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Abstract

Visual object tracking is a significant technique for 
various intelligent applications based on the Internet. 
Benefited by the application of attention mechanism, visual 
object tracking has made great progress. Recent popular 
attention mechanisms have been shown to be effective in 
improving the quality of the visual features, because attention 
mechanisms pay more attention to global information. 
However, most existing attention mechanisms applied in 
object tracking can only process the spatial or channel 
dimensions of feature maps independently, resulting in lack 
of information interaction among them. To address this issue, 
we propose a Siamese tracker based on our residual triplet 
attention. Firstly, we introduce a spatial attention module 
to improve the quality of the template and search region 
features. Secondly, we propose a residual triplet attention 
module (RTAM) suitable for object tracking. Feature maps 
have three dimensions: width, height, and channel. The first 
two contain spatial information, while the last one contains 
channel information. Treating each dimension of the feature 
maps equally, RTAM implements the information interaction 
between any two of the three dimensions simultaneously, 
which effectively improves the robustness and success rate 
of tracking. The extensive experiments on five benchmarks, 
including VOT2016, VOT2018, UAV123, OTB100, and 
GOT-10k, show that our proposed tracker achieves established 
performance.

Keywords: Object tracking, Spatial attention, Residual triplet 
attention, Siamese network

1  Introduction

With the development of internet technology, lots of 
software and system are running in network environments. 
Camera-based smart IoT systems have been widely used in 
smart city, intelligent transportation, environment monitoring 
and so on. These systems all require intelligent analysis 
of videos. Visual object tracking is a fundamental task 
in video surveillance, which has rich research value and 
development potential. Its aim is to predict the location of 
an arbitrary target in each subsequent frame given its state 
in the initial frame of a video sequence. Visual tracking has 

been widely applied in abundant practical scenarios like 
automatic driving [1], intelligent video surveillance [2], 
intelligent human-computer interaction [3], robotics [4], 
intelligent transportation [5], motion analysis [4], visual 
navigation [6] and so on. With the continuous development 
of deep learning, great progress has been made in the field 
of visual object tracking. However, tracking task is still 
significantly challenging and difficult, especially for real 
world applications [7]. Since the problems such as occlusion, 
illumination change, rotation, interference, and complex 
scenes, trackers often fail to accurately locate the target, even 
losing the target. In addition, real-time performance is also a 
deficiency of many trackers.

Most of the recent popular visual object trackers [2, 
7-10] are based on Siamese network. These trackers treat the 
tracking task as a one-shot object matching. Their overall 
architecture includes two branches, i.e. the template branch 
and the search region branch, and the aim is to learn the 
similarity mapping between the template and the search 
region. They usually extract feature maps of the template 
and search region via convolutional network, then perform 
multi-scale matching or perform classification and regression 
on the feature maps to obtain tracking results. However, due 
to the limitations of the spatial and semantic information in 
the feature maps, tracking results are not accurate or robust 
enough.

There are three dimensions in feature maps, including 
width dimension (W), height dimension (H), and channel 
dimension (C). The first two are termed spatial dimensions, 
and the last one is termed channel dimension. Due to the 
ability to establish intra-dependencies along channels or 
spatial dimensions in feature maps, recently popular attention 
mechanisms such as SENet [11] and CBAM [12] have 
shown that they can effectively enhance the visual features. 
Therefore, we introduce a spatial attention module (SAM) 
to enhance the visual features, so as to improve the tracking 
performance.

However, existing attention mechanisms can only 
implement the information interaction along the C dimension, 
W spatial dimension, or H spatial dimension independently, 
while the inter-dependencies among the C dimension and 
the two spatial dimensions is ignored. Inspired by the 
triplet attention [13] in semantic segmentation, we propose 
a residual triplet attention module calculating correlations 
along each dimension of the feature tensor. In addition, we 
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add a residual structure to make it suitable for tracking. The 
aim of this module is to construct the information interaction 
between the C and H dimensions, the C and W dimensions, as 
well as the H and W dimensions. Both channel attention and 
spatial attention are cleverly implemented simultaneously. 
So different dimensions can guide each other to effectively 
improve the success rate and robustness of the Siamese 
tracker.

In summary, our main contributions are as follows:
1. We introduce a spatial attention module (SAM) to 

effectively improve the quality of template and search region 
features that extracted by the backbone. The module is simple 
yet effective by making the features more discriminative for 
tracking.

2. We propose a residual triplet attention module (RTAM) 
suitable for Siamese tracking. It allows information interacted 
between the C and H dimensions, the C and W dimensions, 
as well as the H and W dimensions of feature maps by 
calculating their correlations simultaneously. Therefore, 
mutual guidance between different dimensions can be 
implemented. Moreover, RTAM cleverly implements channel 
attention and spatial attention at the same time in this way.

3. We propose a robust Siamese tracking network with 
SAM and RTAM. Through extensive experiments on five 
challenging benchmarks, including VOT2016, VOT2018, 
UAV123, OTB100, and GOT-10k, our tracker obtains leading 
tracking performance. It is worth noting that our tracker 
performs better than the state-of-the-art Siamese tracker 
SiamCAR on VOT2018.

The rest of this paper is as follows. Section 2 focuses 
on the related work about Siamese tracking as well as 
attention mechanism. Section 3 describes the architecture of 
our tracker at length. Section 4 introduces the experiments 
and results. Section 5 concludes and looks forward to this 
work. The codes and data are available at https://github.com/
hxy013/RTA-Tracker.

2  Related Work

Nowadays, the common object trackers are mainly 
divided into the correlation filter-based trackers [14-15] and 
the deep learning-based trackers [16-17]. However, with the 
continuous development of deep learning, deep learning-
based trackers have gradually become popular and dominate, 
and the optimum performance is trackers based on Siamese 
networks now. Therefore, we mainly review the tracking 
algorithms based on Siamese. 

2.1 Visual Object Tracking Based on Siamese Network
For the past few years, Siamese-based trackers have 

attracted a great deal of attention since great balance in 
accuracy and efficiency, and their ability to perform end-to-
end training. SiamFC [16] introduces the Siamese structure 
into the visual object tracking in a pioneering way, and 
constructs a fully convolutional Siamese network. Because of 
its lightweight and intuitive structure, it achieves good real-
time performance. However, it has no obvious advantage in 
accuracy because it uses simple multi-scale test to estimate 
the scale of target. But on the basis of this work, many 

researchers have followed this work and proposed more 
complex and effective Siamese trackers. SiamRPN [18] 
introduces the Faster-RCNN [19] in object detection into 
visual object tracking, divides the tracking into two subtasks, 
i.e. classification and regression. It proposes a candidate 
region proposal network, namely RPN network, through 
which multiple anchor frames are preset to ensure both high 
speed and accuracy. Next, DaSiamRPN [9], SiamRPN++ 
[10], SiamMask [20], and SiamDW [3] have further improved 
this work in different ways. Among them, DaSiamRPN adds 
more abundant training samples, making the tracker better 
able to cope with long-term tracking scenarios. SiamRPN++ 
introduces a deeper backbone to further enhance the feature 
extraction ability of the tracker. SiamMask improves the 
tracker with a new idea by introducing the mask branch 
based on the correlation between the two visual tasks of 
segmentation and visual tracking. SiamDW explores the 
influence of receptive field, step size, and padding on object 
tracking with a large number of experiments, which makes 
that existing Siamese trackers achieve better tracking results. 

With the continuous development of object tracking 
technology, the existing Siamese trackers using predefined 
anchor frames for regression have gradually become a 
bottleneck limiting the tracker performance. Therefore, 
Anchor-free based mechanisms begin to be introduced into 
Siamese network trackers and gradually become popular. 
Based on SiamFC [16], SiamFC++ [21] introduces an 
anchor-free mechanism to eliminate a good deal of prior 
knowledge required by tracking model to greatly improve 
the performance. SiamBAN [7] proposes an adaptive frame 
structure, while SiamCAR [2] uses a quality evaluation 
branch to make its classification more accurate. On the other 
hand, SiamAttn [22] takes another perspective and adds the 
recent popular attention mechanism to the object tracking 
task to achieve a large performance improvement. Inspired by 
this, we propose a novel attention mechanism, and construct 
the correlation between different dimensions of object feature 
maps from the perspective of dimension, so as to achieve the 
purpose of conducting spatial attention and channel attention 
simultaneously.

2.2 Attention Mechanism
In human vision, people always selectively concentrate 

more on a part  of  the information they see,  while 
correspondingly ignoring some other unimportant or 
uninteresting information. Later, researchers introduced this 
information processing mechanism into computer vision, and 
it became the attention mechanism as we all know.

The purpose of attention is to compute correlation, 
and recently, attention mechanisms have been successfully 
applied in various visual tasks. SENet [11] implements a 
kind of channel attention, where a weight vector is computed 
over the channel dimensions on the input feature to make 
the network concentrates more on those channels that are 
more relevant to the object information, thus improving the 
performance. However, it ignores the correlation of features 
in the spatial dimensions. Therefore, CBAM [12] combines 
channel attention in SENet with spatial attention. The spatial 
attention focuses more on the importance between different 
locations in the feature map, giving more weight to the region 
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where the target is located. Meanwhile, channel attention 
pays more attention to the part of the channel that is more 
relevant to the region of the target in the feature map, and 
assigns higher weight to that part of the channel. However, 
CBAM computes two kinds of attention in sequence, i.e., the 
channel attention is performed first and then computes the 
spatial attention. There is no information interaction between 
the two kinds of attention, which may lose some information 
in the feature map. Therefore, we propose a residual triplet 
attention module suitable for the object tracking task, and 
design three branches to compute the correlation from 
the C and W dimension, the C and H dimension, as well 
as the two spatial dimensions, the W and H dimension, 
respectively. This module not only realizes the combination 
of the channel attention and the spatial attention, but also 
enables the information interaction between these two kinds 
of attention. Then, we add the module into the Siamese 
network framework, which achieves a good performance 
enhancement.

3  Methods

In this section, we introduce the proposed tracker based 
on our residual triplet attention in detail. The architecture 
includes three parts, which are feature extraction network, 
feature enhancement network, and specific heads for 
classification and regression, as shown in Figure 1.

Figure 1. Illustration of our tracker framework 

(Where j
iC , {3,4,5}i∈ , { , }j z x∈  represent the feature maps 

extracted by the backbone. SAM denotes the proposed spatial 
attention module, RTAM denotes the proposed residual triplet 
attention module, CLS denotes the classification map, and REG 
denotes the regression map.)

3.1 Overview
The feature extraction network utilizes ResNet-50 [23] 

network with shared parameters and the same structure. 
Since the shallow features of the backbone networks have 
better spatial information and the deep features have better 
semantic information. To make the most of the extracted 
features at different layers, after the template frame and 
search area input into the feature extraction network, the 
features of third, fourth as well as fifth layer of ResNet-50 are 
output into subsequent network as extracted template features 

and search region features, denoted as j
iC , {3,4,5}i∈ , 

{ , }j z x∈ . They are then fed into the SAM to improve the 
extracted feature representation, and make up for the limited 
quality of the features. Then, we input the enhanced features 
into the following residual triplet attention module. The 
module will construct the information interaction between 
the any two of the three dimensions in the input tensor. It can 
increase the weight of the regions that need attention while 
decreasing the weight of the background interference regions 
and output a refined tensor. Then, the resulting features will 
later be fed separately into three specific head networks for 
deep cross-correlation operations to fully fuse features. Each 
head network is divided into a classification branch and a 
regression branch, they output a classification map and a 
regression map respectively. For each branch, after the last 
head, the outputs of the three heads will be multiplied with 
weights corresponding and added. The weights are learnable 
and are optimized together with the network. Therefore, we 
can get the final results of classification branch and regression 
branch.

3.2 Spatial Attention Module
Considering the limitations of features extracted by 

traditional deep convolutional networks and the excellent 
global modeling capabilities of attention mechanism, 
especially inspired by SiamAttn [22], we introduce a Spatial 
Attention Module (SAM). Its structure is shown in Figure 2.

Figure 2. The detailed structure of our proposed Spatial Attention 
Module (SAM)

SAM uses three branches to process the input tensor. 
For the first and second branches, the H W CInput × ×∈  

is firstly flattened into HW CQ ×∈  and ×T C HWK ∈  via 
Reshape operation respectively, which is followed by 
matrix multiplication operation. For the third branch, 
Input  is first transformed into another vector space by a 
1×1 convolution, then reshaped into HW CV ×∈ , and then 
matrix multiplied with the result of matrix multiplication 
of the first two branches, we can get HW CM ×∈ , which is 
fed into a Softmax layer next. Finally, the result is reshaped 
into the size of H W C× ×  and then added to the original 
Input  to obtain H W COutput × ×∈  of SAM. Therefore, the 
computational process of SAM can be expressed as equation 
(1).

( ) ( ) .TSAM Input Softmax Q K V Input= × +            (1)
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3.3 Residual Triplet Attention Module
Channel attention and spatial attention have gradually 

become popular in computer vision, such as CBAM [12] 
combines channel attention and spatial attention, but its 
disadvantage is that CBAM cannot perform channel and 
spatial attention operations simultaneously. Inspired by 
triplet attention in semantic segmentation, we propose a 
residual triplet attention module (RTAM) into Siamese 
tracking. Through this module, we can construct the 
information interaction between the C and H dimensions, 
the C and W dimensions, the H and W dimensions of the 
input by calculating their correlations. In addition, RTAM 
cleverly implements channel attention and spatial attention 
simultaneously. Benefited by RTAM, mutual guidance 
between different dimensions of the features can be 
implemented.

The RTAM consists of three branches, the processing 
flow of its first two branches is similar, as shown in Figure 3. 
RTAM takes in an input tensor and outputs a refined tensor of 
the same shape.

Figure 3. Architecture of RTAM 

(It computes the correlation between the H and C dimensions, 
the W and C dimensions, as well as the H and W dimensions, 
respectively.)

3.3.1 Permute Operation and Z-pooling Operation
Before describing the RTAM in detail, we first define 

two operations. The first is the Permute operation P, which 
is used to keep a dimension of the input tensor 1 2 3d d df × ×∈  
unchanged and exchange the other two dimensions. For 
example, P( 1, , ,f d ⋅ ⋅ ) denotes that the first dimension of 

the input tensor f  is unchanged, the second and third 
dimensions are exchanged. 

The second operation is the Z-pooling, which is to 
perform both maximum pooling and average pooling on 
the third dimension d3 of the input tensor 1 2 3d d df × ×∈  and 
concatenate the two pooling features to reduce the size of 
the third dimension to two, which achieves the purpose 
of retaining the abundant representation of the actual 
tensor while reducing its depth to reduce computation. 
Mathematically, our Z-pooling operation can be expressed by 
equation (2).

3 3
- ( ) [ ( ), ( )].d dZ pooling f MaxPool f AvgPool f=        (2)

3.3.2 The Specific Structure of RTAM
In the first branch of RTAM, we compute the correlation 

between the first and the third dimensions, we first perform 

a P( , , ,x H ⋅ ⋅ ) operation on the input H W Cx × ×∈  to get the 

tensor 1
H C Wx × ×∈ , then perform a Z-pooling operation to 

aggregate its W dimension, and pass the result 2
1

H Cx′ × ×∈  
through a standard convolutional layer followed by a batch 
normalization layer, we can obtain 1

1
H Cx ×″ ×∈ , then we put 

it through a Sigmoid layer and multiply it as weight with the 
tensor 1x , and finally do a same 1P( , , , )x H″ ⋅ ⋅  operation to 
return back to the same size as input x , and we can obtain 
the first branch result *

1
H W Cx × ×∈ .

For the second branch, which is used to compute the 
correlation between the second and third dimensions, 
this time we perform a P( , , , )x W⋅ ⋅  operation on the input 

H W Cx × ×∈ , exchanging the H and C dimensions to obtain 

the tensor 2
C W Hx × ×∈ , we then do a Z-pooling aggregation 

on the H dimension to obtain 2
2

C Wx′ × ×∈ , which is fed 
into a standard convolutional layer followed by a batch 
normalization layer, then we can get 1

2
C Wx ×″ ×∈ . Next, 

it is activated by a Sigmoid layer and multiplied with the 
tensor 2x . Finally, we also do a 2P( , , , )x W″ ⋅ ⋅  operation to 
return back to the size as same as input x  to get the result 

*
2

H W Cx × ×∈  of the second branch.
Considering that the two spatial dimensions of a three-

dimensional tensor are equivalent, in other words, for the 
input H W Cx × ×∈ , its H dimension is equivalent to its W 
dimension, so that there is no difference in computing the 
correlation between the H dimension and the W dimension 
and the correlation between the W dimension and the H 
dimension. Therefore, we do not have to exchange the first 
and the second dimensions in the third branch of RTAM, and 
we can directly compute the correlation between the first two 
dimensions.

For the third branch, the input H W Cx × ×∈  is directly 
subjected to a Z-pooling operation, here we aggregate the C 
dimension to obtain the tensor 2

3
H Wx ×′ ×∈ , and similarly 

pass it through a standard convolutional layer and we can get 
1

3
H Wx ×″ ×∈ , and then put it into a Sigmoid layer to get the 

attention weight of the third branch and multiplying it with 
x  itself to get the result of the third branch *

3 .H W Cx × ×∈  

Finally, the results of the three branches *
1x , *

2x , *
3x  are 

averaged together to get the result H W Cy × ×∈ . The whole 
process can be described as follows:

1 1 1 2 2 2 3 3
1 ( ( ( )) ( ( )) ( ( ))),
3

y x x x x x xσ ψ σ ψ σ ψ′ ′ ′= + +        (3)

Z-Pooling( ),i ix x′ =                               (4)

1 P( , , , ),x x H= ⋅ ⋅                                  (5)
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2 P( , , , ),x x W= ⋅ ⋅                                 (6)

3    ,x x=                                      (7)

where σ  denotes the sigmoid activation operation, 1ψ , 2ψ

, 3ψ  denotes the standard convolutional layers defined by 
kernel size k of the three branches of RTAM, respectively. 
The equation (3) can be described simply as follows:

* * *
1 2 3

1 ( ),
3

y x x x= + +                              (8)

* *( ( )), {1,2,3}.i i i ix x x iσ ψ= ∈                      (9)

It is worth noting that we also design a residual structure 
in order to speed up the convergence of the model and 
prevent the gradient from vanishing, making this module 
more favorable for visual tracking. We add the result y 
obtained through the three branches to the input x to obtain 
the final result  y* of RTAM.

* .y y x= +                                     (10)

3.4 Classification and Regression Head
The head network includes two branches: classification 

and regression. The features from both the template and the 
search area will be fed into the two branches. Firstly, We 
copy ( )xϕ  and ( )zϕ  as [ ( )]clsxϕ , [ ( )]regxϕ  and [ ( )]clszϕ , 

[ ( )]regzϕ  respectively. They are input into the corresponding 
branches for the cross-correlation operation [10], then we 
will get a classification map and a regression map. Each point 
in the correlation layer of the classification branch will output 
2 channels for classifying the target and background, while 
for the regression branch, each point in the correlation layer 
will output 4 channels and will be used for the prediction of 
the tracking box.

2

4

[ ( )] [ ( )] ,

[ ( )] [ ( )] ,

cls
w h cls cls
reg
w h reg reg

p x z

p x z

ϕ ϕ

ϕ ϕ
× ×

× ×

=

=




                     (11)

where   denotes the cross-correlation operation with 
[ ( )]clszϕ ,  [ ( )]regzϕ  as  the  kernel ,  P cls

w×h×2 denotes  the 
classification map, and  Preg

w×h×4  denotes the regression map.

3.5 Loss Function
In our tracker, the overall loss function adopted is similar 

to [7], as shown in equation (12).

1 2 ,cls regL L Lλ λ= +                              (12)

where 1λ = 2λ =1, clsL  is the Cross Entropy Loss, defined as 
equation (13):

* *
, , , ,( , ) ( ( )),cls x y x y x y x yL p g p log g= −                   (13)

where ,x yP  denotes the probability of belonging to the target 

area as predicted by the tracker, and *
,x yg  denotes the truth 

label. regL  is IoU (Inter-section over Union) loss function. 
We define the IoU loss function as the same as GIoU [24], 
which can be expressed as:

*

*1 1 ,reg
B BL IoU
B B
∩

= − = −
∪

                      (14)

where IoU  denotes the intersection and concurrency ratio of 
the tracker’s predicted tracking frame B to the ground truth 

*B , and IoU satisfies the condition 0 < IoU  ≤ 1.

4  Experimental Results and Analysis

In this section, we first introduce some experimental 
settings about our residual triplet attention-based tracker. 
Then, we compare our tracker with some popular trackers on 
five challenging tracking benchmarks to demonstrate its great 
performance. Finally, we conduct ablation experiments on 
our two proposed modules to prove their effectiveness. 

4.1 Experimental Settings
Our tracking architecture is built using PyTorch deep 

learning framework, the programming language is Python 
3.7. We utilize ResNet-50 [23] as our backbone. During 
training, parameters and weights preprocessed on ImageNet 
are used to initialize our backbone, and the parameters of 
first two layers are unchanged. For the entire architecture, we 
utilize stochastic gradient descent on a training set including 
five datasets, COCO [25], VID [26], DET [26], Youtube-
BoundingBoxes [27], and GOT-10k [28]. We set the batch 
size to 28, the optimized momentum size to 0.9, and the 
weight attenuation to 0.0001. There are 20 rounds of training, 
of which the first five rounds are warmed up during training 
using a learning rate that grew linearly from 0.001 to 0.005 in 
turn, and the next 15 rounds have an exponential decay in the 
learning rate from 0.005 to 0.00005. We freeze our backbone 
during the first ten rounds of training and fine-tune it in the 
last ten rounds at one-tenth the current learning rate. For each 
round, the network needs to train 1000,000 video frames. As 
shown in Table 1.

Our experiments are conducted on a virtual machine 
allocated by Baidu GPU Server cluster, which contains 4 
Nvidia RTX 2080Ti and 500G hard disk space, and the 
size of the template image and search image for the input 
are 127×127 and 255×255, respectively. During training 
phase, we set the weights of both the classification loss and 
the regression loss to 1.0. During the testing phase, since 
the settings of the hyperparameters can have a large impact 
on the Siamese network, we used the hyperparameters that 
make the network perform best when testing on different 
benchmarks, respectively.



580  Journal of Internet Technology Vol. 25 No. 4, July 2024

4.2 Compare with Other Trackers
We have extensively evaluated our tracker on five famous 

tracking benchmarks, and compared with other mainstream 
trackers on these benchmarks. Our tracker attained overall 
optimum results. Moreover, we also compare our tracker 
with some popular trackers on several different tracking 
challenges, proving our tracker’s excellent performance in 
the face of various tracking challenges.
4.2.1 Quantitative Comparison on Five Benchmarks

VOT2016 [29] and VOT2018 [30]. Both VOT2016 and 
VOT2018 are associated with the annual VOT Challenge 
and are common benchmarks for evaluating tracking 
performance. VOT2016 contains 60 video sequences, 
involving multiple tracking challenges like occlusion, 
illumination changes, motion changes, scale changes, and 
complex scenes, with a minimum frame number of 48 and 
a maximum frame number of 1507. VOT2018 also consists 
of 60 video sequences which contain 24 object categories, 
which are more finely labeled, with a minimum frame rate of 
41 frames and a maximum frame rate of 1500 frames. Both 
VOT2016 and VOT2018 evaluate the trackers in terms of 

expected average overlap (EAO), accuracy, and robustness. 
We compare our tracker with some popular trackers on 
these two benchmarks. As shown in Table 2 and Table 3, our 
tracker can achieve first place on EAO, with 0.536 and 0.435, 
respectively. It should be noticed that the robustness of our 
tracker also can achieved best, 0.112 and 0.169, respectively, 
which shows that our tracker can face a wide range of 
challenges well. At the same time, in terms of accuracy our 
tracker is slightly behind, it can also reach an advanced level.

UAV123 [35]. UAV123 is a visual object tracking 
benchmark that includes aerial video collected by 123 low-
altitude drone platforms, totaling approximately 110,000 
frames. Many objects are characterized by fast motion, large 
scale change, lighting change, and occlusion, etc. At the 
same time, because the UAV is also in the motion state of 
the camera, making the benchmark more challenging. The 
benchmark mainly evaluates the tracker by two indicators: 
success rate and accuracy. We compared the proposed tracker 
with 7 popular trackers. As shown in Figure 4, our tracker 
achieves optimal results in both metrics with success rate of 
0.626 and accuracy of 0.836.

Table 1. The parameters and values in our experiments
Backbone Batch_Size Training_Epoch Video_Per_Epoch Template_Size Search_Size
ResNet-50 28 20 1000000 127×127 255×255

Table 2. The comparison of some other trackers and our tracker on VOT2016
(The top three best results are bolded, underlined and italicized, respectively. ↑ denotes that the larger the number, the better; and ↓ denotes 
that the smaller the number, the better.)

MCCT-H
[31]

ECO-HC
[15]

SiamRPN 
[18]

ECO
[15]

MCCT
[31]

DaSiamRPN
[9]

SiamMask
[20]

SiamRPN++
[10]

SiamR-CNN
[32]

Ours

E↑ 0.229 0.322 0.337 0.374 0.393 0.401 0.425 0.437 0.460 0.536
A↑ 0.570 0.542 0.578 0.555 0.579 0.609 0.634 0.644 0.645 0.634
R↓ 0.331 0.303 0.312 0.200 0.186 0.224 0.214 0.219 0.172 0.112

Table 3. The comparison of some other trackers and our tracker on VOT2018
DaSiamRPN

[9]
ATOM

[33]
SiamR-CNN

[32]
SiamMask

[20]
SiamRPN++

[10]
SiamCAR

[2]
SiamFC++

[21]
SiamKPN

[34]
Ours

E↑ 0.383 0.400 0.405 0.406 0.415 0.423 0.426 0.428 0.435
A↑ 0.586 0.590 0.612 0.598 0.601 0.578 0.583 0.596 0.589
R↓ 0.276 0.203 0.220 0.248 0.234 0.197 0.173 0.187 0.169

Figure 4. Precision and Success plots on UAV123
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OTB100 [36]. OTB100 is also known as OTB2015, 
which is a famous generalized object tracking evaluation 
benchmark consisting of 100 video sequences that contain 22 
object classes. The benchmark also evaluates trackers using 
two metrics, success rate as well as accuracy. We compared 
our tracker on the OTB100 with some popular trackers, 
Figure 5 shows the result. We can see that our tracker 
achieves second and third place in both success rate and 
accuracy metrics with 0.688 and 0.903, respectively, which is 
at an advanced level.

GOT-10k [28]. It is a large-scale object tracking 
evaluation benchmark with 10,000 video sequences. This 

dataset mainly evaluates trackers by average overlap rate 
(AO), success rate (SR), frame per second (FPS). It should be 
noticed that GOT-10k provides a unitive official training and 
evaluation platform for researchers. We follow the official 
protocol of GOT-10k to train the proposed tracker under the 
requirements of the protocol, and then submit our tracking 
results to the official platform for evaluation, and then we 
compare with several popular trackers, as shown in Table 4. 
Among them, our tracker attains the AO of 0.552, which is 
suboptimal, and the success rate is only second to SiamCAR 
[2], but the FPS of SiamCAR is significantly lower than 
that of our tracker. On the whole, our tracker is also very 
competitive on GOT-10k dataset.

Figure 5. Precision and Success plots on OTB100

Table 4. The comparison of some other trackers and our tracker on GOT-10k
SiamDW

[3]
DaSiamRPN

[9]
SiamRPN

[18]
SiamRPN++

[10]
SiamMask

[20]
SiamCAR

[2]
Ours

AO↑ 0.416 0.444 0.483 0.517 0.453 0.569 0.552
SR0.5↑ 0.475 0.536 0.581 0.616 0.550 0.670 0.662
SR0.75↑ 0.144 0.220 0.270 0.325 0.248 0.415 0.371
FPS↑ 66.67 134.40 97.55 3.18 15.37 17.21 53.64

4.2.2 Qualitative Comparison of Tracking Results
In this subsection, we select 8 challenging videos on 

the OTB100 dataset to visualize the tracking results of our 
proposed tracker as well as three other popular trackers, 
including DaSiamRPN [9], SiamBAN [7] and SiamRPN++ 
[10], As shown in Figure 6. Obviously, in these challenging 
videos, our tracker shows much better performance.

Figure 6. Comparison of tracking effectiveness of different videos 
on OTB100

4.2.3 Comparison on Different Challenges
In this subsection, we test our tracker on OTB100 

dataset in the face of different tracking challenges. A total 
of 11 different challenge performances are tested on this 
benchmark, including low resolution, out-of-field of view, 
blurring, background clutter, illumination change, fast 
motion, deformation, occlusion, in-plane rotation, out-of-
plane rotation, and scale change. Figure 7 and Figure 8 show 
the precisions and successes about our proposed tracker 
compared to other popular trackers on these 11 tracking 
challenges, respectively. We can see from the comparison 
that our proposed tracker ranks at the top of the list in terms 
of success rates and accuracies on all the tracking challenges, 
and achieves the best success rates and accuracies on several 
challenges. This shows that our tracker is robust enough and 
can cope well with a variety of different tracking challenges.
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Figure 7. Comparison of precision plots for 11 challenges on OTB100

Figure 8. Comparison of success plots for 11 challenges on OTB100
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Furthermore, we also compare our tracker with 8 popular 
trackers on VOT2018 dataset in the face of various tracking 
challenges, as shown in Figure 9. We can see that our tracker 
achieves great performance when facing different challenges, 
especially when facing the challenge of occlusion.

Figure 9. Comparison for different challenges on VOT2018

4.3 Ablation Study
In order to verify the validity of two proposed modules, 

we conducted ablation experiments on VOT2018 dataset of 
our proposed tracker, as shown in Table 5. To make this a 
fair comparison, all the trackers are trained on five datasets, 
including COCO [25], VID [26], DET [26], Youtube-
BoudingBoxes [27] and GOT-10k [28]. Baseline denotes 
that there is no Spatial Attention Module or Residual Triplet 
Attention Module, which only includes the Siamese tracker 
of feature extraction network and the special head network 
behind it. SAM is our proposed Spatial Attention Module, 
and RTAM denotes our proposed Residual Triplet Attention 
Module. Baseline achieved an EAO of 0.366 without the 
addition of additional modules. With the addition of SAM 
and RTAM alone, it achieved a 1.0% and 1.7% improvement 
on the EAO, respectively, and improved the robustness of the 
model, which is sufficient to demonstrate the effectiveness 
of two proposed modules in improving the overall model 
performance. When we add both SAM and RTAM to the 
model, it achieves a 6.9% EAO improvement over Baseline, 
indicating that the SAM and RTAM modules together 
can deliver even greater performance gains. The only 
shortcoming is that the proposed modules do not produce 
effective improvement on the metric of accuracy, which may 
be related to the labeling of the rotated box in VOT2018, and 
it will be one of the directions we will work on in the next 
step.

Table 5. The ablation study on VOT2018

Method E↑ A↑ R↓ ∆ EAO

Baseline 0.366 0.590 0.262
Baseline+SAM 0.376 0.591 0.229 +1.0%

Baseline+RTAM 0.383 0.580 0.225 +1.7%
Baseline+SAM+RTAM (Ours) 0.435 0.589 0.169 +6.9%

5  Conclusions

In this work, an improved Siamese tracker based on 
our residual triplet attention are proposed. By introducing 
SAM module, the visual features extracted by the backbone 
are enhanced, and the quality of the features is effectively 
improved. By proposing a residual triplet attention module 
suitable for the tracking task, it not only further improves 
the quality of visual features, but also solves the problem 
that spatial and channel attention are independent of each 
other, resulting in no information interaction between spatial 
dimensions and channel dimension from the perspective of 
dimension. Through experiments, we verify the effectiveness 
of our proposed modules. By comparing our proposed tracker 
with other popular trackers on five benchmarks, it is proved 
that our tracker has leading performance and good robustness 
to face different challenging tracking scenarios. 

Of course, the tracker we proposed still has some 
shortcomings. The two improved modules we proposed 
belong to the category of self-attention. For the information 
interaction between the template and the search region, 
we still adopt the deep cross-correlation operation as same 
as common trackers, which has certain limitations. This 
may also be one of the reasons why our tracker does not 
significantly improve the accuracy of existing trackers. In the 
next step, we will make continuous improvements, and one 
of the directions is to consider introducing a cross-attention 
mechanism, which allows full information interaction 
between the template and the search region features, so as to 
design a tracker with better performance, higher accuracy, as 
well as more robustness.
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