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Abstract

Traffic flow prediction plays a crucial role in improving 
transportation efficiency and enhancing Intelligent 
Transportation Systems (ITS). However, the temporal, 
spatial, and nonlinear nature of traffic flow data presents 
challenges for accurate short-term prediction. We propose 
a short-term traffic flow prediction model based on Kernel 
Extreme Learning Machine (KELM) optimized by the 
improved Slime Mould Algorithm (SMA). KELM is an 
improved version of Extreme Learning Machine (ELM) that 
incorporates kernel functions for improved generalization 
and stability. SMA is a meta-heuristic algorithm inspired 
by the behavior of slime mould in foraging, known for its 
strong global searching ability. For better performance, 
three strategies are introduced: the Good Point Set method 
for optimizing the initial population, the combination of 
Opposition Based Learning (OBL) and Differential Evolution 
(DE) to improve the slime mould generation mechanism, 
and the use of adaptive t distribution mutation to enhance 
convergence speed. After comparing the performance of 
these improved SMAs on twelve test functions, the ISMA 
improved by integrating three strategies as mentioned above 
is best. Then the ISMA is applied to search for the optimal 
parameters of KELM model. Finally, the optimized KELM 
with optimal parameters is applied to predict the short-term 
traffic flow on given traffic data set. Experimental results 
demonstrate that the proposed model, KELM optimized 
by ISMA namely ISMA-KELM, outperforms existing 
models such as Random Forest (RF), Least Squares Support 
Vector Machine (LSSVM), KELM optimized by Tuna 
Swarm Optimization Algorithm (TSO-KELM), and KELM 
optimized by SMA (SMA-KELM) in terms of traffic flow 
prediction accuracy. The proposed model ISMA-KELM 
provides a promising approach for addressing the challenges 
of traffic flow prediction, offering improved accuracy and 
efficiency in real-time traffic management systems.

Keywords: Short-term traffic flow, Kernel extreme learning 
machine, Slime mould algorithm, Prediction, Optimization

1  Introduction

The objective of traffic flow prediction is to deliver 
precise and real-time traffic flow information within the next 

10-15 minutes to enhance transportation efficiency in the 
field of ITSs [1-2]. The traffic flow data exhibit temporal, 
spatial and nonlinear characteristics, which brings challenges 
and difficulties for achieving effective and accurate short-
term traffic flow prediction.

Recent research on traffic flow prediction can be 
categorized as follows: (i) prediction based on linear 
theories, including History Average Model, Kalman Filtering 
Model, Time-Series Model, and others; (ii) prediction based 
on nonlinear theories, including wavelet analysis, chaos 
theory and catastrophe theory [3]; (iii) prediction based on 
simulation model, such as combining with the classical model 
VISSIM to achieve road network simulation collaborative 
control [4]; (iv) prediction based on intelligent theory, 
including neural network, support vector machine, and deep 
learning; (v) prediction based on hybrid models, where 
some utilize multiple models for cohesion and cooperation 
to obtain the final result, while others involve simultaneous 
predictions by several models, followed by the fusion of 
results using a specific strategy [5].

Neural network has been demonstrated effective 
prediction capabilities in traffic flow prediction [6]. However, 
the selection of parameters lacks clarity and a more suitable 
method, often relying on individual subjective repeated 
experiments, leading to potential issues with local optimality 
and overfitting. ELM is an enhanced feedforward neural 
network featuring a single hidden layer. The algorithm 
randomly assigns weights and thresholds to the input and 
hidden layers, allowing for the determination of a unique 
optimal solution by specifying the number of neurons in 
the input and hidden layer without resetting values during 
training. Consequently, ELM offers the advantage of rapid 
learning. A model for urban traffic flow prediction based 
on ELM neural network was proposed in [7]. Comparative 
analysis with the traditional BP neural network demonstrated 
superior prediction accuracy, convergence, rapid learning 
speed, and good generalization performance of the proposed 
model. Since the input weight and implicit bias of ELM 
can be randomly determined during training, suboptimal 
input weight and bias may arise, whereas the output weight 
is calculated based on these input values. To address this 
issue, Sun Tao et al. proposed the utilization of Differential 
Evolution (DE) to optimize the weight of ELM, thereby 
achieving a global optimal solution and enhancing the 
overall generalization performance of the algorithm [8]. 
Considering the uncertain changes in traffic flow, Wang Tao 
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et al. proposed the real-time update parameters of prediction 
model using ELM with a forgetting factor [9]. Additionally, 
they employed particle filtering to mitigate random noise 
in the system, thereby achieving optimal short-time change 
estimation of traffic volume and enhancing the real-time 
prediction accuracy of traffic flow. To mitigate the impact 
of randomness in the input weight matrix and hidden layer 
bias on ELM, Xiangpeng Cui et al. suggested the utilization 
of Genetic Algorithm (GA) to optimize the components, 
thereby achieving superior prediction accuracy and efficiency 
[10]. Given that traffic flow data exhibit high temporal 
variability, nonlinearity, and susceptibility to random noise, 
Ruqing Chen et al. adopted singular spectrum analysis to 
remove noise from the original data [11]. Furthermore, they 
optimized the ELM weight threshold through a combination 
of the fireworks algorithm and the difference algorithm. 
Considering that traffic flow data are continuously updated 
in real-time, the prediction model requires rebuilding 
whenever the historical dataset is updated. However, this 
process consumes significant computing resources and 
running time. To achieve dynamic online updating of the 
traffic flow prediction model, Borong Zhou et al. proposed 
the integration of Auto-Encoder (AE) within ELM to learn 
the weight and bias parameters of the input and hidden layers 
[12]. Additionally, Recurrent Neural Network (RNN) was 
employed to extract temporal variation features of traffic flow 
data. The prediction time of models is short, which ensures a 
certain real-time performance.

In practical applications, ELM encounters challenges 
such as the difficulty in determining model parameters, poor 
robustness, and a tendency to overfit. So the kernel function 
theory from support vector machine was adopted, resulting 
in an enhanced version named Kernel Extreme Learning 
Machine (KELM). This modification aimed to improve 
stability, classification robustness, and prediction accuracy. 
Meanwhile, the regularization coefficient and kernel 
parameters can affect the performance of KELM model. 
Therefore, various methods have been applied for optimizing 
parameter selection or improving the performance of KELM 
model [13]. Changsheng Zhu et al. addressed the issue of 
low wind power prediction accuracy due to the volatility and 
non-stationarity of wind energy by proposing a wind power 
prediction model based on variable mode decomposition 
technology and an improved grey wolf algorithm to optimize 
KELM [14]. In the basic grey wolf algorithm, two types 
of target search exist: local search and global search. To 
enhance the optimization capability of grey wolf algorithm 
and mitigate its susceptibility to local optimal solution, a 
differential optimization algorithm is incorporated. And a 
nonlinear convergence factor is used to balance local and 
global searching. Then, this improved Gray Wolf algorithm 
(DIGWO) is utilized to improve the KELM prediction 
model. For further improving the prediction accuracy 
under the limited monitoring data, Feiyan Ma et al. utilized 
sparrow search algorithm to optimize the regularization 
coefficient and kernel function parameters of KELM model, 
and established a landslide displacement prediction model 
to improve the prediction accuracy [15]. Due to its real-
time performance, good classification accuracy and stability, 

KELM has a good advantage in traffic state discrimination. 
Huiru Chen et al. built a traffic state discrimination decision 
model based on KELM improved by GA [16]. A bee colony 
optimization KELM model was proposed in [17], the correct 
rate of recognition and classification has increased by nearly 
20%, while the misjudgment rate has dropped to 3%. To 
improve the simulation value of a single prediction model, a 
nonlinear combined prediction model with time weights was 
proposed in [18], and the variable weights were generated 
by KELM which used the radial basis function to assign the 
output matrix parameters.

Considering the influence of the regularization coefficient 
and kernel function parameters to the KLEM model, this 
paper proposes a KLEM model optimized by improved SMA, 
then predict the short-term traffic flow. SMA is known for its 
strong global searching ability in optimizing at any direction 
and any step size, but its convergent speed and precision 
could be improved further [19]. Therefore, in this paper, the 
SMA is improved by three strategies, such as searching for 
excellent initial group by good point set method, optimizing 
slime mould formation mechanism by Opposition Based 
Learning and Differential Evolution, and increasing the 
convergence speed by adaptive t distribution mutation. 
During experimental stage, three strategies are applied step 
by step. Firstly, the SMA is enhanced by good point set 
method renamed as GSMA, and the SMA is enhanced by 
combining good point set method and opposition differential 
evolution renamed as GODSMA, then the SMA is enhanced 
by combining good point set method, opposition differential 
evolution and adaptive t distribution mutation renamed 
as ISMA. Secondly, comparing the performance of SMA, 
GMSA, GODSMA and ISMA on twelve test functions, the 
best improved SMA is selected, which is applied to optimize 
the parameters of KELM. On given traffic flow data set, 
the experimental results show that the KELM optimized by 
ISMA has better prediction accuracy than any other existing 
model such as Random Forest, Least Squares Support Vector 
Machine, KELM optimized by Tuna Swarm Optimization 
Algorithm, and KELM optimized by standard SMA.

2  Methodology

The traffic system is a highly complex nonlinear dynamic 
system. Traffic flow data not only exhibits temporal proximity 
and spatial correlation, but also is susceptive to external 
factors such as road conditions, weather, and monitoring 
equipment. Deep neural networks excel at dealing with 
complex and nonlinear problems, however, the parameter 
learning process is relatively tedious. ELM possesses 
attributes such as simplicity, effectiveness, a limited number 
of training parameters, and strong generalization capabilities. 
Then KELM is an improvement of ELM that incorporates 
a kernel function to enhance the generalization and stability 
of the neural network. Moreover, KELM inherits all the 
advantages of ELM. Consequently, this paper proposed a 
short-term traffic flow prediction model based on KELM by 
utilizing the improved SMA for parameter optimization and 
input structure refinement of KELM.



Short-term Traffic Flow Prediction Based on KELM Optimized By Improved Slime Mould Algorithm   649

2.1 Kernel Extreme Learning Machine
ELM generates random continuous weight value w 

between the input and hidden layers, and the bias b of 
the hidden layer neurons. In the training process, the 
optimal solution requires manual specification of the 
number of hidden layer neurons l. For Q different samples 
( , ), 1, 2, ,i ix t i Q=  , let β represent the weight matrix of the 
output layer and H represent the hidden layer output matrix. 
Thus, T can be expressed as Hβ = T, indicating the expected 
output matrix. The output weights β can be derived by 
solving the least square solution of the following equations, 
denoted as β =H +T, where H + representing the Moore-
Penrose generalized inverse of matrix H. 

Since the random generation of input weight and implicit 
neuron bias in ELM makes it challenging to determine 
the model parameters, leading to a susceptibility to local 
optima [20]. The number of neurons in hidden layer must be 
manually specified, while previous research has demonstrated 
that increasing the number of nodes does not always yield 
superior results [21]. The correlation between the optimal 
accuracy of diverse datasets and the number of hidden layer 
nodes is intricate.

Considering the limitations of ELM, the kernel function 
was incorporated into the model, resulting in the KELM 
[22]. For enhancing the stability of neural network, the 
regularization coefficient C is introduced using orthogonal 
projection and ridge regression theory, resulting in the 
formulation of the output weights as:

1
T TIH HH T
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β

−
 = + 
 

                             (1)

The kernel function replaces the random feature mapping 
in ELM, and the resulting kernel matrix can be represented 
as:
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where I represents the unit matrix, (x1, x2, …, xn) signifies the 
given training sample, n denotes the number of samples, and 
K (xi, xj) denotes the kernel function.

Despite addressing the random initialization issue 
of ELM and possessing fewer adjustable parameters, 
faster convergence speed, and improved generalization 
performance, the performance of KELM is influenced 
by the regularization coefficient C and kernel function, 
as observed in Equation (3). Therefore, in this study, we 

propose to optimize the parameters of KELM using SMA 
due to its strong global searching capabilities, with the aim of 
enhancing traffic flow prediction accuracy.

2.2 Standard Slime Mould Algorithm 
SMA is a swarm intelligence algorithm that simulates the 

positive and negative feedback processes generated by the 
weight’s changes of slime mould during foraging [23]. It can 
perform global optimization in any direction and at any step 
size.

In order to model the food approach behavior of slime 
mould, the following rule is proposed.

( )( ) ( ) ( ) ,
( 1)

( ),

b A BX t vb W X t X t r p
X t

vc X t r p

 + ⋅ ⋅ − <+ = 
 ⋅ ≥
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 

      (4)

where X


 represents the position of slime mould, bX


 
represents the individual position with the highest current 
odor concentration, AX



 and BX


 represent two randomly 

selected individuals from the slime mould, W


 denotes the 

weight of the slime mould, vb


 is a parameter with a range 

of [- a, a], and vc


 linearly decreases from 1 to 0 with each 
iteration, t denotes the current iteration [23-24], r represents 
a random value in the range [0,1]. The formula for p is as 
follows:

tanh ( )p S i DF= −                                 (5)

where S(i) represents the fitness of slime mould X


, i∈1, 
2, …, N. And DF represents the best fitness obtained in all 
iterations.

The position update of slime mould can be represented as 
follows:

( )*

( ) ,

( ) ( ) ( ) ,

( ),

b A B

rand UB LB LB rand z

X X t vb W X t X t r p

vc X t r p
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
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            (6)

where LB and UB represent the upper and lower limits of the 
search range, while rand and r represent random values in 
the range [0,1]. z is a parameter that balances the search and 
development stages, and its typical empirical value is 0.03.

The vb


 value randomly oscillates within the range [-a, 
a] and gradually approaches zero with each iteration. It 
oscillates between [- 1,1] and eventually converges to zero as 
follows:

1 ,1
max_ max_

t tvc
t t

  
= − − −  

  



                     (7)

Previous studies have employed SMA to optimize the 
penalty parameters and kernel parameters of LSSVM, and the 
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results demonstrate a lower mean square error for LSSVM 
improved by SMA [25]. Chuantao Zang et al. also utilized 
SMA to optimize the learning rate, training times and the 
number of hidden layer neurons in LSTM for predicting the 
remaining life of bearings [26].

Due to randomly generating the initial population of SMA 
without supporting of prior knowledge, the initial population 
quality is poor, which hampers global optimization. 
Furthermore, using the last position of the previous iteration 
as the initial position for each iteration diminishes the 
diversity of slime moulds and reduces convergence accuracy. 
Moreover, the late iteration oscillation effect of the algorithm 
is weak, making it prone to getting trapped in local optima. 
In practical applications, several methods are employed to 
enhance the global search ability, improve the convergence 
accuracy and speed of the algorithm. Tent chaotic mapping 
was introduced to increase population diversity, and the elite 
opposition-based learning strategy was developed to expand 
the search range. These approaches enhance the convergence 
speed and solution precision of the standard slime mould 
algorithm [27]. Since slime molds that go beyond the 
boundary are considerably distant from the optimal fitness 
position, making it challenging for them to return to the 
optimal position. As a result, the algorithm’s convergence 
speed decreases. To address this, boundary conditions 
tailored to the characteristics of photovoltaic array output 
are proposed to reduce the number of iterations of slime 
molds beyond the boundary and improve the algorithm’s 
convergence speed. Additionally, the Levy flight strategy is 
introduced to optimize convergence rules and improve the 
random search ability, enabling faster tracking towards the 
global optimum [19].

3  Proposed Improvement of SMA

This paper introduces three strategies to enhance the 
search ability of SMA, namely, Good Point Set for optimizing 
the initial population, the combination of Opposition Based 
Learning and Differential Evolution to improve the slime 
mould generation mechanism, and the utilization of adaptive 
t distribution mutation to improve the convergence speed.

3.1 Optimizing Initial Population
Due to the randomness of slime mould, the initial 

population quality is low. The Good Point Set strategy is 
introduced to initialize the population, ensuring an even 
distribution of the initial slime mould population in the search 
space, thereby improving the optimization effect of SMA.

Let Gd represent the unit cube in a d dimensional 
Euclidean space. If r∈Gd. The deviation for Pn(k)= {({r1

(n)∙k}, 
{r2

(n)∙k}, ..., {rd
(n)∙k}), 1≤k≤n} is denoted by φ(n)=C(r,ε)n−1+ε, 

and C(r,ε) is a constant only related to r, ε(ε>0), then Pn(k) 
is referred to the set of good points, with r representing the 
best point. And {rd

(n)∙k} represents the decimal part of rd
(n)∙k, n 

stands for points. In this paper, rk = {2cos(
2 k

p
π

), 1 ≤ k ≤ d}, 

p represents the minimum prime number satisfying the given 

condition 3
2

p − ≥ d [28].

The initialization processing using the Good Point Set is 
as follows:

(1) Construct a set of good points containing points X = 
{x1, x2, ... xi, ..., xN} (i = 1, 2, ..., N), where N represents the 
population size.

(2) Assign xij = i∗2 cos(
2 j

p
π

) to any dimensional 

component in xi = (xi1,xi2,...xij, xiD) (j = 1, 2, ..., D), where D 
represents the dimension of search space.

(3) Map the set of good points to the search space of the 
optimization problem using the specific calculation formula 
x’

ij = LBj + mod (xij, 1) ∗ (UBj − LBj), Where x’
ij represents the 

position of the slime mould, and represent the upper and LBj, 
UBj lower bounds of the corresponding dimensions in the 
search space.

3.2 Improving Slime Mould Formation Mechanism
This paper proposes an improved slime mould generation 

mechanism that combines Opposition Based Learning (OBL) 
and Differential Evolution (DE). The mechanism evaluates 
the reverse solution of the current solution and selects the 
optimal solution as the next generation individual, while the 
diversity of population is enhanced by DE to improve the 
global optimization performance and convergence accuracy 
of the algorithm.

Let x∈R be a real number defined within a specific 
interval, denoted as x∈ [lb, ub], where lb and ub represent 
the upper and lower bounds of the problem, respectively. The 
opposite number of x  is defined as follows:

x lb ub x= + −                                     (8)

S i m i l a r l y,  t h i s  c o n c e p t  c a n  b e  e x t e n d e d  t o 
multidimensional space. Let x = (x1, x2, ..., xD) be a point in 
the D coordinate system, denoted as (x1, x2, ..., xD), xi∈ [lbi, 
ubi]. The opposite point of x  is defined by its coordinates as 

1 2, , , Dx x x…   .

, 1, 2,...,i i i ix lb ub x i D= + − =                         (9)

Therefore, in the first stage of the proposed algorithm, the 
reverse population is calculated using Equation (10) from N 
original populations. Subsequently, a population of 2N slime 
moulds is created, consisting of positive slime moulds and 
their respective reverse counterparts, which are used in the 
DE operation.

DE is essentially an improved genetic algorithm that 
primarily includes mutation, crossover, and selection 
strategies to find the optimal solution to a problem. Firstly, 
a mutation operation is performed on the slime mould 
population as shown in Equation (10).

( )1 2 3

1t t t t
i r r rv XX R X+ = + −                           (10)

r1, r2, r3 ∈ [1, 2N] represents a different random number, 
while R denotes the scaling factor for mutation and takes a 
random number in [0,1], and t is the number of iterations.
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Next, the newly generated slime mould resulting from the 
variation is hybridized with the original slime mould using 
the following formula:

1
,

,
,

,
,

t
i j ct

i j t
i j

v if rand P
u

X otherwise

+ ≤= 


                          (11) 

In the above formula, rand represents a random number 
in the range [0,1], while Pc denotes the crossover probability 
with a value of Pc=0.5.

Finally, a choice is made based on the following 
condition:

1 ,  ( ) ( )
,            

t t t
t i i i
i t

i

u if f u f X
X

X otherwise
+  ≤= 


                   (12)

where f (Xi
t ) represents the fitness value of the original slime 

mould, and f (ui
t ) represents the fitness value of the new 

slime mould generated by crossover operation.

3.3 Improving Convergence Speed
The shape of the t-distribution curve depends on the 

degree of freedom parameter, denoted as n. The higher 
degree of freedom n results in a taller curve shape, while a 
lower degree of freedom n results in a flatter curve shape, 
specifically resembling t(n→∞) → N(0,1), t(n→1) → C(0,1). 
Here, N(0,1) represents the Gaussian distribution and C(0,1) 
represents the Cauchy distribution. Thus, the standard 
Gaussian distribution and Cauchy distribution are two special 
cases at the boundaries of the t-distribution.

During the iteration process, the position of the slime 
mould is adaptively varied according to the t-distribution 
based on the average fitness of the current iteration. This 
strategy utilizes the information interference from the 
current population to enable the slime mould to escape local 
optimum, converge towards the global optimum, and improve 
the convergence speed of the algorithm.

The position state of slime mould, denoted as Xi = (Xi1, 
Xi2, …, XiD), is defined by the following formula:

( ), ( ) ( )
( )

( ) / 2, ( ) ( )
i i i

i r i

X X t iter f X f ave
X t

X X f X f ave
+ ∗ <

=  + ≥



            (13)

where ( )X t


 represents the individual position of the mutant 
slime mould, Xi represents the current location of the slime 
mould, f(Xi) represents the fitness of the slime mould, Xr 
represents the randomly selected individual position of the 
myxomycetes in the top half of the fitness ranking, f(ave) 
represents the average fitness of all populations, and t(iter) 
represents the t-distribution with the number of algorithm 
iterations denoted as iter as the parameter freedom. In the 
early stages of iteration, when the number of iterations is 
small, the variation t-distribution is similar to that of the 
Cauchy distribution, providing the algorithm with a strong 
capability for global exploration. Conversely, in the later 
stages of iteration, when the number of iterations is large, 

the t-distribution variation resembles that of the Gaussian 
distribution, enhancing the algorithm’s capacity for local 
development and accelerating convergence speed.

3.4 Evaluation of Improved SMA
After introducing three strategies to standard SMA, 

we have renamed the improved slime mould algorithm 
with Good Point Set as GSMA, the improved slime mould 
algorithm with Good Point Set and Oppositional Differential 
Evolution as GODSMA, and the improved slime mould 
algorithm with Good Point Set, Oppositional Differential 
Evolution and adaptive t-distribution mutation as ISMA. 
In this section, we evaluate SMA and its variants using a 
set of benchmark functions and compare them with other 
swarm intelligent algorithms, including Whale Optimization 
Algorithm (WOA), Sparrow Search Algorithm (SSA), and 
Tuna Swarm Optimization Algorithm (TSO).
3.4.1 Experimental Parameters Settings

All algorithms are evaluated under identical conditions 
in comparative experiments. The population size is set to 30, 
and the maximum number of iterations is set to 500 for each 
algorithm [23, 28]. Table 1 presents the remaining common 
parameters for all algorithms.

Table 1. Parameters setting for each algorithm
Algorithm Parameter settings
SMA  z = 0.03
GSMA z = 0.03, p ≥ 2d + 3, 
GODSMA z = 0.03, R = rand, Pc = 0.5, p ≥ 2d + 3
ISMA z = 0.03, R = rand, Pc = 0.5, p ≥ 2d + 3, t(iter)
WOA a1= [2, 0], a1 = [−1, −2], b = 1
SSA c1 = rand, c2 = rand
TSO z = 0.05, a = 0.7

3.4.2 Benchmark Functions
This study utilizes a set of 12 benchmark functions to 

evaluate the performance of the algorithms. Functions F1 
to F5, as presented in Table 2, are unimodal functions used 
to assess the convergence speed of the algorithms, while 
functions F6 to F12, as presented in Table 3, are multimodal 
functions employed to evaluate the algorithms’ global 
exploration ability and ability to avoid local optima.

Table 2.  Description of benchmark functions F1~F5 

Test function Optimum

2
1

1
( )

D

i
i

F x x
=

= ∑ 0

2
1 1
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DD

i i
i i

F x x x
= =

= +∑ ∏ 0

2

3
1 1

( )
D i

j
i j
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= =

 
=  
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Table 3. Description of benchmark functions F6~F12

Test function Optimum

6
1

( ) sin( )
D

i i
i

F x x x
=

= −∑ -418.9829*D

2
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1
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3.4.3 Experimental Results and Analyses
The experiments were conducted on a Windows 10 

64-bit home edition operating system with an AMD R7 
5800H processor and 16GB RAM. The algorithms were 
implemented using MATLAB R2020a.

To mitigate the impact of random factors,  each 
comparative algorithm is independently executed 30 times 
for each benchmark function. The optimal and worst value 
are recorded, and the average value (AVG) and standard 
deviation (STD) are calculated. The experimental results 
for SMA and its variants are shown in Table 4, while the 
experimental results for ISMA and other swarm intelligent 
algorithms are displayed in Table 5.

According to Table 4(a) and Table 4(b), ISMA achieves 
the top or joint-top ranking due to its smallest average or 
standard deviation when solving F1 to F5, highlighting its 
superior optimization capability compared to SMA, GSMA 
and GODSMA.

According to Table 5(a) and Table 5(b), when compared 
with other swarm intelligent algorithms such as WOA, 
TSO and SSA, ISMA consistently demonstrates the best 
optimization performance and minimum standard deviation 
when solving F1 to F5. For F6, all algorithms except WOA 
and SSA can achieve good optimization results. Similarly, for 
F7 to F11, all algorithms reach the optimal value, while for 
F12, all algorithms except WOA can find the optimal value. 
The experimental results indicate a significant improvement 

in optimization accuracy and stability of ISMA, clearly 
superior to other algorithms. 

Table 4 (a). Comparison of convergence speed on F1~F5 between 
SMA and its variants 
Function Algorithm Optimum AVG STD
F1 SMA 0 3.0515e-245 0

GSMA 0 8.7499e-301 0
GODSMA 0 0 0
ISMA 0 0 0

F2 SMA 5.1441e-283 2.4259e-139 1.3287e-138
GSMA 8.7590e-270 8.3944e-148 4.5978e-147
GODSMA 0 0 0
ISMA 0 0 0

F3 SMA 0 1.8119e-301 0
GSMA 0 7.7356e-278 0
GODSMA 0 0 0
ISMA 0 0 0

F4 SMA 1.4068e-257 3.6686e-134 2.0094e-133
GSMA 4.4093e-285 7.9851e-156 4.3699e-155
GODSMA 0 0 0
ISMA 0 0 0

F5 SMA 2.3203e-05 2.5475e-04 2.2422e-04
GSMA 8.9907e-06 2.0529e-04 1.7774e-04
GODSMA 8.5239e-06 3.8654e-05 4.0257e-05
ISMA 8.2581e-07 3.2941e-05 2.7859e-05
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Table 4 (b). Comparison of search ability on F6~F12 between SMA 
and its variants
Function Algorithm Optimum AVG STD
F6 SMA -1.2569e+04 -1.2569e+04 0.4389

GSMA -1.2569e+04 -1.2568e+04 0.8004
GODSMA -1.2569e+04 -1.2569e+04 0.3673
ISMA -1.2569e+04 -1.2569e+04 0.2230

F7 SMA 0 0 0
GSMA 0 0 0
GODSMA 0 0 0
ISMA 0 0 0

F8 SMA 8.8818e-16 8.8818e-16 0
GSMA 8.8818e-16 8.8818e-16 0
GODSMA 8.8818e-16 8.8818e-16 0
ISMA 8.8818e-16 8.8818e-16 0

F9 SMA 0 0 0
GSMA 0 0 0
GODSMA 0 0 0
ISMA 0 0 0

F10 SMA 0.9980 0.9980 2.7282e-12
GSMA 0.9980 0.9980 3.9953e-12
GODSMA 0.9980 0.9980 3.4045e-13
ISMA 0.9980 0.9980 2.4251e-13

F11 SMA 3.0000 3.0000 3.3923e-10
GSMA 3.0000 3.0000 1.9875e-10
GODSMA 3.0000 3.0000 1.8256e-10
ISMA 3.0000 3.0000 1.4312e-10

F12 SMA -10.1532 -10.1527 3.2570e-04
GSMA -10.1532 -10.1528 6.8627e-07
GODSMA -10.1532 -10.1532 5.4386e-14
ISMA -10.1532 -10.1532 4.5348e-15

Table 5 (a). Comparison of convergence speed on F1~F5 between 
SMA and other swarm intelligent algorithms
Function Algorithm Optimum AVG STD
F1 WOA 1.3392e-79 1.0730e-62 4.5434e-62

TSO 1.6348e-266 1.8067e-210 0
SSA 2.9162e-142 1.5758e-38 8.6167e-38
ISMA 0 0 0

F2 WOA 4.9391e-55 8.8168e-48 2.784e-47
TSO 1.8672e-127 2.6444e-112 1.4324e-111
SSA 2.6416e-50 3.4838e-20 1.6328e-19
ISMA 0 0 0

F3 WOA 2.7803e+04 6.2430e+04 1.7879e+04
TSO 4.4077e-237 2.1948e-207 0
SSA 2.4083e-88 4.5713e-23 2.5008e-22
ISMA 0 0 0

F4 WOA 0.3529 49.2702 30.6570
TSO 3.6184e-132 4.7581e-110 1.7109e-109
SSA 0 5.4626e-18 2.1598e-17
ISMA 0 0 0

F5 WOA 2.9674e-04 0.0063 0.0061
TSO 7.7771e-06 4.2135e-04 3.9185e-04
SSA 8.2321e-05 0.0014 0.0015
ISMA 8.2581e-07 3.2941e-05 2.7859e-05

Table 5 (b). Comparison of search ability on F6~F12 between SMA 
and other swarm intelligent algorithms
Function Algorithm Optimum AVG STD
F6 WOA -1.2534e+04 -1.0594e+04 2.1004e+03

TSO -1.2569e+04 -1.2569e+04 0.0246
SSA -8.9356e+03 -8.0033e+03 638.3644
ISMA -1.2569e+04 -1.2569e+04 0.2230

F7 WOA 0 1.8948e-15 1.0378e-14
TSO 0 0 0
SSA 0 0 0
ISMA 0 0 0

F8 WOA 8.8818e-16 4.6777e-15 2.7886e-15
TSO 8.8818e-16 8.8818e-16 0
SSA 8.8818e-16 1.0066e-15 6.4863e-16
ISMA 8.8818e-16 8.8818e-16 0

F9 WOA 0 0 0
TSO 0 0 0
SSA 0 0 0
ISMA 0 0 0

F10 WOA 0.9980 4.0351 3.9984
TSO 0.9980 0.9980 2.3142e-16
SSA 0.9980 8.3360 5.3226
ISMA 0.9980 0.9980 2.4251e-13

F11 WOA 3.0000 3.0003 5.5023e-04
TSO 3.0000 3.0000 4.2243e-15
SSA 3.0000 5.7000 8.2385
ISMA 3.0000 3.0000 1.4312e-10

F12 WOA -10.1513 -7.8576 2.9050
TSO -10.1532 -10.1532 4.7114e-15
SSA -10.1532 -8.2839 2.4987
ISMA -10.1532 -10.1532 4.5348e-15

 
Additionally, to provide a more intuitive representation 

of the optimization speed and accuracy of ISMA algorithm, 
we plot the convergence curves of the seven algorithms 
for F1 to F12, as depicted in Figure 1. The convergence 
curves for F1 to F5 demonstrate a significant improvement 
in the convergence speed of ISMA. Particularly for F5, 
ISMA reaches the optimal value within 250 iterations, 
outperforming other algorithms in terms of speed. Analyzing 
the convergence curves for F6 to F12, it is evident that ISMA 
discovers the global optimal value within 50 iterations, 
showcasing its superior global exploration ability compared 
to other algorithms. Furthermore, the convergence curve 
for F12 illustrated that ISMA identifies the optimal value 
faster, despite a relatively small improvement in optimization 
accuracy and the presence of multiple inflection points on 
the curve. This indicates that ISMA is easier to escape local 
optima value and possesses better search capability for the 
global optimum. 

In conclusion, based on the convergence curve, the 
improved SMA, known as ISMA, demonstrates superior 
convergence speed and optimization accuracy compared to 
other algorithms examined in the above experiments.
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Figure 1. Convergence curve of F1~F12

4  Proposed Short-Term Traffic Flow 
Prediction Model

In this section, we utilize ISMA to optimize the 
parameters of KELM and predict the short-term traffic flow 
on given data set, referred to as ISMA-KELM.

4.1 Modelling of ISMA-KELM
Previous studies extensively employed ELM for short-

term traffic flow prediction. Here, we introduce the Gaussian 
radial basis function to ELM. 

The prediction accuracy of the KELM model is 
influenced by the regularization coefficient  and the kernel 
parameter σ. Therefore, ISMA is applied to optimize these 
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two super parameters and  improve the prediction accuracy in 
this study. The process of ISMA-KELM prediction model is 
described as follows: 

Step1: Data preprocessing involves supplementing 
missing data and applying the moving average method to 
eliminate data noise. The source data is divided into training 
and test sets, followed by normalization.

Step2: Initialization of relevant parameters, including the 
population size, the maximum iteration value, dimension, and 
slime mould locations initialized by the Good Point Set.

Step3: Construction of the ISMA-KELM coupling model 
involves calculating the individual fitness f (xi), i = 1, 2, ..., n 
of the slime mould. Subsequently, the slime mould is ranked 
based on its fitness value to determine the current optimal 
individual. The fitness function is defined as follows:



2

1

1( ) ( )
n

i ii
i

f x y y
n =

= −∑                            (14)

where yi represents the true value and ˆiy  represents the 
predicted value.

Step4: Optimization of the initial slime mold individual is 
performed using reverse differential evolution. The selected 
slime mould from step 3 undergoes further optimization. 
The weight of each slime mould is calculated, and the 
current slime mould location and individual fitness value are 
obtained.

Step5: Updating the global optimal fitness value and 
optimal position involves using adaptive t-distribution to 
update the slime mould’s position.

Step6: Outputting results occurs when the maximum 
number of iterations is reached, indicating completion of 
the optimization process. The spatial location of the optimal 
slime mould fitness is outputted. Otherwise, return to Step 3.

Step7: Prediction is performed on the test set using the 
best parameters optimized by ISMA on training set. ISMA-
KELM is employed to predict the short-term traffic flow on 
test set.

4.2 Explanation of Data Set
Initially, we conducted experiments on the traffic flow 

near Heathrow Airport of M25 Expressway in the UK at 
4926K observation point. The sampling period spanned 
from August 1, 2019 to August 25, 2019, with a 15-minute 
interval. The dataset comprised a total of 2400 groups of 
traffic flow data. The training set included data from August 
1 to August 20, while the test set encompassed data from 
August 21 to August 25.

Subsequently, we modified the experimental dataset 
to assess the robustness and generalization of the model. 
After conducting a comparative analysis, we selected the 
traffic flow dataset from the 4926K observation point during 
a different time period. The sampling period ranged from 
September 1, 2019 to September 25, 2019, with a 15-minute 
interval. The dataset consisted of 2400 groups of traffic 
flow data. The training set comprised data from September 
1 to September 20, while the test set consisted of data from 
September 21 to September 25.

4.3 Evaluation of ISMA-KELM Model
To assess the predictive performance of the ISMA-KELM 

model, three indices, including the Mean Absolute Error 
(MAE), the Mean Absolute Percentage Error (MAPE) and 
the Root Mean Square Error (RMSE) [29-30], are utilized to 
evaluate its prediction accuracy on the given traffic flow data.

4.4 Experimental Results and Analysis
To enhance the validation of prediction accuracy, 

we compare the ISMA-KELM model with other models 
including RF, LSSVM, TSO-KELM, KELM, and SMA-
KELM using the provided traffic flow data. The experimental 
results are presented in Figure 2.
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Figure 2. Prediction on 500 input samples of different models from 
August 1 to August 25

All six models have input vector dimension of 10 time 
steps (equivalent to approximately 150 minutes), and the 
output vector dimension is 1 time step. Consequently, the 
change in traffic flow for the next 15 minutes can be predicted 
using the given historical traffic flow data spanning two and a 
half hours. To identify the experimental results more clearly, 
we present the experimental results of different models for 
input samples No.160 to No.180 in Figure 3. The evaluation 
of these six prediction models is summarized in Table 6.
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Figure 3. Prediction on No.160 to No.180 input samples of different 
models from August 1 to August 25

Table 6. Comparison of prediction accuracy of different models 
from August 1 to August 25
MODELS MAE MAPE/% RMSE
RF 19.1084 9.2382 26.1524
LSSVM 15.6351 8.7914 20.9843
KELM 15.3991 8.6234 20.5391
TSO-KELM 14.1175 7.8961 18.6460
SMA-KELM 13.7498 7.6341 18.1150
ISMA-KELM 11.9747 6.6221 15.6103
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Observing the curves in Figure 2 and Figure 3, it is 
evident that the change trend of the ISMA-KELM curve 
aligns more closely with the true value. Table 6 provides 
data illustrating that RF yields the poorest prediction 
results, while LSSVM and KELM exhibit similar prediction 
values. Both TSO-KELM and SMA-KELM show improved 
prediction accuracy compared to KELM. However, the 
proposed ISMA-KELM model outperforms KELM and 
SMA-KELM, demonstrating a reduction in the MAE index 
by 22.23% and 12.91% respectively, MAPE index by 23.21% 
and 15.28% respectively, and RMSE index by 24.00% and 
16.05% respectively. These results indicate that the ISMA-
KELM model achieves superior prediction accuracy and 
better alignment with real values on the provided traffic flow 
dataset.

Then, we repeated the same experimental process on 
the traffic flow data set of 4926K observation point from 
September 1, 2019 to September 25. We aim to verify the 
generalization and robustness properties of the ISMA-KEML 
model. The results are shown in Figure 4, Figure 5 and Table 
7.
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Figure 4. Prediction on 500 input samples of different models 
from September 1 to September 25
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Figure 5. Prediction on No.160 to No.180 input samples of different 
models from September 1 to September 25

Table 7. Comparison of prediction accuracy of different models 
from September 1 to September 25
Models MAE MAPE/% RMSE
RF 19.4605 9.9186 26.4811
LSSVM 15.0121 8.3887 20.2214
KELM 15.2359 8.7153 20.3260
TSO-KELM 13.3307 7.5958 17.9873
SMA-KELM 13.1468 7.2803 17.5185
ISMA-KELM 11.2155 6.0517 14.9753

5  Conclusion

In this paper, we have proposed a short-term traffic flow 
prediction model based on ISMA-KELM. Firstly, the standard 
slime mould algorithm is enhanced using three strategies, 
including good point set, reverse differential evolution 
and adaptive t-distribution mutation. After comparing the 
results of these improvements on twelve test functions, we 
select the improved ISAM algorithm that incorporates the 
aforementioned three strategies. Furthermore, the ISMA is 
employed to optimize the regularization coefficient and kernel 
function parameters in KELM, thereby enhancing prediction 
performance. Traffic flow datasets from observations near 
Heathrow Airport on the M25 Expressway in the UK is 
used to assess the efficiency of our proposed model in 
comparison to other five models. Finally, the experimental 
results demonstrate that ISMA-KELM exhibits a smaller 
prediction error on provided dataset, highlighting the superior 
performance and increased accuracy of the proposed model. 

However, our experiment has limitations in terms of 
verifying the generalization and robustness of the model. 
Subsequent research should involve applying the proposed 
ISMA-KELM model to predict traffic flow and velocity 
in diverse datasets, as well as investing its applicability to 
domestic traffic flow data set.
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