
Anomaly Detection Model of Time Segment Power Usage Behavior Using Unsupervised Learning   455

*Corresponding Author: Chia-Wei Tsai; E-mail: cwtsai@nutc.edu.tw
DOI: 10.53106/160792642024052503011

Anomaly Detection Model of Time Segment Power Usage Behavior Using 
Unsupervised Learning

Wen-Jen Ho1, Hsin-Yuan Hsieh2, Chia-Wei Tsai3*

1 Software Technology Institute, Institute for Information Industry, Taiwan
2 Department of Computer Science and Information Engineering, National Taitung University, Taiwan

3 Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, 
Taiwan 

wenjen@iii.org.tw, 10911137@gm.nttu.edu.tw, cwtsai@nutc.edu.tw

Abstract

In Taiwan, the current electricity prices for residential 
users remain relatively low. This results in a diminished 
incentive for these users to invest in energy-saving 
improvements. Consequently, devising strategies to 
encourage residential users to adopt energy-saving measures 
becomes a vital research area. Grounded in behavioral 
science, this study introduces a feasible approach where an 
energy management system provides alerts and corresponding 
energy-saving recommendations to residential users upon 
detecting abnormal electricity consumption behavior. To 
pinpoint anomalous electricity usage within specific time 
segments, this research employs an unsupervised machine 
learning method, developing an anomaly detection model for 
the overall electricity consumption behavior of residential 
users. The model focuses on analyzing 2-hour intervals of 
electricity consumption, enabling more effective detection 
of abnormal usage patterns. It is trained using power 
consumption data collected from five actual residential users 
as part of an experimental study. The results indicate that the 
proposed anomaly detection model achieves performance 
metrics such as Precision, Recall, and F1-score of 0.90 or 
above, showcasing its potential for practical implementation.

Keywords: Energy saving, Electricity consumption behavior, 
Anomaly detection, Unsupervised learning

1  Introduction

Given the dwindling supplies of petrochemical energy 
and the escalating impacts of global warming, international 
governments and enterprises are increasingly focused on 
reducing dependence on petrochemicals, curbing carbon 
emissions, and conserving energy. Data from Taiwan’s 
Bureau of Energy reveals that the industrial, service, and 
residential sectors are the three primary consumers of 
electricity, accounting for 55.9%, 17.7%, and 17.6% of 
Taiwan’s total electricity consumption, respectively. Although 
the residential sector ranks third, its consumption is nearly 
on par with the service sector. Thus, effectively curbing 

electricity consumption in the residential sector could yield 
significant energy savings. However, a challenge arises as, 
unlike the predominantly medium- to large-scale users in the 
industrial and service sectors, the residential sector consists 
of numerous small-scale users, totaling about 14.23 million 
households. Each of these households exhibits distinct 
electricity consumption patterns, making it challenging to 
devise a one-size-fits-all energy-saving mechanism for the 
entire residential sector.

With the rapid development of information and 
communication technology and Internet of Things devices 
in recent years, smart meters and home energy management 
systems have become increasingly popular, leading to year-
by-year reductions in the cost of collecting residential users’ 
electricity consumption data. If electricity consumption 
data can be analyzed to further provide residential users 
with multiple energy-saving services, residential users will 
become more willing and motivated to implement energy 
conservation strategies. However, the electricity prices 
for residential users in Taiwan are currently very low, and 
implementation of energy-saving strategies has not been 
enhanced. Therefore, other mechanisms should be utilized 
in tandem to increase user-willingness in implementing 
energy-saving strategies. According to [1], the integration 
of behavioral science into energy-saving technology can 
yield good energy-saving benefits. Techniques related 
to behavioral science include: 1) goal-setting theory, 2) 
avoiding information asymmetry, 3) loss aversion, and 4) 
social comparison theory. Loss aversion means that people’s 
aversion to losses is stronger than their liking for gains, 
so avoiding losses is often the priority when people take 
action. Therefore, energy-saving services can integrate the 
tracking of electricity consumption and detection of users’ 
abnormal electricity consumption behavior and alert users, 
emphasizing on unnecessary losses caused by abnormal 
power consumption behavior. Moreover, users’ loss aversion 
psychology should be leveraged to enhance their willingness 
to implement energy-saving services. To this end, identifying 
the abnormal electricity consumption behavior of residential 
users is the main challenge.

To overcome the challenge mentioned above, [2-5] have 
established a mechanism for detecting abnormal electricity 
consumption through a regression model. However, the 
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setup of the regression model requires complete physical 
eigenvalues (e.g., temperature and humidity) of users, 
increasing the setup cost. Some studies [6-7] have used 
supervised machine learning to develop anomaly detection 
models. However, the anomaly label is hard to obtain, and is 
often irrelevant to unseen anomalies. Therefore, the feasibility 
of supervised learning-based models for detecting abnormal 
electricity consumption behavior is low in actual application 
environments. [8] describes an unsupervised learning strategy 
implemented in a model for detecting abnormal electricity 
consumption behavior, but this model only analyzes the 
electricity consumption of commercial buildings. Refs. [9-10] 
also utilize machine learning strategies to propose anomaly 
detection mechanisms for the road lighting system and the 
industrial electrical system, respectively. Additionally, our 
previous study [11] proposes a model for detecting residential 
users’ abnormal electricity consumption behavior by 
combining an unsupervised learning model with a high-level 
feature extraction technique. This model only focuses on the 
analysis of daily electricity abnormal consumption behavior, 
and thus the model proposed by [11] cannot provide energy-
saving services in a timely manner. In view of this, this study 
aims to use unsupervised learning to construct a model for 
detecting abnormal electricity consumption behavior in 
specific time segments and analyze electricity consumption 
behavior every two hours to improve the detection timeliness 
of abnormal electricity consumption. To verify the feasibility 
of the proposed model in an actual application environment, 
we conduct modeling and experiments based on the electricity 
consumption data of five actual residential users, and analyze 
and evaluate the experimental results. The reminder of this 
paper is organized as follows: Section 2 reviews the relevant 
literature and techniques; Section 3 introduces the research 
method and process; Section 4 explains and discusses the 
implementation method and results; Section 5 summarizes 
the conclusions of this paper, as well as future research topics 
and directions.

2  Background

Detection of outliers or anomalies in data has been 
studied by the statistical community since the 19th century 
[12]. An anomaly is generally broadly defined as a situation 
in which the patterns in data do not conform to the intentions 
clearly defined in normal behavior [13]. Anomalies can 
also be referred to as outliers, deviations, inconsistencies, 
or exceptions. In addition, anomaly detection as a major 
category of novelty detection evaluates whether a new sample 
or instance uses a different pattern from the past dataset (the 
dataset used in the training model). Novelty detection has 
two categories. The major category of novelty detection is 
outlier detection, which identifies whether there are some 
outliers in the current dataset significantly different from 
other data. In addition, anomalies can be divided into three 
types by anomaly interpretation and identification methods. 
The following table summarizes the descriptions of the three 
different types of anomalies.

Table 1. Classification of anomalies
Type Description

Point anomalies
If a single data instance is found to be 
different from the remaining data instances, 
then this instance is called a point anomaly.

Contextual 
anomalies

If a single data instance falls within the 
normal range but is abnormal in a specific 
context, it is called a contextual anomaly. 
Contextual attributes include space-time 
attributes and behavioral attributes.

Collective 
anomalies

If a data collection is anomalous compared 
to the entire dataset, it is called a collective 
anomaly. In other words, data instances alone 
are not anomalous, but they are anomalies 
when they aggregate together.

The occurrence of contextual anomalies depends on the 
availability of contextual attributes in data. Point anomalies 
or collective anomalies can also be contextual anomalies if 
they are analyzed in specific contexts. Specifically, based 
on contextual information, a point or collective anomaly 
detection problem can be converted into a contextual 
anomaly detection problem. Therefore, most studies 
transform anomaly events into contextual anomalies for 
analysis and processing.

The trained anomaly detection models can be divided 
into three types according to whether the training dataset has 
labeled data. The description of each type is as follows:

 ● Supervised anomaly detection model: Both normal 
and abnormal data are labeled in the training dataset, 
so a binary classifier can be used to detect outliers. 
However, this strategy is characterized by high cost 
of obtaining labels, and it is difficult to find accurate 
and representative labels. In addition, lower numbers 
of anomaly labels in practical scenarios often cause 
data imbalance, which makes this training strategy 
more challenging.

 ● Semi-supervised anomaly detection model: Only 
normal data are labeled in the training dataset, so 
this strategy is more widely used than the supervised 
strategy. This strategy uses a one-class classifier to 
construct an anomaly detection model, but the major 
issue is that when the model detects an anomaly, it 
is impossible to determine whether the detection is 
accurate or whether it is some unseen normal event 
during training.

 ● Unsupervised anomaly detection model: Both 
normal and abnormal data are unlabeled, so it is 
necessary to construct a model based on certain 
statistical assumptions, such as the assumption that 
the probability of anomalies is very low. However, 
if the assumption is not true, the model will have a 
high false positive rate. In addition, the identified 
anomalies have low interpretability, and need to be 
explained by experts of the related subject.

In addition to the above three trained anomaly detection 
models, [2] also classifies anomaly detection techniques 
into five types: 1) probabilistic, 2) distance-based, 3) 
reconstruction-based, 4) domain-based, and 5) information-
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theoretic. Probabilistic anomaly detection generally uses a 
statistical hypothesis test to diagnose whether the observed 
data is anomalous. Distance-based anomaly detection 
determines whether a novel event is an anomaly according 
to the distance from the normal event. When performing 
anomaly detection, the k-nearest neighbor algorithm, for 
example, first finds the average distance between all the data 
and their nearest k neighbors to set a threshold. If the average 
distance between the detected data and their neighboring 
points is greater than the threshold, the detected data will be 
regarded as anomalies; otherwise, they will be regarded as 
normal data. Reconstruction-based anomaly detection inputs 
a novel event into the trained machine learning model (e.g., 
regression or classification model), and judges whether it is 
an outlier based on the differences between the model output 
(reconstructed data) and actual value. Domain-based anomaly 
detection uses the training data to define a boundary around 
the normal data, and detects whether the training data is 
within the boundary. The training data beyond the boundary 
are regarded as anomalies. Information-theoretic anomaly 
detection analyzes the amount of information in the dataset 
based on various metrics such as entropy, relative entropy, 
and mutual information, and detects anomalies by analyzing 
the difference in the amount of information between the 
novel event and original event.

In the detection of abnormal electricity consumption 
behavior, Zhang et al. [3] have developed a reconstruction-
based anomaly detection model. They have constructed a 
linear regression model for electricity load, and then used 
the prediction result as the baseline. If the actual electricity 
consumption data is significantly lower or higher than the 
baseline, the event is considered an anomaly. Zhou et al. 
[4] also proposed a reconstruction-based anomaly detection 
model, and improve the accuracy of user load forecasting 
by integrating two regression models, i.e., autoregressive 
integrated moving average and artificial neural network 
models, thereby increasing the accuracy of electricity 
consumption anomaly detection. Luo et al. [5] proposed 
an anomaly detection model based on dynamic regression 
results that calculates an active adaptive threshold instead of 
using a fixed threshold to detect anomalies in the difference 
between the predicted result and actual load.

In addition to reconstruction-based anomaly detection 
models, Jokar et al. [6] have developed a power theft anomaly 
detection model based on supervised learning. During the 
training process, this model uses the k-means clustering 
algorithm to extract primary electricity consumption 
behavior, and then adopts the support vector machine 
algorithm to train a binary classifier. Pinceti et al. [7] have 
conducted a comparative study on the model performance 
to analyze the performance of different supervised learning 
models in detecting electrical load anomalies. Anomaly 
detectors based on supervised classification models usually 
perform excellently in anomaly detection, and the detection 
is characterized by high rationality and interpretability. 
However, this method is disadvantaged by its high training 
cost and poor applicability, and often encounters two 
challenges: 1) the training of high-efficiency supervised 
learning requires high-quality datasets; however, collecting 
high-quality data takes a long time and is expensive. 2) 

Labeled datasets may not necessarily represent the future 
events, so the dataset needs to be updated in real-time. In 
view of this, Fan et al. [8] proposed an anomaly detection 
model of electricity consumption in buildings based on 
unsupervised classification to reduce the training cost of 
anomaly detection based on supervised learning. In this study, 
we employ spectral density analysis to obtain users’ main 
load frequency, apply the decision tree to determine the main 
eigenvalues that affect the electricity consumption behavior, 
and finally calculate the anomaly score of each observation 
using an unsupervised learning model, i.e., autoencoder.

3  Research Methods

This section discusses the research steps and process. We 
use the data of five actual low-voltage residential users from 
August 2021 to June 2023 for analysis. Using the proposed 
model that detects residential users’ electricity consumption 
anomalies based on the domain-based anomaly detection 
mechanism, we analyze the electricity load every two hours 
to identify whether users’ electricity consumption behavior 
during this time segment is normal. The research methods 
and steps in this study are described as follows (as shown in 
Figure 1).

3.1 Data Preprocessing
Electricity consumption data of low-voltage users 

are collected mostly by smart meters and home energy 
management systems. However, the data transmission process 
may be affected by noise, or the sensor may malfunction 
temporarily, resulting in noise, outliers, or missing values 
in the collected data. Noise and anomaly data will affect 
subsequent model training and performance. Therefore, 
before data analysis and model training, it is necessary to 
filter and process problematic data samples. For local data 
containing missing values, we calculate the average value 
of other days in the same time segment, and use such values 
to fill in all missing values. If the number of missing values 
exceeds 10% of the dataset for that day, the electricity load 
data for that day is deleted. Since we use an unsupervised 
learning strategy, it is necessary to filter the outliers in 
the dataset to ensure no noise and abnormal electricity 
consumption behavior in the training dataset. To this end, 
we use the Isolation Forest model for outlier detection and 
removal. Specifically, the extreme values (approximately 
5%) in the normal distribution are removed as outliers. Since 
the international electricity industry samples users’ electric 
load at intervals of 15 minutes, we re-sample the original 
load data using the average method. In addition, the values 
are rounded to the second decimal place, and the unit is 
converted from watts (W) to kilowatts (KW). In addition 
to the eigenvalues of electricity consumption data, we also 
query data from Taiwan’s Central Weather Bureau based 
on user addresses, and integrate hourly temperature and 
humidity data with users’ electricity consumption data. Date 
information is also one of the key factors affecting electricity 
consumption behavior. Therefore, we analyze the date of the 
electricity consumption data to collect the characteristic date 
information (e.g., the month, day of the week, and whether it 
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is a weekday) of this electricity consumption time segment, 
and then integrate these into the data.

3.2 Contextual Analysis and Data Augmentation
In Taiwan, temperature is the main factor affecting 

users’ electricity consumption behavior. Therefore, we 
use a temperature of 26°C as the classification threshold. 
Months with a temperature above 26°C are classified as 
summer months, and months with a temperature below 
26°C are classified as non-summer months. Modeling and 
training are conducted for different electricity consumption 
scenarios. We divide the dataset according to the 8/2 rule, 
that is, 80% of the dataset as the training set and 10% as the 
test set. A very small amount of data are available for model 
training and testing due to system disconnection. To evaluate 
the performance of the electricity consumption anomaly 
detection model, we multiply the electricity consumption 
load data by a small random value (0.97–1.03) to augment the 
dataset. In addition, we use the data of simulated abnormal 
electricity consumption behavior to evaluate whether the 
model can detect abnormal electricity consumption events. 
The simulated abnormal electricity consumption behavior 
includes:

 ● High abnormal electricity consumption: The user’s 
highest electricity consumption load is multiplied by 
1.8–2.5.

 ● Low abnormal electricity consumption: The user’s 
highest electricity consumption load is divided by 
1.8–2.5.

 ● Abnormal electricity consumption showing steep 
rise and steep drop: High abnormal electricity 
consumption load and low abnormal electricity 
consumption load are mixed to simulate the abnormal 
electricity consumption behavior of steep rise and 
steep drop.

The training dataset only contains the data of normal 
electricity consumption behavior. However, the test dataset 
contains the data of both normal and abnormal electricity 
consumption behavior, accounting for 70% and 30%, 
respectively.

3.3 Data Standardization and Feature Extraction
To eliminate the impact of the scale of each feature on 

the model training process and accelerate the learning speed 
of the model, we use standard scaling to standardize the 
data, convert the data distribution to a normal distribution, 
and eliminate feature noise to facilitate subsequent modeling 
and analysis. We introduce principal component analysis to 
reduce the data dimensionality while retaining most of the 
training data. Maximum likelihood estimation is applied to 
select a suitable dimensionality reduction, so as to achieve 
dimensionality compression while retaining sufficient 
information.

3.4 Model Training
An unsupervised local outlier factor (LOF) model is 

employed for anomaly detection. Based mainly on density, 
this model not only considers whether the data point is far 
from the center of the entire dataset, but also considers the 
local density around the data point. Even if the anomaly data 
is close to the data center, this algorithm can still effectively 
find the anomaly data with lower density in the surrounding 
region. Scikit-learn is used for modeling. During the training 
process, we use the preset “auto” to set the ratio of pollution 
values to ensure that the input data are all normal electricity 
consumption data. During the model fine-tuning process, we 
set the ratio to (0.01,0.05) to select the optimal parameters.

3.5 Performance Evaluation and Fine-tuning
We use three common metrics to comprehensively 

evaluate the performance of the trained model: Precision, 
Recall, and F1-score. If the model performance is found 
to be lower than expected, we return to the stage of model 
training and fine-tune the model. During model fine-tuning, 
we use the Optuna [14] suite to tune the hyperparameters 
of the model. Through various optimization strategies 
(including grid search, random search, and tree-structured 
Parzen estimator algorithm) provided by the Optuna suite, 
we estimate the optimal parameter combination for the 
model to ensure performance and generalization capabilities 
of the time-segment anomaly detection model. Finally, the 
effectiveness of the established model is verified using the 
test dataset.

Figure 1. Flowchart of model for detecting abnormal electricity consumption behavior
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4  Experiment Results and Discussion

This study uses data from August 2021 to June 2023 for 
analysis. Due to the outbreak of the COVID-19 pandemic 
during the analysis period, the electricity consumption 
behavior of residential users at some experimental sites 
was affected by remote work and home isolation, and the 

electricity consumption behavior significantly changed. To 
avoid the interference of all special electricity consumption 
behaviors caused by COVID-19 on future anomaly detection, 
we selected five users whose electricity consumption behavior 
was less affected to perform modeling and evaluation. The 
curves of the five users’ electricity consumption loads are as 
shown in Figure 2 to Figure 6.

Figure 2. Electricity consumption of User01

Figure 3. Electricity consumption of User02

 
Figure 4. Electricity consumption of User03
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From the electricity consumption curve of each user, we 
can observe missing values for all five users in November 
2022, December 2022, and March 2023, which may be 
caused by equipment maintenance. July and August 2022 
witnessed electricity consumption peaks, possibly due to 
the frequent use of air conditioners with high electricity 
consumption in summer. At the end of January and the 
beginning of February in 2023, the frequency of heating 
use increased due to lower temperatures, so electricity 
consumption peaks were also witnessed during this period. 
However, due to climate warming in recent years, the 
temperature did not drop significantly in winter, and it 
is difficult to see obvious differences in the electricity 
consumption curve.

After the contextual analysis, we considered 26°C 
as the baseline temperature. In the data, the months with 
temperatures higher than 26°C were designated as summer 
months, and those less than 26°C were specified as non-
summer months. A model for detecting abnormal electricity 
consumption time segments was established using the LOF 
algorithm for both summer and non-summer months. We 
fine-tuned the poorly-performing models to improve their 
performance, and used Precision, Recall, and F1-score to 
evaluate the model performance. The performance of the 
anomaly detection models for each user in summer and non-
summer months are summarized in Table 2 to Table 7 and 
Table 8 to Table 11, respectively. Here, Tx represents the 
time segment between x and x+2, e.g., T2 indicates the time 
segment 2:00 AM–4:00 AM. Through experiments on five 
residential users, we observed that the average F1-score 

of the model for each user all exceeded 0.9, showing the 
excellent performance of the model in identifying abnormal 
time segments. However, we also noticed that some Precision 
values were too high. This indicates that some real positive 
samples were mistaken for negative samples in the prediction 
of the model, resulting in false negatives. In some cases, this 
may lead to actual anomalies not being detected in a timely 
manner. This is especially true for the model for User04 in 
non-summer months, where the model was too cautious in 
judging abnormal electricity consumption. While avoiding 
anomaly misjudgment, this model fails to detect the real 
abnormal electricity consumption behavior, which will affect 
the model performance.

Table 2. Model performance in non-summer months for User01
Precision Recall F1-score

T0 0.99 0.99 0.99
T2 1.00 0.87 0.93
T4 1.00 0.89 0.94
T6 0.94 0.93 0.94
T8 0.89 0.89 0.89
T10 1.00 0.91 0.96
T12 0.89 0.90 0.89
T14 0.93 0.91 0.92
T16 0.95 0.92 0.93
T18 0.89 0.92 0.90
T20 0.97 1.00 0.99
T22 1.00 0.91 0.95

 
Figure 5. Electricity consumption of User04

 
Figure 6. Electricity consumption of User05
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Table 3. Model performance in summer months for User01
Precision Recall F1-score

T0 1.00 0.89 0.94
T2 1.00 0.96 0.98
T4 0.84 0.94 0.88
T6 0.91 0.97 0.94
T8 0.94 0.94 0.94
T10 0.97 0.97 0.97
T12 0.92 0.92 0.92
T14 1.00 0.88 0.94
T16 1.00 0.96 0.98
T18 1.00 0.81 0.89
T20 1.00 0.89 0.94
T22 1.00 0.84 0.91

Table 4. Model performance in non-summer months for User02
Precision Recall F1-score

T0 1.00 0.89 0.94
T2 1.00 0.90 0.95
T4 1.00 0.93 0.96
T6 0.93 0.90 0.91
T8 0.90 0.90 0.90
T10 0.91 0.89 0.90
T12 0.91 0.89 0.90
T14 1.00 0.93 0.96
T16 0.80 0.87 0.84
T18 0.98 0.91 0.95
T20 1.00 0.87 0.93
T22 1.00 0.88 0.94

Table 5. Model performance in summer months for User02
Precision Recall F1-score

T0 1.00 0.79 0.88
T2 0.91 0.86 0.89
T4 0.82 0.97 0.89
T6 1.00 0.94 0.97
T8 1.00 0.91 0.95
T10 0.98 0.89 0.93
T12 0.94 0.92 0.93
T14 1.00 0.86 0.92
T16 0.91 0.90 0.91
T18 0.98 0.91 0.95
T20 1.00 0.87 0.93
T22 1.00 0.87 0.93

Table 6. Model performance in non-summer months for User03
Precision Recall F1-score

T0 0.90 0.90 0.90
T2 1.00 0.93 0.96
T4 1.00 0.88 0.94
T6 0.92 0.88 0.90
T8 0.84 0.90 0.87
T10 1.00 0.90 0.95
T12 1.00 0.91 0.95
T14 0.95 0.94 0.95
T16 0.92 0.93 0.92

T18 1.00 0.90 0.95
T20 1.00 0.90 0.95
T22 0.93 0.91 0.92

Table 7. Model performance in summer months for User03
Precision Recall F1-score

T0 1.00 1.00 1.00
T2 1.00 0.88 0.94
T4 1.00 0.99 0.99
T6 1.00 0.98 0.99
T8 1.00 0.91 0.95
T10 1.00 0.88 0.93
T12 0.87 0.86 0.87
T14 1.00 0.90 0.95
T16 1.00 0.88 0.94
T18 0.89 0.80 0.84
T20 1.00 0.89 0.94
T22 1.00 0.99 0.99

Table 8. Model performance in summer months for User04
Precision Recall F1-score

T0 0.97 0.92 0.95
T2 0.88 0.91 0.90
T4 0.95 0.90 0.93
T6 0.94 0.87 0.90
T8 0.91 0.87 0.89
T10 0.83 0.83 0.83
T12 1.00 0.82 0.90
T14 0.88 0.94 0.91
T16 1.00 0.80 0.89
T18 0.92 0.94 0.93
T20 0.93 0.93 0.93
T22 1.00 0.94 0.97

Table 9. Model performance in summer months for User04
Precision Recall F1-score

T0 1.00 0.95 0.97
T2 1.00 1.00 1.00
T4 1.00 1.00 1.00
T6 1.00 0.95 0.98
T8 1.00 0.94 0.97
T10 1.00 0.94 0.97
T12 1.00 0.89 0.94
T14 1.00 0.89 0.94
T16 1.00 0.92 0.96
T18 1.00 0.94 0.97
T20 1.00 0.90 0.95
T22 1.00 0.95 0.97

Table 10. Model performance in non-summer months for User05
Precision Recall F1-score

T0 0.94 0.90 0.92
T2 0.91 1.00 0.95
T4 1.00 0.91 0.95
T6 0.87 0.90 0.89
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T8 0.90 0.87 0.88
T10 0.95 0.87 0.91
T12 0.97 0.91 0.94
T14 0.97 0.90 0.93
T16 1.00 0.91 0.95
T18 0.89 0.90 0.90
T20 0.95 0.88 0.91
T22 1.00 0.90 0.95

Table 11. Model performance in summer months for User05
Precision Recall F1-score

T0 1.00 0.97 0.98
T2 1.00 0.96 0.98
T4 1.00 1.00 1.00
T6 1.00 0.93 0.96
T8 0.92 1.00 0.96
T10 1.00 0.86 0.93
T12 1.00 0.89 0.94
T14 1.00 0.93 0.96
T16 1.00 0.90 0.95
T18 0.95 1.00 0.98
T20 1.00 0.92 0.96
T22 1.00 0.97 0.98

5  Conclusions

This study employs an unsupervised domain-based 
anomaly detection technique to construct a model that 
identifies abnormal electricity consumption time segments 
for residential users, and it assesses the viability of the 
proposed strategy. For the experiment, we selected five 
residential users who had comprehensive data and were 
unaffected by the COVID-19 pandemic for analysis, 
modeling, and training. Data was gathered from August 2021 
to June 2023. During Taiwan’s onset and management of the 
COVID-19 pandemic, the electricity consumption patterns of 
residential users shifted notably, characterized by extended 
home stays and reduced routine. At present, acquiring key 
data features, such as the number of household members and 
ambient temperature, is challenging, further complicating the 
modeling process.

After testing the abnormal time segment detection 
model for each user, the F1-score, our primary performance 
metric, displayed impressive results. However, deeper 
analysis revealed room for improvement in the Recall score. 
Moreover, missing values were commonly observed in the 
electricity consumption data for each residential user, often 
due to smart meter disconnections or maintenance. Ensuring 
comprehensive and accurate data for training could boost 
the model’s performance. Beyond refining data quality and 
securing additional data features, we are optimistic about 
employing generative adversarial networks to generate 
electricity consumption behaviors more tailored to users, 
leveraging the data from the test dataset. This approach 
aims to address data insufficiencies and enhance the model’s 
generalization capabilities. In simulating abnormal behavior, 
we simply multiplied past electricity consumption data by a 

random constant. Moving forward, we intend to investigate 
the model’s efficacy under varied anomaly degrees in 
experimental setups, with the goal of further refining our 
proposed model’s ability to detect abnormal electricity 
consumption time segments.
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