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Abstract

Feature selection (FS) is a pre-processing technique 
for data dimensionality reduction in machine learning and 
data mining algorithms. FS technique reduces the number 
of features and improves the model generalization ability. 
This study presents a Gradient Search-based Binary Runge 
Kutta Optimizer (GBRUN) for solving the FS problem of 
high-dimensional. First, the proposed method converts the 
continuous Runge Kutta optimizer (RUN) into a binary 
version through S-, V-, and U-shaped transfer functions. 
Second, a gradient search method is introduced to improve 
the exploration capability of the algorithm. Five standard 
datasets provided by Arizona State University’s Data Mining 
and Machine Learning Lab were selected to verify the 
performance of the GBRUN algorithm. The experimental 
results show that GBRUN has better performance than 
other advanced algorithms regarding classification 
accuracy and the number of selected features. Moreover, 
the GBRUN algorithm is also combined with EfficientNet 
in this manuscript, using the GBRUN algorithm to select 
the features extracted by EfficientNet. The results show 
that the V-shaped (GBRUN-V) and U-shaped (GBRUN-U) 
algorithms have better performance than other algorithms.

Keywords: GBRUN, Feature selection, Runge Kutta method, 
COVID-19 dataset, EfficientNet

1  Introduction

With the rapid development of science and technology, 
the complexity and diversity of data in various fields are 
increasing. However, high-dimensional data often suffer 
from a range of problems such as missing data and redundant 
features, making data processing more difficult [1]. FS is 
a common data pre-processing method that can effectively 
reduce the number of feature dimensions to reduce the 
difficulty of data processing, reduce processing equipment’s 
performance requirements, and improve data processing 
efficiency. FS has been commonly used in many fields such 
as deep learning and data mining [2-3].

Many researchers use Meta-heuristic algorithms based on 
the ease of use and flexibility of Meta-heuristic algorithms to 
deal with FS problems [4]. Meta-heuristic algorithms can be 
divided into two broad categories: Evolutionary Algorithms 
(EA) and Swarm Intelligence (SI) optimizers [5-8]. The 
differential evolution algorithm (DE) is an efficient global 
optimization algorithm mainly used for solving real number 
optimization problems [9]. Genetic Algorithm (GA) is an 
evolutionary algorithm designed by simulating the Darwinian 
theory of biological evolution [10]. In addition to these two 
representative algorithms, there are also Simulated Annealing 
algorithms (SA), Memetic Algorithm (MA), Evolution 
Strategy (ES), and Neuro Evolution (NE) [11-14]. SI uses 
the sharing of information by individuals in a population to 
enable the movement of the whole population to change from 
disorder to order. Particle Swarm Optimization (PSO) finds 
the optimal solution through collaboration and information 
sharing among individuals in the group [15]. Grey Wolf 
Optimizer (GWO) is designed to simulate the hunting 
behavior of grey wolves [16]. The Cuckoo Search algorithm 
(CS) is designed to observe and imitate the flight of cuckoos 
[17]. Cat Swarm Optimization (CSO) was designed based 
on feline predation strategies [18-19]. Fish Migration 
Optimization (FMO) is designed based on fish migratory 
behavior [20-21]. The basic idea of the Flower Pollination 
Algorithm (FPA) is derived from the simulation of self-
pollination and cross-pollination of flowers in nature [22]. 
The Sparrow Search Algorithm (SSA) is designed based 
on the foraging and anti-predatory behaviors of sparrows 
[23]. The Equilibrium Optimizer (EO) is inspired by the 
control volume mass balance to estimate the dynamics and 
equilibrium states [24-25]. 

Meta-heuristic algorithms usually fall into local optimal 
solutions when dealing with high-dimensional feature 
selection problems [26-28]. Researchers have used parallel 
methods to deal with high-dimensional problems in recent 
years [29-30]. In this manuscript, parallel strategies are used 
to increase the information interaction capability between 
individuals and improved gradient search rules (GSR) are 
used to improve the exploration capability of the algorithm. 
the GBRUN algorithm is validated on five high-dimensional 
datasets and a real-world optimization problem provided 
by Arizona State University. The experimental results show 
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that the GBRUN algorithm achieves better results in FS 
problems, and the GBRUN algorithm demonstrates its ability 
to solve real-world problems in practical applications. The 
main contributions of this manuscript are as follows:

 ● Convert RUN algorithm to the binary version using 
S-, V-, and U-shaped transfer functions.

 ● Improving the performance of the BRUN algorithm 
using the enhanced Gradient Search method.

 ● Validate the performance of the GBRUN algorithm 
on high-dimensional datasets and compare it 
with other state-of-the-art algorithms in terms of 
classification accuracy and number of selected 
features.

 ● Combining GBRUN algorithm and EfficientNet to 
deal with the classification problem of COVID-19 
CT images.

The manuscript is organized as follows: Section 2 
introduces the basic concepts of the RUN algorithm. 
Section 3 shows how to convert the RUN algorithm, which 
is in continuous space, into a binary version and apply the 
improved GSR mechanism to the BRUN algorithm. Section 
4 tests the performance of the GBRUN algorithm using five 
standard datasets. Section 5 introduces the GBRUN algorithm 
combined with EfficientNet to handle the classification 
problem of COVID-19 CT images. Section 6 gives the 
conclusions.

2  Runge Kutta Optimizer

Runge Kutta optimizer is an algorithm proposed by Iman 
et al. in 2021 [31]. The RUN algorithm is an intelligence 
model based on random conditions. The main idea of the 
RUN algorithm is inspired by the idea of calculating the 
slope in the Runge Kutta method [32]. Firstly, the RUN 
algorithm uses the fourth-order Runge-Kutta (RK4) equation 
to construct the RK4 search logic. Moreover, the RUN 
algorithm is based on the RK4 search logic to design a 
solution for position updating. Finally, the RUN algorithm 
introduces an Enhanced Solution Quality (ESQ) mechanism 
to improve the quality of the solution. 

2.1 Search Logic
The RUN algorithm uses the fourth-order Taylor 

equation derived from the Runge Kutta Method as the main 
exploration logic, usually noted as the RK4 equation. It can 
be expressed as Equation 1.
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The RK4-based search mechanism can effectively 

improve the algorithm’s exploration capability in the solution 
space. To further improve the search speed, RUN abandons 
the traditional method of adjusting the search position 
according to the fitness value of the objective function and 
uses a position-based update method for solving. Thus k1 can 
be written as Equation 2.
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Where Xrw and Xrb represent the best and worst positions 
of the three randomly selected individuals. The parameter u 
increases the influence of the current global optimal solution 
on the next stage of the search process of the algorithm. ∆x 
is the position increment and R is a random number between 
[0,1].

Based on the above equation, the remaining three 
parameters k2, k3, k4 can likewise be rewritten as Equation 4, 
Equation 5, and Equation 6.
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Ultimately, the equation for the RUN search mechanism 
can be written as Equation 7.
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2.2 Update Method
The RUN algorithm starts searching for a random 

solution. It uses the RK4 method as the basic equation for 
position updating in subsequent iterations, with global and 
local searches designed for position updating. The local 
search is performed when R < 0.5 and the global search is 
performed when R ≥ 0.5. The location update method is 
shown as Equation 8.
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Xn
(t+1) represents the individual position of the n − th 

individual at the (t + 1) − th iteration, r is an integer taking 
values of -1, 0 or 1. g is a random number taking values in the 
range [0,2] and μ is a random number based on the standard 
normal random number randn. μ denoted as Equation 9.
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0.5 0.1 randnµ = + × .                        (9)

SF function is used to balance the exploration and 
exploitation phases of the algorithm. The SF decreases as the 
number of iterations increases, which is defined as Equation 
10.

2 (0.5 ) exp( )
iter

t
SF R b R

Max
= × − × − × × .        (10)

The b = 2 is a constant value. Maxiter is the maximum 
number of iterations, and t represents the current number of 
iterations.

Xc,  Xm,  Xs,  and Xs' represent the positions of the 
individuals., Xc, Xm, Xs, and Xs' can be represented by 
Equation 11, Equation 12, Equation 13 and Equation 14.
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Xbest represents the best position that can be reached. Xlbest  
represents the best position that can be reached in the current 
iteration. Xr1, Xr2 represent the positions of two randomly 
selected individuals, where Xr1 ≠ Xr2 ≠ Xn.

2.3 Enhanced Solution Quality Mechanism
In the RUN algorithm, the solution quality is improved by 

applying the Enhanced Solution Quality (ESQ) mechanism. 
ESQ mechanism calculates the average of three random 
solutions Xavg and generates a new solution Xnew by combining 
the location of the solution Xbest. The final equation to 
generate the new solution Xnew1 is shown as Equation 15.
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Parameter W is shown as Equation 17, which decreases 
with increasing number of iterations.

2 exp( 5 )
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= × × − × × .                    (17)

The Xnew1 generated in this solution may not necessarily 
have a better fitness value than the optimal global solution. In 
order to create a better solution, the RUN algorithm designs 

an additional solution to generate a new position Xnew2. Xnew2 
is calculated as Equation 18.

2 1 1
(1 ) ( ( ))t

new new best new
X R X SF R X r X X= − × + × × + × − .           (18)

Algorithm 1 and Figure 1 give the pseudo-code and 
flowchart for the RUN.

3  Gradient Search-based Binary Runge 
Kutta optimizer (GBRUN)

The RUN algorithm is designed based on the Runge 
Kutta Method and searches for the optimal solution using the 
improved Runge Kutta method. Moreover, it balances the 
exploration and exploitation capability of the algorithm with 
the help of the ESQ mechanism to avoid falling into local 
optimal solutions during the iteration. The authors, Iman et 
al., have demonstrated the better performance of the RUN 
algorithm than other algorithms in benchmark functions 
and practical engineering applications. Because of this, the 
BRUN algorithm is designed to solve the FS problem.

Algorithm 1. The pseudo-code of RUN
Initialize the individuals’ positions Xn (n = 1, 2, ..., N) 
Calculate the Fitness value Fitnessn (n = 1, 2, ..., N) for 
each individual
  1: while t ≤ Maxiter do
  2:    for n=1:N do
  3:        Calculate the position of ( 1)t

nX +  according to
Eq. (7) and Eq. (9)
  4:        Calculate the fitness value Fitnessnew for 
individual ( 1)t

nX +

  5:        if Fitnessnew < Fitnessn then
  6:            Update position Xn and Fitness value 
Fitnessn

  7:        end if
  8:        if R < 0.5 then
  9:            Calculate position Xnew using Eq. (16)
10:            Calculate position Xnew1 using Eq. (15)
11:            Calculate the fitness value Fitnessnew1 for 
individual Xnew1

12:            if Fitnessnew1 < Fitnessn then
13:                Update position Xn and Fitness value 
Fitnessn

14:            else
15:                Calculate position Xnew2 using Eq. (17)
16:                Calculate the fitness value Fitnessnew2 for 
Individual Xnew2

17:                if Fitnessnew2 < Fitnessn then
18:                    Update position Xn and Fitness value
Fitnessn 
19:                end if
20:            end if
21:        end if
22:    end for
23: end while

In FS problems, the problem of how to process feature 
data efficiently is still a pressing issue. The feature data is 
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often high-dimension, non-linear, and has many redundant 
features. Therefore the feature selection problem often yields 
multiple locally optimal solutions. This requires the algorithm 
to have a strong exploration capability during the iterative 
process and to avoid falling into local optimal solutions as 
much as possible. The RUN algorithm is used for problems 
with continuous values, so converting the RUN algorithm to 
a binary version is necessary.

Figure 1. The flowchart of RUN algorithm

To achieve this, the RUN algorithm replaces the position 
update method with a 0-1 value update method by transfer 
functions. The BRUN algorithm changes the position of 
an individual in the 0-1 hypercube by changing the 0-1 
value. The transfer function describes the probability that 
an individual will change from 0 to 1 or from 1 to 0. In this 
manuscript, three transfer functions are designed to convert 
the RUN algorithm’s position update method to update 
probabilities with 0-1 values.

In addition, existing data tend to vary towards high-
dimension and high complexity. In order to obtain better 
exploration capability of the algorithm, an improved GSR 
is introduced in this study to improve the search capability 
of the BRUN algorithm. The GSR mechanism is based on 
a gradient search method and is combined with Newton’s 
method to effectively improve the exploration capability of 
the algorithm in solution space.

3.1 Initialization
The RUN algorithm generates a random initial position 

by giving the function the upper bounds (ub) and lower 
bounds (lb). In the BRUN algorithm, the initial position is 
created by a random method. The initial position method can 
be denoted as Equation 19.

( , )
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1, 0.5
n d

R
X
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≥
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<





.                            (19)

X(n, d) represents the position of the n − th individual in the  
d − th dimension.

3.2 Transfer Functions
Transform the algorithm to a binary version using a 

transfer function is efficient and straightforward. The transfer 
function maps the velocity values of the individual moves in 
the RUN algorithm to the range [0,1]. The structure of the 
RUN algorithm is preserved to the maximum extent possible. 
The S-, V-, and U-Shaped transfer functions used in this 
manuscript are represented by Equation 20, Equation 21, 
and Equation 22. The transfer functions curves are shown in 
Figure 2, Figure 3, and Figure 4.

Figure 2. The curve of S-Shape transfer function

Figure 3. The curve of V-Shape transfer function

Figure 4. The curve of U-Shape transfer function
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E(n, d) represents the velocity value of the n − th 
individual in the d − th dimension.

The transfer function is used to obtain the probability of 
individual position transformation in the 0-1 space. Then, a 
random number R is introduced to increase the randomness of 
the position transformation. The positions of the individuals 
were updated using Equation 23, Equation 24, and Equation 
25, respectively.
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Where ( , )
t
n dX  and 1

( , )
t
n dX +  represent the position of the n − 

th individual’s d − th dimension at the t − th iteration and the  
(t + 1) − th iteration, respectively. When using the S, U, V 
transfer function, the position is updated using the Equation 
23, Equation 24, Equation 25 respectively. S-shape functions 
convert infinite continuous space values to values between 
[0,1] in a stable manner and update individual positions to 0 
or 1. V-Shaped function and U-Shaped function do not force 
the individual position to set 0 or 1. The individual position 
will only move to the opposite position if the individual 
moves at a large speed; otherwise, it will not change.

3.3 Gradient Search Rule (GSR)
GSR starts from the current solution and explores the 

solution space along a specified gradient [33]. The GSR 
mechanism uses the numerical gradient method instead of 
function derivation, effectively avoiding many cases where 
the optimization problem is not differentiable.

2
1 n

n n

x X
GSR randn p

yp yq ε

∆ ×
= × ×

− +
.                    (26)

Where p1 decreases as the number of iterations increases. 
p1 is used to balance the GSR exploration and exploitation 
process. ε is a random number between [0,0.1]. ypn and yqn 
are two positions obtained based on Newton’s method to 

improve the GSR performance design, they can be expressed 
as Equation 27 and Equation 28.
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Zn can be expressed as Equation 29.
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Z X R
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∆ ×
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Xworst represents the worst position. ∆x is determined by 
Xbest, Xr1 and the parameter δ. δ is determined by randomly 
selecting four positions Xr1, Xr2, Xr3 and Xr4, where (r1 ≠ r2 
≠ r3 ≠ r4 ≠ n). In order to improve the search capability of 
GSR, a random number R is introduced here, taking values in 
the range [0,1]. ∆x can be expressed as Equation 30, δ can be 
expressed as Equation 31.
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2
best rX X

x R
δ− +

∆ = × .                          (30)
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X X X X
R Xδ
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To increase the influence of all individuals in the 
population on the change in the current individual’s position, 
we rewrite the parameter δ as Equation 32.

12 ( )
N
i

nR X
N

δ =Σ
= × × − .                           (32)

N represents the number of individuals, and Xi represents 
the position of the i − th individual.

In addition, the GSR uses the Direction of Movement 
(DM) method, which helps to explore the area around the 
individual better. DM can represent as Equation 33.

2 ( )best nDM R p X X= × × − .                       (33)

2 2p R α α= × × − .                              (34)

According to the GSR and DM methods, the position of 
X1 can be calculated by Equation 35.

1 nX X GSR DM= − + .                           (35)

Likewise X1 can be expressed as Equation 36.
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However, Equation 36 is suitable for global search but not 
for local search. The position of X2 is obtained by replacing 
Xn and Xbest in Equation 36. X2 is shown in Equation 37. 
Equation 37 performs a local search using the positions of 
Xr1, Xr2 and Xbest.

1 2

2
2 1 2 ( )n

best r r
n n

x X
X X randn p R p X X

yp yq ε

∆ ×
= − × × + × × −

− +
.          (37)

Finally, based on the positions of X1 and X2, the new 
position ( 1)t

nX +  be represented as Equation 38.

( 1) ( 1 (1 ) 2) (1 ) ( 1 ( 2 1))t
GSR nX R R X R X R X p X X+ = × × + − × + − × − × − .       (38)

In addition, an Execution Control function (EC) has been 
added to this manuscript. The EC decreases as the number 
of iterations increases. This function controls the GSR 
mechanism to be executed with a higher probability in the 
early stages of the algorithm to balance the exploration and 
exploitation capabilities of the algorithm. The EC function is 
expressed as Equation 39, and the curve of the EC is shown 
in Figure 5.

3 1((1 ) ,1)
iter iter iter

i iC min
Max Max Max

θ= − × + × .       (39)

Parameter θ = 0.01 is a constant value.

Figure 5. The execution control function evolution curve

The final GBRUN algorithm pseudo-code is represented 
in Algorithm 2, and the flowchart is represented in Figure 6.

Algorithm 2. The pseudo-code of GBRUN
Initialize the individuals’ positions Xn (n = 1, 2, ..., N) 
using Eq. (18)
Calculate the Fitness value Fitnessn (n = 1, 2, ..., N) for 
each individual
1: while t ≤ Maxiter do
  2:    for n=1:N do
  3:        if C ≥ R then
  4:            Calculate position ( 1)t

nX +  using Eq. (37)

  5:            if fitness of ( 1)t
GSRX + <  fitness of Xn  then

  6:                Update position Xn  and Fitness value 

Fitnessn 
  7:            end if
  8:        end if
  9:    end for
10:    for n=1:N do
11:        Calculate the position of ( 1)t

nX +  according to 
Eq. (7), Equation 8 and transfer function
12:        Calculate the fitness value Fitnessnew for 
individual ( 1)t

nX +  
13:        if Fitnessnew < Fitnessn then
14:            Update position Xn and Fitness value 
Fitnessn
15:        end if
16:        if 0.5R <  then
17:            Calculate position Xnew using Eq. (16) 
and transfer function
18:            Calculate position Xnew1 using Eq. (15)
and transfer function
19:            Calculate the fitness value Fitnessnew1 for 
individual
20:            if Fitnessnew1 < Fitnessn then
21:                Update position Xn and Fitness value 
Fitnessn 
22:            else
23:                Calculate position Xnew2 using Eq. (17)
and transfer function
24:                Calculate the fitness value Fitnessnew2 for 
Individual Xnew2 
25:                if Fitnessnew2 < Fitnessn then
26:                    Update position Xn and Fitness value 
Fitnessn 
27:                end if
28:            end if
29:        end if
30:    end for
31: end while

Figure 6. Flowchart of GBRUN algorithm
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4  GBRUN for Feature Selection

FS is a multi-objective optimization problem. The effect 
of FS should be considered in two metrics: classification 
accuracy and the number of selected features. The ideal result 
is a dynamic balance between these two evaluation metrics. 
In other words, FS should achieve higher classification 
accuracy while selecting fewer features.

4.1 Experimental Setup and Dataset Explanation
Both Support Vector Machine (SVM) and K-Nearest 

Neighbor (KNN) have commonly used classification 
algorithms [34-35]. The KNN classifier is used as an 
evaluator in this experiment. The KNN classifier first 
calculates the distance between unknown and known 
instances based on the parameter K. The obtained distances 
are sorted in ascending order. If the K most similar samples 
in a given feature space belong to a certain class, the sample 
will be classified into that class. The more relevant the 
features in the feature subset, the higher the classification 
accuracy. This manuscript uses a wrapper- based approach as 
the fitness function, as shown in Equation 40.

S

M

F
Fitness Acc

F
λ η= × + × .                       (40)

Where λ is equal to 0.95 and η is equal to 0.05. λ, η 
are used to balance the two evaluation metrics. Acc is the 
classification accuracy. FS is the number of features selected, 
and FM is the total features number of the dataset.

Five standard datasets provided by the Data Mining and 
Machine Learning Laboratory of Arizona State University 
were used in this manuscript. The parameters such as dataset 
attributes are shown in Table 1.

To verify the performance of the proposed GBRUN 
algorithm, BRUN-S, BRUN-V, BRUN-U, Binary JAYA 
(BJAYA) [36], Binary Whale Optimization Algorithm 
(BWOA) [37], Binary Harris Hawks Optimizer (BHHO) 
[38], Binary Grey Wolf Optimization (BGWO) [39], binary 
Salp Swarm Algorithm (BSSA) [40], and Binary Sine–
Cosine Algorithm (BSCA) are selected for comparison with 
the GBRUN algorithm in this experiment [41]. Table 2 gives 
information about the attributes of the datasets.

4.2 Results Analysis
In this section, the proposed algorithm is compared with 

BRUN-S, BRUN-V, BRUN-U, BJAYA, BWOA, BHHO, 
BGWO, BSSA, and BSCA in classification accuracy, the 
number of selected features, and fitness values. The following 
discussion revolves around the algorithm’s performance on 
these three evaluation metrics.

Table 3 shows the average classification accuracies of the 
GBRUN algorithm and other comparison algorithms on the 
five datasets. Table 3 shows that the proposed GBRUN-U 
achieves the highest classification accuracy on GLIOMA, 
Yale, colon, and warpPIE10P datasets. GBRUN-V achieves 
the highest classification accuracy on GLIOMA, and 
lung datasets. The algorithm performance is significantly 
improved with the introduction of parallelism and improved 
GSR strategy.

Table 4 shows the average number of features selected 
by the algorithm on the dataset. The GBRUN-V algorithm 
selected the minimum number of features on the Yale 
and lung datasets. The GBRUN-U algorithm selected the 
minimum number of features on the GLIOMA, colon, 
and warpPIE10P datasets. The GBRUN algorithm has a 
significant advantage in selecting the number of features 
compared to BRUN and other comparison algorithms.

Table 1. The datasets’ descriptions
Data set Set no. Number of instances Number of features Number of classes Keywords

GLIOMA DS1 50 4434 4 continuous, multi-class
Yale DS2 165 1024 15 continuous, multi-class
colon DS3 62 2000 2 discrete, binary

warpPIE10P DS4 210 2420 10 continuous, multi-class
lung DS5 203 3312 5 continuous, multi-class

Table 2. Parameter settings of the considered algorithms
Algorithms Parameters Values

Common to 
all algorithms

K for cross-validation 10
Number of iterations 100

Population size 10
Number of runs 30

Dimensions Number of features
Domain {0,1}-Binary

GBRUN Transfer Function S, V, U
BRUN Transfer Function S, V, U
BJAYA lb, ub 0, 1
BWOA b 1
BHHO β 1.5
BGWO α [0,2]
BSSA lb, ub and Transfer Function 0, 1 and S
BSCA lb, ub 0, 1
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Table 5 shows the performance of all algorithms. 
GBRUN-V achieves optimal fitness on the  warpPIE10P 
and lung datasets. GBRUN-U achieves optimal fitness on 
the GLIOMA, Yale, and colon datasets. The parallel strategy 
can effectively improve the inter-individual information 
interaction ability and increase the search stability, and the 
improved GSR mechanism can enhance the algorithm search 
ability and achieve better performance.

The above data show that the parallel strategy can 
effectively improve the inter-individual information 
interaction ability and increase the search stability, and the 
improved GSR mechanism can enhance the algorithm search 
ability and achieve better performance. In particular, the 
GBRUN algorithm can filter out redundant features more 
effectively in terms of the number of features selected.

5  Combining with Neural Networks for 
Feature Selection Problems

Since the outbreak of COVID-19, many researchers have 
proposed machine learning and deep learning-based methods 
to classify images of COVID-19 [42-44]. However, neural 
networks often contain huge number of parameters, and it is 
exceptionally difficult to train neural networks from scratch. 
This manuscript proposes a method to perform migration 
learning using trained neural networks, extract the output 
features of the previous layer of the fully connected layer 
of the model after migration learning, and use the GBRUN 

algorithm to perform feature selection on the extracted 
features for image classification. This manuscript combines 
the GBRUN algorithm of EfficientNet to classify the CT 
images of COVID-19 [45].

5.1 EfficientNet
Convolutional neural networks are usually developed 

with a fixed resource budget and scaled up to obtain better 
accuracy if more resources are available [46-47]. Mingxing 
Tan and Quoc V. Le propose an efficient and straightforward 
composite coefficient to scale up the network from depth, 
width, and resolution dimensions. Experiments show that 
EfficientNet is much faster than other networks and has 
higher accuracy.

This manuscript uses EfficientNet for feature extraction 
of CONVID-19 CT images. EfficientNet designs the baseline 
network by multi-objective neural structure search.After the 
image input A, it first passes through the convolution layer, 
followed by the MBConv stage, the pooling stage, and the 
output stage.

EfficientNet provides a pre-trained model of its 
benchmark network EfficientNet-b0. First, this manuscript 
transfers the retained weights to the new model by transfer 
learning so that the new model can perform the binary 
classification task [48]. Finally, the 1280-dimensional feature 
vector of the pooling layer is extracted for the next step of 
feature selection. efficientNet-b0 and its detailed parameters 
are shown in Table 6.

 Table 3. Mean classification accuracy
Data
set GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

DS1 0.1617 0.2725 0.2725 0.1553 0.2133 0.2122 0.0914 0.1542 0.1611 0.1600 0.1361 0.1406

DS2 0.0963 0.1397 0.1523 0.0968 0.1302 0.1334 0.0589 0.0932 0.0961 0.1099 0.0857 0.0923

DS3 0.3135 0.3683 0.3882 0.3177 0.3388 0.3388 0.2325 0.3118 0.3123 0.3175 0.3090 0.3072

DS4 0.2254 0.4629 0.4473 0.2257 0.3553 0.2973 0.1689 0.2242 0.2277 0.2327 0.2208 0.2236

DS5 0.8656 0.9100 0.9050 0.8671 0.8926 0.8976 0.8421 0.8643 0.8652 0.8749 0.8645 0.8636

Table 4. Mean selected feature subsets
Data
set GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

DS1 2433.80 647.40 509.40 2340.30 929.07 1136.10 2760.47 2463.63 2141.20 2271.63 3244.40 2781.73

DS2 543.00 137.07 155.93 577.77 205.23 251.30 636.13 548.83 504.07 529.07 695.50 645.53

DS3 1161.87 363.20 354.23 1213.90 547.53 734.83 1250.57 1144.10 1088.50 1034.03 1499.93 1280.50

DS4 1214.20 142.90 98.57 1187.43 251.10 505.83 1482.60 1348.30 1146.33 1245.27 1751.53 1501.20

DS5 1732.83 217.23 387.43 1830.80 538.37 672.87 2061.77 1832.67 1657.30 1733.50 2400.50 2101.20

Table 5. Mean fitness values
Data
set GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

DS1 0.8239 0.6984 0.6969 0.8289 0.7578 0.7612 0.8943 0.8313 0.8211 0.8236 0.8554 0.8478

DS2 0.8851 0.8240 0.8129 0.8863 0.8364 0.8356 0.9251 0.8882 0.8833 0.8715 0.8985 0.8939

DS3 0.6812 0.6092 0.5901 0.6786 0.6418 0.6465 0.7604 0.6824 0.6805 0.6742 0.6939 0.6902

DS4 0.7610 0.5132 0.5271 0.7601 0.6176 0.6780 0.8202 0.7649 0.7574 0.7547 0.7747 0.7686

DS5 0.1539 0.0887 0.0961 0.1539 0.1102 0.1074 0.1812 0.1566 0.1530 0.1450 0.1649 0.1613
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Table 6. EfficientNet-b0 baseline network

Stage Operator Image
resolution Channels Layers

1 Conv 3×3  224×224 32 1

2 MBConv1,
k3x3 112×112 16 1

3 MBConv6,
k3x3 112×112 24 2

4 MBConv6,
k5x5 56×56 40 2

5 MBConv6,
k3x3 28×28 80 3

6 MBConv6,
k5x5 14×14 112 3

7 MBConv6,
k5x5 14×14  192 4

8 MBConv6,
k3x3 7×7 320 1

9 Conv1x1 
Pooling & FC 7×7 1280 1

5.2 Database Used
In this section, the COVID-19 CT database was chosen 

to predict COVID-19 [49]. There are 699 chest CT images 
of COVID-19 patients and 397 chest CT images of non-
COVID-19 patients in the COVID-19 CT dataset. The 
accuracy of this dataset has been confirmed by the physicians 
involved [50].

5.3 Experimental Settings
In this experiment, SVM is used to classify the feature 

data. The approach is to find a hyperplane that separates 
the features of a given data set into two classes. SVM trains 
a model that maps the training samples as points in space 
and maximizes the separation between the two categories. 
Finally, it maps the test samples into space and determines 
which category they belong to based on their position in 
space. There are five evaluation metrics in SVM:  Accuracy, 
Recall, Precision, F1 − Score, Area Under Curve (AUC) and 
Receiver Operating Curve (ROC).

TP TNAccuracy
TP TN FP FN

+
=

+ + +
.                   (41)

TPRecall
TP FN

=
+

.                              (42)

TPPrecision
TP FP

=
+

.                            (43)

1 Precision RecallF Score
Precision Recall

×
− =

+
.                   (44)

 ● True Positive (TP): COVID-19 patients were 
diagnosed as positive.

 ● True Negative (TN): Healthy people were diagnosed 
as negative.

 ● False Positive (FP): Healthy people diagnosed with 
COVID-19 infection.

 ● False Negative (FN): COVID-19 patients were 
diagnosed as negative.

The relevant parameters regarding the experiment are 
shown in Table 7.

Table 7. Parameter settings of the considered algorithms

Algorithms Parameters Values

Common to 
all algorithms

Kernel rbf
Test Size 40%

Number of iterations 100
Population size 10

Dimensions 1280
Domain {0,1}-Binary

GBRUN Transfer Function S, V, U
BRUN Transfer Function S, V, U
BJAYA lb, ub 0, 1
BWOA b 1
BHHO β 1.5
BGWO α [0,2]

BSSA lb, ub and Transfer 
Function 0, 1 and S

BSCA lb, ub 0, 1

Table 8. Results of the considered algorithms
Evaluation
indicators GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

Fitness 0.0721 0.0292 0.0361 0.0754 0.0420 0.0510 0.0869 0.0778 0.0763 0.0851 0.0880 0.0744
Accuracy 0.9404 0.9725 0.9679 0.9450 0.9587 0.9541 0.9450 0.9450 0.9450 0.9450 0.9450 0.9495

Recall 0.9510 0.9902 0.9706 0.9608 0.9706 0.9608 0.9510 0.9510 0.9608 0.9510 0.9510 0.9510
Precision 0.9238 0.9528 0.9612 0.9245 0.9429 0.9423 0.9327 0.9327 0.9245 0.9327 0.9327 0.9417
F1-core 0.9372 0.9712 0.9659 0.9423 0.9565 0.9515 0.9417 0.9417 0.9423 0.9417 0.9417 0.9463
AUC 0.9775 0.9887 0.9842 0.9830 0.9855 0.9837 0.9817 0.9819 0.9838 0.9806 0.9814 0.9807

Feature 
subsets 396 77 142 591 72 190 898 681 619 846 904 664
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5.4 Experimental Results and Discussion
Figure 7 shows the convergence curves of all algorithms. 

As shown in Figure 7, the GBRUN algorithm can obtain 
better fitness values than BRUN and other advanced 
algorithms in the early iterations. During the 10th iteration 
to the 85th iteration, the GBRUN algorithm relies on its 
powerful search ability to search for better solutions in high-
dimensional space. The best fitness value is obtained for 
GBRUN-V in the proposed algorithm.

Figure 7. The convergence curves of all algorithm

Figure 8, Figure 9, and Figure 10 are the ROC curves of 
GBRUN-S, GBRUNV and GBRUN-U, respectively.

Figure 8. The ROC curve of GBRUN-S

Figure 9. The ROC curve of GBRUN-V

Figure 10. The ROC curve of GBRUN-U

The experimental results of all algorithms in Acc, recall, 
precision, F1 − Score, and AUC are shown in Table 8. The 
Table 8 shows that the proposed GBRUN-V, GBRUN-U 
method can reduce the number of features from 1280 to 
77 and 142, which reduces the feature dimensionality by 
85%-90% compared to BJAYA, BWOA, BHHO, BGWO, 
BSSA, and BSCA. Analysis of the data in Table 8 shows 
that GBRUN-V achieves the best fitness value of 0.0291, 
improving 66.51%, 60.88%, 65.76%, 61.86%, 62.59% and 
66.93% over the BJAYA, BSCA, BGWO, BHHO, BWOA, 
BSSA algorithms. Similarly, the GBRUN algorithm has been 
improved to varying degrees relative to other comparative 
algorithms in Accuracy, Recall, Precision, F1 − Score, and 
AUC evaluation metrics.

6  Conclusion

In this manuscript, three different transfer functions are 
designed to convert the continuous RUN algorithm to the 
BRUN algorithm. The improved GSR mechanism is applied 
to BRUN to enhance the exploration capability. The GBRUN 
algorithm gains a stronger exploration capacity, allowing it 
to quickly eliminate a large number of redundant features 
when dealing with high-dimensional FS problems. In order 
to evaluate the performance of the proposed algorithm, five 
standard datasets were selected for testing in this manuscript. 
The experimental results show that the proposed GBRUN 
algorithm outperforms other state-of-the-art algorithms in 
terms of the number of features selected and the classification 
accuracy.

In addition, this manuscript combines the GBRUN 
algorithm with EfficientNet for the COVID-19 CT image 
classification problem. The GBRUN algorithm achieves the 
best results on Accuracy, Recall, Precision, F1 − Score, AUC, 
and ROC compared with other algorithms. The GBRUN 
algorithm is not yet combined with other neural networks 
to test the performance. The neural networks used need to 
perform migration learning first, which consumes a long time. 
Later, we will consider how to use untrained neural networks 
to extract features and reduce resource consumption.
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