
Adaptive Scheduling Based on Intelligent Agents in Edge-Cloud Computing Environments   609

*Corresponding Author: JongBeom Lim; E-mail: jblim@ptu.ac.kr
DOI: https://doi.org/10.70003/160792642024072504011

Adaptive Scheduling Based on Intelligent Agents 
in Edge-Cloud Computing Environments

JongBeom Lim*

Division of ICT Convergence, Pyeongtaek University, Korea
jblim@ptu.ac.kr

Abstract

Scheduling in cloud computing environments has been 
extended to support the Internet of Things (IoT) applications, 
which require additional quality of services such as energy 
consumption and real-time properties. To this end, edge-
cloud computing environments are prevalently deployed 
by encompassing the fog management layer. However, 
traditional scheduling techniques for cloud tasks have limited 
capabilities to support real-time properties required for IoT 
applications. In this paper, we propose a deep learning-based 
dynamic cloud scheduling technique using intelligent agents, 
which intelligently adapt to users’ requirements and selective 
quality of services based on distributed learning in edge-
cloud computing environments. The proposed cloud task 
scheduling method is composed of two logical components: 
distributed learning management (learning distribution and 
aggregation) and intelligence management of multi-agents, 
which are independent of each other. The performance results 
show that the self-employed agents intelligently adapt to 
their environments and perform hyperparameter learning 
for efficient and effective task scheduling in edge-cloud 
computing environments.

Keywords: Edge computing, Cloud computing, Task 
scheduling, Distributed learning, Multi-agents

1  Introduction

According to a recent report, the size of the cloud 
computing market is expected to surpass $2,321 billion by 
2023, with 16% of CAGR from 2023 to 2032 [1]. Thanks 
to the enhanced capabilities, cloud computing embraces 
emerging technologies, such as the Internet of Things 
(IoT) and artificial intelligence (machine learning and deep 
learning) [2]. One of the examples is edge-cloud computing 
[3-5]. Instead of contacting the central cloud computing 
server, edge-cloud computing deploys edge servers to several 
places near cloud users [6-8]. Thus, edge-cloud computing 
supports low latency and real-time properties for IoT 
applications [9-10].

At the same time, many cloud task scheduling techniques 
have been proposed using nature-inspired algorithms [11-13], 
linear programming [14-15], and multi-objective optimization 

[16-18]. However, these cloud task scheduling techniques 
have one critical limitation: The complexity of the scheduling 
methods is unavoidably high. Thus, the scheduling time 
is affected by the number of nodes, the number of cloud 
tasks, or the number of cloud users [19-20]. Due to the long 
scheduling time, deployment of the scheduling policies is not 
recommended.

Recently, artificial intelligence-based cloud task 
scheduling techniques also have been proposed to overcome 
the limitation [21-22]. These techniques are based on deep 
neural networks [23-24], deep Q-learning (DQL) [25-
26], deep reinforcement learning (DRL) [27-28], etc. The 
advantage of using artificial intelligence-based cloud task 
scheduling techniques is a relatively lower complexity in 
scheduling algorithms compared to traditional scheduling 
methods [29-30]. In addition, the parameters of cloud 
task scheduling policies can be adjusted and optimized 
dynamically. To further optimize the scheduling time and 
learning, distributed learning techniques have been used for 
deep neural network-based scheduling algorithms [31-32]. 
However, local agents for distributed learning are designed 
to be compatible only with the parameter server. Hence, local 
decision or intelligent cloud task scheduling of multi-agents 
is limited [33].

In this paper, we propose a deep learning-based dynamic 
cloud scheduling technique using intelligent agents, which 
intelligently adapts to users’ requirements and selective 
quality of services [34] based on distributed learning in edge–
cloud computing environments. The proposed cloud task 
scheduling method is composed of two logical components: 
distributed learning management (learning distribution and 
aggregation) and intelligent management of multi-agents, 
independent from each other. The first component (distributed 
learning management) allows multi-agents to communicate 
with the parameter server and process local learning. The 
second component (intelligent management) lets each 
local agent perform intelligent orchestration of learning. In 
other words, with intelligent multi-agents, our cloud task 
scheduling technique adapts to the system environment 
based on requirements, quality of services, and service-level 
objectives.

The main contributions of the paper can be summarized 
as follows:

1. We formulate the cloud task scheduling problem and 
edge-cloud computing environments with the fog 
management layer.



610  Journal of Internet Technology Vol. 25 No. 4, July 2024

2. We reveal the limitations of existing cloud task 
scheduling techniques with mini benchmark results.

3. We design and implement  a  deep learning-
based dynamic cloud scheduling technique using 
intelligent agents, which intelligently adapt to users’ 
requirements and selective quality of services based 
on distributed learning.

4. We compare the performance results with state-of-
the-art studies based on deep Q-learning and deep 
reinforcement learning techniques.

2  System Model and Problem Definition

2.1 System Model
The basic architecture of edge-cloud computing 

environments is depicted in Figure 1. Since we consider IoT 
applications, there is an IoT layer in the architecture. In the 
IoT layer, there are numerous devices that can be deployed, 
such as laptops, smartphones, and small computing devices 
(Arduino, Raspberry Pi, etc.). Due to the diversity of IoT 
devices, orchestrating them requires a pre-defined lifecycle. 
That is, the following lifecycle stages can be used on a cyclic 
basis: (1) deploy, (2) monitor, (3) service, (4) manage, (5) 
update, and (6) decommission.

Figure 1. Edge-cloud computing architecture

In order to maintain the lifecycle of IoT devices, another 
level of management of the edge-cloud architecture is 
required: fog management. Instead of contacting the central 
cloud server, IoT devices communicate with nearby edge 
servers. Thus, the edge servers are deployed between IoT 
devices and the central cloud server in edge-cloud computing 
environments. The fundamental roles of the edge servers 
are the core aspect of cloud task scheduling for the basic 
edge-cloud computing architecture. In other words, the edge 
servers directly communicate with both IoT devices and the 
central cloud server. In addition, an edge server collaborates 
with other edge servers in the edge-cloud computing 
environments. Specifically, an edge server is capable of 
handing off a user’s task and migrating computing nodes 
(virtual machines or containers) from one to another. In this 
manner, cloud tasks can be scheduled efficiently. Considering 
operational costs and migration overheads, we use containers 
for our edge-cloud computing architecture.

2.2 Problem Definition
We consider cloud task scheduling in edge-cloud 

computing environments based on deep learning [35-
36]. Specifically, we use the feed-forward neural network 
architecture for scheduling decisions (task allocation, task 
migration, and task management for users’ requirements, 
quality of services, and service-level objectives). To optimize 
the learning process of cloud task scheduling, we use a 
distributed learning approach. Instead of making the central 
cloud server perform the learning process solely, we let edge 
servers cooperatively perform the hyper-parameter learning. 

The distributed learning architecture is shown in 
Figure 2. There is a parameter server and multiple agents 
in the architecture. The parameter server is in charge of 
the distribution of data partitions to the multiple agents in 
edge-cloud computing environments. Then, it aggregates 
the results from the multiple agents. After these processes 
are finished, cloud task scheduling can proceed based 
on the scheduling decision. The agents are in charge of 
performing the hyperparameter learning process based on 
the data partition. Then, each agent forwards the result to the 
parameter server.

Figure 2. Basic distributed learning architecture

Although the basic distributed learning process and 
architecture are functional, we enhance and extend the 
architecture by resolving two limitations: (1) The basic 
distributed learning architecture cannot perform the adaptive 
hyper-parameter learning since all the agents have the 
same system parameter; and (2) it does not consider users’ 
requirements, quality of services, or service level objectives; 
these properties cannot be applied online in a dynamic 
fashion. 

The problem we are trying to solve in this paper is based 
on the following research questions: (1) how to make multi-
agents intelligently learn their environment based on users’ 
requirements, quality of services, or service level objectives; 
and (2) how to apply multi-agent intelligence to task 
scheduling in edge-cloud computing environments.

3  Proposed Solution

In this section, we detail the two core algorithms for a 
deep learning–based dynamic cloud scheduling technique. 
The first algorithm is for the adaptive learning process for 



Adaptive Scheduling Based on Intelligent Agents in Edge-Cloud Computing Environments   611

an agent, and the second algorithm is for the task scheduling 
algorithm based on the first algorithm. Note that the first 
algorithm is executed in each agent independently, and the 
second algorithm can be executed in the parameter server or 
the central cloud server after the first algorithm is complete.

Algorithm 1. Adaptive learning process for an agent
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Input: Environmental parameters of the system
Output: Meta data for task scheduling
Initialization: Server ← get(ParameterServer);
    Coverage ← get(Location, Edge_i);
    Set_user ← get(User,  Edge_i, Coverage);
    Set_task ← get(Task,  Edge_i, Coverage);
    Sum_affinity ← null;
    Meta ← null;
for each User_i ∈  Set_user do
    Hist_i ← get(History, User_i);
    Curr_i ← get(Current, User_i);
    Vio_i ← get(Hist_i, SLO); 
    Pref_i ← get(Curr_i, Priority);
    Meta ← Meta È Vio_i È Pref_i;
end for
for each Task_i ∈  Set_task do
    Mon_i ← monitor(Task_i);
    Aff_i ← evaluate_affiinity(Mon_i, Edge_i); 
    Sum_affinity ← Sum_affinity + Affi_i;
end for
Meta ← Meta È Sum_affinity;
return Meta;

Algorithm 1 shows the adaptive learning process for 
an agent. The input of the algorithm is the environmental 
parameters of the edge-cloud system, and the output is 
metadata for cloud task scheduling. Therefore, the cloud 
task algorithm could proceed after Algorithm 1 is complete 
at each agent. Based on the cloud task scheduling policies, 
we allow the cloud task scheduling algorithm to be executed 
before Algorithm 1 is complete. In this scenario, however, 
the effectiveness of the adaptive learning process can be 
insignificant.

There are a few initialization steps for Algorithm 1. In 
other words, it retrieves some environmental parameters by 
performing the get() function. In line 3, the algorithm gets 
the parameter server, and it retrieves the coverage based on 
its location and specifications of the edge server the agent 
resides on in line 4. Further, it gets the set of users and tasks, 
and sets two parameters (Sum_affinity and Meta) to null 
(lines 5–8).

For the adaptive learning process, each agent performs 
two repetitive statements. The first repetitive statement is 
for Set_user. For each User_i, it retrieves both historical 
information and current data for the user (lines 9–11). Based 
on the history information, it calculates the cumulative 
violations (Vio_i) of service level objectives (line 12). Note 
that the Vio_i variable is used in the loss function of deep 
neural networks as Equation 1.

J(U1, ..., UL) = 1/|M|⋅Σ|y - o|2 + λVio_i⋅E(SLO).        (1)

In line 13, it retrieves the user’s preference (priority and 
quality of services such as energy consumption and low 

latency), which can be used in Algorithm 2 when performing 
the cloud task scheduling. Then, the user data (Vio_i and 
Pref_i) are merged into the Meta variable.

The second repetitive statement is for Set_task (lines 
16–20). Note that the Set_task variable contains the currently 
running cloud tasks in the edge-cloud system. With the Set_
task variable, it retrieves the monitoring information of each 
Task_i (line 17). Then, it calculates the affinity between 
Task_i and Edge_i (line 18). The evaluate_affinity() function 
returns [0, 1] and a higher numeric value if Task_i is suitable 
for Edge_i. Then, the Affi_i variable is added to the Sum_
affinity variable (line 19). After merging the Sum_affinity 
variable to the Meta variable, it returns Meta (line 22).

Algorithm 2 shows the task scheduling algorithm for 
intelligent multi-agents. The input of the algorithm is the 
Meta variable from Algorithm 1, and the output is the initial 
cloud task allocation and migration schedule based on 
affinity metadata. The initialization steps retrieve the two 
threshold values (Thd_sum and Thd_affi), which are used in 
the algorithm when allocation and migration are scheduled, 
respectively.

Algorithm 2. Task scheduling algorithm for intelligent  
multi-agents

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Input: Meta data for task scheduling 
Output: Task allocation and migration schedule
Initialization: Meta_global ← null;
    Thd_sum ← get(Sum_Affinity, Threshold);
    Thd_affi ← get(Affinity, Threshold);
// Code for Passive Thread
for each Agent_i ∈  Set_agent do 
    Meta_i ← wait(Agent_i);
    Meta_global ← Meta_global È Meta_i;
end for
// Code for Active Thread
for each Task_i ∈  Set_new_task do
    Edge_j ← find_edge(Pref_k of the owner);
    allocate(Task_i, Edge_j);
end for
for min(Sum_affinity_i) ∈  Meta_global do 
    if (Sum_affinity_i > Thd_sum) then
        break;
    end if
    for each Task_i ∈  Edge_i do
        Edge_j ← find_max_affinity(Task_i);
        if calc_affi(Task_i, Edge_j) > Thd_affi then
            schedule_migration(Task_i, Edge_j);
        end if
    end for
end for

There are two threads for the cloud task scheduling 
algorithm: passive and active threads. The passive thread is 
for collecting and aggregating the Meta variable from multi-
agents in the edge-cloud system. The active thread is for the 
cloud task scheduling for the initial allocation of cloud tasks 
and migration scheduling. In lines 7–9, the passive thread 
waits for each agent to make the global variable (Meta_
global). 

In the active thread, there are two repetitive statements. 
The first repetitive statement (lines 12–15) is for the initial 



612  Journal of Internet Technology Vol. 25 No. 4, July 2024

allocation of cloud tasks. When a new task (Task_i) arrives, it 
performs the find_edge() function with the Pref_k parameter. 
Note that the Pref_k parameter contains the preference 
information (priority, quality of services such as energy 
consumption and low latency) of the owner of the new task 
(Task_i). After getting the edge information (Edge_j), it 
allocates Task_i to Edge_j (line 14).

It is important to note that the cloud task allocation of 
Algorithm 2 and built-in cloud task allocation based on deep 
neural networks conflict. However, we resolve the conflict 
between the two allocations by an additional procedure. 
Specifically, in deep neural networks, it allocates a task 
to an edge server based on a randomized fashion, and this 
randomized fashion does not guarantee the optimal solution. 
Hence, we use the cloud task allocation of Algorithm 2 for 
the initial allocation. Then, we let the allocation from deep 
neural networks orchestrate them afterward.

The second repetitive statement (lines 16–26) shows 
the migration schedule based on the Meta variable from 
Algorithm 1. The migration policy is based on the Sum_
affinity variable. The lower Sum_affinity is, the poorer the 
association between the tasks and the edge server is. Thus, it 
first finds the edge server that has the lowest Sum_affinity_
i value (line 16). If the retrieved Sum_affinity_i is greater 
than Thd_sum, then the iteration is terminated (lines 17–19). 
Otherwise, it performs the remaining procedures (lines 20–
25).

For each Task_i running on Edge_i, it finds the edge 
server suitable for Task_i based on the affinity relationship 
(line 21). When the affinity score between Task_i and Edge_j 
is greater than Thd_affi, it sets Task_i for the migration target 
to Edge_j. Like in Algorithm 1, the migration scheduling 
policy can conflict with the migration decisions of deep 
neural networks. In this case, we use the proposed migration 
scheduling policy in favor of Algorithm 2. When the number 
of tasks for the migration schedule is manageable and the 
total utilization of edge servers is low, the two migration 
policies (Algorithm 2 and deep neural networks) can be used 
simultaneously.

Regarding the two threshold values (Thd_sum and Thd_
affi), the specific values can be determined based on the 
monitoring information in the edge–cloud system. If the total 
utilization of edge servers is low and the number of tasks for 
the migration schedule is low, the two threshold values can be 
increased online. Conversely, if the total utilization of edge 
servers is high and there are too many tasks for the migration 
schedule, the two threshold values are decreased on the fly.

4  Performance Evaluation

In this section, we provide our experimental results for 
the proposed dynamic cloud scheduling technique using 
intelligent agents with distributed learning. As we mentioned 
before, our cloud scheduling technique adapts to users’ 
requirements and selective quality of services in edge–
cloud computing environments. To show the effectiveness 
of the results, we show the two extreme scenarios for energy 

consumption and low latency for the purpose of comparisons 
with 100 scheduling intervals (one interval is 300 seconds).

There are 30 hosts in the edge–cloud system, and a 
host can serve as an edge server. Figure 3 to Figure 5 show 
the preliminary experimental results for scheduling time, 
the number of cloud task migrations, and total migration 
time. Note that Random uses a randomized fashion for 
cloud task scheduling, DRL [27-28] is an acronym for deep 
reinforcement learning, DQL [25-26] is an acronym for deep 
Q-learning, OursS is our approach that uses deep learning-
based scheduling only with default parameters disregarding 
users’ requirements or quality of services, OursB is our 
approach with a balanced policy for energy consumption and 
low latency, OursE uses our approach with a biased policy 
for energy consumption, and OursL uses our approach with a 
biased policy for low latency.

Figure 3 shows the preliminary results for scheduling 
time for Random, DRL, DQL, OursS, OursB, OursE, and 
OursL. Since Random uses the rand() function for cloud 
task scheduling, the scheduling complexity is low, and its 
scheduling time is negligible [37]. However, Random shows 
a high number of cloud task migrations, as shown in Figure 
4. Its concomitant total migration time is shown in Figure 5. 
Random exhibits over 1,300 cloud task migrations and 3,000 
seconds of migration time. Although Random’s scheduling 
time is negligible, Random cannot be used in practice due to 
high task migration time. Hence, we do not include Random 
in the subsequent experiments.

Figure 3. Preliminary results for scheduling time

Figure 4. Preliminary results for the number of task migrations



Adaptive Scheduling Based on Intelligent Agents in Edge-Cloud Computing Environments   613

Figure 5. Preliminary results for total migration time

To show the training results with epochs, we measure 
the average training loss at each epoch for OursB, OursE, 
and OursL, as shown in Figure 6. The appropriate setting for 
epochs affects the total training performance in deep neural 
networks. For the balanced setting for our dynamic cloud task 
scheduling, we set the epoch parameter as 100. As shown in 
Figure 6, the average training loss sharply drops in the first 
60 epochs, and it stabilizes after 100 epochs.

Figure 6. Average training loss for OursE, OursE, and OursL

To show the performance characteristics, we show 
scheduling time, energy consumption, and response time 
for DRL, DQL, OursS, OursB, OursE, and OursL. Figure 7 
shows the scheduling time characteristics for DRL, DQL, 
OursS, OursB, OursE, and OursL. The two approaches 
(OursE and OursL) show the best performance for scheduling 
time. OursS and OursB show similar performance results, and 
DRL and DQL show the worst performance for scheduling 

time. Of the six approaches, DRL exhibits high deviations.
Figure 8 shows the average energy consumption for 

DRL, DQL, OursS, OursB, OursE, and OursL. DRL and 
DQL consume lower energy than the other four approaches 
(OursS, OursB, OursE, and OursL) since DRL and DQL do 
not perform the distributed learning process. For the average 
response time, OursB shows the worst performance, and 
OursL shows the best performance, as shown in Figure 9. The 
result for OursL is obvious since the users’ requirements and 
quality of services are set for low latency. However, the result 
for OursB conflicts with basic assumptions. We conjecture 
that this result stems from the fact that OursB does not put 
all eggs in one basket. Thus, our implication concludes that 
it is better to focus on one of the requirements or quality of 
services.

Figure 7. Scheduling time at each interval

Figure 8. Energy consumption at each interval

Figure 9. Average response time



614  Journal of Internet Technology Vol. 25 No. 4, July 2024

To show the main performance results, we measure 
average CPU utilization, the number of completed tasks per 
interval, the number of cloud task migrations, and average 
migration time. Figure 10 shows the average CPU utilization 
for DRL, DQL, OursS, OursB, OursE, and OursL. The 
interesting results can be seen from DQL. In early intervals, 
DQL’s CPU utilization is very low and sharply increases from 
intervals 17 to 24. In other words, it needs some adaptation 
time in edge-cloud computing environments. On the other 
hand, OursS, OursE, and OursL show quick adaptation for 
CPU utilization; they find appropriate positions before 10 
intervals. 

Figure 10. Average CPU utilization

Figure 11. The number of completed tasks

Figure 12. The number of task migrations

Figure 13. Average migration time

Figure 14. Fraction of total SLO violations

Figure 15. Fairness based on Jain’s index

Figure 16. Cost per container



Adaptive Scheduling Based on Intelligent Agents in Edge-Cloud Computing Environments   615

The average CPU utilization significantly affects the 
number of completed cloud tasks. Figure 11 shows the 
number of completed cloud tasks for DRL, DQL, OursS, 
OursB, OursE, and OursL. As we expected, OursS, OursB, 
OursE, and OursL outperform DRL and DQL. Among 
our approaches, OursL shows the best performance, and 
OursE shows the worst performance for the number of 
completed cloud tasks. Although OursE exhibits relatively 
low performance, it still outperforms DRL and DQL and 
consumes low energy among the four approaches (c.f., 
Figure 8). Figure 12 and Figure 13 shows the number of task 
migrations and average migration time, respectively. OursL 
shows the highest number of cloud task migrations; however, 
the migrations have a low impact on the overall performance 
since the average migration time is relatively low. The higher 
migration time means the cloud task scheduler selects the 
suboptimal migration source and target in terms of coverage, 
user location, bandwidth, and network speed.

Additionally, we measure service level objective 
violations, fairness, and cost per container based on Microsoft 
Azure’s cost table to show the usefulness of our approaches. 
Figure 14 shows the fractions of total service level objective 
violations for DRL, DQL, OursS, OursB, OursE, and OursL. 
Note that the baseline of the service level objective violations 
is the Random approach. DRL shows the worst performance, 
and OursL shows the best performance for the service level 
objective violations. The reason for this result is that the 
service level objective violations are affected by latency and 
the number of completed tasks. As OursL shows the optimal 
performance in terms of latency and the number of completed 
tasks, it shows the lowest service level objective violations.

To show the load-balancing of hosts, we measure Jain’s 
index [38] as defined in Equation 2.

J(x1, x2, ..., xn)=(Σxi)
2/n⋅xi

2=1/1+cv
2,                  (2)

where there are n hosts, xi is the throughput for the ith 
interval, and cv is the coefficient of variations.

Note that the higher the value of Jain’s index, the better 
fairness (load balancing) we have. The worst performance 
can be seen from DRL and DQL’s results, and their values 
are about 0.5 as shown in Figure 15. On the other hand, our 
four approaches outperform DRL and DQL, and the best 
performance can be seen from OursL’s result. Lastly, we 
measure the cost per container of edge servers in the system 
as shown in Figure 16. The cost is calculated from Microsoft 
Azure’s price table in the South UK region. Our four 
approaches show a lower cost compared to DRL and DQL. 
An interesting result can be seen from OursE’s result. OursE 
exhibits lower energy consumption; however, it takes longer 
to complete the submitted cloud tasks. Therefore, it costs 
more than other approaches.

5  Conclusion

Making an adapt ive cloud task scheduler  with 
effectiveness is not a trivial task and requires careful and 
comprehensive manual considerations in edge-cloud 
computing environments. In this paper, we propose a deep 

learning–based dynamic cloud scheduling technique using 
intelligent agents that adapt to users’ requirements and 
selective quality of services based on distributed learning 
in edge-cloud computing environments. The proposed 
techniques and algorithms answer two research questions: 
(1) How do we make multi-agents intelligently learn their 
environment based on users’ requirements, quality of 
services, or service level objectives? (2) How do we apply 
multi-agents intelligence to task scheduling in edge-cloud 
computing environments? The performance results show 
that our dynamic cloud task scheduling algorithms are 
effective in meeting users’ requirements, quality of services, 
or service level objectives. Future work includes enhancing 
fault tolerance and localizing straggler nodes in edge-cloud 
computing environments.

References

[1] K. Thakur, A.-S. K. Pathan, S. Ismat, Distributed 
Cloud Computing, in: Emerging ICT Technologies and 
Cybersecurity: From AI and ML to Other Futuristic 
Technologies, Cham: Springer Nature Switzerland, 
2023, pp. 185-197.

[2] O. E. L. Castro, X. Deng, J. H. Park, Comprehensive 
Survey on AI-Based Technologies for Enhancing 
IoT Privacy and Security: Trends, Challenges, and 
Solutions, Human-centric Computing and Information 
Sciences, Vol. 13, Article No. 39,  August, 2023. https://
doi.org/10.22967/HCIS.2023.13.039

[3] M. Alazab, G. Manogaran, C. E. Montenegro-Marin, 
Trust management for internet of things using cloud 
computing and security in smart cities, Cluster 
Computing, Vol. 25, No. 3, pp. 1765-1777, June, 2022. 
https://doi.org/10.1007/s10586-021-03427-9

[4] C. Pandey, Y. K. Sahu, N. Kannan, M. R. Mahmood, P. 
K. Sethy, S. K. Behera, Futuristic AI Convergence of 
Megatrends, in: M. R. Mahmood, R. Raja, H. Kaur, S. 
Kumar, K. K. Nagwanshi (Eds.), Ambient Intelligence 
and Internet of Things, Scrivener Publishing LLC, 2022, 
pp. 125-188. https://doi.org/10.1002/9781119821847.
ch5

[5] M. Gupta, M. Thirumalaisamy, S. Shamsher, A. Pandey, 
D. Muthiah, N. Suvarna, Patient Health Monitoring 
using Feed Forward Neural Network with Cloud 
Based Internet of Things, 2022 2nd International 
Conference on Advance Computing and Innovative 
Technologies in Engineering (ICACITE), Greater Noida, 
India, 2022, pp. 924-931. https://doi.org/10.1109/
ICACITE53722.2022.9823502 

[6] S. Ghafouri, A. Karami, D. B. Bakhtiarvan, A. S. 
Bigdeli, S. S. Gill, J. Doyle, Mobile-Kube: Mobility-
aware and Energy-efficient Service Orchestration 
on Kubernetes Edge Servers,  2022 IEEE/ACM 
15th International Conference on Utility and Cloud 
Computing (UCC), Vancouver, WA, USA, 2022, pp. 82-
91. https://doi.org/10.1109/UCC56403.2022.00019 

[7] Y. Cui, K. Cao, J. Zhou, T. Wei, Optimizing Training 
Efficiency and Cost of Hierarchical Federated Learning 
in Heterogeneous Mobile-Edge Cloud Computing, 



616  Journal of Internet Technology Vol. 25 No. 4, July 2024

IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, Vol. 42, No. 5, 
pp. 1518-1531, May, 2023. https://doi.org/10.1109/
TCAD.2022.3205551

[8] S. M. Alamouti, F. Arjomandi, M. Burger, Hybrid 
Edge Cloud: A Pragmatic Approach for Decentralized 
Cloud Computing, IEEE Communications Magazine, 
Vol. 60, No. 9, pp. 16-29, September, 2022. https://doi.
org/10.1109/MCOM.001.2200251

[9] A. Hazra, P. Rana, M. Adhikari, T. Amgoth, Fog 
computing for next-generation Internet of Things: 
Fundamental, state-of-the-art and research challenges, 
Computer Science Review, Vol. 48, Article No. 
100549,  May,  2023.  h t tps : / /do i .org /10 .1016/
j.cosrev.2023.100549

[10] C. S. T. Shanthakumar, N. Harish, Eshanya, A. 
Giridharan, Internet of Things and Edge Computing 
for Real Time Applications, 2023 International 
Conference on Intelligent and Innovative Technologies 
in Computing, Electrical and Electronics (IITCEE), 
Bengaluru, India,  2023, pp. 1137-1141. https://doi.
org/10.1109/IITCEE57236.2023.10091014 

[11] S. Kaul, Y. Kumar, U. Ghosh, W. Alnumay, Nature-
inspired optimization algorithms for different computing 
systems: novel perspective and systematic review, 
Multimedia Tools and Applications, Vol. 81, No. 19, pp. 
26779-26801, August, 2022. https://doi.org/10.1007/
s11042-021-11011-x

[12] M .  A d h i k a r i ,  S .  N .  S r i r a m a ,  T.  A m g o t h ,  A 
comprehensive survey on nature-inspired algorithms and 
their applications in edge computing: Challenges and 
future directions, Software: Practice and Experience, 
Vol. 52, No. 4, pp. 1004-1034, April, 2022. https://doi.
org/10.1002/spe.3025

[13] G. Natesan, J. Ali, P. Krishnadoss, R. Chidambaram, M. 
Nanjappan, Optimization techniques for task scheduling 
criteria in IaaS cloud computing atmosphere using 
nature inspired hybrid spotted hyena optimization 
algorithm, Concurrency and Computation: Practice 
and Experience, Vol. 34, No. 24, Article No. e7228, 
November, 2022. https://doi.org/10.1002/cpe.7228

[14] A. Hazra, P. K. Donta, T. Amgoth, S. Dustdar, 
Cooperative Transmission Scheduling and Computation 
Offloading With Collaboration of Fog and Cloud for 
Industrial IoT Applications, IEEE Internet of Things 
Journal, Vol. 10, No. 5, pp. 3944-3953, March, 2023. 
https://doi.org/10.1109/JIOT.2022.3150070

[15] A. Mahjoubi, K. J. Grinnemo, J. Taheri, EHGA: A 
Genetic Algorithm Based Approach for Scheduling 
Tasks on Distributed Edge-Cloud Infrastructures, 2022 
13th International Conference on Network of the Future 
(NoF), Ghent, Belgium, 2022, pp. 1-5. https://doi.
org/10.1109/NoF55974.2022.9942552 

[16] A. Lakhan, M. A. Mohammed, M. Elhoseny, M. D. 
Alshehri, K. H. Abdulkareem, Blockchain multi-
objective optimization approach-enabled secure and 
cost-efficient scheduling for the Internet of Medical 
Things (IoMT) in fog-cloud system, Soft Computing, 
Vol. 26, No. 13, pp. 6429-6442, July, 2022. https://doi.
org/10.1007/s00500-022-07167-9

[17] T. Xie, C. Li, N. Hao, Y. Luo, Multi-objective 
optimization of data deployment and scheduling based 
on the minimum cost in geo-distributed cloud, Computer 
Communications, Vol. 185, pp. 142-158, March, 2022. 
https://doi.org/10.1016/j.comcom.2021.12.022

[18] M. Ouyang, J. Xi, W. Bai, K. Li, Band-Area Application 
Container and Artificial Fish Swarm Algorithm 
for Multi-Objective Optimization in Internet-of-
Things Cloud, IEEE Access, Vol. 10, pp. 16408-
16423, February, 2022. https://doi.org/10.1109/
ACCESS.2022.3150326

[19] P.  Jawade,  G.  M.  Borkar,  S .  Ramachandram, 
Conf inement  fores t -based enhanced min-min 
and max-min technique for secure multicloud 
t a s k  s c h e d u l i n g , Tr a n s a c t i o n s  o n  E m e rg i n g 
Telecommunications Technologies, Vol. 33, No. 9, 
Article No. e4515, September, 2022. https://doi.
org/10.1002/ett.4515

[20] N. Khaledian, K. Khamforoosh, S. Azizi, V. Maihami, 
IKH-EFT: An improved method of workflow scheduling 
using the krill herd algorithm in the fog-cloud 
environment, Sustainable Computing: Informatics and 
Systems, Vol. 37, Article No. 100834, January, 2023. 
https://doi.org/10.1016/j.suscom.2022.100834

[21] D. Jorge-Martinez, S. A. Butt, E. M. Onyema, C. 
Chakraborty, Q. Shaheen, E. De-La-Hoz-Franco, P. 
Ariza-Colpas, Artificial intelligence-based Kubernetes 
container for scheduling nodes of energy composition, 
International Journal of System Assurance Engineering 
and Management, July, 2021. https://doi.org/10.1007/
s13198-021-01195-8

[22] C. V. Marian, Artificial Intelligence-Based Algorithm 
for Resources Allocation, 2022 14th International 
Conference on Electronics, Computers and Artificial 
Intelligence (ECAI), Ploiesti, Romania, 2022, pp. 1-4. 
https://doi.org/10.1109/ECAI54874.2022.9847517 

[23] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, N. 
R. Jennings, COSCO: Container Orchestration Using 
Co-Simulation and Gradient Based Optimization for 
Fog Computing Environments, IEEE Transactions 
on Parallel and Distributed Systems, Vol. 33, No. 1, 
pp. 101-116, January, 2022. https://doi.org/10.1109/
TPDS.2021.3087349

[24] S. Tuli, G. Casale, N. R. Jennings, SplitPlace: AI 
Augmented Splitting and Placement of Large-Scale 
Neural Networks in Mobile Edge Environments, IEEE 
Transactions on Mobile Computing, Vol. 22, No. 9, pp. 
5539-5554, September, 2023. https://doi.org/10.1109/
TMC.2022.3177569

[25] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, A scheduling 
scheme in the cloud computing environment using 
deep Q-learning, Information Sciences, Vol. 512, pp. 
1170-1191, February, 2020. https://doi.org/10.1016/
j.ins.2019.10.035

[26] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, J. Zeng, 
Q-learning based dynamic task scheduling for energy-
efficient cloud computing, Future Generation Computer 
Systems, Vol. 108, pp. 361-371, July, 2020. https://doi.
org/10.1016/j.future.2020.02.018



Adaptive Scheduling Based on Intelligent Agents in Edge-Cloud Computing Environments   617

[27] Y. Liu, Y. Ping, L. Zhang, L. Wang, X. Xu, Scheduling 
of decentralized robot services in cloud manufacturing 
with deep reinforcement learning, Robotics and 
Computer-Integrated Manufacturing, Vol. 80, Article 
No. 102454, April, 2023. https://doi.org/10.1016/
j.rcim.2022.102454

[28] Y. Ping, Y. Liu, L. Zhang, L. Wang, X. Xu, Sequence 
generation for mult i- task scheduling in cloud 
manufacturing with deep reinforcement learning, 
Journal of Manufacturing Systems, Vol. 67, pp. 315-337, 
April, 2023. https://doi.org/10.1016/j.jmsy.2023.02.009

[29] E. H. Houssein, A. G. Gad, Y. M. Wazery, P. N. 
Suganthan, Task Scheduling in Cloud Computing 
based on Meta-heuristics: Review, Taxonomy, Open 
Challenges, and Future Trends, Swarm and Evolutionary 
Computation, Vol. 62, Article No. 100841, April, 2021. 
https://doi.org/10.1016/j.swevo.2021.100841

[30] X. Wang, X. Li, V. C. M. Leung, Artificial Intelligence-
Based Techniques for Emerging Heterogeneous 
Network: State of the Arts, Opportunities, and 
Challenges, IEEE Access, vol. 3, pp. 1379-1391, August, 
2015. https://doi.org/10.1109/ACCESS.2015.2467174

[31] J. Pang, Z. Han, R. Zhou, H. Tan, Y. Cao, Online 
scheduling algorithms for unbiased distributed learning 
over wireless edge networks, Journal of Systems 
Architecture, Vol. 131, Article No. 102673, October, 
2022. https://doi.org/10.1016/j.sysarc.2022.102673

[32] Z. Han, R. Zhou, J. Pang, Y. Cao, H. Tan, Online 
Scheduling Unbiased Distributed Learning over 
Wireless Edge Networks, 2021 IEEE 27th International 
Conference on Parallel and Distributed Systems 
(ICPADS), Beijing, China, 2021, pp. 599-606. https://
doi.org/10.1109/ICPADS53394.2021.00080 

[33] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. 
V. Feljan,  H. V. Poor, Distributed Learning in Wireless 
Networks: Recent Progress and Future Challenges, 
IEEE Journal on Selected Areas in Communications, 
Vol. 39, No. 12, pp. 3579-3605, December, 2021. 
https://doi.org/10.1109/JSAC.2021.3118346

[34] K. Peng, B. Zhao, M. Bilal, X. Xu, A. Nayyar, QoS-
Aware Cloud-Edge Collaborative Micro-Service 
Scheduling in the IIoT, Human-centric Computing and 
Information Sciences, Vol. 13, Article No. 28, June, 
2023. https://doi.org/10.22967/HCIS.2023.13.028

[35] A. A. Malibari, M. K. Nour, F. N. Al-Wesabi, R. 
Alabdan, A. Mohamed, M. Al Duhayyim, A. Alkhayyat, 
D. Gupta, Metaheuristics with Deep Learning Enabled 
Epileptic Seizure Classification for Smart Healthcare 
on Cyborg Robots, Human-centric Computing and 
Information Sciences, Vol. 13, Article No. 39, August, 
2023. https://doi.org/10.22967/HCIS.2023.13.039

[36] J. I. Lee, A Study on Peak Load Prediction Using 
TCN Deep Learning Model, KIPS Transactions 
on Software and Data Engineering, Vol. 12, No. 6, 
pp. 251-258, June, 2023. https://doi.org/10.3745/
KTSDE.2023.12.6.251

[37] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, W. Lin, Random 
task scheduling scheme based on reinforcement 
learning in cloud computing, Cluster Computing, Vol. 

18, No. 4, pp. 1595-1607, December, 2015. https://doi.
org/10.1007/s10586-015-0484-2

[38] A.  B.  Sediq ,  R.  H.  Gohary,  R.  Schoenen,  H. 
Ya n i k o m e r o g l u ,  O p t i m a l  Tr a d e o f f  B e t w e e n 
Sum-Rate Efficiency and Jain’s Fairness Index 
in Resource Allocation, IEEE Transactions on 
Wireless Communications ,  Vol. 12, No. 7,  pp. 
3496-3509, July, 2013. https://doi.org/10.1109/
TWC.2013.061413.121703

Biography

JongBeom Lim received M.S. and Ph.D. 
degrees in computer science and education 
from Korea University, Korea, in 2011 
and 2014, respectively. From 2015 to 
2017, he was a visiting professor with 
the IT Convergence Education Center, 
Dongguk University, Korea. From 2017 
to 2021, he was an assistant professor 

with the department of game and multimedia engineering, 
Tech University of Korea, Korea. Since 2021, he is with 
the division of ICT convergence, Pyeongtaek University, 
Korea. His research interests fall within the general 
fields of computer science and its applications including 
distributed computing and algorithms; cloud computing and 
virtualization; artificial intelligence and big data analytics; 
mobile and sensor networks; and fault tolerant and resilient 
techniques.


