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Abstract

The sign language recognition system has placed an 
important role in disabled people’s lives. The researchers 
utilize various methods to fulfill  disabled people’s 
requirements. However, the methods fail to access their 
sign at a reasonable cost with minimum computational 
difficulties. The improper sign access causes a reduction 
of the sign language recognition accuracy. Therefore, this 
study uses the sensor of wearable devices to capture people’s 
motions and actions to identify sign language. The collected 
information is fused into a competition level that understands 
disabled people’s requirements. After that, fused information 
is processed by the Pareto Optimized Hypertuned Deep 
Elman Neural Model (POHDENM). In addition, the data 
augmentation process is incorporated to train the data, which 
helps to recognize the large volume of sentences. Here, 
the fused information is split into words processed by the 
neural model that recognizes the sign language features. The 
extracted features are analyzed by an optimized method that 
recognizes the language with maximum accuracy. During 
the analysis, network parameters are hyper-tuned with the 
help of the Pareto model, which reduces the misrecognition 
error rate. Then, the created system efficiency is evaluated 
using the experimental analysis. The POHDENM approach 
achieves a high accuracy of 97.86% and an F1-score of 
98.08%. The model’s high performance is achieved by fine-
tuning its hyperparameters using the Pareto optimization 
algorithm, which balances precision of 98.06% and recall of 
98.12%.

Keywords: Competition fusion level, Pareto Optimized 
Hyper-Tuned Deep Elman Neural Model, Sign language, 
Wearable devices

1  Introduction

Sign language recognition using wearable devices is a 
technology that can potentially change how individuals who 
are deaf or hard of hearing communicate with others [1]. This 
technology has been developed to facilitate communication 
by detecting and interpreting the movements of the signer’s 
hands and fingers [2]. The technique relies on machine 
learning algorithms that have been trained to identify and 
understand the unique movements of the hands and postures 

associated with various sign languages [3]. The portable 
devices used for deciphering signs may be worn on the 
signer’s wrist, arm, or hand and are compact and light [4]. 
These devices can capture and decode the signer’s finger 
and thumb movements by incorporating sensors, cameras, 
and other hardware. Afterward, the collected data is sent to 
a computer or other device, processed by machine learning 
algorithms, and converted into text or voice.

Machine learning is essential for sign language 
identification using wearable devices [5]. The system is 
trained by machine learning algorithms to identify and decode 
the unique movements and gestures associated with various 
signs [6]. Sign language recognition is a way to bridge the 
communication gap between hearing-impaired people and 
others, using a convolutional graph neural network (GCN) 
architecture with spatial attention mechanism. The proposed 
architecture shows outstanding results on different datasets 
[7]. Because the technology can convert sign language into 
written or spoken English, it can reach a broader audience. 
Furthermore, machine learning techniques continuously 
improve the platform’s efficacy and reliability. Algorithms 
are updated and fine-tuned to increase recognition precision 
when additional data and feedback are sent into the system 
[8]. The system’s ability to learn and change over time is key 
to providing dependable sign language recognition.

Many possibilities exist for improving the lives of the 
deaf and hard of hearing via sign language recognition 
technology [9]. One of the key benefits is that it gives a 
mode of communication that is easier to use and more widely 
available than conventional techniques [10]. The devices 
used to recognize sign language are compact and lightweight, 
making them convenient to take anywhere. In addition, the 
necessity for an expensive and often transient sign language 
interpreter is mitigated by this technological advancement 
[11]. Increased social acceptance and accessibility are 
other benefits of sign language recognition technology. 
Communication difficulties are a major cause of social 
exclusion and isolation for those who are deaf or hard of 
hearing. Wearable technologies that understand sign language 
may be an important tool in removing these obstacles for 
people who are deaf or hard of hearing, allowing them to 
take their rightful place as contributing members of society 
[12]. The use of sign language recognition technology has 
several advantages, yet it comes with some drawbacks. The 
fact that the technology is only now beginning to take effect 
is an important obstacle. The input data quality and the 
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device’s environment may affect accuracy and dependability. 
The system’s accuracy is vulnerable to environmental factors 
like illumination and noise level and user inputs like signing 
speed and fluidity. [13]. Another issue with sign language 
identification systems is that they may not be able to 
recognize all regional sign language variants.

 A machine-learning system might find it difficult to 
correctly interpret all signals because of numerous variations 
and dialects within sign languages. Some users may find 
their experience with the technology limited due to this. 
Access to information and expression for the deaf and dumb 
might be greatly enhanced by wearable technology that can 
understand sign language. The technology has many potential 
benefits, including increased accessibility, convenience, and 
inclusivity. However, some challenges need to be addressed, 
including accuracy and reliability issues and the need to 
account for regional variations in sign language [14]. As the 
technology continues to evolve, it will likely become even 
more useful and widely adopted, helping to break down 
barriers and promote greater inclusion and accessibility for 
individuals who are deaf or hard of hearing. Therefore, the 
main objective of this research is listed as follows.

• The optimized neural model maximizes sign 
language recognition accuracy by handling the lighting and 
background noise-related inputs.

• Minimizing the misclassification and optimization 
problems while recognizing the sign language from the input 
data from smart glove sensors.

• To address the reliability and accuracy issues for 
regional variations in sign language

The remaining sections of the paper are structured as 
follows: In Section 2, the sign language detection procedure 
will be presented. Section 3 analyzes the working process 
of Pareto Optimized Hypertuned Deep Elman Neural Model 
(POHDENM) based sign language detection. Section 4 
evaluates the introduced POHDENM system, and the 
conclusion is described in Section 5.

2  Sign Language Detection Procedure

This section describes and analyzes the various 
researcher’s works, frameworks, and ideas regarding the 
sign language detection process. Deriche et al., 2019 [15] 
introduced the Gaussian Mixer Model (GMM) to identify 
ASL (Arabic Sign Language) with the Leap Motion 
controller’s corresponding gestures. The controller was 
utilized to remove the occlusions in the finger image. Then, 
the signs were analyzed to get the optimum geometric 
features. The derived features were processed with the 
help of the Linear Discriminate Analysis (LDA), Bayesian 
Approach (BA), and GMM approach to classifying the sign 
language. During the analysis, the Dempster-Shafer theory 
was applied to fuse the information from the controller. The 
fusion-based classification process improved overall sign 
language detection. This system used native adult signers, 
and 100 isolated signs were detected with 92% accuracy. 
The GMM-based sign detection process successfully and 
effectively handled the missing values.

Lee et al., 2021 [16] recommended Recurrent Neural 

Network (RNN) to recognize American Sign Language. 
The author intended to create sign language detection 
applications by incorporating the whack-mole game model. 
During the analysis, static and dynamic signs were collected 
and processed using the K-Nearest Neighboring (KNN) 
with the Long-Short Term Recurrent Model. The algorithm 
processed the inputs sequentially, reducing the difficulties 
in sign language detection. The collected images and 
features, such as finger angles, radius, and position distance, 
were processed. The extracted features were analyzed by a 
classifier that recognized the sign language effectively. The 
model was trained using 2600 samples, and 100 samples 
were considered the testing image. The RNN approach 
recognized the American sign language up to 91.82% in five-
fold cross-validations.

Mittal et al., 2019 [17] developed a continuous sign 
language detection system using the leap motion by 
applying the Modified Long-Short Term Memory Network 
(LSTM). The system is intended to detect the sequence of 
interconnected gestures. The leap motion-based collected 
images were processed with the help of neural modeling 
techniques that predicted the sign language. The system used 
the 942 signs that were processed, and 35 sign words were 
detected with up to 72.3% accuracy. In addition, the modified 
LSTM isolated the sign words with up to 89.5% accuracy.

Aly et al., 2020 [18] introduced the Signer Independent 
Deep Learning approach (DeepArSLR) to recognize the 
Arabic sign language. The sign language images were 
collected and processed with the help of the DeepLabV3+ 
tool. The tool trained the data by extracting the hand shape 
and semantic information. The derived information was 
processed using the Convolution Self-Organizing Map 
(CSOM) that extracted the various features. The derived 
features were analyzed using deep CNN, Bidirectional 
LSTM, and recurrent network. These networks recognized 
the sign language gestures with maximum accuracy and 
isolated the 23 words from the users. 

Al-Samarraay et al., 2022 [19] developed a sign language 
detection system using the Fuzzy Decision with Opinion 
Score Model (FDOSM). This system is intended to reduce the 
multi-criteria decision-making issues while classifying the 
sign language gestures. Images of signs were collected and 
evaluated using an algorithm called interactively arithmetic 
mean, which extracted information from the gestures 
themselves. The extracted features were processed using the 
fuzzy approach to make effective language decisions. During 
the analysis, Sign Language Recognition (SLR) dataset 
information was utilized to analyze the system’s efficiency. 

Katoch et al., 2022 [20] developed an Indian Sign 
Language detection system using the Support Vector 
Machine (SVM) and Convolution Neural Networks (CNN). 
The sign symbols were collected that were processed with 
the help of the Bag of Visual Words (BOVW). The BOVM 
approach derived the region from the A to Z alphabets and 0 
to 9 digits. The background subtraction method eliminated 
the background details during the analysis. Then, Speeded 
Up Robust Features were derived and processed using the 
SVM and CNN. The classification approach recognized the 
sign language effectively and created an Interactive Graphical 
Interface device to make it easy to access.
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Xue et al., 2022 [21] applied the Multi-Modal Perception 
Information Fusion process to recognize the in-hand motion. 
Ten human in-hand motions were initially developed with the 
help of the finger trajectory, electromyographic, and contact 
force details. Then, the motion segmentation was performed 
in the multi-modal data analysis platform. Empirical Mode 
Decomposition (EMD) was applied to decompose the images 
during the analysis. Then Maximum Lyapunov Exponent 
(MLE) was utilized to derive the non-linear features. The 
extracted features were analyzed using a Random Forest (RF) 
approach that recognized the motions with 93.72% accuracy.

Nandi et al., 2022 [22] recommended Convolution 
Neural Networks (CNN) with different gradient optimization 
techniques to create the sign language recognition system. 
The system intended to reduce the gap between the deaf, 
dumb, and normal people. The system collected the 62400 
images from 26 users and processed them with the help of 
the CNN approach. Initially, a data augmentation process 
was applied to reduce the irrelevant information and rescale 
the details. Then batch processing and dropout layer were 
applied to minimize the redundant information and features 
from the images. Then, the diffGrad optimization technique 
was applied to fine-tune the network parameter, improving 
the sign language detection system by up to 99% compared 
to other methods. According to various researchers’ analyses, 
the sign language recognition system was created with the 
help of machine learning, image processing, and optimization 
techniques. These techniques analyzed each gesture in 
different directions, which helped to maximize the overall 
detection accuracy.

Nevertheless, the approaches cannot access their sign at 
an affordable price and with few computational problems. 
The accuracy of sign language recognition is hampered by 
inadequate sign access. So, to record participants’ behaviors, 
this research uses wearable technology. The patient’s 
motion is recorded by the sensor and used to identify needs 
accurately. Then, the research objective is attained with the 
help of the Pareto Optimized Hypertuned Deep Elman Neural 
Model (POHDENM). The POHDENM-based sign language 
detection process’s detailed working process is explained 
below.

3  Pareto Optimized Hypertuned Deep 
Elman Neural Model (POHDENM) 
based Sign Language Detection

This attempt aims to enhance the accuracy of gesture 
recognition detection methods. The detected sign language is 
utilized in various applications that consist of communication 
aids, speech and hearing impairments related people. 
The existing sign language detection system has several 
challenges, including signing variability, limited datasets, 
limited vocabulary, background noise, and camera placement. 
Addressing these challenges will require continued research 
and development in computer vision, machine learning, and 
natural language processing. Additionally, collaborations 
between sign language experts and computer scientists 
will be crucial to improving the accuracy and usability of 

sign language recognition systems. Therefore, this research 
uses wearable devices to collect people’s requirements and 
perform data fusion. The fused information is analyzed with 
the help of the Pareto Optimized Hypertuned Deep Elman 
Neural Model (POHDENM). The introduced POHDENM-
based sign language detection process has several steps: data 
collection, pre-processing, data fusion, classification using 
a neural model, training, and validation of the introduced 
sign language detection process. Then, the overall working 
process of the POHDENM-based sign language prediction 
process is illustrated in Figure 1. 

Figure 1. Overall working process of POHDENM-based sign 
language recognition

Figure 1 illustrates the overall working architecture of the 
sign language recognition process. The system uses wearable 
devices to collect data from people. The wearable devices 
are incorporated with sensors to capture gestures and hand 
movements. The wearable devices comprise several sensors, 
such as magnetometers, accelerometers, and gyroscopes, that 
capture hand movements and orientation in different aspects. 
During this process, WULALA data glove hardware space is 
utilized, and the configuration is presented in Table 1.

Table 1. Wulala data glove hardware space
Item Attribute

Wireless communication Bluetooth
Signal Latency <5ms
DoF 11 Dof (5 fingers and six palms)
Finger curvature sensor types 5* WULALA-CS1G
Finger curvature sensor resolution 0.08
Finger curvature sensor repeatability > 8 million
Finger curvature sensor measurement 
range

-30- 180

Palm IMU Sensor 1*6DoF IMU
Sensor sampling rate Finger: 200Hz and IMU: 1000Hz
Battery duration >8hours
Charging USB (about 90 minutes)
Weight 70g (total with battery)

According to Table 1, the collected information is 
processed in the sign language recognition environment. 
Then, the sample glove sensor-based collected sign language 
gesture is depicted in Figure 2.

Figure 2. Sample sign language gesture
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Various sensor-based collected information is fused to 
improve the overall sign language recognition process. The 
fusion process reduces the data availability, and limited data 
minimizes overall data analysis efficiency. By combining 
information from many sensors or data streams, sensor 
data fusion provides an improved understanding of the 
phenomena or system under observation. Fusion of data 
from numerous motion sensors may improve sign language 
identification by capturing the signer’s motions and gestures 
more accurately. This may be useful for getting around the 
fact that certain sensors, although effective, may only be 
able to collect part of the needed data. Data fusion methods 
enable combining disparate data sources into a unified 
model that better represents the whole. Pre-processing the 
data from each sensor might consist of standardizing the 
formats, scaling to a common range, and measuring the data 
for consistency. Data representation is changed from 0 to 1 
limit during the normalization process. This process helps 
to minimize the computation difficulties. After normalizing 
the information, data fusion is performed to create a more 
complete and accurate representation of the sign language 
gesture that can be used as input to sign language recognition. 
It is particularly useful when specific sensors are susceptible 
to noise, disturbance, or other causes of inaccuracy; this may 
increase the recognition state’s precision and resilience.

3.1 Process of Data Fusion
Bayesian inference is a statistical approach that can 

be used to combine data from multiple sensors in sign 
language recognition systems [23]. In Bayesian inference, 
first construct a prior probabilistic model for the data, 
representing our prior information or views about the 
information before witnessing it. Finally, using Bayes’ 
theorem, update the prior distribution in light of fresh 
observations to produce a subsequent posterior distribution 
for the data. In sign language recognition, Bayesian inference 
combines data from multiple sensors by creating a joint 
probability distribution for the data from all the sensors. This 
joint distribution represents the probability of observing the 
sensors’ data given the underlying sign language gesture. 
Estimating prior probability distributions for data from each 
sensor provides the combined probability distribution. Our 
existing knowledge and hypotheses about the information 
provided by each sensor allow us to make educated guesses 
about these previous distributions. Assign a greater prior 
probability, for instance, to information gathered by a more 
reliable sensor. The combined probability distribution for 
all the sensors’ data may be obtained by combining the prior 
distributions estimated for each sensor using the product 
rule of probability. This joint distribution represents the 
probability of witnessing sensor data, given the underlying 
sign language gesture. Estimating the most probable sign 
language gesture from the available data requires calculating 
the joint probability distribution. Given the observed data and 
the joint probability distribution, finding the sign language 
gesture with the greatest probability is possible using 
maximum a posteriori (MAP) estimation. Bayesian inference-
based data fusion can be particularly useful in sign language 
recognition systems because it allows to explicitly model the 

uncertainty in the data from each sensor and combine this 
uncertainty in a principled way. This can help to improve 
the recognition system’s robustness and accuracy, especially 
in cases where individual sensors may be prone to noise, 
interference, or other sources of error. After fusing the sensor 
information from multiple sensors, it has been processed 
with the help of the classification process. The classification 
process derives the features from the data and recognizes the 
signs with maximum recognition accuracy.

3.2 Fusion Pareto Optimized Hypertuned Deep Elman 
Neural Model (POHDENM) based Data Classification
The next step is Sign language recognition, which uses 

the Pareto Optimized Hypertuned Deep Elman Neural Model 
(POHDENM). The POHDENM approach is a machine 
learning approach that combines several techniques to 
recognize sign language gestures with high accuracy. The 
smart glove sensor-based collected data is .CSV file format, 
which consists of information like Flexion and extension 
of fingers, grip strength, hand movement, and orientation 
information. The collected information is stored in the 
automatic sign language detection system database. The 
fused data is processed using the median filter that removes 
the noise from the captured sensor information. Before 
analysis, motion data from smart glove sensors often require 
pre-processing to remove noise, outliers, and other unwanted 
artifacts. The median filter examines every information 
in the sensor data, compared with the threshold value. If 
the collected data has any inconsistent information, like 
missing or improper values, that is removed with the help of 
the median filter. During this process, the filter determines 
the window size, applying the median filter to each data 
point in the sequence using a sliding window approach and 
smoothing the data using a low-pass or moving average filter. 
The median filter helps to remove noise and outliers from the 
data, while the additional smoothing helps to reduce high-
frequency noise and makes the data easier to analyze. After 
pre-processing the data, it can be evaluated to ensure that 
relevant information has been preserved while unwanted 
artifacts have been removed and can then be used for further 
analysis or visualization. After removing the inconsistencies, 
the sensor information is analyzed to extract the features. 
During the feature extraction, arm motion, hand position, 
fingers bending angle, and relevant information are extracted 
using Recurrent Neural Networks (RNN).  
3.2.1 Feature Extraction

Recurrent neurons are a kind of neural net that is excellent 
for analyzing sequence information such as time series in 
sign language recognition; RNN-based feature is utilized 
to extract relevant features from the captured time-series 
sensors data [24]. The RNN approach uses noise-removed 
information as input and normalizes the data because the data 
have been collected at different sampling rates. The next step 
is sequence segmentation, which involves segmenting the 
sequential data into fixed-length sequences or time windows. 
This enables the RNN to take individual data sequences as 
input rather than the complete sequence. The duration of each 
sequence is variable, depending on the system’s needs for 
recognizing sign languages, and may be tweaked to strike a 



Development of Sensor Data Fusion and Optimized Elman Neural Model-based Sign Language Recognition System   675

perfect balance between precision and speed. Once the data 
is segmented into fixed-length sequences, the RNN extracts 
relevant features from each data sequence. The RNN learns 
a set of weights and biases that allow it to process the data 
sequence and output a set of feature vectors that summarize 
the important information in the sequence. The features 
extracted by the RNN can capture local and global temporal 
dependencies in the data, making them particularly powerful 
for gesture recognition.

Geometric and behavioral elements are continually 
extracted from the gesture recognition sensor data. The RNN 
approach is applied to extract features in a sequence and is 
performed for every gesture in the sensor data. The neural 
model derives the spatial and temporal features utilized to 
recognize sign language. The spatial features are derived with 
the help of the convolution inception model that labels every 
gesture, improving the overall recognition accuracy. The 
RNN training model is utilized to predict the feature of the 
gesture. The fused information is divided into training and 
testing. The modeling approach goes through every sensor 
data and extracts characteristics to boost the effectiveness 
of the tests. This process is repeated for every glove sensor 
data to extract the temporal and spatial features in different 
directions and positions. The extracted features are fed into 
the classifier to recognize the sign language.
3.2.2 Sign Language Recognition

The last step of this work is sign language recognition, 
done with the help of the Pareto Optimized Hypertuned Deep 
Elman Neural Model (POHDENM). The approach utilizes a 
combination of several techniques to achieve optimal results. 
The extracted features are utilized to perform the recognition 
process. Some common features used for sign language 
recognition include hand shape, hand orientation, hand 
movement, and facial expressions. The extracted features are 
fed as input to the POHDENM. The POHDENM architecture 
is based on the Elman neural network, a recurrent neural 
network (RNN) type that can learn temporal patterns in 
sequential data. The network architecture is designed to have 
multiple layers and hidden units, which allows it to learn 
complex relationships between the input features and the sign 
language gestures. Pre-processed data from the extraction of 
features are sent to the multilayer network’s input neurons. 
Characteristics such as hand form, hand orientation, hand 
movement, and facial emotions may be used for sign 
language identification. The input layer has one neuron for 
each input feature, fed into the next hidden layer. Hidden 
layers: The POHDENM system has multiple hidden layers, 
which allows it to learn complex relationships between 
the input features and the sign language gestures. Each 
successively concealed layer is built from several neurons 
interconnected with their predecessors. Signals are used by 
the neurons in the hidden layers to create output values by 
transforming the inputs. The network can learn temporal 
relationships using the result of the hidden units at time step t 
as input to the hidden neurons at time step t+1. The equations 
for the Elman neural network are defined in equation (1).

1( ) ( )xh t hh t hh t g W x W h b−= ∗ + ∗ +                      (1)

( )t hy t yy f W h b= ∗ +                                (2)

In equations (1 and 2), the input vector at t time is 
denoted as xt , the hidden state at time t is represented as 
ht , the output at time t is denoted as yt , Specifically, Wxh  
represents the weight vector between the input and the 
hidden layer, Whh represents the weights and biases between 
the hidden layer and itself, Why represents the weight matrix 
between the hidden and the output layer, and bh and by 
represents the bias vectors for the hidden and output layers 
respectively. Elman layers are recurrent layer used in the 
outcome processing network that facilitates learning temporal 
information from sequential input. Elman layer neurons are 
recurrent and remember previous inputs. The network can 
simulate the evolving nature of sign language motions with 
stored information. The following step involves looping the 
Elman layer’s output back into the layer’s input. Then, it 
extends the Elman neural network by adding multiple hidden 
layers, allowing it to learn more complex representations of 
temporal data. The equations for the HDENM are defined 
below in equations (3) to (5).

( ) ( ( ) ( ) ( 1) ( ))t xh t hh t hh i g W i x W i h i b i= ∗ + ∗ − +             (3)

( ) ( ( ) ( 1) ( ))t xh t hh N g W N h N b N= ∗ − +                       (4)

( ( ) )t hy t yy f W h N b= ∗ +                              (5)

In the above computations, N is symbolized as the 
quantity of the hidden neurons, i is depicted as the hidden 
state measure, Wxh(i) is the weighted sum between the 
input layers and the hidden layer i, Whh(i) is the weight 
array between hidden units  i and itself, bh(i) is the prior 
probability for the hidden state i, ht(N) is the outcome of the 
last hidden neurons, Why is the scale parameter between the 
last concealed layer and the final output layer, by is the error 
signal for the output nodes. After all input characteristics have 
been processed, the POHDENM system’s activation function 
will categorize the sign language gesture. A biological 
neuron stands in for one gesture category at the output layer. 
Whether or not a non-linear stimulation is used in the output 
layer is determined by the nature of the issue being solved. 
The output unit might utilize a sigmoid-activated function 
for a binary classification issue or a softmax output function 
for a multi-class classification task. The dropout layer helps 
the network avoid overfitting while processing data. During 
learning, the dropout layer randomly eliminates a subset 
of the channel’s neurons, pushing the surviving neurons 
to acquire more accurate depictions of the data input; the 
POHDENM system adds a batch normalization layer to 
standardize the results of the concealed layers. Normalizing 
the output helps prevent the vanishing or exploding gradient 
problem in deep neural networks. During the recognition, 
the network parameter requires updating to minimize the 
deviation between the outputs. This work uses the Pareto 
optimization technique to fine-tune the network parameters to 
improve the overall recognition accuracy. 
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3.2.3 Pareto Optimization Algorithm
Pareto optimization is a multi-objective optimization 

technique that seeks to find the best trade-off between 
conflicting objectives [25]. In the context of neural network 
parameter training and updating, Pareto optimization 
can be used to find the best set of hyperparameters that 
simultaneously optimize multiple performance metrics of 
the neural network. The optimization algorithm is used for 
data training and updating processes. The first step in Pareto 
optimization is defining the objective functions representing 
the different performance metrics to optimize the parameters. 
In neural network training, the objective functions could be 
the training accuracy, validation accuracy, and computational 
cost of the neural network. The objective function is defined 
as f(x) = {f1(x), f2(x), …, fk(x)}. Here, x is the decision 
variable, and the k-value represents the target quantity. The 
f(x) is formulated to achieve the equation (6).

2
1

1 ˆ( )J y y
N

= −∑                                  (6)

2

( )weight bias

Params

N N
J

N
+

=                                (7)

In equation (6) J1 is defined as the average squared 
deviation of (y) from the calculated value ŷ , N is denoted 
as the number of samples, and the number of weights in the 
model is denoted as Nweight . Nbias is the channel’s quantity 
of distortions, whereas NParams  is the total number of design 
variables. According to the parameter, the model complexity 
(J2) is computed using equation (7). Estimating intricacy by 
dividing the total number of variables by the total number 
of samples. Therefore, the Pareto optimization algorithm is 
utilized to identify the best solution while recognizing the 
sign language in the search space. Then, the search space 
is the range of values the hyperparameters can take. The 
search space may be continuous, discontinuous, or hybrid in 
a search. Some variables that might be incorporated into the 
search space include the learning algorithm, the number of 
hidden layers, the number of neurons within each layer, and 
the regularization parameters. The next phase is to provide 
potential solutions for a different set of hyperparameters. 
Random selection or panel search are methods often used 
to build a pool of potential answers from the search space. 
During the candidate, solution dominance is utilized in 
which two solutions are compared with the dominance 
characteristics. If the solution x1 dominates another solution 
x2, and if the solution is better than the x2 in at least one 
objective function and is worse in any other objective 
function, then the dominant solution is defined as in equation 
(8) & (9):

x1 is dominates x2 and only if,

1 2( ) ( )   1, 2,...,i if x f x for all i k≤ =                      (8)

1 2( ) ( )     1, 2,...,j jf x f x for at least one j k< =              (9)

Pareto optimality is when no alternative solution in the 
search space outperforms a given solution, denoted by x. 
Pareto optimality may be stated mathematically: a response 
x is optimum if and only if there is no alternative solution 
xꞌ in the search area such that xꞌ dominates x. The Pareto 
front collects all the best possible results from a search. It 
represents the best trade-off between the conflicting objective 
functions defined in equation (10).

{    }PF x x is Pareto optimal=                       (10)

The neural network is trained using the objective 
functions for each candidate solution. The hyperparameters 
of the neural network are updated during training using an 
optimization algorithm such as stochastic gradient descent. 
The effectiveness of the neural network on each performance 
indicator is determined once training has been completed for 
each potential solution by evaluating the objective functions. 
After gathering performance data, a multi-objective 
optimization problem is built. The next step is applying a 
Pareto optimization method to find the optimal combination 
of hyperparameters for maximizing all relevant performance 
indicators. The Pareto optimization technique takes an 
evolutionary approach, merging and altering previous 
solutions to develop new candidates for optimization. The 
goal of the method is to locate a collection of non-dominated 
solutions that can’t be made better in any one metric without 
negatively impacting the performance of the others. The 
optimal hyperparameters are chosen from among the non-
dominated options at the end of the Pareto optimization 
process. The optimal approach may be determined by 
weighing the benefits and drawbacks of various performance 
measurements. Therefore, the POHDENM is an effective 
recurrent neural network model for sign language recognition 
since it combines the strengths of the HDENM architecture 
with Pareto optimization. By optimizing accuracy and 
complexity simultaneously, the POHDENM can achieve 
better generalization performance and be more efficient 
regarding computational resources.

4  Evaluation of POHDENM System, 
Results and Discussions

This section discusses the efficiency of the Pareto 
Optimized Hypertuned Deep Elman Neural  Model 
(POHDENM) based sign language recognition system. The 
system uses different sensors to capture people’s information. 
This work uses the Table 1 setup information while collecting 
the details. According to the setup, the smart glove sensor 
detects the motion of the fingers, finger bending angle, and 
palm attitude angles and outputs data showing the position of 
each finger in real-time. For example, the data output might 
show that the index finger is extended at a 45-degree angle 
while the middle finger is slightly curled. The glove sensors 
continuously capture the information and perform a fusing 
process. After fusing the information sensor-based collected 
data, noise has been eliminated to improve the overall sign 
language recognition accuracy. The collected details are 
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divided into 80% of training data and 20% of testing data. 
The comprehensive program extracts the temporal and spatial 
properties using the RNN network feature. An improved 
neural network that corrects sign language recognition is then 
applied to the generated characteristics. Reliability, accuracy, 
recall, and F1-score are the only criteria for assessing the 
new POHDENM system’s efficacy. Gaussian Mixer Model 
(GMM) [15], Recurrent Neural Network (RNN) [16], and 
Modified Long-Short Term Memory Network (MLSTM) [17] 
are some of the existing systems against which the findings 
are evaluated, and Signer Independent Deep Learning 
approach (DeepArSLR) [18]. These methods effectively 
process the sign language with minimum computation 
difficulties. The effective results and input handling 
procedures are the main reasons to select these methods to 
compare with the POHDENM.

4.1 Precision Analysis

   

 (a) Precision vs. glove sensor data    

(b) Precision vs. number of iterations

Figure 3. Precision analysis

Pare to  opt imizat ion  a l lowed for  s imul taneous 
optimization of precision and complexity, resulting in a more 
efficient and precise model. The temporal dynamics of sign 
language are also captured by the deep Elman recurrent layer, 
which improves generalization performance and accuracy. 
POHDENM’s combination of these features has enabled it 
to achieve its superiority over previous methods on precision 
measures such as the GMM, RNN, LSTM, and DeepArSLR. 
The POHDENM can capture the temporal dynamics of sign 
language because of its use of Pareto optimization and a deep 
Elman recurrent layer, which enable it to maximize precision 
and complexity. Figure 3(a) illustrates the precision analysis 
of collected sensor data through gloves and indicates the 
various positions of finger information with various angles, 
generating nearly 2000 information pieces related to sign 
language motions. Figure 3(b) depicts the precision in terms 
of (%) with the number of iterations up to 1000. The results 
include improved generalization performance and quicker 
convergence compared to other approaches that need more 
training data and may be subject to overfitting. In addition 
to its robust precision and generalization capabilities, the 
POHDENM also has several additional benefits. It is practical 
for use in the real world since it can interpret various sign 
language motions. As an added bonus, it can be learned 
through data from several signers and used with any sign 
language. In addition, it is computationally efficient, allowing 
sign language sensor data to be processed in real time. With 
the POHDENM, the deaf and hard-of-hearing populations 
may have better access to information and communication 
(see Figure 3).

4.2 Recall Analysis 
A model’s ability to correctly identify all positive 

occurrences in a dataset is quantified by its recall. Figure 4 
shows a graphical representation of the acquired recall value. 
Figure 4(a) shows the recall analysis of glove sensor data 
indicates dynamic positions of sign language motions up to 
2000 numbers. Figure 4(b) depicts the recall ratio (%) with 
the number of iterations up to 1000. High recall indicates 
that the model can accurately identify many signs in sign 
language recognition. Due to its well-tuned architecture and 
parameters, the POHDENM model achieved excellent recall 
performance. Through the use of Pareto optimization, both 
the efficiency and accuracy of the model may be maximized 
at the same time, yielding better results. Note that when 
the data batch was too large, the model exhibited local 
convergence, leading to a decrease in recall from around 98% 
to 97%.

The deep Elman recurrent layer captured the temporal 
dynamics of sign language, enhancing the model’s ability 
to detect signs in real-time. The POHDENM outperformed 
other approaches regarding recall performance, which is 
essential for precise sign language recognition, including 
GMM, RNN, LSTM, and DeepArSLR. The POHDENM is a 
highly accurate and efficient sign language recognition model 
because of its mix of optimal design, parameter adjustment, 
and deep recurrent layers.
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(a) Recall vs. glove sensor data

(b) Recall vs. number of iterations

Figure 4. Recall analysis

4.3 Accuracy Analysis
POHDENM can achieve high accuracy in sign language 

recognition by using gesture features and training processes. 
The experiment indicates that compared with other models, 
the accuracy (97.86%) is at least 2% higher. Directions, hand 
form, and hand motion are some examples of the types of 
gesture features that may be retrieved from glove sensor data 
and utilized in a model. These features are then pre-processed 
to eliminate variability and ensure consistency in the data.

The POHDENM is then trained using both supervised 
and unsupervised methods. The difference between 
supervised and unsupervised learning is that data is labeled 
with the relevant sign language gesture in the earlier case, 
while in the latter, data is clustered to discover patterns 
and structures. By using backpropagation through time 
(BPTT) during training, the model can acquire the temporal 
dependencies of the gestures. The model’s parameters are 
optimized during training using gradient descent or other 
optimization algorithms to minimize the training loss. 
The optimized model is then evaluated on a test dataset 
to measure its accuracy and generalization performance. 
Combining optimized architecture, parameter tuning, deep 
Elman recurrent layers, gesture features, and training steps 

enables the POHDENM approach to achieve high sign 
language recognition accuracy (Refer: Figure 5).

(a) Accuracy vs. glove sensor data

 (b) Accuracy vs. number of iterations

Figure 5. Accuracy analysis

4.4 F1-Score Analysis
The POHDENM approach achieves high sign language 

recognition F1-score by combining data augmentation, 
regularization, ensemble method, and hyperparameter 
optimization. Compared to other methods, the average F1-
score (98.08%) is at least 2% higher. The model uses gesture 
features extracted from glove sensor data and trains the Deep 
Elman Neural Network using backpropagation through time. 
The Pareto optimization algorithm is used to optimize the 
model’s hyperparameters and achieve a balance between 
precision and recall.

The POHDENM approach outperforms GMM, RNN, 
Modified LSTM, and Signer Independent Deep Learning 
approach (DeepArSLR) regarding reliability, accuracy, recall, 
and F1-score. Using multiple evaluation metrics ensures 
that the model performs well on all aspects of sign language 
recognition. Data augmentation and regularization techniques 
prevent overfitting and improve the model’s generalization 
ability to new and unseen data. Ensemble methods and 
hyperparameter optimization fine-tune the model and 
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improve its accuracy and F1 score. The POHDENM 
approach combines various technical points to achieve a high 
sign language recognition F1 score (Refer to Figure 6).

(a) F1-Score vs. glove sensor data

 (b) F1-Score vs. number of iterations

Figure 6. F1-score analysis

5  Conclusion

This  research  d iscussed the  Pare to  Opt imized 
Hypertuned Deep Elman Neural Model (POHDENM) 
based sign language recognition. Using gesture features, 
data augmentation, regularization, ensemble methods, 
hyperparameter optimization, and multiple evaluation 
metrics ensures that the model performs well on all aspects 
of sign language recognition. The POHDENM approach 
outperforms existing methods such as GMM, RNN, Modified 
LSTM, and the Signer Independent Deep Learning approach 
(DeepArSLR) in terms of accuracy (97.86%) and F1-score 
(98.08%). The model’s high performance is achieved by fine-
tuning its hyperparameters using the Pareto optimization 
algorithm, which balances precision (98.06%) and recall 
(98.12%). Overall, the POHDENM approach is an effective 
and efficient method for sign language recognition that can 
benefit individuals with hearing and speech impairments. 
However, the introduced system relies on glove sensor 

data as input, which may not be available in all situations. 
Additionally, the dataset used for training and testing the 
model may not represent all sign languages or signers, 
affecting the model’s generalization capability. To address 
these limitations, future work could focus on developing 
big data sets to improve sign language detection accuracy. 
Future research might also look at transferring the concept to 
accommodate a variety of sign languages and signers.
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