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Abstract

Logistics demand forecasting plays a crucial role in 
regulating logistics management activities, developing 
production plans, seeking maximum economic returns, 
and building smart logistics. Current studies have focused 
on forecasting logistics demand using various statistical 
algorithms and machine learning models. However, it is 
difficult for a single learner to forecast logistics demand time 
series with complex nonlinear fluctuation patterns. Therefore, 
a novel ensemble learning approach (Deep Logistics Demand 
Forecasting, DeepLDF) is introduced in this work to forecast 
logistics demand. DeepLDF consists of two different base 
learners, which are the Multi-scale Time-delay Convolution 
Model (MSTDCM) and the Seasonal Autoregressive 
Integrated Moving Average (SARIMA) model. MSTDCM 
and SARIMA are combined for ensemble learning through a 
novel weight assignment approach. Based on six Singapore 
logistics demand data sets, DeepLDF is compared with 
nine different baselines. The experimental results show 
that DeepLDF performs well in fitting local extreme values 
and forecasting volatility. Overall, DeepLDF can forecast 
logistics demand well.

Keywords: Logistics demand, Nonlinear fluctuation patterns, 
Ensemble learning, Base learner

1  Introduction

In the context of economic globalization and regional 
economic integration, the logistics industry is gradually 
developing and growing [1]. After years of updating and 
iteration, the modern logistics patterns [2] have surpassed 
the traditional logistics patterns in terms of logistics support 
facilities, logistics informatization degree, and logistics 
specialized service level [3]. Especially, modern logistics 
has been able to realize automation, intelligence, and green 
logistics management [4]. Although some countries and 
regions are currently experiencing an imbalance between 
economic growth and logistics industry development, this 
imbalance is being gradually eliminated through emerging 

approaches such as automated allocation of market resources, 
supply chain optimization, and cross-border logistics 
cooperation [5]. Data released by the State Post Bureau of 
China show that the volume of express delivery business in 
China has rapidly increased from the initial 1.5 billion pieces 
to 20.67 billion pieces, with a Compound Annual Growth 
Rate (CAGR) of 43.9% on average, and has shown a trend of 
continuous rapid growth [6].

Logistics demand forecasting [7] is a way to forecast 
future logistics change trends based on historical logistics 
demand data, which usually involves the knowledge of 
statistics, operations research, and computer science. It 
is an important part of modern logistics. For production 
enterprises, accurate forecasting of logistics demand can 
assist enterprise managers in making reasonable and effective 
production plans, regulating their production capacity, and 
achieving a balance between production and demand [8]. 
For the transportation industry, accurate logistics demand 
forecasting can help freight drivers reduce the empty rate, 
save transportation time, and reduce transportation costs 
[9]. For consumers, logistics demand forecasting can 
increase the speed of cargo transportation and improve 
shopping satisfaction [10]. For the market, accurate logistics 
demand forecasting can meet market demand, cope with the 
uncertainty of the ordering cycle, mitigate the impact on the 
production sector due to delays and shortages of supplies, 
and stabilize prices, and manufacturing costs [11].

In this work, a novel ensemble learning approach 
(DeepLDF) is introduced to forecast logistics demand data 
with complex nonlinear fluctuation patterns. The main 
contributions of this work are as follows.

(1) It is difficult for a single learner to accurately forecast 
logistics demand data with complex nonlinear patterns. 
Therefore, a novel ensemble learning approach (DeepLDF) 
is introduced to model complex logistics demand time-series 
data.

(2) A novel approach for fusing the forecasting results 
of base learners is proposed. The final forecasting result is 
determined by the forecasting accuracy of each base learner. 
The final contribution weights of the base learners are 
proportional to the forecasting accuracy.
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2  Materials and Methods

2.1 Multi-scale Convolution
Multi-scale convolution [12] can process input features 

at multiple scales in parallel. For a feature map ,L W HX × ×∈  
we can perform  i  convolutional transformations using the 
convolutional kernels of size  kerneli , which in turn yields  
i  partial feature maps ([X0, X1, …, Xi−1]). The feature maps 
for different parts represent deep features at different scales. 
The computation process of the feature map  Xi  of the  ith 
part can be represented by Equation (1), and the multi-scale 
feature  F  can be represented by Equation (2). Where  kerneli   
denotes the size of the  ith  convolution kernel. Conv  denotes 
the convolution process. Concat  denotes the feature map 
stitching process.

( )( ).i i iX Conv kernel kernel X= ×                     (1)

0 1 1([ , ,..., ]).iF Concat X X X −=                       (2)

2.2 Designing the Forecasting Model
The logistics demand forecasting problem [13] is 

forecasting the logistics data yt at the next moment (t) based 
on the historical logistics demand data ([yt−n , ..., yt−2 , yt−1], 
where  n  denotes the sample number of historical data), 
as shown in Equation (3). Where  Framework  denotes the 
modeling method, the input is [yt−n , ..., yt−2 , yt−1], and the 
output is  yt .

2 1([ ,..., , ]).t t n t ty Framework y y y− − −=                (3)

Overview of the DeepLDF

Figure 1. Framework of DeepLDF

As shown in Figure 1, two powerful base learners 
(MSTDCM and SARIMA) are introduced for ensemble 
learning to accurately forecast logistics demand. MSTDCM 
can mine the temporal dependence features of logistics 
demand time-series data at different scales and integrate them 
to fit the volatility and overall trend of the data. SARIMA can 
model the seasonality of logistics demand data, which in turn 
assists MSTDCM in improving the ability to fit local extreme 
values within each band. Besides, a novel approach for fusing 
the forecasting results of base learners is proposed to enhance 

the actual accuracy of ensemble learning, as shown in 
Equation (4). The final forecasting result is determined by the 
forecasting error of each base learner. The final contribution 
weights of the base learners are inversely proportional to the 
forecasting errors.

2

21

1

( ( )) ( ) .
( ( ))i

i

exp RMSE iFinal Result Result i
exp RMSE i=

=

= ∑
∑      (4)

Final Result denotes the final forecasting result.  Result(i) 
denotes the forecasting result of the ith base learner.  
exp(RMSE(i))/ ∑2

i=1 exp(RMSE(i))  denotes the fusion weight  
wi  of the  ith base learner.  exp  denotes the natural constant.  
exp(num)  is equals to  enum .  RMSE(i)  denotes the RMSE of 
the  ith  base learner.

MSTDCM

Figure 2. Structure of MSTDCM

MSTDCM is used to mine the multi-scale temporal 
correlation features of logistics demand data, as shown in 
Figure 2. Firstly, the training data are extracted by the Multi-
scale Time-delay Convolution Layer (MSTDCL) with multi-
scale deep features. Then, these deep features are mapped to 
the nonlinear sample space by the fully-connected layer and 
the ReLU activation function. Finally, the forecasting error of 
MSTDCM is accurately computed by the Mean Square Error 
(MSE) loss function. 

Figure 3. Working principle of the Multi-scale Time-delay 
Convolution Layer (MSTDCL)

Figure 4. Example of multi-scale convolution operation
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The specific computation process of MSTDCL is shown 
in Figure 3. On the one hand, when extracting temporal 
correlation features, we cannot know which feature mapping 
method is the best. Therefore, in the convolution process, we 
consider using Convolution Kernels (KSs) of different scales. 
During the convolution process, the width of the convolution 
kernel is kept constant and the length is varied from 1, 
incrementing by 1 each time until it equals the maximum 
length of the feature map. This allows considering multiple 
feature maps and saves computational costs. After obtaining 
the multi-scale feature maps, we process them by Average 
Pooling and obtain the result (Output) by the concatenation 
(Concat) operation, as shown in Figure 4. On the other hand, 
we map the features using a time sliding window [14]. We 
specify the Time Delay (TD) values within the time sliding 
window to vary with the convex function. This captures long-
term historical information and extends the perceptual field of 
the convolution process [15]. We set the value of TD to vary 
according to 2 and 4. In this way, the forecasting approach 
does not lose local information because the oversized 
perceptual field [16-17].

3  Experiments

3.1 Data Sets and Baselines

Figure 5. Singapore (the study area)

We conduct experiments using six real-world Singapore 
logistics demand data sets (the study area is shown in Figure 
5). We consider all historical data from 2005 to 2016 as 
training data and regard 2017 data as forecasting data. We 

set nine different baselines to validate the performance of 
DeepLDF because they include statistic methods, traditional 
machine learning models and deep neural networks.

ARIMA [18]: ARIMA is usually used to forecast future 
values in a stable time series.

SARIMA: Compared with ARIMA, SARIMA adds the 
technique of mining the seasonal features of the time series. 
Therefore, SARIMA is suitable for processing time-series 
data with significant seasonal features.

Ridge Regression (RR) [19]: Ridge regression is 
a complement to the least-squares regression. Ridge 
regression achieves higher computational accuracy by losing 
unbiasedness in exchange for high numerical stability.

Support Vector Regression (SVR) [20]: SVR is a Support 
Vector Machine (SVM) scheme for handling regression 
problems. SVR is a regression model that is mainly used to 
fit numerical values and is generally applied to scenarios with 
sparse features and a small number of features.

Recurrent Neural Network (RNN) [21]: RNN is very 
effective in dealing with time-series data. It can mine 
temporal relevance information as well as contextual 
semantic information in time-series data.

Long Short-term Memory (LSTM) [22]: The principle of 
LSTM is to retain long-term memory and forget unimportant 
information. LSTM is suitable for processing events with 
very long intervals and delays in time series.

Gated Recurrent United (GRU) [23]: Compared with 
LSTM, GRU is easier to be trained.

Temporal Convolutional Network (TCN) [24]: The 
architecture of TCN is not only more accurate than typical 
RNN, GRU, and LSTM but also simpler and clearer. 
Therefore, TCN is considered a suitable solution for applying 
Deep Neural Networks (DNNs) to time series.

MSTDCM: MSTDCM is a deep temporal feature 
extraction model based on multi-scale convolution and time-
delay convolution operations.

3.2 Experimental Settings and Evaluation Metrics
In the experiment, we use the following computer 

configuration. Central Processing Unit (CPU): 11th Gen 
Intel (R) Core (TM) i9-11900 @ 2.50GHz. Graph Processing 
Unit (GPU): NVIDIA GeForce RTX 3060 (Memory: 12GB). 
Random Access Memory (RAM): 16GB x 4 (64GB in total).

During the training process, the data in 2017 is used 
for evaluation and the rest of the data is used for training. 
The learning rate is 0.001, the gradient optimizer is 
Adam optimizer, and the loss function is MSE Loss. 
(Experimentally, the performance of DeepLDF is optimal 
when the learning rate is 0.001. The experimental results are 
all results when the learning rate is equal to 0.001.)

1

1 .n fore
i ii

MAE y y
n =

= −∑                           (5)

( )2

1

1 .n fore
i ii

RMSE y y
n =

= −∑                      (6)

In this experiment, we choose MAE and RMSE as the 
evaluation metrics for the experimental results. The methods 
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for calculating MAE and RMSE are shown in Equation (5) 
and Equation (6), respectively.  yi  represents the true value.    
yi

fore  represents the predicted value.  n  represents the total 
number of samples.

3.3 Logistics Demand Data Processing

Figure 6. Logistics demand changes in six different logistics 
demand data sets

As shown in Figure 6, there are 6, 10, 5, 0, 9, and 5 
outliers in the data sets Industry, Commerce, Transportation, 
Household, Others, and Overall, respectively. The horizontal 
axis represents the year and the vertical axis represents the 
logistics demand volume. The upper and lower ends of the 
solid part of each box indicate the upper quartile and lower 
quartile, respectively. The uppermost and lowermost parts 
of the box extensions indicate the maximum and minimum 
values, respectively. The horizontal line inside the box 
indicates the median. The points outside the box are outliers. 
These outliers may be caused by various errors, such as 
statistical errors or extreme data. These outliers may have a 
significant adverse impact on the data analysis and modeling 
process. Therefore, during data processing, all outliers are 
mapped between the lower and upper bounds of the box by 
a novel data deflation method that is scientifically valid in 

the study by Xu et al. [15, 25]. For these outliers, we cannot 
discard them because the weight of their influence on the 
logistics demand is important. Besides, this ensures that 
100% (greater than or equal to 95%) of the important training 
information is not lost. The expression of the data deflation 
method is shown in Equation (7).  V  denotes the outlier.  min  
and  max  denote the minimum and maximum values in the 
logistics demand data, respectively.  limmax  and  limmin  denote 
the upper and lower limits, respectively. V new denotes the new 
value after mapping.

max min max min
min max

max min

max min
min min

max min

(lim lim )( lim lim min) lim . . (lim ,max]
max lim lim min

(lim lim )( min) lim . . (min, lim ].                       
max lim lim min

newV
V s t V

V s t V

=

− − + − + ∈ − + −
 − − + ∈
 − + −

 (7)

4  Results

4.1 Quantitative Analysis
The evaluation results of all forecasting models are shown 

in Table 1. As a traditional time-series data forecasting model, 
ARIMA can only forecast stable time-series data. When 
dealing with logistics demand data with complex nonlinear 
fluctuation patterns, ARIMA reaches its modeling bottleneck. 
SARIMA can handle logistics demand data with cyclical and 
seasonal features. Compared with ARIMA, SARIMA reduces 
MAE and RMSE by approximately 37.38% and 42.11%, 
respectively, on average. RR is a machine learning approach 
for modeling regression problems. However, RR inherently 
can only capture linear relationships and cannot model 
nonlinear features. Therefore, the forecasting results of RR 
are not good. SVR can map nonlinear time-series data to a 
high-dimensional space through high-dimensional mapping 
and make the mapped time-series data with linear features. 
Therefore, the forecasting performance of SVR is improved 
to a certain extent compared with RR. Compared with RR, 
SVR reduces MAE and RMSE by about 10.47% and 12.02% 
on average.

Table 1. Evaluation metrics for baselines and DeepLDF (The Best) on 6 data sets
Overall Industry Commerce Transportation Household Others

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
ARIMA 91.32 94.80 40.02 48.08 38.35 51.46 5.08 7.71 12.54 16.12 1.12 1.66

RR 88.65 89.72 38.86 42.71 34.19 46.84 5.06 7.62 12.88 16.94 1.44 1.82
SVR 80.44 81.03 34.77 36.26 31.18 41.29 4.18 5.99 10.51 14.87 1.06 1.53
RNN 81.32 82.68 35.14 37.06 30.62 40.48 4.63 6.54 11.33 15.09 1.13 1.66
GRU 74.78 76.27 32.51 33.29 26.56 34.90 3.98 5.65 9.66 12.30 1.03 1.49

LSTM 75.19 77.80 31.19 32.88 25.47 33.25 3.93 5.65 9.78 12.45 1.05 1.52
TCN 60.34 61.59 26.83 29.74 22.38 26.66 3.26 5.10 9.10 10.94 0.99 1.47

SARIMA 60.12 60.44 24.38 26.76 20.01 23.40 3.67 5.49 8.88 9.79 0.94 1.39
MSTDCM 42.94 43.12 13.98 15.73 16.14 17.22 2.18 2.84 6.57 6.80 0.73 0.96
The Best 30.62 31.10 10.65 11.88 12.38 13.47 1.50 1.92 3.44 3.76 0.51 0.73
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RNN, GRU, and LSTM are classical forecasting models. 
Compared with RNN and GRU, LSTM can capture a longer 
period of historical information. Therefore, in this work, 
LSTM outperforms RNN and GRU. The residual structure in 
TCN overcomes the problem that traditional recurrent neural 
networks do not support parallel computation and slow 
training speed compared with the gate structure. Therefore, 
in this work, TCN has better generalization ability than RNN, 
GRU, and LSTM. 

MSTDCM is a deep temporal feature mining model 
based on multi-scale convolution and time-delay convolution. 
We cannot know which feature mapping approach is the 
best. Therefore, we use different convolution kernels in 
MSTDCM to model deep temporal dependence features of 
logistics demand data. The period of historical data is large. 
Therefore, we use a time sliding window for feature mapping 
in MSTDCM. The MSTDCM is designed to calculate the 
temporal dependence. Therefore, almost all the historical 
information can be retained. The MSTDCL consists entirely 
of convolutional networks. The actual forecasting error of 
MSTDCM is minimal compared with other baselines.

Compared with baselines, DeepLDF has the best 
performance. On the one hand, SARIMA is better than 
MSTDCM in expressing the seasonal trends of logistics 
demand time-series data. SARIMA can compensate for the 
deficiency of the powerful MSTDCM in mining seasonal 
features. On the other hand, we use a novel approach to fuse 
the forecasting results of SARIMA and MSTDCM. For the 
base learner with high forecasting accuracy, we give it a large 
weight. Compared with the forecasting results of baselines, 
DeepLDF decreases MAE and RMSE by approximately 
59.76% and 62.23% on average, respectively.

4.2 Qualitative Analysis
As we can see in Figure 7 and Figure 8, ARIMA can 

identify the overall trend of the logistics demand data. 
However, ARIMA cannot accurately fit the local extreme 
values within each band. Compared with ARIMA, SARIMA 
has better forecasting results for seasonal variation patterns, 
which is reflected in SARIMA’s ability to accurately fit the 
local extreme values within each band. Figure 9 and Figure 
10 show that the predicted values of RR are almost always 
large. Compared with RR, the forecasting accuracy of SVR is 
significantly improved. This is because of the ability of SVR 
to tap the nonlinear trend of the logistics demand time-series 
data using high-dimensional mapping. However, SVR is only 
able to fit the approximate trends of logistics demand data 
within each band to a certain extent. Therefore, SVR cannot 
forecast accurately. 

From Figure 11, Figure 12, Figure 13, and Figure 14, we 
can find that the forecasting results of RNN are all on the low 
side. The fitting ability of RNN gradually decreases as the 
forecasting time increases. This is because the RNN cannot 
remember long-term historical data. Compared with RNN, 
the accuracy of both GRU and LSTM is improved to some 
extent. Figure 15 and Figure 16 show that both TCN and 
MSTDCM can forecast logistics demand with some degree 

of accuracy. Compared with TCN, MSTDCM has a better 
ability to control the extreme values of the data. Besides, 
compared with MSTDCM, the DeepLDF method is the best, 
as shown in Figure 17 and Figure 18.

Figure 7. Forecasting results of ARIMA and SARIMA from 2006 to 
2017

Figure 8. Forecasting results of ARIMA and SARIMA in 2017

Figure 9. Forecasting results of RR and SVR from 2006 to 2017

Figure 10. Forecasting results of RR and SVR in 2017
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Figure 11. Forecasting results of RNN and GRU from 2006 to 2017

Figure 12. Forecasting results of RNN and GRU in 2017

Figure 13. Forecasting results of RNN and LSTM from 2006 to 
2017

Figure 14. Forecasting results of RNN and LSTM in 2017

Figure 15. Forecasting results of logistics demand data from 2006 
to 2017

Figure 16. Forecasting results of logistics demand data in 2017

Figure 17. Forecasting results of logistics demand data from 2006 
to 2017

Figure 18. Forecasting results of logistics demand data in 2017
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Table 2. Evaluation metrics for 3 types of MSTDCM on 6 data sets

Overall Industry Commerce Transportation Household Others
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MSTDCM(3) 48.84 50.07 16.33 18.73 20.19 20.80 2.84 3.36 7.29 7.51 0.93 1.42
MSTDCM(5) 45.12 45.98 14.62 16.32 18.06 18.97 2.32 3.00 6.82 6.98 0.85 1.00
MSTDCM(4) 42.94 43.12 13.98 15.73 16.14 17.22 2.18 2.84 6.57 6.80 0.73 0.96

4.3 Ablation Study
Table 2 shows the actual forecasting results of the 

three different MSTDCMs in this work. Among them, 
MSTDCM(3) denotes the MSTDCM with one input layer, 
one hidden layer, and one output layer (three layers in total). 
In this case, the time delay (TD) values are set to 30 (from the 
input layer to the hidden layer) and 31 (from the hidden layer 
to the output layer). MSTDCM(4) denotes the MSTDCM 
with one input layer, two hidden layers, and one output layer 
(four layers in total). MSTDCM(4) is the MSTDCM we 
finally choose and use. MSTDCM(5) denotes the MSTDCM 
with one input layer, three hidden layers, and one output layer 
(five layers in total). In this case, the time delay (TD) values 
are set to 1 (from the input layer to the first hidden layer), 
2 (from the first hidden layer to the second hidden layer), 3 
(from the second hidden layer to the third hidden layer) and 
4 (from the third hidden layer to the output layer). Compared 
with MSTDCM(3) and MSTDCM(5), MSTDCM(4) has an 
average reduction of approximately 10.36% and 10.69% in 
MAE and RMSE, respectively. Therefore, MSTDCM(4) with 
two hidden layers has the best results.

5  Discussion

There are a large number of classical methods in statistics 
and operations research. Yan et al. [26] used the inverse of 
variance weighted assignment method to combine the gray 
model and exponential smoothing model, and then built 
a port logistics demand forecasting model. They reduced 
the randomness of the original data by combining various 
forecasting models. Besides, this effectively improves the 
accuracy of the forecasting model. Zhang et al. [27] used the 
SARIMA-Markov to forecast the total coal transportation 
of the Da-Qin Railway in the future period. SARIMA is 
highly capable of tapping seasonal and cyclical variation 
patterns. However, SARIMA-Markov does not consider 
the many factors that affect coal transportation. Therefore, 
SARIMA-Markov is not strong in fitting local extreme 
values. Tonchiangsai et al. [28] used an improved ARIMA to 
forecast cable demand. However, as the size of cable demand 
data increases, the accuracy of ARIMA forecasting becomes 
less and less accurate. It is difficult for ARIMA to model 
accurately when dealing with time-series data with nonlinear 
patterns.

To achieve intelligent decision-making in logistics 
resource scheduling, many studies have started to explore 
the potential of deep learning in logistics demand forecasting 
work. Lou et al. [29] demonstrated the feasibility of 
deep learning models in logistics demand forecasting by 

Back Propagation (BP) neural networks. Therefore, they 
established a BP neural network based on a particle swarm 
optimization algorithm to achieve short-term forecasting 
of logistics demand. Leng et al. proposed some effective 
feature adaptive selection and weighting methods with high 
discriminative power [30], high accuracy and low correlation 
[31].

Compared with the current work, our work makes some 
improvements. DeepLDF consists of two base learners 
[32] (MSTDCM and SARIMA). Besides, a novel approach 
for fusing the forecasting results of the base learners is 
introduced in DeepLDF. The results of contrast and ablation 
experiments show that the four-layer MSTDCM structure 
designed based on logistics demand data can accurately 
fit the overall trend of logistics demand time-series data. 
SARIMA can compensate for the deficiency of MSTDCM 
in fitting the local extreme values within each band. Besides, 
the fusion method of forecasting results based on forecasting 
errors can improve the practical generalization ability 
of DeepLDF. Compared with MSTDCM and SARIMA, 
DeepLDF decreased the MAE and RMSE by approximately 
41.09% and 41.22%.

6  Conclusion

To accurately forecast logistics demand with complex 
nonlinear fluctuation patterns, a novel ensemble learning-
based DeepLDF model is introduced. DeepLDF includes 
two base learners, which are MSTDCM and SARIMA. 
Experimental results show that MSTDCM can mine the 
temporal correlation features of logistics demand time series 
by multi-scale convolution. Besides, MSTDCM can compute 
long-term historical information by time-delay convolution 
and time sliding window. SARIMA can compensate for the 
deficiency of MSTDCM in fitting local extreme values by 
modeling the seasonal variation pattern of logistics demand 
data. The fusion method of forecasting results based on 
forecasting errors can effectively improve the accuracy of 
DeepLDF.

Although DeepLDF has high forecasting accuracy, 
the time overhead of DeepLDF designed based on the 
ensemble learning idea may be large. In this work, we do 
not discuss the balance between forecasting accuracy and 
speed. Compared with the proposed MSTDCM, although 
the forecasting accuracy of DeepLDF is higher, the 
forecasting time may be longer. In some scenarios with high 
requirements for real-time performance, maybe MSTDCM is 
a better choice.
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