
Using Particle Filters to Solve the Problem of Symmetric Multiple Solutions in Robot Inverse Kinematics 551

*Corresponding Author: Yi-Yuan Chiang; E-mail: yychiang@mail.vnu.edu.tw
DOI: https://doi.org/10.70003/160792642024072504006

Using Particle Filters to Solve the Problem of Symmetric Multiple
Solutions in Robot Inverse Kinematics

Chien-Lin Chiang1, Chang-Chen Hsieh2, Yi-Yuan Chiang2*, I-Long Lin1

1 Department of Computer Science and Engineering, Tatung University, Taiwan
2 Department of Computer Science and Information Engineering, Vanung University, Taiwan

{f2267505, superlongtw}@gmail.com, yychiang@mail.vnu.edu.tw, cyberpaul@ttu.edu.tw

Abstract

Encountering multiple solutions is the most severe
problem in inverse kinematics of robot arms. Multiple
solutions usually appear in symmetrical forms; it means
that the joint angles vary greatly between two symmetrical
postures. During the operation of the robot arm, the path
through any joint space should be smooth. Otherwise,
there will inevitably be situations where the joint angle
jumps significantly between two adjacent timesteps. In this
paper, we propose a novel method to solve robotics inverse
kinematics for manipulators. This method utilizes particle
filters to track the possible postures of planar robot arms
given the positions of the end effectors. In this way, the poses
of the robot arms are modeled as particles within these filters.
The particle filter algorithm is an iterative process, which
tracks the angles of joints by averaging the particles and
regenerates populations so that particles can converge to the
arm poses. In addition, particles can remember the previous
values after regeneration, so that the inverse poses do not
follow a non-differentiable path in the joint spaces. To verify
the effectiveness of the proposed method, we implemented a
simulator and tested the performance of the particle filters in
a nonlinear end terminal path.

Keywords: Manipulators, Inverse kinematics, Multiple
solutions, Symmetry

1 Introduction

In the era of Industry 4.0, robotic arms have become
essential equipment in many industries. Their applications are
also very extensive, such as automobile production, electronic
assembly, material handling, machining, medical, and many
other fields [1-4]. In inverse kinematics for robotic arms, it is
common to encounter the issue of multiple solutions, which
often results in interference from multiple symmetric poses.
When faced with multiple solutions, the robotic arm must
choose one set of solutions to determine its posture. While
symmetric solutions are often reasonable choices for robotic
arm postures, an inappropriate selection during motion can
cause rapid changes between postures, resulting in severe
vibrations in the mechanism. This study aims to explore the

posture selection of robotic arms to avoid interference from
symmetric multiple solutions. We have studied some practical
solutions, where geometric methods can be used to calculate
the kinematic and mechanical characteristics of robotic
arms [5-8]. When solving the inverse kinematics problem
of robotic arms, modeling and simulation of robotic arms
in joint space can be used to describe joint restrictions and
motion range, avoid collision, calculate the optimal motion
path, and analyze and control the posture and motion of
robotic arms. Algebraic methods can also be used to control
the motion and posture of the arm [9-13]. Using the kinematic
model and inverse kinematic algorithm, algebraic methods
can be used to calculate the joint angles of the robotic arm
to achieve the required motion path of the robotic arm and
solve the position and posture of the robotic arm in space. To
prevent interference from symmetric multiple solutions, we
use non-parametric Bayesian filters (also known as particle
filters), which are based on the Monte Carlo method instead
of traditional algebraic or geometric methods of inverse
kinematics. The particle filters are designed with a large
number of random sampling points and importance weights,
making the sampling points converge to the optimal solution
during iterative computations. In this paper, we introduce a
novel approach for solving inverse kinematics problems for
robotic manipulators. Our method employs particle filters to
trace the feasible postures of planar robotic arms based on
the given end effector positions. The particle filters model the
poses of the robot arms as particles and employ an iterative
algorithm that averages the particles’ joint angles and
regenerates populations to converge to the desired arm poses.
Furthermore, particles remember their previous values after
regeneration, ensuring the inverse poses have a differentiable
path in the joint spaces. We validate the effectiveness of our
approach by implementing a simulator and evaluating the
performance of the particle filters in a nonlinear end terminal
path.

The rest of this paper is organized as follows: Section 2
reviews typical methods of inverse kinematics, including the
geometrical method, algebraic method, and neural network
approach. Section 3 describes the main contribution of this
paper, the particle filter approach to inverse kinematics.
Experimental results are presented in Section 4 followed by
Conclusions in Section 5.

552 Journal of Internet Technology Vol. 25 No. 4, July 2024

2 Inverse Kinematics

In the study of inverse kinematics, the end point of
a robot is given. Then, the angle of each joint should be
determined. The following subsections show the typical
methods.

2.1 Geometric Method
The use of the geometric method can provide visualized

solutions [5-7]. Zonggao Mu et al. [14] showed a segmented
geometric method for solving the configuration planning
problems. It can be applied to different types of manipulators,
such as parallel-jointed, orthogonal-jointed, or universal-
jointed structures. Meanwhile, Samer Yahya et al. [15]
presented a method for determining the configuration of the
end effector on a smooth path composed of points that are
close enough.

The geometric method can not only be used to solve the
inverse kinematics problem of 2D planar robots but also
3D robots. For 3D cases, the 3D geometric shape can be
separated into 2D plane geometric shapes. The geometric
method as shown in Figure 1. The endpoint of Link 2 is
(x, y). Use the cosine law to find θ2. The angle can be drawn
as two solutions: the green triangle and the orange triangle.
For example, using the geometric method, the space can be
divided into planar geometry. Since l1 and l2 are the lengths of
Link1 and Link2, respectively, we can use the cosine law to
find the angle c2. Therefore, we have the following equation:

. (1)

. (2)

Then, θ2 along with θ1 and θ3 could be solved by inverse
trigonometric functions.

Figure 1. Symmetric multiple solutions in inverse kinematics of an
RRR type robot arm

While the geometric method can solve the inverse
kinematics problem of the mechanical arm and provide

various useful methods, we also see some limitations, such
as being used for complex mechanical structures and high-
dimensional kinematic problems, which require a large
amount of computation time and resources. In environments
that demand high precision, if sufficient mathematical models
are not provided to describe the kinematic and mechanical
properties of the mechanical arm, the above limitations may
lead to inaccurate solutions during the solving process.

2.2 Algebraic Method
The algebraic method is to directly combine the items in

the pose matrix T0, T1, …, Tn, and to define the intermediate
variables (which is a combination of joint parameters).
For the sake of constructing a one-dimensional high-order
equation. All joint angles can be found by solving this
equation. We use the same example as shown in Figure 1, the
pose matrix of the end point is.

 (3)

. (4)

By (3) and (4), all angles could be solved by simple algebraic
computations.

We refer to some research findings [9-12], which show
that algebraic method can be used in combination with
geometric method to control the motion and posture of
the robot arm. By using the kinematic model and inverse
kinematic algorithm, algebraic method can calculate the joint
angles of the robot arm to achieve the desired motion path.
It is used to solve the position and posture of the robot arm
in space. For example, in the study by Serdar Kiiqiik et al.
[16], we can learn that the algebraic method usually involves
building the kinematic model of the robot arm, which
requires knowledge of the function relationship between
the joint angles and gear ratios. The target position and
posture are then input into the kinematic model to calculate
the equation for inverse kinematics, which can be solved
to control the motion of the robot arm by determining the
joint angles. The algebraic method directly combines the
pose matrices T0, T1, Tn and defines intermediate variables
(which are combinations of joint parameters) to construct
a one-dimensional higher-order equation. All joint angles
can be found by solving this equation. We use the same
example as shown in Figure 1, with the end pose matrix as
follows: This method can be used to solve various aspects
of inverse kinematics problems for the robot arm, including
kinematic model, inverse kinematic equations, analytical
and numerical solutions, volume constraints, and collision
avoidance detection, etc. We can use these methods to
design and control high-precision and high-efficiency robot
arms. However, since the problem may not have a unique
solution or a solution at all, specific algorithms or strategies
are required to solve it. Numerical solutions may have
convergence problems and may require a lot of time and
resources to calculate the best strategy for each posture. As

Using Particle Filters to Solve the Problem of Symmetric Multiple Solutions in Robot Inverse Kinematics 553

the kinematic model becomes more complex, solving the
inverse kinematic equations becomes more difficult.

2.3 Neural Networks
Due to the complexity of inverse kinematics and the

need to consider multiple sources of uncertainty, neural
networks (NNs) have been used to solve inverse kinematics
problems. NNs can handle high-dimensional input data and
nonlinear relationships, and in many applications, NNs can
find the optimal solution faster than other methods. Ahmed
R. J. Almusawi et al. proposed a new solution for the inverse
kinematics of robotic arms based on an artificial neural
network (ANN) architecture [17]. The motion of the robot
arm is controlled by the ANN based on its kinematics. The
novelty of this ANN-based inverse kinematics method is that
the input pattern to the neural network includes feedback
on the current joint angle configuration of the robot arm
and the desired position and direction. Adding the current
configuration of joint angles to the ANN input greatly
improves the accuracy of the estimated output of joint angles.
For example, Nurettin Gökhan ADAR proposed a method
that combines a proportional-integral (PI) control algorithm
with a neural network model [18]. This method involves
developing a multilayer feedforward neural network model to
solve the inverse kinematics problem of a 5-degree-offreedom
robotic arm, and uses PI control in combination with the
ANN model as the algorithm. This approach has stronger
tracking ability, smaller control errors, and better absolute fit
with reference values, allowing for real-time position control
of the robot arm. Many studies have found that [19-24], when
compared with existing analytical techniques, using NNs has
advantages in minimizing position error and estimating joint
angle accuracy. For inverse kinematics problems, by training
a neural network to learn the inverse kinematics relationship,
inputting feedback on the current joint angle configuration
and the desired position and direction, the inverse kinematics
problem can be quickly solved, allowing for adaptive control,
planning, and improved performance of the robot arm.

2.4 Reinforcement Learning
Reinforcement learning is a method that improves

strategies through interaction with the environment. Starting
from an initial random strategy, it continually experiments,
adjusting the strategy based on the rewards or penalties
received, with the aim of finding a policy that maximizes the
reward. This is the approach proposed by Peters and Schaal
for using reinforcement learning in robot arm operation
control [25]. They define the strategy as the actions of the
robot arm when given a target position or posture, and the
reward is defined as the proximity to which the robot arm
achieves the target. This allows the robot arm to learn how to
effectively reach a specific position or posture.

However, the process of reinforcement learning can
require a substantial amount of time and resources. This
process requires a large amount of trial and error to find an
effective strategy and does not always guarantee that the
optimal strategy will be learned, thus convergence might
not be superior. This problem is also mentioned in the
research by Weber and Schmidt [26]. In addition, designing
an appropriate reward function is of utmost importance for

reinforcement learning. If the reward function is improperly
designed, the strategy learned by the robot arm might
significantly deviate from the expected strategy.

2.5 Summary
Controlling a robotic arm requires solving the forward

and inverse kinematics problems to coordinate positions
in Cartesian space. In real-time control applications,
inverse kinematics can be relatively difficult due to high
computational requirements and long running times.
Traditional solving methods, such as using geometric and
algebraic techniques, are insufficient and slow in the process
of inverse kinematics problem-solving.

3 Particle Filter and Application in
Inverse Kinematics

When using algebraic and geometric methods, algebraic
methods require solving complex equation combinations,
while geometric methods may be limited by analytical
solutions. Using ANN to solve inverse kinematics problems
is an effective method, but due to the high complexity of
robot kinematics, the ANN model requires a large amount
of computing resources and sufficient training data, which
undoubtedly increases time and cost. In recent years, using
particle swarm optimization to solve the problem of robot
arm path planning has attracted much attention, but due to the
different algorithmic designs, the particle swarm optimization
has its own advantages and disadvantages in solving different
problems. Therefore, this study proposes a more balanced
and less costly solution. The particle filter we designed not
only calculates the distance of the robot arm end target, but
also calculates the change in arm posture. In continuous
movement problems, the particle filter selects the particle
end coordinates with the smallest current posture change and
calculates the next end coordinates, thus solving the problem
of oscillation caused by rapid posture changes. Geometric
and algebraic methods can usually calculate all possible
solutions at the current moment, but they cannot determine
the optimal solution. However, when using the particle filter
to solve the current posture problem, the best solution can be
selected by choosing the smallest posture change between
ADJACENT solution points.

3.1 Particle Filter
Particle filters [27-30] are commonly used in robot

localization and tracking applications. In this study, we use
particles in a particle filter to represent the pose of the robotic
arm, with the position of each particle indicating the end
effector position of the arm. Each particle can be considered
as a state of the robotic arm, with the joint angles embedded
in the particle parameters. A set of particles is used to track
the position of the robotic arm’s end effector, and the poses of
the particles are averaged to find the estimated pose. Through
this approach, the inverse kinematics of the robotic arm can
be effectively computed. In a particle filter, a particle is a
tuple of n variables p = (v1, v2, …, vn), where vi is a state of
the robot, such as the joint angles and end effector position
of a robotic arm, or the position coordinates, velocity,

554 Journal of Internet Technology Vol. 25 No. 4, July 2024

acceleration, and orientation of an autonomous vehicle. In
short, a particle set is a collection of hundreds, thousands,
or even tens of thousands of particles, which is what we
call a particle filter summary. A particle filter is a type of
Bayesian filter, specifically, a nonparametric Bayesian filter.
The Bayesian filter is an algorithm that estimates the state of
a robot based on the Bayes theorem. In this study, we refer
to the robot as a multi-joint robotic arm. The end effector
position of the robotic arm can be indirectly computed from
the joint angles and link lengths.

3.2 Design of Particle Filter in Inverse Kinematics
The main purpose of this section is to use the particle

filter to deal with the inverse kinematics of the robot arm.
The so-called inverse kinematics is to find an attitude under
the condition that the end coordinates of the robot arm are
known, so that the end coordinates of the robot arm under the
attitude can meet the condition. The attitude of the robot arm
is determined by all the joint angles together. Therefore, in
more detail, the so-called inverse kinematics is to derive the
angle of each joint from the known terminal coordinates, so
that the terminal coordinates of the robot arm can meet the
required conditions under the attitude.

Figure 2. Four joints robot arm

In Figure 2, the angle of each joint is calculated from
the extension of the previous link to the angle of the link
of the joint. The first joint is calculated from the horizontal
line to the angle of the first link. As we described in the
previous section, particle filters are generally used in robot
positioning and tracking problems. We can consider the
process of finding the appropriate attitude of the robot arm
as a localization problem. On the other hand, we can also
consider this problem as a tracking problem. The details of
the particle filter algorithm are explained as below.
3.2.1 Step 1: Random Particle Generation

The first step is to randomly generate particles. The
following symbols are used to represent particles.

 (5)

The lower number represents the number of joint angles,
while the upper number represents the number of particles.

3.2.2 Step 2: Calculate the Importance Weight
After generating random particles, the next step is to

calculate the importance weight for each particle. The weight
of a particle represents how good it is. The Figure 3 shows
the components of the error function.

Figure 3. Composition of the ERRORS function

The function consists of two parts: the first part calculates
the distance between the target and the particle, and the
second part calculates the distance between the mechanical
arm’s each link (Link 1 to Link 4) and the target. To calculate
the distance error between the target and the particle, we
need the joint components (x(i), y(i)) of the particle. Then we
calculate the distance between the calculated end coordinates
and the actual end coordinates (x0, y0). Each particle
represents a certain posture, and an end coordinate can be
obtained using forward kinematics. Then,

. (6)

The usual Euclidean distance, d (i), represents the distance
from the ith particle to (x0, y0). The distance,

. (7)

Once we have the distance, we can convert it to a weight:

. (8)

3.2.3 Step 3: Resampling
The weight of each particle calculated in the previous

step will be used as the basis for resampling. We convert the
weights into probabilities, and then use the probabilities to
resample the particles. Therefore, the higher the weight of a
particle, the more often it will be selected after resampling.
Define

. (9)

Then,

. (10)

The probability here will be the probability that the
particle will be selected after resampling.

Using Particle Filters to Solve the Problem of Symmetric Multiple Solutions in Robot Inverse Kinematics 555

3.2.4 Step 4: Solve the New Pose and Return to Step 2
Finally, all the resampled particles are applied to the

forward kinematics to obtain a group of end coordinates. This
group of end coordinates is averaged to get an estimation
of the current end coordinates. After the calculation is
completed, return to Step 2 for the next estimation.

4 Experimental Results

A 4-link robotic arm in 2D coordinates is implemented
via Python language that is shown in Section 4.1. It also
facilitates the adjustment and verification of parameters in
the simulation program, such as the sigma value and the
calculation parameters of errors. In Sections 4.2, we let the
robotic arm draw some equations to confirm its execution
effect. The experiment starts from simple graphics and
gradually progresses to more complex ones.

4.1 Simulator Design
In order to test the effectiveness of the method proposed

in this paper, we designed a software robotic arm simulator.
This design is based on an object-oriented design approach.
Any planar robotic arm structure can be generated by the
RobotArm class. The RobotArm category is composed of
the Link class. We use the bottom-up approach to design the
Link class first, and its attributes are:

• length: the length of the link
• joint_x: The joint of this bar (link) Coordinate
• joint_y: the joint of this bar (link) Coordinate
• angle: The angle of the joint
• end_x: Terminal coordinates
• end_y: terminal coordinates
This class has a member function moveto() to move the

bar. The class RobotArm can be defined using the above
Link class. If we take a four-rod planar robot arm, the Python
language defines it as follows.

In the RobotArm class function, some parameters
need to be passed when initialized. Among them, x and y
represent the starting position on the coordinate system,
theta1 to theta4 represent the angles of link1 to link4, and
L1 to L4 represent the lengths of link1 to link4. The self.
link1 represents the end position of link1, which starts at the
coordinate (x, y) and moves in the direction of theta1 with the
length of L1. Similarly, self.link2 represents the end position
of link2, which starts at the end position of link1 and moves

in the direction of theta1+theta2 with the length of L2. The
same goes for self.link4, which represents the end position of
link4, the end effector of the robot arm.

In the member function moveto, some parameters need
to be passed when used. theta1 to theta4 represent the angles
of link1 to link4. self.link1.moveto moves link1 to its end
position starting from its initial position, and adds the angle
theta1 to get the end position. Similarly, self.link2.moveto
moves link2 to its end position starting from the end position
of link1, and adds the angle theta1+theta2 to get the end
position. The same goes for self.link4, which moves the end
effector of the robot arm to its end position. The parameter
penState behind it indicates whether to display it, which
means moving the robot arm to the end position. Next, we
explain how to use this simulated arm. As shown in Figure
4, we create the arm and set its starting position. Assuming
the initial coordinates are (-200, -200), the figure has 4 links
(Link1 to Link4), each with a length of 100 and an angle of 0
degrees, so its end coordinates are (200, -200).

Figure 4. Setting the initial position of the robotic arm simulator at
(-200, -200), with the end coordinates being (200, -200)

4.2 Experimental Design
Using the four links of the robotic arm (Link1 to Link4),

we conducted experiments to make the arm draw equations.
First, the program randomly generates particles, which
represent the positions in different postures that the robotic
arm can reach, as shown in Figure 5. Next, the program
calculates the error for each particle, which is the difference
between the position and posture of the robotic arm at the
starting point and the particle. The error is then transformed
into weight. The robotic arm then moves to the particle with
the highest weight. The movement of the robotic arm consists
of two stages, as described below for each equation design:
4.2.1 Experiment 1

Draw a straight-line equation y=-x-50 (as shown in
Figure 6). In the first stage of the robotic arm movement, it
moves from the starting position to the position for drawing,
as shown in Figure 7. In the second stage, it starts drawing
from the drawing position, as shown in Figure 8.
4.2.2 Experiment 2

Draw a quadratic curve y= x2-2 (as shown in Figure 9).
In the first stage of the robotic arm movement, it moves from
the starting position to the position for drawing, as shown
in Figure 10. In the second stage, it starts drawing from the
drawing position, as shown in Figure 11.
4.2.3 Experiment 3

Draw a cubic curve equation y = x3-2x2 (as shown in
Figure 12). In the first stage of the robotic arm movement, it
moves from the starting position to the position for drawing,
as shown in Figure 13. In the second stage, it starts drawing
from the drawing position, as shown in Figure 14.

556 Journal of Internet Technology Vol. 25 No. 4, July 2024

Figure 5. Randomly generate particles, which represent different
poses that the robot arm can reach

Figure 6. Let the robot arm draw the graph with the equation
y = -x-50

Figure 7. After calculating the weight of each particle, move the
robot arm to the particle with the highest weight

Figure 8. Move the robot arm to the particle with the highest weight
(Draw a straight line)

Figure 9. Have the robotic arm draw the graph of the equation
y = x2-2

Figure 10. After calculating the weight of each particle, move the
robot arm to the particle with the highest weight

Figure 11. Move the robotic arm to the particle with the highest
weight (Draw a quadratic curve y = x2-2)

Figure 12. Have the robotic arm draw the graph of the equation
y = x3-2x2

Using Particle Filters to Solve the Problem of Symmetric Multiple Solutions in Robot Inverse Kinematics 557

Figure 13. After calculating the weight of each particle, move the
robot arm to the particle with the highest weight

Figure 14. The robot arm moves to the position with a high weight
particle (Draw a cubic curve equation y = x3 -2x2)

4.2.4 Summary
The results of this experiment show that there is a

convergence issue at the beginning when using the particle
filter, but it gradually converges. Once it converges and
moves to any other reasonable position, there will be no
more oscillation. By using the particle filter to calculate
the distance between particles and the target, as well as
the posture of each link of the robot arm, the oscillation
problem caused by multiple solutions can be solved. From
the experimental results, we can see that when the robot arm
adopts a combination of particle filtering and algorithms with
a large number of random sampling points and importance
weights, the operation of the arm is smooth without any
oscillation.

Finally, a comparison was given on some commonly used
methods for inverse kinematics, as shown in Table 1.

Table 1. A comparison on some commonly used methods for IK

Method Time
complexity

Space
complexity

Convergence ClosedForm
derivation

Multiple
solutions

issue
Ge low low no issue difficult can’t
Al low low no issue difficult can’t
NN high high difficult easy can’t
RL high medium difficult medium can’t
PF medium medium easy easy can

Ge (Geometric)
 Fast computational speed, require less memory resources, and do not have
convergence issues. However, the derivation of Closed-Form is difficult.
Al (Algebraic)
 Just like the Ge method, the derivation of Closed-Form is difficult.
NN (Neural Networks)
 The computation is more complex and slower, requiring more memory
resources. convergence is difficult.

RL (Reinforcement Learning)
 Similar to the NN method, convergence is difficult.
PF (Particle Filter)
 Computation is not complex, and the speed is acceptable. It doesn’t
consume much memory resources. There is no need to deduce the Closed-
Form, and there will be no divergence problem.

5 Conclusions

A common problem encountered in the inverse kinematics
of mechanical arms is the presence of multiple solutions.
These multiple solutions often appear symmetrically. To
avoid the interference of symmetric multiple solutions, we
have abandoned the traditional algebraic or geometric inverse
kinematics approach and adopted the Monte Carlo-based non-
parametric Bayesian filter (also known as the particle filter)
to address the inverse kinematics problem of the robotic arm.
The particle filter is designed with a large number of random
sample points and importance weights, allowing the sample
points to converge to the optimal solution through an iterative
process. This paper illustrates how the design of importance
weights can be used to avoid the oscillation problem of
symmetric multiple solutions in adjacent time samples during
robot motion. Future research will inevitably require goals
for robotic arms operating in three dimensions, and we will
be working towards addressing the challenges associated
with three-dimensional robotic arms.

References

[1] M. P. Mills, How Robots Will Transform the 2020s,
Reason, Vol. 53, No. 11, pp. 37-41, April, 2022.

[2] K. C. Lan, G. Litscher, Robot-controlled acupuncture-
an innovative step towards modernization of the ancient
traditional medical treatment method, Medicines, Vol. 6,
No. 3, Article No. 87, September, 2019.

[3] W. Montalvo, J. Escobar-Naranjo, C. A. Garcia, M. V.
Garcia, Low-cost automation for gravity compensation
of robotic arm, Applied Sciences, Vol. 10, No. 11,
Article No. 3823, June, 2020.

[4] K. Tai, A. R. El-Sayed, M. Shahriari, M. Biglarbegian,
S. Mahmud, State of the art robotic grippers and
applications, Robotics, Vol. 5, No. 2, Article No. 11,
June, 2016.

[5] Y. Wei, S. Jian, S. He, Z. Wang, General approach
for inverse kinematics of nR robots, Mechanism and
Machine Theory, Vol. 75, pp. 97-106, May, 2014.

[6] M. Carricato, Direct geometrico-static problem of
underconstrained cable-driven parallel robots with three
cables, Journal of Mechanisms and Robotics, Vol. 5,
No. 3, Article No. 031008, August, 2013.

[7] K. Raza, T. A. Khan, N. Abbas, Kinematic analysis and
geometrical improvement of an industrial robotic arm,
Journal of King Saud University-Engineering Sciences,
Vol. 30, No. 3, pp. 218-223, July, 2018.

[8] A. Goldenberg, B. Benhabib, R. Fenton, A complete
generalized solution to the inverse kinematics of robots,
IEEE Journal on Robotics and Automation, Vol. 1, No.
1, pp. 14-20, March, 1985.

558 Journal of Internet Technology Vol. 25 No. 4, July 2024

[9] S. Kucuk, Z. Bingul, Inverse kinematics solutions for
industrial robot manipulators with offset wrists, Applied
Mathematical Modelling, Vol. 38, No. 7-8, pp. 1983-
1999, April, 2014.

[10] I. M. Chen, Y. Gao, Closed-form inverse kinematics
solver for reconfigurable robots, Proceedings 2001
ICRA. IEEE International Conference on Robotics and
Automation (Cat. No. 01CH37164), Seoul, South Korea,
2001, Vol. 3, pp. 2395-2400.

[11] A. Morell, M. Tarokh, L. Acosta, Inverse kinematics
solutions for serial robots using support vector
regression, 2013 IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, 2013,
pp. 4203-4208.

[12] W. Guo, R. Li, C. Q. Cao, Y. F. Gao, Kinematics
analysis of a novel 5-DOF hybrid manipulator,
International Journal of Automation Technology, Vol. 9,
No. 6, pp. 765-774, September, 2015.

[13] M. Bi, Control of robot arm motion using trapezoid
fuzzy two-degree-of-freedom PID algorithm, Symmetry,
Vol. 12, No. 4, Article No. 665, April, 2020.

[14] Z. Mu, H. Yuan, W. Xu, T. Liu, B. Liang, A segmented
geometry method for kinematics and configuration
planning of spatial hyper-redundant manipulators,
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, Vol. 50, No. 5, pp. 1746-1756, May, 2020.

[15] S. Yahya , M. Moghavvemi , H. F. Mohamed,
Geometrical approach of planar hyper-redundant
manipulators: Inverse kinematics, path planning and
workspace, Simulation Modelling Practice and Theory,
Vol. 19, No. 1, pp. 406-422, January, 2011.

[16] S. KuCuk, Z. Bingul, The inverse kinematics solutions
of industrial robot manipulators, Proceedings of the
IEEE International Conference on Mechatronics, 2004.
ICM’04, Istanbul, Turkey, 2004, pp. 274-279.

[17] A. J. Almusawi, L. C. Dülger, S. Kapucu, A new
art i f ic ial neural network approach in solving
inverse kinematics of robotic arm (denso vp6242),
Computational intelligence and neuroscience, Vol.
2016, No. 1, pp. 1-10, January, 2016.

[18] N. G. Adar, Real Time Control Application of the
Robotic Arm Using Neural Network Based Inverse
Kinematics Solution, Sakarya University Journal of
Science, Vol. 25, No. 3, pp. 849-857, June, 2021.

[19] A. V. Duka, Neural network based inverse kinematics
solution for trajectory tracking of a robotic arm,
Procedia Technology, Vol. 12, pp. 20-27, 2014.

[20] R. Köker, C. Öz, T. Çakar, H. Ekiz, A study of neural
network based inverse kinematics solution for a three-
joint robot, Robotics and autonomous systems, Vol. 49,
No. 3-4, pp. 227-234, December, 2004.

[21] J. Lu, T. Zou, X. Jiang, A Neural Network Based
Approach to Inverse Kinematics Problem for General
Six-Axis Robots, Sensors, Vol. 22, No. 22, Article No.
8909, November, 2022.

[22] S. G. Shuzhi, C. C. Hang, L. C. Woon, Adaptive neural
network control of robot manipulators in task space,
IEEE transactions on industrial electronics, Vol. 44,
No. 6, pp. 746-752, December, 1997.

[23] Y. Peng, Z. Peng, T. Lan, Neural Network Based Inverse

Kinematics Solution for 6-R Robot Implement Using R
Package Neuralnet, 2021 5th International Conference
on Robotics and Automation Sciences (ICRAS), Wuhan,
China, 2021, pp. 65-69.

[24] J. Junior, R. Jesus, L. Molina, E. Carvalho, E. O. Freire,
FRPSO: Inverse kinematics using fully resampled
particle swarm optimization, 2018 Latin American
Robotic Symposium, 2018 Brazilian Symposium on
Robotics (SBR) and 2018 Workshop on Robotics in
Education (WRE), João Pessoa, Brazil, 2018, pp. 402-
407.

[25] J. Peters, S. Schaal, Reinforcement learning by reward-
weighted regression for operational space control,
Proceedings of the 24th international conference on
Machine learning, Corvalis, Oregon USA, 2007, pp.
745-750.

[26] J. Weber, M. Schmidt, An improved approach for
inverse kinematics and motion planning of an industrial
robot manipulator with reinforcement learning, 2021
Fifth IEEE International Conference on Robotic
Computing (IRC), Taichung, Taiwan, 2021, pp. 10-17.

[27] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp,
A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking, IEEE Transactions on
signal processing, Vol. 50, No. 2, pp. 174-188, February,
2002.

[28] M. Jouin, R. Gouriveau, D. Hissel, M. Pera, N.
Zerhouni, Particle filter-based prognostics: review,
discussion and perspectives, Mechanical systems and
signal processing, Vol. 72-73, pp. 2-31, May, 2016.

[29] Z. Jiang, W. Zhou, H. Li, Y. Mo, W. Ni, Q. Huang, A
new kind of accurate calibration method for robotic
kinematic parameters based on the extended Kalman
and particle filter algorithm, IEEE Transactions on
Industrial Electronics, Vol. 65, No. 4, pp. 3337-3345,
April, 2018.

[30] C. L. Chiang, I. L. Lin, C. C. Hsieh, Y. Y. Chiang, M.
H. Yang, Using Particle Filter to Solve Problem of
Symmetric Multiple Solutions in Inverse Kinematics
of Manipulator, 2022 IEEE 4th Eurasia Conference on
IOT, Communication and Engineering (ECICE), Yunlin,
Taiwan, 2022, pp. 599-601.

Biographies

Chien-Lin Chiang is currently a doctoral
student at Tatung University. Since 2022,
he has served as a lecturer at Vanung
University. He is also the secretary of the
Taiwan Association for Digital Forensics
Development (ACFD) and the Vice General
Manager of Baofeng Plastics Company. His
research areas include artificial intelligence,

computer hardware integration, blockchain applications,
and information security. He is dedicated to promoting
automation and transformation in traditional industries, as
well as industrial safety applications in his field.

Using Particle Filters to Solve the Problem of Symmetric Multiple Solutions in Robot Inverse Kinematics 559

Chang-Chen Hsieh received the B.S.
degree from Yuan Ze University, Taiwan,
in 2002, and the M.E. degree from Vanung
University, Taiwan, in 2023, Since 2023,
he has served as a lecturer at Vanung
University, Taiwan. His research interests
are machine learning and robotic system
integration.

Yi-Yuan Chiang is an Assistant Professor
at Vanung University, Taiwan, where he has
been a part of the faculty since 2008. He
received his Ph.D. in 2007 from Yuan Ze
University, Taiwan. His research focuses
on machine learning, sensor fusion, and
robot systems integration. Notably, he has
made significant contributions to the field

and holds numerous patents for his innovative work.

I-Long Lin received his BS degree in
public security and law from National
Central Police University, Taoyuan, Taiwan
in 1983, and the MS degree in computer
science and information engineering from
Tamkang University, Tamsui, Taiwan
in 1989. He received the PhD degree in
computer and information science from

National Taiwan University of Science and Technology in
July 1997. He was a Professor of Yuan Pei University of
Medical Technology from 2011 to 2020, and He is currently
a Professor of Tatung University and director of Research
Center on Cybercrimes, Digital Evidence and Forensic
Computing of the University, and director of Research Center
on Cloud Service and Cyber Forensics of the University.

