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Abstract

The recent COVID-19 pandemic has led to an increased 
number of hospitalized patients, and in some countries, the 
overwhelming problem has even caused the collapse of the 
healthcare system. Thus, the associated waste generated and 
inadequate waste disposal may have deleterious impacts on 
public health and the surrounding environment. This paper 
aims to design and implement an automatic medical waste 
identification and sorting mechanism that can distinguish the 
items disposed of via a series of image processing procedures. 
Specifically, the system can classify, sort, and calculate the 
disposed items based on their visual appearance. To establish 
this, both software and hardware systems have been devised. 
Particularly, the vision system for object detection and 
classification is constructed based on several popular pre-
trained convolutional neural networks. Upon verifying the 
type of waste (i.e., general infection, dangerous infection, 
and general garbage), an automatic sorting mechanism will 
be triggered to dispose of the object in the corresponding 
garbage bin. The experimentation has been validated on a 
total of self-collected 2025 images from 3 categories, and the 
best accuracy attained is 99.34% when adopting GoogLeNet 
as the backbone architecture.

Keywords: Deep learning, Medical waste, Classification, 
Sorting, Transfer learning

1  Introduction

In recent years, the topic of waste classification 
has garnered extensive discussion. However, with the 
advancement of technology and the growth of civilization, 
the volume of waste generated has increased exponentially. 
According to statistics from the Ministry of Health and 
Welfare and the Environmental Protection Department in 
2017, the average output of waste produced by medical 
institutions in Taiwan is about 120,000 metric tons per year 
[1]. However, the outbreak of novel coronavirus (COVID-19) 
infections has placed tremendous pressure on existing 
waste management systems, leading to an increase in waste 
accumulation in nearly all healthcare units and services. It 
should be noted that improper disposal of medical waste 

and poor management of healthcare waste, including waste 
classification, waste minimization, containerization, color 
coding, and labeling, potentially expose serious hazards of 
secondary disease transmission [2]. Additionally, it has been 
highlighted by [3] that more than 85% of medical waste can 
be recycled to reduce waste output.

Currently, artificial intelligence has matured into a well-
established technology, and its applications have been 
rapidly expanding across various fields, with expectations 
for continued growth. However, there are still numerous 
scenarios that heavily rely on human efforts, such as cleaning 
and sorting tasks. Particularly, a significant amount of 
manpower is allocated to manage infectious and general 
commercial waste, resulting not only in increased personnel 
costs but also in the potential for personnel negligence. 
Therefore, the objective of this paper is to address these 
challenges by incorporating image recognition technology 
into the waste classification and sorting system. In essence, 
the designed mechanism presents a user-friendly system 
where garbage can be placed on the platform for automatic 
sorting. This approach significantly reduces the workload of 
cleaners and enhances overall quality of life.

This study focuses on establishing a real-time automated 
system for classifying medical waste using appearance 
features extracted through a deep learning technique known 
as the convolutional neural network (CNN). Notably, there 
is currently no existing comprehensive dataset exclusively 
containing medical waste images. To address this, we  
initially curate a dataset comprising three distinct classes: 
general infection, dangerous infection, and general garbage. 
In order to evaluate our approach, we leverage the transfer 
learning strategy, employing popular CNN architectures for 
feature extraction and waste classification. In addition to 
the CNN approach, the capabilities of state-of-the-art deep 
learning models are explored herein, such as transformer-
based models, which include layers like patch embedding 
and attention mechanisms. This exploration is a significant 
aspect of our research, allowing us to investigate the potential 
advantages and limitations of such models in the context of 
medical waste classification. To demonstrate the practical 
applicability of our system, we design and implement a 
hardware platform capable of sorting the identified waste 
into appropriate bins. This platform integrates various 
components such as a low-cost webcam, ultrasonic sensor, 
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micro-controller board, servo motor, and slider.
Furthermore, the practical applications of this study 

encompass automating medical waste sorting in healthcare 
facilities and hospitals, streamlining waste management 
centers’ processes, enhancing public health and safety 
through proper disposal, optimizing resource allocation, 
and acting as an educational tool for waste classification 
awareness. Thus, promoting positively impact healthcare, 
waste management, environmental preservation, and public 
health on a broader scale.

The primary objectives accomplished in this research are 
summarized as follows:

1. Creation of a medical waste dataset encompassing 
2025 images distributed across three categories.

2. Development of an automated medical waste 
recognition system utilizing state-of-the-art pre- 
trained CNNs.

3. Implementation of a hardware platform to validate 
the real-time waste sorting process.

4. Rigorous experimental validation of the recognition 
system’s effectiveness and the mechanism’s 
robustness, supported by both quantitative and 
qualitative results.

The rest of the paper is structured as follows: Section 
2 reviews publicly available datasets and discusses recent 
research progress in recognition models and hardware 
mechanisms. Subsequently, Section 3 offers an overview of 
the proposed framework and elaborates on each step in detail. 
In Section 4, experimental results are reported and analyzed. 
Finally, Section 5 outlines the conclusion of this work and 
highlights potential future directions.

2  Related Works

2.1 Automatic Trash Classification
So far, numerous studies have addressed automatic trash 

classification. One particularly notable work in this domain 
is presented by [4], who introduced the TrashNet dataset. 
This dataset encompasses six waste classes: cardboard 
(403 samples), glass (501 samples), metal (410 samples), 
paper (594 samples), plastic (482 samples), and trash (137 
samples), totaling 2,527 images. All images were captured 
against a clean background, utilizing objects placed in 

front of a white poster board. The image capture process 
employed various mobile devices, including Apple iPhone 
7 Plus, Apple iPhone 5S, and Apple iPhone SE, with a 
standardized resolution of 512 x 384 pixels. Utilizing a scale-
invariant feature transform (SIFT) [14] feature descriptor 
and a support vector machine (SVM) [15] classifier, a 
classification accuracy of 63% was achieved [4]. This 
relatively unsatisfactory result could be attributed to an 
imbalanced distribution within the waste classes. Notably, the 
trash class attained a precision of only 0.2 due to its limited 
representation (occupying approximately 5% of the dataset), 
often leading to misclassification with the paper class, which 
is the majority class. 

Since then, several previous research works [5-8] have 
attempted to enhance classification accuracy by introducing 
deep learning approaches based on artificial neural 
networks for automatic feature extraction. Specifically, their 
methodologies employ a transfer learning strategy, leveraging 
feature knowledge gained from a large-scale dataset, such 
as ImageNet [16], which contains over a million images 
spanning 1000 object categories. Parameters, encompassing 
weights and biases, in pre-trained models are fine-tuned by 
exposing them to the TrashNet images. This process not only 
accelerates learning but also reduces the necessary input 
data, substantially elevating classification performance. 
A summary of outcomes is presented in Table 1, which 
juxtaposes the models employed in various studies and their 
evaluations on the TrashNet dataset. Notably, DenseNet-121 
[17] and ResNet-50 [18] emerge as common architectures 
within this research domain.

On the other hand, Proença and Simões [10] curated 
a collection of trash images named Trash Annotations in 
Context (TACO). To provide a succinct overview, this 
dataset comprises 1500 images, encompassing a total of 
4784 annotations. The annotated labels span a wide array of 
60 categories, with notable examples of major classes being 
plastic bags, cigarettes, bottles, and cans. All images are 
meticulously annotated through pixel-wise segmentation, 
wherein the label with the largest area spans up to 2048 
pixels, while the minimum area of a label is less than 16 
pixels. To establish a benchmark result using the TACO  
dataset, Proença and Simões employed the Mask R-CNN 
[19] model, leveraging the ResNet-50 architecture as its 
backbone.

Table 1. Comparison of related works that evaluated on different datasets
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In continuation, [12] expands upon this work by creating 
a novel dataset named AquaTrash, primarily derived from 
the TACO dataset. Succinctly, this new dataset comprises 
a total of 369 images, primarily focusing on waste found 
in aquatic environments. AquaTrash includes annotations 
for four categories: glass, metal, paper, and plastic. An 
object detection approach, specifically Faster R-CNN [20], 
is employed to accurately localize waste within bounding 
boxes. The outcome is an achieved segmentation average 
precision of 0.81, establishing a strong baseline for waste 
detection within this context.

More recently, [11] compiled a set of real-life images 
depicting waste items found within a university campus, 
known as the MJU dataset. Precisely, the image capture 
setting is situated in a laboratory environment, with each 
waste item held by a person. Notably different from 
conventional waste datasets captured using 2D cameras, this 
dataset utilizes the Microsoft Kinect RGBD device. This 
approach allows each image to contain both intensity and 
depth information at various levels of spatial granularity. 
In total, the dataset comprises 2475 images. To establish a 
baseline segmentation performance, the images are divided 
into training, validation, and test sets in a ratio of 6:1:3. 
Additionally, the deep learning architecture DeepLabv3 [21], 
incorporating the proposed multi-level model, achieves an 
impressive segmentation mean intersection over union result 
of 93.79%.

Subsequently, Masand et al. [13] introduced a composite 
dataset to address the disparity among various waste 
categories featured in distinct publicly available datasets. To 
achieve this, they curated the ScrapNet dataset by selecting 
images from multiple sources. These sources encompassed 
datasets such as TrashNet, Openrecycle [22], TACO, and 
waste classification data [23]. The amalgamated dataset 
comprises a total of 8135 images, representing six categories: 
plastic (2014 samples), metal (950 samples), glass (1055 
samples), paper (1043 samples), compost (913 samples), 
and trash (1602 samples). Employing the EfficientDet [24] 
network architecture for the object detection task yielded an 
mAP score of 0.8234.

2.2 Medical Waste Classification
Regarding medical waste identification, Bian et al. [25] 

employed a Single Shot Multibox Detector (SSD) [26] with 
the MobileNet backbone architecture for waste segmentation. 
Their tested garbage comprised materials like hemostatic 
forceps, gloves, infusion bags, and syringes. Although 
they achieved a high classification accuracy of 98.5% with 
a dataset of 2825 images, the data distribution across the 
training, validation, and test sets remains unclear. Another 
medical waste detection study was conducted by Chen et al. 
[27], where a camera above the waste container recorded 
and classified the total trash amount. However, these wastes  
need to be properly separated for appropriate disposal. The 
classification of medical waste includes categories like 
infectious, hazardous, radioactive, and general.

In a similar vein, Mythili and Anbarasi [28] assembled 
a trash image dataset encompassing 200 images across five 
categories of biomedical waste: infectious waste, chemical 
waste, sharp waste, pharmaceutical waste, and pathological  

waste. They applied a 1:1 train/test split to validate 
their proposed encoder-decoder network architecture’s 
capability. A two-stage waste recognition process was 
undertaken, beginning with a segmentation step followed 
by classification. They evaluated their approach using 
accuracy and Root Mean Square Error (RMSE) metrics for 
classification and segmentation performance assessment,  
respectively. This resulted in an 84% accuracy for the 5-class 
classification task. However, the dataset’s scale is relatively 
small and susceptible to overfitting, especially when utilizing 
a neural network approach to extract discriminant features. 
Furthermore, ambiguities arose in their segmentation 
experimentation due to a lack of clarity in protocol settings 
and configurations within the study.

In their pursuit of fostering an environmentally conscious 
and sustainable ecosystem, [29] significantly enrich the 
ongoing discourse on effective waste management practices. 
Their research presents a focused exploration into the 
complex domain of medical waste management systems 
and their alignment with circular economy principles. By 
investigating the integration of these principles, the authors  
underscore the potential for a paradigm shift in conventional 
practices within the medical waste sector. Noteworthy is their 
emphasis on the deployment of optimization techniques and 
multi-criteria decision-making (MCDM) methods, revealing 
a thorough investigation of these strategies’ applicability 
to optimize circular economy-driven medical waste 
management systems. This meticulous examination attests to 
the authors’ profound insights.

Simultaneously, the same research team underscores their 
dedication to refining waste management practices through 
their earlier work [30]. Here, they introduce an inventive and 
robust approach to address the intricate challenges inherent 
in urban waste management systems, particularly in the 
presence of uncertainty. The study candidly acknowledges 
the unpredictable nature of waste management scenarios   
and introduces a pioneering perspective by proposing a 
comprehensive framework that integrates location-allocation-
inventory optimization. This approach underscores the 
researchers’ commitment to a holistic solution that adeptly 
considers the intricate interplay of diverse factors within 
waste management systems.

2.3 Waste Classification with Hardware Implementation
In addition to software development with high accuracy, 

numerous studies focus on implementing robots for waste 
detection, sorting, and picking. For instance, Bai et al. [31] 
designed a mobile robot that utilizes ResNet-34 to distinguish 
between garbage and non-garbage categories. The garbage 
class includes objects like bottles, cans, cartons, plastic bags, 
and waste papers. This mobile robot integrates a localization 
module (Inertial Measurement Unit (IMU) and odometer), 
controller, manipulator, garbage container, and multiple 
sensors. Consequently, it autonomously cleans designated 
areas of grass by removing predefined garbage. Conversely, 
a floating robot was developed by Kong et al. [32] to retrieve 
plastic waste from water surfaces. They employed a YOLOv3 
[33] architecture to identify the target object. The system was 
designed to navigate toward the object and perform grasping 
operations.
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2.4 Summary
Notably, most of the existing works apply CNN 

architectures to image classification due to the recent 
advancements in deep learning. In order to compete in the 
ImageNet recognition challenge [34], several architectures 
were proposed, including AlexNet [35], VGG16 [36], 
GoogLeNet [37], ResNet-18 [18], and ResNet-50 [18]. 
In 2012, AlexNet was the pioneering deep network that 
made significant progress in the challenge. Subsequently, 
VGG16 was developed, utilizing multiple small-size kernels 
to create a deeper network with lower costs in learning object 
discriminant features. Concurrently, GoogLeNet, inspired by 
the human visual system, introduced the inception module, 
which increased both depth and width while maintaining 
computational efficiency in network learning. However, 
deep architectures posed challenges such as vanishing 
gradients. To address this, ResNet was introduced, 
incorporating residual blocks and skip connections that 
add the identity of the previous layer to preserve gradients. 
Due to its effectiveness, the authors further designed deeper 
architectures, namely ResNet-18 and ResNet-50.

 3  Proposed Method

There are two primary components to achieving this 
automatic medical waste sorting mechanism: software 
configuration and hardware setup. Designing a robust 
medical waste classification system involves five key steps: 
data collection, data augmentation, CNN model training and 
testing, and graphical user interface (GUI) visualization. On 
the other hand, the hardware system encompasses four steps: 
image acquisition, object classification, movement of the 
garbage bin, and waste disposal. An overall flowchart of the 
proposed method is portrayed in Figure 1, and the specifics 
of each step will be detailed in the following subsections.

3.1 Software Configuration
3.1.1 Data Collection

The image data consists of three categories: general 
garbage (e.g., rag, medicine cup, medical package, 
marker pen, straw, chopsticks, and rag), general infection 
(e.g., cotton, cotton swab, gauze, gloves, masks, and 
tongue depressor), and dangerous infection (e.g., syringe, 
hypodermic needle, and blade). The details of each category 
and the corresponding statistics are provided in Table 2. 
In total, 2025 images have been collected, with a data 
distribution of 810 for general garbage, 810 for general 
infection, and 405 for dangerous infection. All the images 
were captured using the KTnet camera model, with a 
resolution of 1280 x 720 pixels. Sample data examples are 
illustrated in Figure 2. Notably, the images were taken from 
different angles, with varying object quantities and distances,  
to enhance the variability of the collected data and ensure the 
recognition system’s viability in a wide range of operating 
conditions.

Table 2. The statistics of the experimental data
No. Category Object Total
1.        General infection Cotton 135

Cotton sawb 135
Gauze 135
Gloves 135
Masks 135
Tongue depressor 135

2.       General garbage Medical cup 135
Medical package 135
Marker pen 135
Straw 135
Chopsticks 135
Rag 135

3.       Dangerous infection Syringe 135
Hypodermic needle 135
Blade 135

2025

Figure 1. The proposed framework for the medical waste classification and sorting mechanism that composes hardware and software parts
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3.1.2 Data Augmentation
The data augmentation process is performed to address 

the issue of data insufficiency. Additionally, it mitigates 
the overfitting phenomenon in the CNN model training 
process during the subsequent stage, thereby improving 
its generalization ability. Specifically, artificial image data 
is created by adding slight modifications to existing data. 
Random transformations such as reflections, translations, 
scaling, and rotations are implemented. Specifically, the 
augmentation options include both horizontal and vertical 
reflections, horizontal and vertical translations ranging from 
[-3, 3] pixels, a scaling range of [0.5, 2], and a rotation angle 
range of [-15°, 15°]. The detailed range of the augmentation 
parameters is provided in Table 3.

Table 3. Parameters for data augmentation
Augmenter Parameter
Horizontal reflection True
Vertical reflection True
Scaling [0.5, 2]
Rotation [-15°, 15°]
Horizontal translation [-3, 3]
Vertical translation [-3, 3]

3.1.3 CNN Model Training and Testing
The CNN models used in this study rely on a transfer 

learning strategy to offset the limitations of a small dataset, 
thereby facilitating faster convergence during training. The 
pre-trained CNN models under consideration include AlexNet 
[35], GoogLeNet [37], ResNet-18 [18], ResNet-50 [18], and 
VGG-16 [36]. These models are fine-tuned by adding a new  
fully-connected layer with an output size of 3 for the 3-class 
classification task and 15 for the 15-class classification task.  
The updated models are trained using the Adam optimizer 
and the following loss function:

L(ȳ, y) = −ΣKy(k)logȳ(k)                                                   (1)

where y(k) is 0 or 1 indicating correct classification on class 
k. All models have been previously trained on the ImageNet 
dataset [16], which contains approximately 1.2 million 
images across 1000 categories. A summary of the properties 
of these pre-trained networks and their respective training 
times is provided in Table 4. It is observed that the training 
time for all networks is approximately 1.5 hours. These 
networks vary in architectural design, with layer depths 
ranging from 8 to 50 and model sizes ranging from 27MB to 
515MB.

Table 4. The properties of the pre-trained network and the 
corresponding training time required for the medical waste dataset
Network Depth Model size Training time
AlexNet 8 227 MB 4840s
GoogLeNet 22 27 MB 5353s
VGG-16 16 515 MB 5877s
ResNet-18 18 44 MB 4964s
ResNet-50 50 96 MB 5620s

To ensure a fair evaluation of the experiment, a 3- 
fold cross-validation strategy is employed to randomly 
divide the data into three equally sized subsamples. Two 
experiments are conducted for medical waste recognition: a 
3-class classification task and a 15-class classification task. 
The former is performed on a composite dataset, while the 
latter considers each object item as an individual class. The 
train/test data distribution for each category in both tasks is 
detailed in Table 5. The model training is configured with a 
learning rate of 0.0001 and an epoch size ranging from 10 to 
200, in intervals of 10. Early stopping at the 200th epoch is  
implemented because the training accuracy and loss values 
plateau, indicating that further training would not result in 
improvements. The training progress for the GoogLeNet 

Figure 2. Samples of the self-collected medical waste dataset
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architecture is illustrated in Figure 3. Importantly, the training 
options and experimental protocols for both the 3-class and 

15-class classification tasks are identical, as summarized in 
Table 6.

Table 5. The train/ test split for the 3-class and 15-class classification tasks
3-class classification 15-class classification
Object Train Test Total Object Train Test Total

Cotton 95 40 135
Cotton swab 95 40 135

General infection 567 243 810 Gauze
Gloves

95
95

40
40

135
135

Masks 95 40 135
Tongue depressor 95 40 135
Medicine cup 95 40 135
Medical package 95 40 135

General garbage 567 243 810 Marker pen
Straw

95
95

40
40

135
135

Chopsticks 95 40 135
Rag 95 40 135
Syringe 95 40 135

Dangerous infection 284 121 405 Hypodermic needle 95 40 135
Blade 95 40 135

Total 1418 607 2025 Total 1425 600 2025

Figure 3. The training accuracy and loss for GoogLeNet 
architecture

Table 6. Training options for both the 3-class and 15-class 
classification tasks
Option Parameter
Solver adam
Initial learn rate 0.0001
Mini-batch size 16
Epoch [10, 200]
Shuffle once
Gradient decay factor 0.9
Gradient threshold method l2 norm

3.1.4 Graphical User Interface Visualization
Upon completing the training of the CNN models, a 

GUI is designed for intuitive user interaction. A screenshot 
of the GUI is shown in Figure 4. The large section of the 
window on the right displays the real-time scene captured 
via the webcam, while the left section provides the name of 
the detected object. This GUI displays results for both the 
3-class and 15-class classification tasks. The operational 
state is indicated: a green light signifies the system is  ready 
for operation, and a red light implies the system  is 
busy, either executing trash bin movement or awaiting waste 
disposal.

Figure 4. The GUI for intuitive interaction
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3.2 Hardware Setup
The automatic medical waste classification mechanism 

consists of six hardware components: an ultrasonic sensor, 
an Arduino, a sliding rail, a webcam, a servo motor, and 
a garbage bin. The overall dimensions of the system are 

36 cm in width, height, and length, as depicted in Figure 
5. The functions and detailed operations of the system are  
elaborated in the following subsections, which cover the 
processes of image acquisition, object classification, garbage 
bin movement, and waste falling.

Figure 5. The hardware setup of the automatic medical waste classification mechanism

3.2.1 Image Acquisition and Object Classification
Users can place trash on a platform measuring 30 cm 

x 30 cm when the GUI displays a green operational state.  
The platform is constructed from black paperboard and 
has a payload capacity of 1 kg. A webcam is mounted atop 
the system at a -45° angle, perpendicular to the horizontal 
plane, to capture images of the object. An ultrasonic sensor is 
employed to automatically detect the presence of a randomly 
placed object. The sensor’s detection range is set to 30 cm, 
sufficient to cover the entire platform. Although an infrared 
sensor was considered during the design phase, it was found 
to perform less effectively at longer distances and to be 
susceptible to environmental factors such as dust, sunlight, 
and smoke. Therefore, we opted for ultrasonic sensors for 
object detection.

Upon object detection, the webcam activates to capture an 
image, which is then sent to the computer for further analysis. 
At this point, the operational state displayed on the GUI 
will turn red. The webcam operates at a spatial resolution of 
1280 x 720 pixels. The captured image is resized to 224 x 
224 pixels before being fed into the CNN model for object 
recognition. The object detection process via the ultrasonic 
sensor and the object classification using the GoogLeNet 
architecture each take about 1 second, ensuring real-time 
processing.
3.2.2 Garbage Bin Movement

After identifying the object type, the sliding rail moves 
either to the left or right, depending on the category. 
Specifically, the garbage bin has dimensions of 36 x 36 x 
36cm3, and it is partitioned into three equal compartments 

to accommodate the three categories of medical waste. Each 
compartment has a volume capacity of approximately 16 
liters. The sliding rail, designed with dimensions of 36 x 36 x 
36 cm3, facilitates bin movement. To enhance the stability of 
this movement, two vertical supporting beams are positioned 
beneath the bin, flanking the sliding rail.

The garbage bin starts in a centered position. Maximum 
movement limits of 12 cm to both the left and right are 
established, corresponding to our three classifications: 
general garbage, general infection, and dangerous infection. 
The bin’s movement speed is set at 30 mm/s, allowing it to 
move from the center to the left or right in a maximum time 
of 4 seconds.
3.2.3 Waste Falling

After the garbage bin moves to the desired position, 
the servo motor is activated to allow the medical waste on 
the platform to drop. The servo motor is programmed to 
rotate 90° clockwise, facilitating the waste’s descent due to 
gravitational force. The entire waste-disposal process takes 
less than 1 second. Subsequently, the hardware system resets, 
and the operational state displayed on the GUI returns to 
a green light, signaling readiness for the  nex t  round of 
medical waste identification.

4  Experiment Setting and Results

This section discusses the metrics and corresponding 
experimental settings used to evaluate the proposed method. 
Additionally, in-depth analyses, both numerical and 
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statistical, are presented to provide insightful perspectives 
by revealing patterns or trends in the extracted feature data. 
Furthermore, the results obtained are interpreted visually 
through graphical representations, which offer valuable  
information and facilitate the investigation of subsequent 
explanatory mathematical models. Finally, the limitations 
of this study are outlined to suggest areas for further 
improvement in the proposed methodology.

4.1 Experiment Settings
The experiments are conducted on an Intel(R) Core(TM) 

i7-10750H 2.60GHz CPU with an NVIDIAGTX 1660Ti 
GPU. Image classification is implemented using MATLAB 
version R2020b. To assess the effectiveness and robustness 
of the proposed medical waste classification system, the 
performance metrics used are accuracy and F1-score, which 
can be mathematically expressed as follows:
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where:
• TP is the true positive, indicating the model correctly 

distinguishes the class of the object.
• TN is the true negative, indicating the model correctly 

predicts that the object does not belong to the class.
• FN is the false negative, indicating the model does 

not predict the class of the object correctly.
• FP is the false positive, indicating the model is 

incorrectly predicts the negative class as positive.
On the other hand, the Pearson correlation coefficient 

is used here to measure the linear relationships between 
two feature vectors, aiming to observe the associations 
within interclass or intraclass groups. Specifically, the 
Pearson coefficient is approximated using a least-squares 
fit. A coefficient value of 1 represents a perfect positive 
relationship, -1 signifies a perfect negative relationship, and 
0 indicates the absence of any relationship between the two 
vectors. Mathematically, the Pearson correlation coefficient 
can be formulated as follows: 
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where n refers to the sample size, xi and yi indicate the values 
of the first and second vectors in the sample, respectively. x̄ 
and ȳ represent the mean of the values of the first and second 
vectors in the sample, respectively.

4.2 Result and Discussion
This section primarily discusses the experimental results 

for the software component, focusing on the performance 
analysis of CNN model training and evaluation. Specifically, 
two separate classification tasks are conducted to validate the 
suitability of the collected database: a 3-class and a 15-class 
classification. Table 7 and Table 8 present the accuracies 
and F1-scores obtained using the transfer learning strategy 
with five well-known CNN  architectures (i.e., AlexNet,  
GoogLeNet, VGG-16, ResNet-18, and ResNet-50).

Overall, the average results achieved in both tasks are  
promising. The best accuracies are 99.34% and 98.67% 
when using GoogLeNet as the backbone architecture for 
the 3-class and 15-class classification tasks, respectively.
Other CNN architectures, such as AlexNet, ResNet-18, and 
ResNet-50, also achieve an average accuracy of 90% or 
higher, indicating the robustness of the applied networks. 
Additionally, the small standard deviation (i.e., less than 
3%) indicates high consistency in the classification tasks. 
To offer a clearer visualization of the performance achieved, 
Figure 6 summarizes the trend of classification results across 
different epoch sizes for various backbone architectures. 
It can be observed that the accuracy for all the networks, 
except VGG-16, plateaus after around 20 epochs and rarely 
increases thereafter. This demonstrates the effectiveness of 
the transfer learning strategy through fine-tuning the model’s 
parameters, thereby significantly reducing training time. 
However, the results from AlexNet diverge noticeably from 
those of other networks like GoogLeNet, ResNet-18, and 
ResNet-50, showing an average accuracy of around 91% 
in both classification tasks. This discrepancy in accuracy 
is partly due to the model’s shallow structure; its lower 
number of parameters may not be well-suited for this 
complex feature-learning task. In contrast, the performance 
of GoogLeNet, ResNet-18, and ResNet-50 is very similar 
across all epoch sizes, achieving the highest accuracies of 
over 98%. Therefore, GoogLeNet is chosen as the primary 
model for in-depth analysis in subsequent discussions. On the 
other hand, VGG-16 experiences a sharp drop in accuracy 
during the training process, especially at epoch=60 as shown 
in Figure 6(a). This fluctuation could be attributed to its large 
number of trainable parameters (i.e., 515MB, as referred to in 
Table 4), making it less ideal for model generalization on this 
medical waste dataset.
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Table 7. The performance results in terms of accuracy and F1-score for the 3-class classification task (i.e., general infection, general garbage,           
and dangerous infection) when adopting different pre-trained networks
Epoch AlexNet GoogLeNet VGG-16 ResNet-18 ResNet-50

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
10 0.9176 0.9166 0.9852 0.9830 0.7661 0.7364 0.9687 0.9698 0.9786 0.9774
20 0.9044 0.9066 0.9852 0.9821 0.9094 0.912 0.9786 0.9769 0.9621 0.9578
30 0.9357 0.9369 0.9753 0.9760 0.9209 0.927 0.9736 0.9709 0.9572 0.9551
40 0.9374 0.9387 0.9786 0.9781 0.8715 0.8612 0.9802 0.9782 0.9753 0.9720
50 0.9357 0.9337 0.9852 0.9834 0.9506 0.9451 0.9835 0.9822 0.9852 0.9823
60 0.8814 0.8837 0.9802 0.9787 0.4003 0.5718 0.9687 0.9672 0.9769 0.9753
70 0.9374 0.9395 0.9802 0.9807 0.9094 0.8997 0.9736 0.9715 0.9605 0.9589
80 0.9308 0.9341 0.9901 0.9897 0.9226 0.9243 0.9769 0.9741 0.9456 0.9413
90 0.9308 0.9300 0.9802 0.9787 0.9012 0.9002 0.9786 0.9787 0.9703 0.9681
100 0.8699 0.8675 0.9934 0.9925 0.8517 0.8241 0.9703 0.9658 0.9605 0.9557
110 0.9110 0.9122 0.9835 0.9802 0.4003 0.5718 0.9835 0.9822 0.9621 0.9617
120 0.9176 0.9119 0.9671 0.9611 0.7529 0.7529 0.9703 0.9686 0.9654 0.9627
130 0.9044 0.9076 0.9852 0.9842 0.9193 0.912 0.9802 0.9767 0.9769 0.9746
140 0.9143 0.9166 0.9835 0.9814 0.8682 0.8424 0.9819 0.9809 0.9638 0.9607
150 0.8962 0.8860 0.9802 0.9763 0.9226 0.9175 0.9720 0.9673 0.9671 0.9665
160 0.9012 0.8994 0.9835 0.9835 0.8468 0.8527 0.9835 0.9821 0.9769 0.9760
170 0.9308 0.9312 0.9703 0.9673 0.8847 0.8864 0.9835 0.9829 0.9341 0.9249
180 0.8484 0.8597 0.9852 0.9842 0.8402 0.8082 0.9868 0.9856 0.9736 0.9714
190 0.9176 0.9154 0.9802 0.9808 0.8962 0.9007 0.9786 0.9801 0.9769 0.9767
200 0.8896 0.8840 0.9819 0.9795 0.9308 0.9333 0.9736 0.9726 0.9654 0.9624
Max 0.9374 0.9395 0.9934 0.9925 0.9506 0.9451 0.9868 0.9856 0.9852 0.9823
Avg 0.9106 0.9106 0.9817 0.9801 0.8333 0.8440 0.9773 0.9757 0.9667 0.9641
σ 0.0244 0.0240 0.0060 0.0068 0.1567 0.1094 0.0056 0.0061 0.0121 0.0135

Table 8. The performance results in terms of accuracy and F1-score for the 15-class classification task when adopting different pre-
trained networks
Epoch AlexNet GoogLeNet VGG-16 ResNet-18 ResNet-50

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
10 0.8917 0.8933 0.9850 0.9850 0.8667 0.8684 0.9750 0.9751 0.9783 0.9783
20 0.9067 0.9057 0.9733 0.9734 0.7850 0.7869 0.9767 0.9767 0.9817 0.9817
30 0.9350 0.9358 0.9750 0.9750 0.8967 0.8991 0.9767 0.9764 0.9783 0.9783
40 0.9200 0.9198 0.9783 0.9785 0.9033 0.9025 0.9767 0.9767 0.9733 0.9732
50 0.8850 0.8859 0.9800 0.9800 0.9133 0.9124 0.9733 0.9732 0.9783 0.9784
60 0.9050 0.9060 0.9850 0.9851 0.8717 0.8695 0.9783 0.9782 0.9800 0.9799
70 0.9383 0.9389 0.9600 0.9604 0.8867 0.8860 0.9783 0.9784 0.9783 0.9784
80 0.9183 0.9183 0.9650 0.9648 0.8967 0.8945 0.9717 0.9720 0.9733 0.9730
90 0.9233 0.9236 0.9783 0.9782 0.8317 0.8312 0.9817 0.9815 0.9700 0.9698
100 0.9067 0.9089 0.9867 0.9866 0.9333 0.9334 0.9650 0.9646 0.9800 0.9798
110 0.8983 0.9033 0.9767 0.9767 0.8517 0.8581 0.9750 0.9748 0.9583 0.9587
120 0.9033 0.9034 0.9633 0.9633 0.8867 0.8847 0.9817 0.9814 0.9867 0.9866
130 0.9100 0.9094 0.9800 0.9800 0.7983 0.7922 0.9767 0.9767 0.9767 0.9765
140 0.8733 0.8721 0.9633 0.9635 0.9017 0.9006 0.9783 0.9784 0.9850 0.9850
150 0.9100 0.9103 0.9617 0.9620 0.9183 0.9172 0.9817 0.9817 0.9783 0.9779
160 0.9200 0.9203 0.9733 0.9736 0.9417 0.9423 0.9733 0.9733 0.9683 0.9683
170 0.8683 0.8672 0.9733 0.9733 0.8400 0.8303 0.9700 0.9703 0.9833 0.9833
180 0.9333 0.9337 0.9717 0.9714 0.9000 0.8994 0.9633 0.9630 0.9850 0.9850
190 0.9317 0.9311 0.9767 0.9768 0.8800 0.8764 0.9767 0.9765 0.9767 0.9766
200 0.9183 0.9191 0.9700 0.9699 0.7567 0.7584 0.9733 0.9735 0.9700 0.9699
Max 0.9383 0.9389 0.9867 0.9866 0.9417 0.9423 0.9817 0.9817 0.9867 0.9866
Avg 0.9098 0.9103 0.9738 0.9739 0.8730 0.8722 0.9752 0.9751 0.9770 0.9769
σ 0.0195 0.0196 0.0080 0.0079 0.0493 0.0495 0.0049 0.0050 0.0067 0.0067
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(a) 3-class classification

(b) 15-class classification
Figure 6. Accuracy results for the 3-class and 15-class classification 
tasks across different epoch sizes when adopting five different 
famous pre-trained CNN architectures

In addition to the accuracy and F1-score previously 
reported, the confusion matrices for  both  classification 
tasks offer further, more granular insights, as detailed in 
Table 9 and Table 10. A total of 607 and 600 testing images 
were used in the 3-class and 15-class classification tasks, 

respectively. Specifically, in the 3-class classification task, 
the CNN model perfectly classifies the “general infection” 
category, while making minor errors in classifying images 
from the “general garbage” and “dangerous infection” 
categories—misclassifying 3 and 1 images, respectively. 
Conversely, Table 10 reveals that among the 15 categories, 
only a few test images from 5 classes (i.e., “cotton swab”, 
“gloves”, “marker pen”, chopsticks”, and “blades”) exhibit 
minor miscategorization errors. Despite the high similarity 
in appearance between different objects, which leads to 
potential misclassifications such as mistaking “chopsticks” 
for “straw” or “tongue depressor”, as shown in Figure 7 the 
resulting classification rates for all categories exceed 90%. 
This implies the robustness of the applied CNN model.

Succinctly, this study not only introduces a novel 
framework for automatic medical waste recognition, but also 
incorporates a real-time hardware platform for classification  
and sorting. The model’s strength lies in its robustness 
analysis, evidenced by comprehensive assessments such as 
intraclass and interclass correlations, ensuring its capability 
to handle complex relationships between waste categories. 
Achieving a remarkable 99% classification accuracy on a 
self-collected database of around 2000 images underscores 
its proficiency. However, the hardware dependency could   
limit its adaptability in certain contexts. Compared to   
similar methods, this model uniquely combines algorithmic  
advancement and hardware implementation, offering both 
theoretical soundness and practical applicability, setting it 
apart from purely algorithm-based approaches.

Table 9. The confusion matrix of recognition result (%) for the 3-class classification task when employing GoogLeNet in the transfer 
learning strategy

Predicted class
General infection General garbage Dangerous infection

General infection 100 0 0
Target class General garbage 0 98.77 1.23

Dangerous infection 0 0.41 99.59

Table 10. The confusion matrix of recognition result (%) for the 15-class classification task when employing GoogLeNet in the transfer 
learning strategy
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Compared to similar methods in the literature, this 
proposed framework stands out due to its multifaceted 
approach. Unlike some existing approaches  that solely focus 
on algorithmic improvements, this model integrates both 
algorithmic advancements and hardware implementation. 
This dual focus ensures that the model’s performance is not 
only theoretically sound but also practically applicable in 
real-world scenarios. Moreover, the meticulous analysis of 
intraclass and interclass correlations sets this work apart. It 
goes beyond traditional evaluation metrics to provide a more 
nuanced understanding of the model’s classification abilities. 
This level of insight into the model’s performance is often 
lacking in comparable methods. This high classification 
accuracy (99%), along with the comprehensive evaluation, 
provides strong evidence of the model’s effectiveness and 
contributes to its superiority over existing methods. In 
summary, the proposed model combines innovation, practical 
implementation, rigorous analysis, and superior performance.  
This multifaceted approach positions it as a noteworthy 
advancement in the field of medical waste recognition.

4.3 Statistical Analysis and Data Visualization
A statistical analysis is conducted to examine the feature 

similarity extracted by the CNN model for images within 
both intraclass and interclass groups, as presented in Table 
11 and Table 12, respectively. This metric can also serve as 
an alternative way to assess and numerically describe the 
relationships between feature representations within the  
same and different groups. Specifically, a high correlation 
coefficient close to 1 suggests high feature similarity between 
two feature representations, while a value close to 0 indicates 
that the extracted features are dissimilar. Table 11 includes 
five randomly selected test images from each category (i.e., 
masks, hypodermic needles, cotton swabs, and chopsticks) 
for statistical evaluation. Overall, features extracted from 
the masks and hypodermic needle categories exhibit very 
high correlation coefficients (i.e., >80%), while the cotton 
swab and chopsticks categories show relatively lower values 

(i.e., 60%). This discrepancy could explain the correct and 
incorrect classifications observed in the 15-class classification 
task (as referred to in Table 10). In terms of interclass 
relationships, the average correlation coefficient value in 
Table 11 is approximately 15%, suggesting that features from 
different groups have minimal correlation. This implies that 
the CNN architecture is capable of extracting distinct and 
qualitatively important features from images across different 
categories.

The graphical illustration in Figure 8 displays the 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
analysis used to visualize the high-dimensional data learned 
by the pre-trained GoogLeNet. Specifically, a random 
image from each of the 3 or 15 categories is selected, and 
the activations from the last pooling layer are extracted. 
Each video, represented by a 1024-D feature set, is then 
transformed into a 3D map based on the probability 
distribution between pairs of instances. The distinct clusters, 
with 3 and 15 well-separated and spaced groups, facilitate 
the correct identification of image categories in both 
classification tasks.

Last but not least, Table 13 presents the Grad-CAM 
activations that highlight the features learned by the CNN 
model. The Grad-CAM model outputs a visual explanation 
heatmap with colors ranging from red to blue. In this 
heatmap, the red region indicates high activation, while 
blue denotes low activation. It is observed that the proposed 
method can achieve promising recognition results, especially 
for images with noisy backgrounds (e.g., medical packages  
and chopsticks samples) and for tilted or deformed objects 
(e.g., medicine cups and masks samples). This demonstrates 
that the localization maps of meaningful regions within 
the images are clearly highlighted, attesting to the strong 
generalization capabilities of the adopted model. Figure 9 
showcases examples of correctly classified test images along 
with their corresponding confidence levels, most of which 
exceed 95%.

Table 11. Correlation coefficient measurement for the images from intraclass groups

Masks Cotton swab

1 2 3 4 5 1 2 3 4 5
1 1 0.85 0.78 0.85 0.80 1 1 0.82 0.61 0.57 0.46
2 0.85 1 0.82 0.85 0.80 2 0.82 1 0.53 0.53 0.47
3 0.78 0.82 1 0.78 0.76 3 0.61 0.53 1 0.73 0.70
4 0.85 0.85 0.78 1 0.93 4 0.57 0.53 0.73 1 0.72
5 0.80 0.80 0.76 0.93 1 5 0.46 0.47 0.70 0.72 1

 
Hypodermic needle Chopsticks

1 2 3 4 5 1 2 3 4 5
1 1 0.80 0.93 0.90 0.86 1 1 0.89 0.43 0.35 0.34
2 0.80 1 0.77 0.87 0.87 2 0.89 1 0.51 0.43 0.40
3 0.93 0.77 1 0.84 0.85 3 0.43 0.51 1 0.78 0.80
4 0.90 0.87 0.84 1 0.95 4 0.35 0.43 0.78 1 0.98
5 0.86 0.87 0.85 0.95 1 5 0.34 0.40 0.80 0.98 1
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Table 12. Correlation coefficient measurement for the images from interclass groups

 

Table 13. The six types of waste images and their Grad-CAM images
Class Medicine cup Medical package Cotton
Testing image

Grad-CAM image

Class Chopsticks Straw Mask
Testing image

Grad-CAM image
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Figure 7. The example of the misclassified testing images with the 
images with high appearance similarity

   

(a) 3-class classification 

(b) 15- class classification

Figure 8. T-SNE map of the activation layer extracted from deep 
learning architecture 

Figure 9. Confidence level of the testing images

4.4 Ablation Studies
To investigate the impact of hyperparameter selection 

on recognition performance, an ablation study is conducted 
focusing on the types of optimizers and the values of the 
learning rates. Three types of optimizers are evaluated: 
Adaptive Moment Estimation (Adam), Stochastic Gradient 
Descent with Momentum (SGDM), and Root Mean Square 
Propagation (RMSProp). The experiments are carried 
out using AlexNet and GoogLeNet architectures for the 
3-class classification task, with the results illustrated in 
Figure 10 and Figure 11, respectively. It is observed that 
GoogLeNet outperforms AlexNet overall, corroborating the 
previously discussed findings that GoogLeNet consistently 
yields promising recognition rates. Regarding the choice of 
optimizer, the Adam solver outperforms the other two in both 
cases, as seen in Figure 10 and Figure 11. Therefore, Adam is 
selected for all subsequent experiments.
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Figure 10. The recognition accuracy when employing different 
types of optimizers in training the AlexNet architecture for the 
3-class classification task

Figure 11. The recognition accuracy when employing different 
types of optimizers in training the GoogLeNet architecture for the 
3-class classification task

Conversely, the learning rate is varied to identify the 
optimal value. Figure 12 displays the accuracy rates obtained 
when using three different learning rates: 0.00001, 0.0001, 
0.001. This experiment employs GoogLeNet as the backbone 
architecture and uses the Adam solver as the optimizer. It 
is evident that a learning rate of 0.0001 results in a stable 
recognition rate with an accuracy of at least 95%. On a 
related note, the model training is configured such that the 
epoch size is set to [10, 200] with an interval of 10. 

Figure 12. The recognition accuracy when employing different 
values of learn rate in training the GoogLeNet architecture for the 
3-class classification task

The reason for the early stopping at the 200 epoch is 
because further training does not lead to any improvement. 
Concretely, the justification of selecting the values or options 
of the parameters are summarized below:

1. Solver: The performance results when employing 
different types of optimization solvers (i.e., adaptive 
moment estimation (Adam), stochastic gradient  
descent with momentum (SGDM), and Root Mean 
Square Propagation (RMSProp)) are demonstrated  
in Figure 10 and Figure 11. The recognition result 
when adopting Adam outperformed the two other 
optimization algorithms.

2. Learn rate: An ablation study is performed to 
evaluate the impact of adopting different learning 
rates (i.e., 0.00001, 0.0001, 0.001) when training 
the GoogLeNet architecture. Detailed performance 
yielded is demonstrated in Figure 12. As a result, 
we opt for the learning rate of 0.0001 in all the 
experiments herein, as it exhibits the best recognition 
rate among them.

3. Epoch size: For the learn rate settings, Figure 3 
portrays the learning progress during the model 
training using GoogLeNet architecture. It can  be 
observed that the network converges at the beginning 
of the few epochs and the value of training accuracy 
and training loss start to remain stagnant. In addition, 
the recognition result yielded after conducting the  3- 
fold cross-validation strategy reported in Table 7 and 
Table 8 in the manuscript evidenced the adequacy 
of the parameter option, as there is no overfitting 
phenomenon occurring.

4. Mini-batch size: This parameter value is often tuned 
to an aspect of the computational architecture on 
which the implementation is being executed. It does 
not affect accuracy, but it affects the training speed 
and memory usage.

5. Shuffle: The data is shuffled once randomly before 
training the model to reduce overfitting and variance. 
As such, the weights are more generalized and do 
converge faster, and produce better results.

6. Gradient decay factor: The decay rate of the 
gradient moving average for the Adam solver is 
specified as a value that is less than 1. As suggested 
by the MATLAB toolbox [38], the default value of 
0.9 works well for most tasks.

On a related note, the 15-class classification aims to 
identify items that may be incorrectly sorted into the wrong 
garbage bin during the 3-class classification. This analysis 
sheds light on items that are prone to misclassification. 
For instance, the confusion matrix in Table 10 reveals that  
2% of cotton swab samples are misclassified as medicine 
cups, suggesting that infectious waste could end up in the  
general garbage bin. Similarly, the table indicates that 2.5% 
of blade samples are misclassified as rags, meaning the 
blades could also be sorted into the general garbage bin. 
Such misclassification scenarios pose potential risks to both 
human health and the environment if waste management is 
not executed properly. To mitigate overfitting, K-fold cross-
validation is employed as a widely recognized and effective 
measure against performance ambiguity. The number of 
parameters, network size, FLOPs, and MACs for each 
architecture are detailed in Table 14, providing insights into 
the computational  burden  associated  with each architecture.
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Table 14. The number of parameters and the size of each network, 
along with their FLOPs and MACs

Network # Parameter 
(Millions)

Size (MB) FLOPs 
(billions)

MACs 
(billions)

1 AlexNet 61 227 1.11 7.36
2 GoogLeNet 7 27 1.46 1.39
3 VGG-16 138 138 15.5 30.8
4 ResNet-18 11.7 44 1.82 3.67
5 ResNet-50 25.6 96 3.67 7.58

4.5 Evaluation on Transformer-based Model
The rising prominence of deep learning models has indeed 

been remarkable in recent years, especially with the evolution 
of various kinds of models, most notably the transformer-
based model. This model, with its core components like 
patch embedding and attention layers, is meticulously crafted 
to excel at capturing discriminant features in data. Figure 
13 presents the performance results in terms of accuracy 
when training and testing the transformer-based model for a 
3-class classification task. It is noteworthy that the accuracy 
of the model generally improved as the epoch size increased. 
Specifically, there was a consistent upward trend in accuracy 
from 100 to 400 epochs. Subsequently, the accuracy appeared 
to plateau, exhibiting slight fluctuations from epoch size 400 
to 800. However, beyond epoch=800, a significant decrease 
in accuracy was observed. Overall, this transformer model 
achieved its maximum accuracy of 75% at epoch=500. Table 
15 provides a detailed performance result, including other 
metrics such as F1-score, recall, and precision. These metrics 
generally followed a similar trend to accuracy.

Figure 13. The performance result in terms of accuracy when 
training and testing using a transformer-based model for the 3-class 
classification task

The results presented in Table 15 and the accompanying 
discussion indicate that the transformer-based model may 
not be the optimal choice when evaluating it on a dataset 
comprising a relatively small number of samples, specifically 
2025 images across three classes. Succinctly, the unsuitability 
of the transformer-based model can be attributed to several 
factors. Firstly, transformers thrive on large datasets to 
generalize effectively, but the limited data here may lead 
to overfitting or insufficient pattern capture. Secondly, the 
inherent complexity of transformer models can be excessive 
for the task, potentially causing overfitting and computational 
inefficiency. Additionally, fine-tuning on a small dataset 
becomes challenging, hampering the model’s ability to 
adapt. Furthermore, transformers emphasize capturing long-

range dependencies and relationships, which may not be 
prevalent in a small dataset, leading the model to focus on 
noise or irrelevant features. Moreover, to train a transformer-
based network is generally highly computationally expensive 
compared to CNN, making them impractical for these 
applications.

Table 15. The performance results in terms of the metrics accuracy, 
F1-score, recall, and precision when training and testing using a 
transformer-based model for the 3-class classification task

Accuracy F1-score Recall Precision
100 0.5667 0.5409 0.5742 0.6115
200 0.7068 0.6749 0.6728 0.6878
300 0.7133 0.6989 0.7129 0.6967
400 0.7529 0.7297 0.7306 0.7380
500 0.7545 0.7436 0.7679 0.7585
600 0.7496 0.7389 0.7583 0.7419
700 0.7463 0.7356 0.7556 0.7539
800 0.7397 0.7280 0.7335 0.7447
900 0.6442 0.6294 0.6691 0.6817
1000 0.5832 0.5524 0.6045 0.6450

4.6 Limitation
Although the above-reported experimental results offer 

insightful and highly feasible evaluations of the proposed 
pipeline, several limitations warrant mention. Since this study 
performs two types of classification tasks, namely 3-class 
and 15-class, the dataset used is relatively small, consisting  
of only 2000 images. A larger dataset would be preferable to 
account for variations in input data, especially concerning 
objects with distinct colors and perspective angles. Another 
significant limitation is that the proposed model can only 
identify a single object in each image, leading to potential 
misclassification errors when multiple objects of different 
classes appear in the same image. To address this, detection 
or segmentation algorithms could be implemented to 
efficiently localize objects and identify their respective 
bounding boxes or boundaries.

Regarding the type of medical waste, this study focuses 
solely on solid waste, as it is recommended that biological 
liquid waste be poured down the drain and into the sewage 
system. However, the hardware platform is limited to 
handling small-scale (i.e., < 15 x 15 cm) and lightweight 
(i.e., < 1kg) waste. Despite these limitations, this automatic 
medical waste classification mechanism serves as a prototype 
that can easily be scaled up to manage multiple types of 
waste, such as regular waste, biohazardous waste, sharps 
waste, pharmaceutical waste, and hazardous pharmaceutical 
waste [39].

5  Conclusion

In summary, this work introduces a novel framework 
for the automatic recognition of medical waste. The 
proposed system includes a hardware platform for real-
time classification and sorting. Extensive analyses and 
investigations confirm the system’s reliability and robustness. 
The examination of complete confusion matrix entries and 
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correlation coefficient measurements for both intraclass and 
interclass groups indicates that appropriate experimental 
procedures and network models have been employed. 
Overall, the framework effectively performs both 3-class 
and 15-class classification tasks, achieving a remarkable 
classification rate of 99% on a self-collected database 
comprising approximately 2000 images. The experimental 
results provide both numerical and qualitative evidence, 
confirming the validity of the collected database.

While 85% of medical waste is non-hazardous and 
general, the growing volume of daily waste generated can be 
more efficiently managed both on-site and off-site through 
advanced computer vision technologies. As for future 
work, the proposed automatic medical waste classification 
and sorting system can be further improved by adding 
more categories, making it more practical for real-world 
implementation. For example, the system could include the 
five healthcare waste classes: regular waste, biohazardous 
waste, sharps waste, pharmaceutical waste, and hazardous 
pharmaceutical waste. Additionally, the hardware system 
could be enhanced to reduce computational time and the 
time required for garbage bin movement, necessitating more 
robust hardware components to improve the platform’s 
mechanics. 
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