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Abstract

Encountering multiple solutions is the most severe 
problem in inverse kinematics of robot arms. Multiple 
solutions usually appear in symmetrical forms; it means 
that the joint angles vary greatly between two symmetrical 
postures. During the operation of the robot arm, the path 
through any joint space should be smooth. Otherwise, 
there will inevitably be situations where the joint angle 
jumps significantly between two adjacent timesteps. In this 
paper, we propose a novel method to solve robotics inverse 
kinematics for manipulators. This method utilizes particle 
filters to track the possible postures of planar robot arms 
given the positions of the end effectors. In this way, the poses 
of the robot arms are modeled as particles within these filters. 
The particle filter algorithm is an iterative process, which 
tracks the angles of joints by averaging the particles and 
regenerates populations so that particles can converge to the 
arm poses. In addition, particles can remember the previous 
values after regeneration, so that the inverse poses do not 
follow a non-differentiable path in the joint spaces. To verify 
the effectiveness of the proposed method, we implemented a 
simulator and tested the performance of the particle filters in 
a nonlinear end terminal path.

Keywords: Manipulators, Inverse kinematics, Multiple 
solutions, Symmetry

1  Introduction

In the era of Industry 4.0, robotic arms have become 
essential equipment in many industries. Their applications are 
also very extensive, such as automobile production, electronic 
assembly, material handling, machining, medical, and many 
other fields [1-4]. In inverse kinematics for robotic arms, it is 
common to encounter the issue of multiple solutions, which 
often results in interference from multiple symmetric poses. 
When faced with multiple solutions, the robotic arm must 
choose one set of solutions to determine its posture. While 
symmetric solutions are often reasonable choices for robotic 
arm postures, an inappropriate selection during motion can 
cause rapid changes between postures, resulting in severe 
vibrations in the mechanism. This study aims to explore the 

posture selection of robotic arms to avoid interference from 
symmetric multiple solutions. We have studied some practical 
solutions, where geometric methods can be used to calculate 
the kinematic and mechanical characteristics of robotic 
arms [5-8]. When solving the inverse kinematics problem 
of robotic arms, modeling and simulation of robotic arms 
in joint space can be used to describe joint restrictions and 
motion range, avoid collision, calculate the optimal motion 
path, and analyze and control the posture and motion of 
robotic arms. Algebraic methods can also be used to control 
the motion and posture of the arm [9-13]. Using the kinematic 
model and inverse kinematic algorithm, algebraic methods 
can be used to calculate the joint angles of the robotic arm 
to achieve the required motion path of the robotic arm and 
solve the position and posture of the robotic arm in space. To 
prevent interference from symmetric multiple solutions, we 
use non-parametric Bayesian filters (also known as particle 
filters), which are based on the Monte Carlo method instead 
of traditional algebraic or geometric methods of inverse 
kinematics. The particle filters are designed with a large 
number of random sampling points and importance weights, 
making the sampling points converge to the optimal solution 
during iterative computations. In this paper, we introduce a 
novel approach for solving inverse kinematics problems for 
robotic manipulators. Our method employs particle filters to 
trace the feasible postures of planar robotic arms based on 
the given end effector positions. The particle filters model the 
poses of the robot arms as particles and employ an iterative 
algorithm that averages the particles’ joint angles and 
regenerates populations to converge to the desired arm poses. 
Furthermore, particles remember their previous values after 
regeneration, ensuring the inverse poses have a differentiable 
path in the joint spaces. We validate the effectiveness of our 
approach by implementing a simulator and evaluating the 
performance of the particle filters in a nonlinear end terminal 
path.

The rest of this paper is organized as follows: Section 2 
reviews typical methods of inverse kinematics, including the 
geometrical method, algebraic method, and neural network 
approach. Section 3 describes the main contribution of this 
paper, the particle filter approach to inverse kinematics. 
Experimental results are presented in Section 4 followed by 
Conclusions in Section 5.
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2  Inverse Kinematics

In the study of inverse kinematics, the end point of 
a robot is given. Then, the angle of each joint should be 
determined. The following subsections show the typical 
methods.

2.1 Geometric Method
The use of the geometric method can provide visualized 

solutions [5-7]. Zonggao Mu et al. [14] showed a segmented 
geometric method for solving the configuration planning 
problems. It can be applied to different types of manipulators, 
such as parallel-jointed, orthogonal-jointed, or universal-
jointed structures. Meanwhile, Samer Yahya et al. [15] 
presented a method for determining the configuration of the 
end effector on a smooth path composed of points that are 
close enough. 

The geometric method can not only be used to solve the 
inverse kinematics problem of 2D planar robots but also 
3D robots. For 3D cases, the 3D geometric shape can be 
separated into 2D plane geometric shapes. The geometric 
method as shown in Figure 1. The endpoint of Link 2 is      
(x, y). Use the cosine law to find θ2. The angle can be drawn 
as two solutions: the green triangle and the orange triangle. 
For example, using the geometric method, the space can be 
divided into planar geometry. Since l1 and l2 are the lengths of 
Link1 and Link2, respectively, we can use the cosine law to 
find the angle c2. Therefore, we have the following equation: 

.                      (1)

.                                (2)

Then, θ2 along with θ1 and θ3 could be solved by inverse 
trigonometric functions.

Figure 1. Symmetric multiple solutions in inverse kinematics of an 
RRR type robot arm

While the geometric method can solve the inverse 
kinematics problem of the mechanical arm and provide 

various useful methods, we also see some limitations, such 
as being used for complex mechanical structures and high-
dimensional kinematic problems, which require a large 
amount of computation time and resources. In environments 
that demand high precision, if sufficient mathematical models 
are not provided to describe the kinematic and mechanical 
properties of the mechanical arm, the above limitations may 
lead to inaccurate solutions during the solving process.

2.2 Algebraic Method 
The algebraic method is to directly combine the items in 

the pose matrix T0, T1, …, Tn, and to define the intermediate 
variables (which is a combination of joint parameters). 
For the sake of constructing a one-dimensional high-order 
equation. All joint angles can be found by solving this 
equation. We use the same example as shown in Figure 1, the 
pose matrix of the end point is.

     (3)

.                                                 (4)

By (3) and (4), all angles could be solved by simple algebraic 
computations.

We refer to some research findings [9-12], which show 
that algebraic method can be used in combination with 
geometric method to control the motion and posture of 
the robot arm. By using the kinematic model and inverse 
kinematic algorithm, algebraic method can calculate the joint 
angles of the robot arm to achieve the desired motion path. 
It is used to solve the position and posture of the robot arm 
in space. For example, in the study by Serdar Kiiqiik et al. 
[16], we can learn that the algebraic method usually involves 
building the kinematic model of the robot arm, which 
requires knowledge of the function relationship between 
the joint angles and gear ratios. The target position and 
posture are then input into the kinematic model to calculate 
the equation for inverse kinematics, which can be solved 
to control the motion of the robot arm by determining the 
joint angles. The algebraic method directly combines the 
pose matrices T0, T1, Tn and defines intermediate variables 
(which are combinations of joint parameters) to construct 
a one-dimensional higher-order equation. All joint angles 
can be found by solving this equation. We use the same 
example as shown in Figure 1, with the end pose matrix as 
follows: This method can be used to solve various aspects 
of inverse kinematics problems for the robot arm, including 
kinematic model, inverse kinematic equations, analytical 
and numerical solutions, volume constraints, and collision 
avoidance detection, etc. We can use these methods to 
design and control high-precision and high-efficiency robot 
arms. However, since the problem may not have a unique 
solution or a solution at all, specific algorithms or strategies 
are required to solve it. Numerical solutions may have 
convergence problems and may require a lot of time and 
resources to calculate the best strategy for each posture. As 
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the kinematic model becomes more complex, solving the 
inverse kinematic equations becomes more difficult.

2.3 Neural Networks 
Due to the complexity of inverse kinematics and the 

need to consider multiple sources of uncertainty, neural 
networks (NNs) have been used to solve inverse kinematics 
problems. NNs can handle high-dimensional input data and 
nonlinear relationships, and in many applications, NNs can 
find the optimal solution faster than other methods. Ahmed 
R. J. Almusawi et al. proposed a new solution for the inverse 
kinematics of robotic arms based on an artificial neural 
network (ANN) architecture [17]. The motion of the robot 
arm is controlled by the ANN based on its kinematics. The 
novelty of this ANN-based inverse kinematics method is that 
the input pattern to the neural network includes feedback 
on the current joint angle configuration of the robot arm 
and the desired position and direction. Adding the current 
configuration of joint angles to the ANN input greatly 
improves the accuracy of the estimated output of joint angles. 
For example, Nurettin Gökhan ADAR proposed a method 
that combines a proportional-integral (PI) control algorithm 
with a neural network model [18].  This method involves 
developing a multilayer feedforward neural network model to 
solve the inverse kinematics problem of a 5-degree-offreedom 
robotic arm, and uses PI control in combination with the 
ANN model as the algorithm. This approach has stronger 
tracking ability, smaller control errors, and better absolute fit 
with reference values, allowing for real-time position control 
of the robot arm. Many studies have found that [19-24], when 
compared with existing analytical techniques, using NNs has 
advantages in minimizing position error and estimating joint 
angle accuracy. For inverse kinematics problems, by training 
a neural network to learn the inverse kinematics relationship, 
inputting feedback on the current joint angle configuration 
and the desired position and direction, the inverse kinematics 
problem can be quickly solved, allowing for adaptive control, 
planning, and improved performance of the robot arm.

2.4 Reinforcement Learning
Reinforcement learning is a method that improves 

strategies through interaction with the environment. Starting 
from an initial random strategy, it continually experiments, 
adjusting the strategy based on the rewards or penalties 
received, with the aim of finding a policy that maximizes the 
reward. This is the approach proposed by Peters and Schaal 
for using reinforcement learning in robot arm operation 
control [25]. They define the strategy as the actions of the 
robot arm when given a target position or posture, and the 
reward is defined as the proximity to which the robot arm 
achieves the target. This allows the robot arm to learn how to 
effectively reach a specific position or posture.

However, the process of reinforcement learning can 
require a substantial amount of time and resources. This 
process requires a large amount of trial and error to find an 
effective strategy and does not always guarantee that the 
optimal strategy will be learned, thus convergence might 
not be superior. This problem is also mentioned in the 
research by Weber and Schmidt [26]. In addition, designing 
an appropriate reward function is of utmost importance for 

reinforcement learning. If the reward function is improperly 
designed, the strategy learned by the robot arm might 
significantly deviate from the expected strategy.

2.5 Summary
Controlling a robotic arm requires solving the forward 

and inverse kinematics problems to coordinate positions 
in Cartesian space. In real-time control applications, 
inverse kinematics can be relatively difficult due to high 
computational requirements and long running times. 
Traditional solving methods, such as using geometric and 
algebraic techniques, are insufficient and slow in the process 
of inverse kinematics problem-solving.

3  Particle Filter and Application in 
Inverse Kinematics

When using algebraic and geometric methods, algebraic 
methods require solving complex equation combinations, 
while geometric methods may be limited by analytical 
solutions. Using ANN to solve inverse kinematics problems 
is an effective method, but due to the high complexity of 
robot kinematics, the ANN model requires a large amount 
of computing resources and sufficient training data, which 
undoubtedly increases time and cost. In recent years, using 
particle swarm optimization to solve the problem of robot 
arm path planning has attracted much attention, but due to the 
different algorithmic designs, the particle swarm optimization 
has its own advantages and disadvantages in solving different 
problems. Therefore, this study proposes a more balanced 
and less costly solution. The particle filter we designed not 
only calculates the distance of the robot arm end target, but 
also calculates the change in arm posture. In continuous 
movement problems, the particle filter selects the particle 
end coordinates with the smallest current posture change and 
calculates the next end coordinates, thus solving the problem 
of oscillation caused by rapid posture changes. Geometric 
and algebraic methods can usually calculate all possible 
solutions at the current moment, but they cannot determine 
the optimal solution. However, when using the particle filter 
to solve the current posture problem, the best solution can be 
selected by choosing the smallest posture change between 
ADJACENT solution points.

3.1 Particle Filter 
Particle filters [27-30] are commonly used in robot 

localization and tracking applications. In this study, we use 
particles in a particle filter to represent the pose of the robotic 
arm, with the position of each particle indicating the end 
effector position of the arm. Each particle can be considered 
as a state of the robotic arm, with the joint angles embedded 
in the particle parameters. A set of particles is used to track 
the position of the robotic arm’s end effector, and the poses of 
the particles are averaged to find the estimated pose. Through 
this approach, the inverse kinematics of the robotic arm can 
be effectively computed. In a particle filter, a particle is a 
tuple of n variables p = (v1, v2, …, vn), where vi is a state of 
the robot, such as the joint angles and end effector position 
of a robotic arm, or the position coordinates, velocity, 
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acceleration, and orientation of an autonomous vehicle. In 
short, a particle set is a collection of hundreds, thousands, 
or even tens of thousands of particles, which is what we 
call a particle filter summary. A particle filter is a type of 
Bayesian filter, specifically, a nonparametric Bayesian filter. 
The Bayesian filter is an algorithm that estimates the state of 
a robot based on the Bayes theorem. In this study, we refer 
to the robot as a multi-joint robotic arm. The end effector 
position of the robotic arm can be indirectly computed from 
the joint angles and link lengths.

3.2 Design of Particle Filter in Inverse Kinematics
The main purpose of this section is to use the particle 

filter to deal with the inverse kinematics of the robot arm. 
The so-called inverse kinematics is to find an attitude under 
the condition that the end coordinates of the robot arm are 
known, so that the end coordinates of the robot arm under the 
attitude can meet the condition. The attitude of the robot arm 
is determined by all the joint angles together. Therefore, in 
more detail, the so-called inverse kinematics is to derive the 
angle of each joint from the known terminal coordinates, so 
that the terminal coordinates of the robot arm can meet the 
required conditions under the attitude.

Figure 2. Four joints robot arm

In Figure 2, the angle of each joint is calculated from 
the extension of the previous link to the angle of the link 
of the joint. The first joint is calculated from the horizontal 
line to the angle of the first link. As we described in the 
previous section, particle filters are generally used in robot 
positioning and tracking problems. We can consider the 
process of finding the appropriate attitude of the robot arm 
as a localization problem. On the other hand, we can also 
consider this problem as a tracking problem. The details of 
the particle filter algorithm are explained as below.
3.2.1 Step 1: Random Particle Generation

The first step is to randomly generate particles. The 
following symbols are used to represent particles.

                              (5)

The lower number represents the number of joint angles, 
while the upper number represents the number of particles.

3.2.2 Step 2: Calculate the Importance Weight
After generating random particles, the next step is to 

calculate the importance weight for each particle. The weight 
of a particle represents how good it is. The Figure 3 shows 
the components of the error function.

Figure 3. Composition of the ERRORS function

The function consists of two parts: the first part calculates 
the distance between the target and the particle, and the 
second part calculates the distance between the mechanical 
arm’s each link (Link 1 to Link 4) and the target. To calculate 
the distance error between the target and the particle, we 
need the joint components (x(i), y(i)) of the particle. Then we 
calculate the distance between the calculated end coordinates 
and the actual end coordinates (x0, y0). Each particle 
represents a certain posture, and an end coordinate can be 
obtained using forward kinematics. Then,

.                   (6)

The usual Euclidean distance, d (i), represents the distance 
from the ith particle to (x0, y0). The distance,

.                   (7)

Once we have the distance, we can convert it to a weight:

.                                  (8)

3.2.3 Step 3: Resampling
The weight of each particle calculated in the previous 

step will be used as the basis for resampling. We convert the 
weights into probabilities, and then use the probabilities to 
resample the particles. Therefore, the higher the weight of a 
particle, the more often it will be selected after resampling. 
Define

.                                 (9)

Then,

.                              (10)

The probability here will be the probability that the 
particle will be selected after resampling.



Using Particle Filters to Solve the Problem of Symmetric Multiple Solutions in Robot Inverse Kinematics   555

3.2.4 Step 4: Solve the New Pose and Return to Step 2
Finally, all the resampled particles are applied to the 

forward kinematics to obtain a group of end coordinates. This 
group of end coordinates is averaged to get an estimation 
of the current end coordinates. After the calculation is 
completed, return to Step 2 for the next estimation.

4  Experimental Results

A 4-link robotic arm in 2D coordinates is implemented 
via Python language that is shown in Section 4.1. It also 
facilitates the adjustment and verification of parameters in 
the simulation program, such as the sigma value and the 
calculation parameters of errors. In Sections 4.2, we let the 
robotic arm draw some equations to confirm its execution 
effect. The experiment starts from simple graphics and 
gradually progresses to more complex ones.

4.1 Simulator Design
In order to test the effectiveness of the method proposed 

in this paper, we designed a software robotic arm simulator. 
This design is based on an object-oriented design approach. 
Any planar robotic arm structure can be generated by the 
RobotArm class. The RobotArm category is composed of 
the Link class. We use the bottom-up approach to design the 
Link class first, and its attributes are:

• length: the length of the link
• joint_x: The joint of this bar (link) Coordinate
• joint_y: the joint of this bar (link) Coordinate
• angle: The angle of the joint
• end_x: Terminal coordinates
• end_y: terminal coordinates
This class has a member function moveto() to move the 

bar. The class RobotArm can be defined using the above 
Link class. If we take a four-rod planar robot arm, the Python 
language defines it as follows.

In the RobotArm class function, some parameters 
need to be passed when initialized. Among them, x and y 
represent the starting position on the coordinate system, 
theta1 to theta4 represent the angles of link1 to link4, and 
L1 to L4 represent the lengths of link1 to link4. The self.
link1 represents the end position of link1, which starts at the 
coordinate (x, y) and moves in the direction of theta1 with the 
length of L1. Similarly, self.link2 represents the end position 
of link2, which starts at the end position of link1 and moves 

in the direction of theta1+theta2 with the length of L2. The 
same goes for self.link4, which represents the end position of 
link4, the end effector of the robot arm.

In the member function moveto, some parameters need 
to be passed when used. theta1 to theta4 represent the angles 
of link1 to link4. self.link1.moveto moves link1 to its end 
position starting from its initial position, and adds the angle 
theta1 to get the end position. Similarly, self.link2.moveto 
moves link2 to its end position starting from the end position 
of link1, and adds the angle theta1+theta2 to get the end 
position. The same goes for self.link4, which moves the end 
effector of the robot arm to its end position. The parameter 
penState behind it indicates whether to display it, which 
means moving the robot arm to the end position. Next, we 
explain how to use this simulated arm. As shown in Figure 
4, we create the arm and set its starting position. Assuming 
the initial coordinates are (-200, -200), the figure has 4 links 
(Link1 to Link4), each with a length of 100 and an angle of 0 
degrees, so its end coordinates are (200, -200).

Figure 4. Setting the initial position of the robotic arm simulator at 
(-200, -200), with the end coordinates being (200, -200)

4.2 Experimental Design
Using the four links of the robotic arm (Link1 to Link4), 

we conducted experiments to make the arm draw equations. 
First, the program randomly generates particles, which 
represent the positions in different postures that the robotic 
arm can reach, as shown in Figure 5. Next, the program 
calculates the error for each particle, which is the difference 
between the position and posture of the robotic arm at the 
starting point and the particle. The error is then transformed 
into weight. The robotic arm then moves to the particle with 
the highest weight. The movement of the robotic arm consists 
of two stages, as described below for each equation design:
4.2.1 Experiment 1

Draw a straight-line equation y=-x-50 (as shown in 
Figure 6). In the first stage of the robotic arm movement, it 
moves from the starting position to the position for drawing, 
as shown in Figure 7. In the second stage, it starts drawing 
from the drawing position, as shown in Figure 8.
4.2.2 Experiment 2

Draw a quadratic curve y= x2-2 (as shown in Figure 9). 
In the first stage of the robotic arm movement, it moves from 
the starting position to the position for drawing, as shown 
in Figure 10. In the second stage, it starts drawing from the 
drawing position, as shown in Figure 11.
4.2.3 Experiment 3

Draw a cubic curve equation y = x3-2x2 (as shown in 
Figure 12). In the first stage of the robotic arm movement, it 
moves from the starting position to the position for drawing, 
as shown in Figure 13. In the second stage, it starts drawing 
from the drawing position, as shown in Figure 14.
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Figure 5. Randomly generate particles, which represent different 
poses that the robot arm can reach

Figure 6. Let the robot arm draw the graph with the equation           
y = -x-50

Figure 7. After calculating the weight of each particle, move the 
robot arm to the particle with the highest weight

Figure 8. Move the robot arm to the particle with the highest weight 
(Draw a straight line)

Figure 9. Have the robotic arm draw the graph of the equation        
y = x2-2

Figure 10. After calculating the weight of each particle, move the 
robot arm to the particle with the highest weight

Figure 11. Move the robotic arm to the particle with the highest 
weight (Draw a quadratic curve y = x2-2)

Figure 12. Have the robotic arm draw the graph of the equation      
y = x3-2x2
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Figure 13. After calculating the weight of each particle, move the 
robot arm to the particle with the highest weight

Figure 14. The robot arm moves to the position with a high weight 
particle (Draw a cubic curve equation y = x3 -2x2)

4.2.4 Summary
The results of this experiment show that there is a 

convergence issue at the beginning when using the particle 
filter, but it gradually converges. Once it converges and 
moves to any other reasonable position, there will be no 
more oscillation. By using the particle filter to calculate 
the distance between particles and the target, as well as 
the posture of each link of the robot arm, the oscillation 
problem caused by multiple solutions can be solved. From 
the experimental results, we can see that when the robot arm 
adopts a combination of particle filtering and algorithms with 
a large number of random sampling points and importance 
weights, the operation of the arm is smooth without any 
oscillation.

Finally, a comparison was given on some commonly used 
methods for inverse kinematics, as shown in Table 1.

Table 1. A comparison on some commonly used methods for IK

Method Time 
complexity

Space 
complexity

Convergence ClosedForm 
derivation

Multiple 
solutions 

issue
Ge low low no issue difficult can’t
Al low low no issue difficult can’t
NN high high difficult easy can’t
RL high medium difficult medium can’t
PF medium medium easy easy can

Ge (Geometric)
     Fast computational speed, require less memory resources, and do not have 
convergence issues. However, the derivation of Closed-Form is difficult.
Al (Algebraic)
     Just like the Ge method, the derivation of Closed-Form is difficult.
NN (Neural Networks)
    The computation is more complex and slower, requiring more memory 
resources. convergence is difficult.

RL (Reinforcement Learning)
     Similar to the NN method, convergence is difficult.
PF (Particle Filter)
    Computation is not complex, and the speed is acceptable. It doesn’t 
consume much memory resources. There is no need to deduce the Closed-
Form, and there will be no divergence problem.

5  Conclusions

A common problem encountered in the inverse kinematics 
of mechanical arms is the presence of multiple solutions. 
These multiple solutions often appear symmetrically. To 
avoid the interference of symmetric multiple solutions, we 
have abandoned the traditional algebraic or geometric inverse 
kinematics approach and adopted the Monte Carlo-based non-
parametric Bayesian filter (also known as the particle filter) 
to address the inverse kinematics problem of the robotic arm. 
The particle filter is designed with a large number of random 
sample points and importance weights, allowing the sample 
points to converge to the optimal solution through an iterative 
process. This paper illustrates how the design of importance 
weights can be used to avoid the oscillation problem of 
symmetric multiple solutions in adjacent time samples during 
robot motion. Future research will inevitably require goals 
for robotic arms operating in three dimensions, and we will 
be working towards addressing the challenges associated 
with three-dimensional robotic arms.
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