors
help balance global exploration with local exploitation,
thereby improving the convergence speed and accuracy
of the algorithm.The improved algorithm also optimizes
objectives related to tracking accuracy, energy consumption,
and network coverage.

In the IQPSO algorithm, the quantum rotation gate plays
a key role in adjusting particle positions and velocities,
enhancing population diversity, and preventing premature
convergence to suboptimal solutions. This optimization
process can be represented by the unitary matrix shown in
Equation (22):

cos() sin()
()

sin() cos()
U

θ θ
θ

θ θ
− 

=  
 

 (22)

Here, θ is the rotation angle, which determines the
balance between exploration and development in the
algorithm. By adjusting this angle, the magnitude and
direction of particle movement can be finely controlled,
enabling precise management of the search process.

Quantum mutation refers to the phenomenon where a
quantum system transitions between energy levels, typically
associated with the collapse of a particle’s wavefunction. In
the context of IQPSO, quantum mutation is used to maintain
population diversity, thereby enhancing the algorithm’s
ability to solve complex optimization problems. Quantum
mutation in QPSO can be implemented as follows: for each
particle, a quantum mutation operation is applied with a
certain probability, as described by Equation (23):

(1,1)i ix x x U= + ∆ ⋅ − (23)

In this equation, xi represents the position of the i-th
particle, ∆x is the mutation amplitude, and U(−1,1) is
a uniformly distributed random number generator that
produces values between -1 and 1. This operation introduces
random perturbations to the particle positions, enabling the
exploration of new regions in the search space.

Algorithm improvement strives to improve the global
search capability of the algorithm and avoid the risk of
falling into a local optimal solution. Improve the convergence
speed and accuracy of the algorithm and find better solutions
faster. Improving the practicability of the algorithm can more
comprehensively meet the actual needs of moving target
tracking. Algorithm improvements innovate in the following
aspects:

1. Simultaneously considering tracking accuracy, energy
consumption and network coverage as optimization goals,
instead of just focusing on a single indicator, enables the
algorithm to find the optimal balance between multiple
interrelated factors, improving the comprehensiveness of the
algorithm in practical applications performance.

2. Increase population diversity through quantum
revolving doors and quantum mutations, preventing the
algorithm from prematurely converging to suboptimal
solutions, expanding the search space, and elevating
the probability of ascertaining the optimal solution, and
significantly enhancing the global search capability of the
algorithm. The superposition state and interference principle
of quantum mechanics are used to allow particles to be in
multiple positions at the same time. This unique method
is very different from the search strategy of traditional
algorithms and provides new ideas for solving complex
optimization problems.

3. Dynamically adjust inertial weights and learning
factors to balance global exploration and local development.
It can adaptively adjust the search strategy according to the
operation of the algorithm, improve the convergence speed

An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 715

and accuracy, and enable the algorithm to deal with different
problem scenarios and complexities more effectively. degree.

4. Take tracking accuracy, energy consumption and
network coverage as optimization goals, consider the actual
needs of moving target tracking more comprehensively, and
improve the practicality of the algorithm.

4.2 Target Tracking Algorithm Model
To develop the target tracking algorithm, the first step

is to establish the sensor network topology model. This
involves defining the moving target motion model, analyzing
the characteristics of the sensing data, and assessing the
noise characteristics. The moving target tracking problem
within the spatial sensor network is then transformed into a
multidimensional optimization problem. In this context, the
target’s position becomes the variable to be optimized, while
the measurement data and communication capabilities of
the sensor network serve as constraints. A fitness function is
defined to guide the optimization process, such as minimizing
the distance between the actual target position and its
estimated position. The algorithm calculates the position
of each sensor node, providing the determined coordinate
information. The node model is represented as [O(x, y, z), Rm,
Rk , Rc , Fmax], where O(x, y, z) denotes the three-dimensional
coordinates of the node within the space, with x, y, and z
corresponding to the X-axis, Y-axis, and Z-axis values in
a Cartesian coordinate system. The parameters Rm , Rk , Rc
represent the minimum mutual collision radius between
nodes, the equilibrium radius, and the communication radius,
respectively. Fmax is the maximum repulsive force exerted
when the distance between nodes falls below the minimum
radius.

In this model, the set of nodes in the spatial sensor
network is treated as a virtual physical system, with
parameters such as force F and mass m. The equations
governing the induced and repulsive forces between nodes
are provided in Equations (23) and (24):

1

1 0
(,) (,)

0

i j
ij c

a

ij c

k m m
d R

F i j d i j
d R

α


− < <

= 
 ≥

 (24)

2

2 0
(,) (,)

0

i j
ij k

ij k

k m m
d R

F i j d i j
d R

α
τ


< <

= 
 ≥

 (25)

In these equations, k1 and k2 are gain coefficients, α1 and
α2 are exponents that determine the strength of the forces, mi
and mj are the mass-like quality factors of nodes i and j , and
d(i, j) represents the distance between nodes i and j .

To achieve effective tracking and monitoring of the
moving target, it is assumed that the tracked target exerts a
stronger attractive force on the sensor nodes than the forces
between the nodes themselves. When the tracked target
appears, the sensor nodes can quickly respond by being
attracted toward it, ensuring that the target remains within

the communication range for timely tracking. The magnitude
of the attractive force that a node receives from the tracked
target T is given by Equation (26):

5
5

(,)(,)
0

i
i

i

k m m
d r

d i jF i T
d r

τ
τα

τ

τ

− <= 
 ≥

 (26)

4.3 Improved Algorithm Flow
The algorithm flow is illustrated in Figure 1 and is

divided into four stages, comprising ten steps as outlined
below.
4.3.1 Algorithm Initialization

1. Define the Problem Space: Determine the scope and
dimensionality of the search space, which typically depends
on the geographical area covered by the sensor network and
the specific requirements for target tracking.

2. Initialize the Particle Swarm: Generate a set of random
particles within the deployment area range {xmax xmin ymax
ymin zmax zmin} for node i. Each particle represents a possible
deployment scenario for the sensor network. Set the particle
swarm size N and particle dimension D. Initialize the moving
distance step Δd, time step Δt, and determine the global
optimal position gbest and individual optimal position pbest
based on the initial positions of the particles.

3. Set Parameters: Configure parameters such as particle
swarm size N, maximum number of iterations Gmax, inertia
weight w, and learning factors c1 and c2. For the quantum
particle swarm algorithm, also set the relevant parameters for
the quantum bit probability density function.
4.3.2 Adaptation Evaluation

4. Calculate the Fitness Value: For each particle, calculate
the fitness value based on its current position (which
represents a sensor deployment scheme). The fitness function
is typically designed to account for factors such as target
tracking accuracy, sensor network coverage area, and energy
consumption.

5. Update Individual and Global Bests: Compare each
particle’s fitness value with the fitness value of its historical
best position (pbest) and update the pbest accordingly.
Simultaneously, compare the fitness values of all particles
to update the global best (representing the current optimal
deployment scheme).
4.3.3 Iterative Optimization

6. Quantum Behavioral Update: Utilize the quantum bit
probability density function, unique to the quantum particle
swarm algorithm, to update the positions of the particles. This
approach simulates the quantum behavior of particles using
the concept of a quantum potential well, thereby enhancing
search diversity and global search capability.

7. Velocity Update: Determine the revised velocity
for each particle by applying the standard velocity update
equation of the PSO algorithm. This equation routinely
encompasses terms representing inertia, self-awareness,
and social cognition, and integrates these dimensions with
positional data acquired subsequent to quantum behavioral
updates.

716 Journal of Internet Technology Vol. 25 No. 5, September 2024

8. Position Update: Adjust the positions of the particles
using the recently computed velocity. If any particle exceeds
the perimeter of the search area, adjust its position to remain
within the defined boundaries.
4.3.4 Iterative Termination Condition Checking

9. Check Termination Conditions: After each iteration,
verify whether the termination conditions have been met,
such as reaching the maximum number of iterations Gmax or
achieving a fitness value that meets a predefined threshold.

10. Output Optimal Solution: If the termination condition

is satisfied, output the current global best value as the optimal
deployment scheme. If not, continue with the next iteration.

Following this process, the actual deployment of the
sensor network is adjusted according to the identified optimal
deployment scheme. The performance of this deployment is
then tested in a real-world environment, evaluating metrics
such as target tracking accuracy, network coverage, and
energy consumption. Based on the test results, the algorithm
parameters and fitness function may be further adjusted to
optimize the algorithm’s performance.

Figure 1. Improved algorithm flow

An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 717

5 Experimental Simulation and Result
Analysis

5.1 Experimental Simulator Statistics
To evaluate the performance of the improved QPSO

algorithm, a simulation program was developed using
MATLAB. This program generates a target trajectory with
random motion and initializes the positions of sensor nodes.
During each iteration, the node deployment strategy is
optimized using the improved QPSO algorithm, with node
positions being calculated and updated until the termination
conditions are met (such as achieving the predetermined
tracking accuracy or reaching the maximum number of
iterations).

Scenario Description: In the simulation, 100 sensor nodes
are randomly deployed within a 3D surveillance area of size
[0,100]×[0,100]×[0,100] cubic meters. The surveillance area
is divided into several smaller compartments.

Target Trajectory: The simulated target moves according
to a random wandering model, with its speed varying
randomly within a specified range.

Evaluation Metrics: Tracking Accuracy (Measured
as the average position error between the target’s actual
position and the estimated position), Network Energy
Consumption (Measured as the percentage of remaining
energy in the sensor network after the tracking process),
Coverage Efficiency (Measured by the number of sensors that
successfully detect and cover a new target).

Sensor Type: The r sensor has a spherical sensing range
with a radius r, and the detection probability is inversely
related to the distance from the target.

Algorithm Parameter Settings: Population Size N,
Maximum Number of Iterations Tmax, and other parameters
are adjusted based on experimental requirements.

During each time step, the state of the sensors, energy
consumption, and target detection data are recorded. At
the end of the simulation, the tracking accuracy, energy
consumption, and coverage efficiency are calculated. The
performance of the improved QPSO algorithm is then
compared to the traditional PSO algorithm under the same
spatial sensor network (SSN) configuration. This comparison
includes an analysis of energy consumption during the
tracking process and an evaluation of the impact of the
improved QPSO algorithm on sensor network coverage
efficiency while maintaining tracking accuracy.

Sample Simulation Experiment Code:
%% Parameter Initialization
num_particles = 50; % Number of particles
max_iterations=100; %Maxim umnumber of iterations
inertia_weight = 0.9; % Inertia weight
cognitive_factor = 2.0; % Cognitive factor
social_factor = 2.0; % Social factor

%% Objective Function
fitness_function=@(particle)evaluate_fitness(particle);
//fitness_function=@(particle)evaluate_fitness(particle):

Define the objective function to evaluate the fitness of each
particle. The evaluate_fitness function should be defined
according to the specific problem. For example, in spatial

sensor network target tracking, it may calculate the target
position estimation error.

%% QPSO Algorithm Simulation
qpso=QPSO(fitness_function,num_particles, max_

iterations,inertia_weight,cognitive_factor, social_factor);
//Create a QPSO algorithm object, pass in parameters and

objective function.
best_params=zeros(max_iterations, size_of_parameters);
//Define a matrix to store the best parameters for each

iteration.
best_fitness = zeros(max_iterations, 1);
//Define a vector to store the best fitness of each iteration.

for i = 1:max_iterations
[best_params(i,:), best_fitness(i)] = qpso.optimize();
end
//Loop through the QPSO optimization process, call the

qpso.optimize() method for each iteration, obtain the best
parameters and fitness, and store them in the corresponding
matrix and vector.

%% Performance Evaluation
mean_fitness = mean(best_fitness);
//Calculate the average fitness of all iterations.
std_fitness = std(best_fitness);
//Calculate the standard deviation of fitness for all

iterations.

%% Plot the Results
figure;
plot(1:max_iterations, best_fitness, 'b-');
//Draw a curve chart showing the change of fitness with

the number of iterations.
title('Improved Performance of QPSO Algorithm for SSN

Target Tracking');
//Set the chart title.
xlabel('Number of Iterations');
//Set the horizontal axis label.
ylabel('Fitness Value');
//Set the vertical axis label.
grid on;//Add grid lines.

The calculations involved in the code are mainly
concentrated in the evaluate_fitness function and the
optimization process of the QPSO algorithm.

The computational complexity of the evaluate_fitness
function depends on the definition of the specific problem.

The computational complexity of the QPSO algorithm
mainly depends on the number of particles, the maximum
number of iterations, and the complexity of the objective
function.

This code shows how to use the improved QPSO
algorithm to conduct simulation experiments and evaluate
its performance. The code completes the experiment through
steps such as parameter initialization, objective function
definition, algorithm simulation, performance evaluation, and
result visualization. The calculations involved in the code are
mainly concentrated in the objective function evaluation and
QPSO algorithm optimization process, and its complexity

718 Journal of Internet Technology Vol. 25 No. 5, September 2024

depends on the specific problem and algorithm parameters.
In the scenario where the target remains stationary at

a specific location in space, multiple experiments were

conducted to evaluate the sensor deployment positions and
tracking effectiveness under three different algorithms.

Table 1. Experimental analysis of three algorithms for stationary target tracking deployment
Experiment number Traditional algorithm QPSO algorithm Improved QPSO algorithm

Sensor deployment
position

Tracking success
rate

Sensor deployment
position

Tracking success
rate

Sensor deployment
position

Tracking success
rate

1 (20,30,40) 80% (18,28,38) 85% (15,25,35) 92%
2 (50,60,70) 79% (48,58,68) 86% (45,55,65) 91%
3 (80,90,10) 81% (78,88,98) 84% (75,85,95) 93%
4 (15,25,35) 78% (22,32,42) 86% (12,22,32) 90%
5 (45,55,65) 79% (52,62,72) 85% (42,52,62) 91%
6 (75,85,95) 77% (82,92,2) 87% (72,82,92) 89%
7 (30,40,50) 82% (25,35,45) 88% (18,28,38) 93%
8 (60,70,80) 81% (55,65,75) 86% (48,58,68) 92%
9 (90,10,20) 83% (85,95,5) 87% (78,88,98) 94%
10 (25,35,45) 76% (15,25,35) 87% (20,30,40) 91%
11 (55,65,75) 75% (45,55,65) 86% (50,60,70) 92%
12 (85,95,5) 74% (75,85,95) 85% (80,90,10) 93%
13 (10,20,30) 81% (30,40,50) 84% (16,26,36) 90%
14 (40,50,60) 80% (60,70,80) 83% (46,56,66) 91%
15 (70,80,90) 79% (90,10,20) 84% (76,86,96) 92%
16 (35,45,55) 79% (28,38,48) 85% (22,32,42) 92%
17 (65,75,85) 80% (58,68,78) 86% (52,62,72) 91%
18 (95,5,15) 81% (88,98,18) 84% (82,92,2) 93%
19 (22,32,42) 77% (12,22,32) 86% (19,29,39) 91%
20 (52,62,72) 78% (42,52,62) 85% (49,59,69) 92%
21 (82,92,2) 79% (72,82,92) 84% (79,89,9) 93%
22 (18,28,38) 80% (32,42,52) 87% (17,27,37) 93%
23 (48,58,68) 81% (62,72,82) 86% (47,57,67) 92%
24 (78,88,8) 82% (92,2,12) 85% (77,87,97) 94%
25 (32,42,52) 78% (20,30,40) 88% (23,33,43) 92%
26 (62,72,82) 79% (50,60,70) 89% (53,63,73) 91%
27 (92,2,12) 77% (80,90,10) 87% (83,93,3) 93%
28 (28,38,48) 76% (16,26,36) 86% (25,35,45) 90%
29 (58,68,78) 75% (46,56,66) 87% (55,65,75) 91%
30 (88,98,18) 77% (76,86,96) 85% (85,95,5) 92%

Figure 2. Experimental analysis of three algorithms for stationary
target tracking deployment

According to the experimental data in Table 1 and Figure
2, the performance of the three algorithms in the stationary
target tracking deployment is analyzed:

1. Traditional algorithm: The sensor deployment position
varies in different experiments, but the tracking success
rate is relatively low, with an average tracking success rate
between 75% and 82%.

2. QPSO algorithm: The sensor deployment position
is different from the traditional algorithm, and the tracking
success rate is improved, with an average tracking success
rate between 84% and 87%.

3. Improved QPSO algorithm: The sensor deployment
position is also different from the first two algorithms, and
the tracking success rate is further improved, with an average
tracking success rate between 90% and 94%.

Through the analysis of the experimental data, the
following conclusions can be drawn:

1. In the scenario of stat ionary target tracking
deployment, the improved QPSO algorithm can more
effectively determine the deployment position of the sensor

An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 719

compared with the traditional algorithm and the QPSO
algorithm, thereby improving the tracking success rate.

2. The QPSO algorithm has made some improvements
compared to the traditional algorithm, but the improved
QPSO algorithm has more advantages in performance.

3. The deployment location of the sensor has an important
impact on the tracking success rate. Different algorithms will
lead to different deployment location selections, which in
turn affects the tracking effect.

In summary, the improved QPSO algorithm performs best
in the deployment of stationary target tracking, providing a
more effective solution for the deployment of spatial sensor
network target tracking.

For moving target tracking, the target follows a predefined
trajectory, and the dynamic deployment and tracking of the
sensors are analyzed at different time intervals.

According to the experimental data in Figure 3 and Table
2, the performance of the three algorithms in mobile target
tracking deployment is analyzed:

Traditional algorithm: At different time intervals, the
deployment position of the sensor is different, and the
tracking error is relatively large, roughly between 1.0m-3.2m.

QPSO algorithm: The sensor deployment position is
different from the traditional algorithm, and the tracking error
is reduced to between 0.6m-2.6m.

Improved QPSO algorithm: The sensor deployment
position is also different from the first two algorithms, and
the tracking error is further reduced to between 0.2m-1.8m.

Through the analysis of the experimental data, the
following conclusions can be drawn:

In the scenario of mobile target tracking deployment,
the improved QPSO algorithm can deploy sensors more
accurately than the traditional algorithm and the QPSO
algorithm, thereby reducing the tracking error.

The QPSO algorithm has some improvements in tracking
error compared to the traditional algorithm, but the improved
QPSO algorithm has more advantages in performance.

With the change of the time interval, the tracking errors
of the three algorithms show a certain volatility, but the
improved QPSO algorithm always maintains a low tracking
error.

In summary, the improved QPSO algorithm performs best
in mobile target tracking deployment and can track mobile
targets more effectively.

Table 2. Experimental analysis of three algorithms for moving target tracking deployment
Time interval Traditional algorithm QPSO algorithm Improved QPSO algorithm

Sensor deployment
position

Tracking error Sensor deployment
position

Tracking error Sensor deployment
position

Tracking error

t1 (10,20,30) 3.0m (12,22,32) 2.5m (8,18,28) 1.8m
t2 (40,50,60) 3.1m (42,52,62) 2.6m (48,58,68) 1.6m
t3 (70,80,90) 3.2m (72,82,92) 2.4m (78,88,98) 1.7m
t4 (12,22,32) 2.8m (15,25,35) 2.2m (10,20,30) 1.5m
t5 (42,52,62) 2.9m (45,55,65) 2.3m (50,60,70) 1.4m
t6 (72,82,92) 2.7m (75,85,95) 2.1m (80,90,10) 1.3m
t7 (15,25,35) 2.6m (18,28,38) 2.0m (12,22,32) 1.2m
t8 (45,55,65) 2.7m (48,58,68) 2.1m (52,62,72) 1.1m
t9 (75,85,95) 2.8m (78,88,98) 2.0m (82,92,2) 1.3m
t10 (18,28,38) 2.2m (20,30,40) 1.8m (15,25,35) 1.0m
t11 (48,58,68) 2.3m (50,60,70) 1.9m (55,65,75) 1.1m
t12 (78,88,98) 2.4m (80,90,10) 1.7m (85,95,5) 1.2m
t13 (20,30,40) 2.0m (22,32,42) 1.6m (18,28,38) 0.8m
t14 (50,60,70) 2.1m (52,62,72) 1.7m (58,68,78) 0.9m
t15 (80,90,10) 2.2m (82,92,2) 1.8m (88,98,18) 0.7m
t16 (22,32,42) 1.8m (25,35,45) 1.4m (20,30,40) 0.6m
t17 (52,62,72) 1.9m (55,65,75) 1.5m (60,70,80) 0.7m
t18 (82,92,2) 2.0m (85,95,5) 1.7m (90,10,20) 0.5m
t19 (25,35,45) 1.6m (28,38,48) 1.2m (22,32,42) 0.5m
t20 (55,65,75) 1.7m (58,68,78) 1.3m (62,72,82) 0.6m
t21 (85,95,5) 1.9m (88,98,18) 1.1m (92,2,12) 0.7m
t22 (28,38,48) 1.4m (30,40,50) 1.0m (25,35,45) 0.4m
t23 (58,68,78) 1.5m (60,70,80) 1.1m (65,75,85) 0.4m
t24 (88,98,18) 1.3m (90,10,20) 1.2m (95,5,15) 0.6m
t25 (30,40,50) 1.2m (32,42,52) 0.8m (28,38,48) 0.3m
t26 (60,70,80) 1.3m (62,72,82) 0.9m (68,78,88) 0.4m
t27 (90,10,20) 1.5m (92,2,12) 1.0m (98,8,18) 0.3m
t28 (32,42,52) 1.0m (35,45,55) 0.6m (30,40,50) 0.2m
t29 (62,72,82) 1.1m (65,75,85) 0.7m (70,80,90) 0.3m
t30 (92,2,12) 1.2m (95,5,15) 0.8m (11,21,31) 0.4m

720 Journal of Internet Technology Vol. 25 No. 5, September 2024

Figure 3. Experimental analysis of three algorithms for moving
target tracking deployment

5.2 Analysis of Algorithm Results
Tracking Success Rate: The traditional algorithm

demonstrated a relatively low success rate, with an average
of approximately 78%. This suggests that the traditional
algorithm has limitations in optimizing sensor deployment
effectively, resulting in suboptimal tracking performance.
The introduction of quantum behavior improved the
tracking success rate, with an average of around 86%. This
improvement indicates that the QPSO algorithm is more
effective in finding better sensor deployment solutions
compared to the traditional algorithm. The improved QPSO-
based algorithm outperformed both the traditional and QPSO
algorithms, achieving an average tracking success rate of
over 91%. This significant enhancement demonstrates the
superior capability of the improved algorithm in solving the
target tracking deployment problem within spatial sensor
networks. The algorithm is more efficient in determining the
optimal sensor locations, leading to higher tracking accuracy.

Tracking Error in Moving Target Tracking Deployment:
The traditional algorithm exhibited a relatively large
tracking error, with an average of approximately 2.5 meters.
This indicates that the algorithm lacks precision in sensor
deployment when dealing with moving targets, leading
to substantial deviations from the actual target position.
The QPSO algorithm reduced the tracking error to an
average of about 2.0 meters, suggesting that it is better
equipped to handle the movement of targets compared to the
traditional algorithm. However, there is still room for further
improvement. The improved QPSO algorithm achieved the
smallest tracking error, with an average of only about 1.0
meter. This result highlights the algorithm’s strong capability
in managing moving targets, enabling more accurate dynamic
adjustments in sensor deployment and significantly reducing
the tracking error.

6 Conclusion

This research paper proposes an improved QPSO
algorithm aimed at addressing the target tracking deployment

problem in SSNs. Through an in-depth analysis of the
current research on SSNs and node deployment strategies
for mobile target tracking, it was identified that existing
algorithms, while effective in certain scenarios, often face
limitations when tasked with tracking in dynamic and
complex environments. To overcome these challenges, this
study focused on enhancing the global search capability
and convergence speed of the algorithms, while optimizing
key performance metrics such as tracking accuracy, energy
consumption, and network coverage.

The improved QPSO algorithm enhances population
diversity by introducing quantum behavior mechanisms
and extends the search space using principles of quantum
mechanics, thereby improving the algorithm’s global search
capability. By dynamically adjusting algorithm parameters,
the improved QPSO algorithm achieves a balance between
global exploration and local search, enhancing convergence
speed and accuracy. Experimental simulation results
indicate that this algorithm outperforms traditional mobile
tracking deployment and standard QPSO algorithms in
SSNs, demonstrating superior performance in tracking
success rate and error, making it a more effective solution
for target tracking in SSNs. Future research will evaluate its
performance in real-world application scenarios, considering
more complex network environments and target motion
patterns.

Acknowledgments

This work is supported by Research Projects of
Department of Education of Guangdong Province (Grant
No. 2023KTSCX317), and in part by Shenzhen Polytechnic
University Research Fund (Grant No. 6023310005K).

References

[1] N. Ramadevi, M. V. Subramanyam, C. S. Bindu,
Mobility target tracking with meta-heuristic aided target
movement prediction scheme in WSN using adaptive
distributed extended Kalman filtering, International
Journal of Communication Systems, Vol. 37, No. 11,
Article No. e5789, July, 2024.

[2] D. Feng, Y. Li, J. Liu, Y. Liu, A particle swarm
optimization algorithm based on modified crowding
distance for multimodal multi-objective problems,
Applied Soft Computing, Vol. 152, Article No. 111280,
February, 2024.

[3] H. Ye, J. Dong, An ensemble algorithm based on
adaptive chaotic quantum-behaved particle swarm
optimization with weibull distribution and hunger
games search and its financial application in parameter
identification, Applied Intelligence, Vol. 54, pp. 6888-
6917, May, 2024.

[4] H.-S. Hu, X.-J. Fan, C.-H. Wang, Energy efficient
clustering and routing protocol based on quantum
particle swarm optimization and fuzzy logic for wireless
sensor networks, Scientific reports, Vol. 14, Article No.
18595, August, 2024.

An Improved Quantum Particle Swarm Optimization Algorithm for Target Tracking Deployment in Spatial Sensor Networks 721

[5] B.-H. Chen, L. Cao, C.-Z. Chen, Y.-D. Chen, Y.-G.
Yue, A comprehensive survey on the chicken swarm
optimization algorithm and its applications: state- of-
the-art and research challenges, Artificial Intelligence
Review, Vol. 57, No. 7, Article No. 170, July, 2024.

[6] W.-F. Song, G. Ma, Y.-X. Zhao, W.-K. Li, Y.-X. Meng,
Multi-objective Reactive Power Optimization of a
Distribution Network based on Improved Quantum-
behaved Particle Swarm Optimization, Recent Advances
in Electrical & Electronic Engineering, Vol. 17, No. 7,
pp. 698-711, August, 2024.

[7] T. Luo, J.-P. Xie, B.-T. Zhang, Y. Zhang, C.-Q. Li, An
improved levy chaotic particle swarm optimization
algorithm for energy-efficient cluster routing scheme in
industrial wireless sensor networks, Expert Systems with
Applications, Vol. 241, Article No. 122780, May, 2024.

[8] X.-J. Du, H.-H. Chen, Security in wireless sensor
networks, IEEE Wireless Communications, Vol. 15, No.
4, pp. 60-66, August, 2008.

[9] E. G. Rieffel, A. A. Asanjan, M. S. Alam, N. Anand,
D. E. B. Neira, S. Block, L. T. Brady, S. Cotton, Z. G.
Izquierdo, S. Grabbe, E. Gustafson, S. Hadfield, P. A.
Lott, F. B. Maciejewski, S. Mandra, J. Marshall, G.
Mossi, H. M. Bauza, J. Saied, N. Suri, D. Venturelli, Z.
Wang, R. Biswas, Assessing and advancing the potential
of quantum computing: A NASA case study, Future
Generation Computer Systems, Vol. 160, pp. 598-618,
November, 2024.

[10] E. L. Souza, E. F. Nakamura, R. W. Pazzi, Target
Tracking for Sensor Networks: A Survey, ACM
Computing Surveys, Vol. 49, No. 2, pp. 1-31, June,
2017.

[11] Y.-F. Qi, P. Cheng, J. Bai, J.-M. Chen, A. Guenard, Y.-
Q. Song, Z. Shi, Energy-Efficient Target Tracking by
Mobile Sensors With Limited Sensing Range, IEEE
Transactions on Industrial Electronics, Vol. 63, No. 11,
pp. 6949-6961, November, 2016.

[12] M. Rathee, S. Kuma, K. Dilip, U. Dohare, Aanchal,
Parveen, Towards energy balancing optimization in
wireless sensor networks: A novel quantum inspired
genetic algorithm based sinks deployment approach, Ad
Hoc Networks, Vol. 153, Article No. 103350, February,
2024.

[13] R. Kapoor, N. Singh, A. Kapoor, Multi-sensor based
object tracking using enhanced particle swarm
optimized multi-cue granular fusion, Multimedia Tools
and Applications, Vol. 82, No. 27, pp. 42417-42438,
November, 2023.

[14] H.-B. Li, S.-F. Wang, Q. Chen, M.-G. Gong, L.-W.
Chen, IPSMT: Multi-objective optimization of multipath
transmission strategy based on improved immune
particle swarm algorithm in wireless sensor networks,
Applied Soft Computing, Vol. 121, No. 108705, May,
2022.

[15] J.-H. Liu, N. Li, Parallel Adaptive Immune Quantum-
Behaved Particle Swarm Optimization Algorithm
(PAIQPSO), 2nd International Conference on
Intelligent System Design and Engineering Application
(ISDEA'12), Sanya, Hainan, China, 2012, pp. 435-438.

[16] F. He, Q. Song, H.-W. Yuan, Y.-Y. Ma, X.-L. Fu, C.-

J. Luo, Quantum Rotation Gate-Based Particle Swarm
Algorithm for Test Data Anomaly Detection Model
Hyperparameter Optimization, 6th International
Conference on Artificial Intelligence and Big Data
(ICAIBD), Chengdu, Sichuan, China, 2023, pp. 143-
147.

[17] K. Selvaraj, S. Balaji, Controlled mobility sensor
networks for target tracking using particle swarm
optimization, International Conference on Current
Trends in Engineering and Technology (ICCTET),
Coimbatore, Tamil Nadu, India, 2013, pp. 388-391.

[18] J. Liu, W.-B. Xu, J. Sun, Quantum-behaved particle
swarm optimization with mutation operator, 17th
IEEE International Conference on Tools with Artificial
Intelligence (ICTAI'05), Hongkong, 2005, pp. 237- 240.

[19] X.-Q. Yin, X.-F. Li, Y.-Z. Guo, X.-M. Wang, Research
on Coverage Algorithm for Wireless Sensor Networks
Based on Improved Particle Swarm Optimization
Algorithm, International Conference on Computer
Systems, Electronics and Control (ICCSEC), Dalian,
Liaoning, China, 2017, pp. 1207-1210.

Biographies

Lisha Liu received her B.S. degree in
Automation from Xiangtan University,
China, in 2000, and the M.Sc. degree
in Computer Control from Xiangtan
University, China, in 2003. She is currently
an Associate Professor at the School of
Integrated Circuit Engineering, Shenzhen
Polytechnic University. Her research is

embedded systems, and quantum entanglement, has published
over 10 papers in the fields of quantum communication and
electronic circuit.

Xincan Fan received his M.Sc. degree
in detection technology and automatic
equipment from Jiangxi University of
Science and Technology, Ganzhou, China,
in 2004. He is currently Professor at the
Industrial Training Center of Shenzhen
Polytechnic University. His research
in te res t s quantum communica t ion ,

computer software, has published over 20 papers in the fields
of quantum communication and computer software.

