
GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 341

*Corresponding Author: Shu-Chuan Chu; E-mail: scchu0803@gmail.com
DOI: 10.53106/160792642024052503001

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for
Feature Selection

Zhi-Chao Dou1, Shu-Chuan Chu1,2*, Zhongjie Zhuang1, Ali Riza Yildiz3, Jeng-Shyang Pan1

1 College of Computer Science and Engineering, Shandong University of Science and Technology, China
2 College of Science and Engineering, Flinders University, Australia

3 Department of Mechanical Engineering, Bursa Technical University, Turkey
douzhichao2021@163.com, scchu0803@gmail.com, zhongjiezhuang@126.com,

aliriza@uludag.edu.tr, jspan@cc.kuas.edu.tw

Abstract

Feature selection (FS) is a pre-processing technique
for data dimensionality reduction in machine learning and
data mining algorithms. FS technique reduces the number
of features and improves the model generalization ability.
This study presents a Gradient Search-based Binary Runge
Kutta Optimizer (GBRUN) for solving the FS problem of
high-dimensional. First, the proposed method converts the
continuous Runge Kutta optimizer (RUN) into a binary
version through S-, V-, and U-shaped transfer functions.
Second, a gradient search method is introduced to improve
the exploration capability of the algorithm. Five standard
datasets provided by Arizona State University’s Data Mining
and Machine Learning Lab were selected to verify the
performance of the GBRUN algorithm. The experimental
results show that GBRUN has better performance than
other advanced algorithms regarding classification
accuracy and the number of selected features. Moreover,
the GBRUN algorithm is also combined with EfficientNet
in this manuscript, using the GBRUN algorithm to select
the features extracted by EfficientNet. The results show
that the V-shaped (GBRUN-V) and U-shaped (GBRUN-U)
algorithms have better performance than other algorithms.

Keywords: GBRUN, Feature selection, Runge Kutta method,
COVID-19 dataset, EfficientNet

1 Introduction

With the rapid development of science and technology,
the complexity and diversity of data in various fields are
increasing. However, high-dimensional data often suffer
from a range of problems such as missing data and redundant
features, making data processing more difficult [1]. FS is
a common data pre-processing method that can effectively
reduce the number of feature dimensions to reduce the
difficulty of data processing, reduce processing equipment’s
performance requirements, and improve data processing
efficiency. FS has been commonly used in many fields such
as deep learning and data mining [2-3].

Many researchers use Meta-heuristic algorithms based on
the ease of use and flexibility of Meta-heuristic algorithms to
deal with FS problems [4]. Meta-heuristic algorithms can be
divided into two broad categories: Evolutionary Algorithms
(EA) and Swarm Intelligence (SI) optimizers [5-8]. The
differential evolution algorithm (DE) is an efficient global
optimization algorithm mainly used for solving real number
optimization problems [9]. Genetic Algorithm (GA) is an
evolutionary algorithm designed by simulating the Darwinian
theory of biological evolution [10]. In addition to these two
representative algorithms, there are also Simulated Annealing
algorithms (SA), Memetic Algorithm (MA), Evolution
Strategy (ES), and Neuro Evolution (NE) [11-14]. SI uses
the sharing of information by individuals in a population to
enable the movement of the whole population to change from
disorder to order. Particle Swarm Optimization (PSO) finds
the optimal solution through collaboration and information
sharing among individuals in the group [15]. Grey Wolf
Optimizer (GWO) is designed to simulate the hunting
behavior of grey wolves [16]. The Cuckoo Search algorithm
(CS) is designed to observe and imitate the flight of cuckoos
[17]. Cat Swarm Optimization (CSO) was designed based
on feline predation strategies [18-19]. Fish Migration
Optimization (FMO) is designed based on fish migratory
behavior [20-21]. The basic idea of the Flower Pollination
Algorithm (FPA) is derived from the simulation of self-
pollination and cross-pollination of flowers in nature [22].
The Sparrow Search Algorithm (SSA) is designed based
on the foraging and anti-predatory behaviors of sparrows
[23]. The Equilibrium Optimizer (EO) is inspired by the
control volume mass balance to estimate the dynamics and
equilibrium states [24-25].

Meta-heuristic algorithms usually fall into local optimal
solutions when dealing with high-dimensional feature
selection problems [26-28]. Researchers have used parallel
methods to deal with high-dimensional problems in recent
years [29-30]. In this manuscript, parallel strategies are used
to increase the information interaction capability between
individuals and improved gradient search rules (GSR) are
used to improve the exploration capability of the algorithm.
the GBRUN algorithm is validated on five high-dimensional
datasets and a real-world optimization problem provided
by Arizona State University. The experimental results show

342 Journal of Internet Technology Vol. 25 No. 3, May 2024

that the GBRUN algorithm achieves better results in FS
problems, and the GBRUN algorithm demonstrates its ability
to solve real-world problems in practical applications. The
main contributions of this manuscript are as follows:

 ● Convert RUN algorithm to the binary version using
S-, V-, and U-shaped transfer functions.

 ● Improving the performance of the BRUN algorithm
using the enhanced Gradient Search method.

 ● Validate the performance of the GBRUN algorithm
on high-dimensional datasets and compare it
with other state-of-the-art algorithms in terms of
classification accuracy and number of selected
features.

 ● Combining GBRUN algorithm and EfficientNet to
deal with the classification problem of COVID-19
CT images.

The manuscript is organized as follows: Section 2
introduces the basic concepts of the RUN algorithm.
Section 3 shows how to convert the RUN algorithm, which
is in continuous space, into a binary version and apply the
improved GSR mechanism to the BRUN algorithm. Section
4 tests the performance of the GBRUN algorithm using five
standard datasets. Section 5 introduces the GBRUN algorithm
combined with EfficientNet to handle the classification
problem of COVID-19 CT images. Section 6 gives the
conclusions.

2 Runge Kutta Optimizer

Runge Kutta optimizer is an algorithm proposed by Iman
et al. in 2021 [31]. The RUN algorithm is an intelligence
model based on random conditions. The main idea of the
RUN algorithm is inspired by the idea of calculating the
slope in the Runge Kutta method [32]. Firstly, the RUN
algorithm uses the fourth-order Runge-Kutta (RK4) equation
to construct the RK4 search logic. Moreover, the RUN
algorithm is based on the RK4 search logic to design a
solution for position updating. Finally, the RUN algorithm
introduces an Enhanced Solution Quality (ESQ) mechanism
to improve the quality of the solution.

2.1 Search Logic
The RUN algorithm uses the fourth-order Taylor

equation derived from the Runge Kutta Method as the main
exploration logic, usually noted as the RK4 equation. It can
be expressed as Equation 1.

1 2 3 4

1
() () (2 2)

6
y x x y x k k k k x+ ∆ = + + × + × + × ∆ . (1)

Where k1 is the slope of the curve S at the point
(x, y) and k2, k3 and k4 correspond to the slope of the

point at
1

(,)
2 2

x y
x y k

∆ ∆
+ + × , 2(,)

2 2

x y
x y k

∆ ∆
+ + × and

3(,)
2 2

x y
x y k

∆ ∆
+ + × respectively.

The RK4-based search mechanism can effectively

improve the algorithm’s exploration capability in the solution
space. To further improve the search speed, RUN abandons
the traditional method of adjusting the search position
according to the fitness value of the objective function and
uses a position-based update method for solving. Thus k1 can
be written as Equation 2.

1

1
()

2 rw rbk R X u X
x

= × − ×
∆

. (2)

(1) (1)u round R R= + × − . (3)

Where Xrw and Xrb represent the best and worst positions
of the three randomly selected individuals. The parameter u
increases the influence of the current global optimal solution
on the next stage of the search process of the algorithm. ∆x
is the position increment and R is a random number between
[0,1].

Based on the above equation, the remaining three
parameters k2, k3, k4 can likewise be rewritten as Equation 4,
Equation 5, and Equation 6.

2 1 1

1
(() ())

2
rw rb

k R X R k x u X R k x
x

= × + × ∆ − × + × ∆
∆

. (4)

2 2

3

1
(() ())

2 2 2
rw rb

k k
k R X R x u X R x

x
= × + × ∆ − × + × ∆

∆
. (5)

4 3 3

1
(() ())

2
rw rb

k R X R k x u X R k x
x

= × + × ∆ − × + × ∆
∆

. (6)

Ultimately, the equation for the RUN search mechanism
can be written as Equation 7.

1 2 3

1
(2 2 4)

6
SM k k k k x= + + + × ∆ . (7)

2.2 Update Method
The RUN algorithm starts searching for a random

solution. It uses the RK4 method as the basic equation for
position updating in subsequent iterations, with global and
local searches designed for position updating. The local
search is performed when R < 0.5 and the global search is
performed when R ≥ 0.5. The location update method is
shown as Equation 8.

{(1)
(1) 0.5

(1) 0.5

c st

n

m s

X r g SF SF SM X R
X

X r g SF SF SM X R

µ

µ

+

′

× + × × + × + × <
=

× + × × + × + × ≥
. (8)

Xn
(t+1) represents the individual position of the n − th

individual at the (t + 1) − th iteration, r is an integer taking
values of -1, 0 or 1. g is a random number taking values in the
range [0,2] and μ is a random number based on the standard
normal random number randn. μ denoted as Equation 9.

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 343

0.5 0.1 randnµ = + × . (9)

SF function is used to balance the exploration and
exploitation phases of the algorithm. The SF decreases as the
number of iterations increases, which is defined as Equation
10.

2 (0.5) exp()
iter

t
SF R b R

Max
= × − × − × × . (10)

The b = 2 is a constant value. Maxiter is the maximum
number of iterations, and t represents the current number of
iterations.

Xc, Xm, Xs, and Xs' represent the positions of the
individuals., Xc, Xm, Xs, and Xs' can be represented by
Equation 11, Equation 12, Equation 13 and Equation 14.

()
1(1)t

c rX R X R X= × + − × . (11)

(1)
m best lbest

X R X R X= × + − × . (12)

()
s m c

X randn X X= × − . (13)

1 2
()

s r r
X randn X X′ = × − . (14)

Xbest represents the best position that can be reached. Xlbest
represents the best position that can be reached in the current
iteration. Xr1, Xr2 represent the positions of two randomly
selected individuals, where Xr1 ≠ Xr2 ≠ Xn.

2.3 Enhanced Solution Quality Mechanism
In the RUN algorithm, the solution quality is improved by

applying the Enhanced Solution Quality (ESQ) mechanism.
ESQ mechanism calculates the average of three random
solutions Xavg and generates a new solution Xnew by combining
the location of the solution Xbest. The final equation to
generate the new solution Xnew1 is shown as Equation 15.

{1

, 1

, 1.

new new avg

new

new avg new avg

X R w X X randn w
X

X X r w R X X randn w

+ × × − + <

=
− + × × × − + ≥

. (15)

(1)
new avg best

X R X R X= × + − × . (16)

Parameter W is shown as Equation 17, which decreases
with increasing number of iterations.

2 exp(5)
iter

t
w R R

Max
= × × − × × . (17)

The Xnew1 generated in this solution may not necessarily
have a better fitness value than the optimal global solution. In
order to create a better solution, the RUN algorithm designs

an additional solution to generate a new position Xnew2. Xnew2
is calculated as Equation 18.

2 1 1
(1) (())t

new new best new
X R X SF R X r X X= − × + × × + × − . (18)

Algorithm 1 and Figure 1 give the pseudo-code and
flowchart for the RUN.

3 Gradient Search-based Binary Runge
Kutta optimizer (GBRUN)

The RUN algorithm is designed based on the Runge
Kutta Method and searches for the optimal solution using the
improved Runge Kutta method. Moreover, it balances the
exploration and exploitation capability of the algorithm with
the help of the ESQ mechanism to avoid falling into local
optimal solutions during the iteration. The authors, Iman et
al., have demonstrated the better performance of the RUN
algorithm than other algorithms in benchmark functions
and practical engineering applications. Because of this, the
BRUN algorithm is designed to solve the FS problem.

Algorithm 1. The pseudo-code of RUN
Initialize the individuals’ positions Xn (n = 1, 2, ..., N)
Calculate the Fitness value Fitnessn (n = 1, 2, ..., N) for
each individual
 1: while t ≤ Maxiter do
 2: for n=1:N do
 3: Calculate the position of (1)t

nX + according to
Eq. (7) and Eq. (9)
 4: Calculate the fitness value Fitnessnew for
individual (1)t

nX +

 5: if Fitnessnew < Fitnessn then
 6: Update position Xn and Fitness value
Fitnessn

 7: end if
 8: if R < 0.5 then
 9: Calculate position Xnew using Eq. (16)
10: Calculate position Xnew1 using Eq. (15)
11: Calculate the fitness value Fitnessnew1 for
individual Xnew1

12: if Fitnessnew1 < Fitnessn then
13: Update position Xn and Fitness value
Fitnessn

14: else
15: Calculate position Xnew2 using Eq. (17)
16: Calculate the fitness value Fitnessnew2 for
Individual Xnew2

17: if Fitnessnew2 < Fitnessn then
18: Update position Xn and Fitness value
Fitnessn
19: end if
20: end if
21: end if
22: end for
23: end while

In FS problems, the problem of how to process feature
data efficiently is still a pressing issue. The feature data is

344 Journal of Internet Technology Vol. 25 No. 3, May 2024

often high-dimension, non-linear, and has many redundant
features. Therefore the feature selection problem often yields
multiple locally optimal solutions. This requires the algorithm
to have a strong exploration capability during the iterative
process and to avoid falling into local optimal solutions as
much as possible. The RUN algorithm is used for problems
with continuous values, so converting the RUN algorithm to
a binary version is necessary.

Figure 1. The flowchart of RUN algorithm

To achieve this, the RUN algorithm replaces the position
update method with a 0-1 value update method by transfer
functions. The BRUN algorithm changes the position of
an individual in the 0-1 hypercube by changing the 0-1
value. The transfer function describes the probability that
an individual will change from 0 to 1 or from 1 to 0. In this
manuscript, three transfer functions are designed to convert
the RUN algorithm’s position update method to update
probabilities with 0-1 values.

In addition, existing data tend to vary towards high-
dimension and high complexity. In order to obtain better
exploration capability of the algorithm, an improved GSR
is introduced in this study to improve the search capability
of the BRUN algorithm. The GSR mechanism is based on
a gradient search method and is combined with Newton’s
method to effectively improve the exploration capability of
the algorithm in solution space.

3.1 Initialization
The RUN algorithm generates a random initial position

by giving the function the upper bounds (ub) and lower
bounds (lb). In the BRUN algorithm, the initial position is
created by a random method. The initial position method can
be denoted as Equation 19.

(,)

0, 0.5

1, 0.5
n d

R
X

R

≥
=

<

. (19)

X(n, d) represents the position of the n − th individual in the
d − th dimension.

3.2 Transfer Functions
Transform the algorithm to a binary version using a

transfer function is efficient and straightforward. The transfer
function maps the velocity values of the individual moves in
the RUN algorithm to the range [0,1]. The structure of the
RUN algorithm is preserved to the maximum extent possible.
The S-, V-, and U-Shaped transfer functions used in this
manuscript are represented by Equation 20, Equation 21,
and Equation 22. The transfer functions curves are shown in
Figure 2, Figure 3, and Figure 4.

Figure 2. The curve of S-Shape transfer function

Figure 3. The curve of V-Shape transfer function

Figure 4. The curve of U-Shape transfer function

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 345

(,)

1
(,)

1 E n d
S n d

e−
=

+
. (20)

(,) ((,))
2

V n d erf E n d
π

= × . (21)

1.5(,) ((,) ,1)U i d min E n d= . (22)

E(n, d) represents the velocity value of the n − th
individual in the d − th dimension.

The transfer function is used to obtain the probability of
individual position transformation in the 0-1 space. Then, a
random number R is introduced to increase the randomness of
the position transformation. The positions of the individuals
were updated using Equation 23, Equation 24, and Equation
25, respectively.

1

(,)

0, (,)

1, (,)
t

n d

R S n d
X

R S n d
+

<
=

≥

. (23)

1 1

(,)1

(,) 1

(,)

, (,)

, (,)

t

n dt

n d t

n d

X R V n d
X

X R V n d

+ −

+

+

<
=

≥

. (24)

1 1

(,)1

(,) 1

(,)

, (,)

, (,)

t

n dt

n d t

n d

X R U n d
X

X R U n d

+ −

+

+

<
=

≥

. (25)

Where (,)
t
n dX and 1

(,)
t
n dX + represent the position of the n −

th individual’s d − th dimension at the t − th iteration and the
(t + 1) − th iteration, respectively. When using the S, U, V
transfer function, the position is updated using the Equation
23, Equation 24, Equation 25 respectively. S-shape functions
convert infinite continuous space values to values between
[0,1] in a stable manner and update individual positions to 0
or 1. V-Shaped function and U-Shaped function do not force
the individual position to set 0 or 1. The individual position
will only move to the opposite position if the individual
moves at a large speed; otherwise, it will not change.

3.3 Gradient Search Rule (GSR)
GSR starts from the current solution and explores the

solution space along a specified gradient [33]. The GSR
mechanism uses the numerical gradient method instead of
function derivation, effectively avoiding many cases where
the optimization problem is not differentiable.

2
1 n

n n

x X
GSR randn p

yp yq ε

∆ ×
= × ×

− +
. (26)

Where p1 decreases as the number of iterations increases.
p1 is used to balance the GSR exploration and exploitation
process. ε is a random number between [0,0.1]. ypn and yqn
are two positions obtained based on Newton’s method to

improve the GSR performance design, they can be expressed
as Equation 27 and Equation 28.

()
2

n n
n

Z X
yp R R x

+
= × + ×∆ . (27)

()
2

n n
n

Z X
yq R R x

+
= × − ×∆ . (28)

Zn can be expressed as Equation 29.

2 n
n n

worst best

x X
Z X R

X X ε
∆ ×

= − ×
− +

. (29)

Xworst represents the worst position. ∆x is determined by
Xbest, Xr1 and the parameter δ. δ is determined by randomly
selecting four positions Xr1, Xr2, Xr3 and Xr4, where (r1 ≠ r2
≠ r3 ≠ r4 ≠ n). In order to improve the search capability of
GSR, a random number R is introduced here, taking values in
the range [0,1]. ∆x can be expressed as Equation 30, δ can be
expressed as Equation 31.

1

2
best rX X

x R
δ− +

∆ = × . (30)

1 2 3 42 ()
4

r r r r
n

X X X X
R Xδ

+ + +
= × × − . (31)

To increase the influence of all individuals in the
population on the change in the current individual’s position,
we rewrite the parameter δ as Equation 32.

12 ()
N
i

nR X
N

δ =Σ
= × × − . (32)

N represents the number of individuals, and Xi represents
the position of the i − th individual.

In addition, the GSR uses the Direction of Movement
(DM) method, which helps to explore the area around the
individual better. DM can represent as Equation 33.

2 ()best nDM R p X X= × × − . (33)

2 2p R α α= × × − . (34)

According to the GSR and DM methods, the position of
X1 can be calculated by Equation 35.

1 nX X GSR DM= − + . (35)

Likewise X1 can be expressed as Equation 36.

2
1 1 2 ()n

n best n

n n

x X
X X randn p R p X X

yp yq ε

∆ ×
= − × × + × × −

− +
. (36)

346 Journal of Internet Technology Vol. 25 No. 3, May 2024

However, Equation 36 is suitable for global search but not
for local search. The position of X2 is obtained by replacing
Xn and Xbest in Equation 36. X2 is shown in Equation 37.
Equation 37 performs a local search using the positions of
Xr1, Xr2 and Xbest.

1 2

2
2 1 2 ()n

best r r
n n

x X
X X randn p R p X X

yp yq ε

∆ ×
= − × × + × × −

− +
. (37)

Finally, based on the positions of X1 and X2, the new
position (1)t

nX + be represented as Equation 38.

(1) (1 (1) 2) (1) (1 (2 1))t
GSR nX R R X R X R X p X X+ = × × + − × + − × − × − . (38)

In addition, an Execution Control function (EC) has been
added to this manuscript. The EC decreases as the number
of iterations increases. This function controls the GSR
mechanism to be executed with a higher probability in the
early stages of the algorithm to balance the exploration and
exploitation capabilities of the algorithm. The EC function is
expressed as Equation 39, and the curve of the EC is shown
in Figure 5.

3 1((1) ,1)
iter iter iter

i iC min
Max Max Max

θ= − × + × . (39)

Parameter θ = 0.01 is a constant value.

Figure 5. The execution control function evolution curve

The final GBRUN algorithm pseudo-code is represented
in Algorithm 2, and the flowchart is represented in Figure 6.

Algorithm 2. The pseudo-code of GBRUN
Initialize the individuals’ positions Xn (n = 1, 2, ..., N)
using Eq. (18)
Calculate the Fitness value Fitnessn (n = 1, 2, ..., N) for
each individual
1: while t ≤ Maxiter do
 2: for n=1:N do
 3: if C ≥ R then
 4: Calculate position (1)t

nX + using Eq. (37)

 5: if fitness of (1)t
GSRX + < fitness of Xn then

 6: Update position Xn and Fitness value

Fitnessn
 7: end if
 8: end if
 9: end for
10: for n=1:N do
11: Calculate the position of (1)t

nX + according to
Eq. (7), Equation 8 and transfer function
12: Calculate the fitness value Fitnessnew for
individual (1)t

nX +
13: if Fitnessnew < Fitnessn then
14: Update position Xn and Fitness value
Fitnessn
15: end if
16: if 0.5R < then
17: Calculate position Xnew using Eq. (16)
and transfer function
18: Calculate position Xnew1 using Eq. (15)
and transfer function
19: Calculate the fitness value Fitnessnew1 for
individual
20: if Fitnessnew1 < Fitnessn then
21: Update position Xn and Fitness value
Fitnessn
22: else
23: Calculate position Xnew2 using Eq. (17)
and transfer function
24: Calculate the fitness value Fitnessnew2 for
Individual Xnew2
25: if Fitnessnew2 < Fitnessn then
26: Update position Xn and Fitness value
Fitnessn
27: end if
28: end if
29: end if
30: end for
31: end while

Figure 6. Flowchart of GBRUN algorithm

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 347

4 GBRUN for Feature Selection

FS is a multi-objective optimization problem. The effect
of FS should be considered in two metrics: classification
accuracy and the number of selected features. The ideal result
is a dynamic balance between these two evaluation metrics.
In other words, FS should achieve higher classification
accuracy while selecting fewer features.

4.1 Experimental Setup and Dataset Explanation
Both Support Vector Machine (SVM) and K-Nearest

Neighbor (KNN) have commonly used classification
algorithms [34-35]. The KNN classifier is used as an
evaluator in this experiment. The KNN classifier first
calculates the distance between unknown and known
instances based on the parameter K. The obtained distances
are sorted in ascending order. If the K most similar samples
in a given feature space belong to a certain class, the sample
will be classified into that class. The more relevant the
features in the feature subset, the higher the classification
accuracy. This manuscript uses a wrapper- based approach as
the fitness function, as shown in Equation 40.

S

M

F
Fitness Acc

F
λ η= × + × . (40)

Where λ is equal to 0.95 and η is equal to 0.05. λ, η
are used to balance the two evaluation metrics. Acc is the
classification accuracy. FS is the number of features selected,
and FM is the total features number of the dataset.

Five standard datasets provided by the Data Mining and
Machine Learning Laboratory of Arizona State University
were used in this manuscript. The parameters such as dataset
attributes are shown in Table 1.

To verify the performance of the proposed GBRUN
algorithm, BRUN-S, BRUN-V, BRUN-U, Binary JAYA
(BJAYA) [36], Binary Whale Optimization Algorithm
(BWOA) [37], Binary Harris Hawks Optimizer (BHHO)
[38], Binary Grey Wolf Optimization (BGWO) [39], binary
Salp Swarm Algorithm (BSSA) [40], and Binary Sine–
Cosine Algorithm (BSCA) are selected for comparison with
the GBRUN algorithm in this experiment [41]. Table 2 gives
information about the attributes of the datasets.

4.2 Results Analysis
In this section, the proposed algorithm is compared with

BRUN-S, BRUN-V, BRUN-U, BJAYA, BWOA, BHHO,
BGWO, BSSA, and BSCA in classification accuracy, the
number of selected features, and fitness values. The following
discussion revolves around the algorithm’s performance on
these three evaluation metrics.

Table 3 shows the average classification accuracies of the
GBRUN algorithm and other comparison algorithms on the
five datasets. Table 3 shows that the proposed GBRUN-U
achieves the highest classification accuracy on GLIOMA,
Yale, colon, and warpPIE10P datasets. GBRUN-V achieves
the highest classification accuracy on GLIOMA, and
lung datasets. The algorithm performance is significantly
improved with the introduction of parallelism and improved
GSR strategy.

Table 4 shows the average number of features selected
by the algorithm on the dataset. The GBRUN-V algorithm
selected the minimum number of features on the Yale
and lung datasets. The GBRUN-U algorithm selected the
minimum number of features on the GLIOMA, colon,
and warpPIE10P datasets. The GBRUN algorithm has a
significant advantage in selecting the number of features
compared to BRUN and other comparison algorithms.

Table 1. The datasets’ descriptions
Data set Set no. Number of instances Number of features Number of classes Keywords

GLIOMA DS1 50 4434 4 continuous, multi-class
Yale DS2 165 1024 15 continuous, multi-class
colon DS3 62 2000 2 discrete, binary

warpPIE10P DS4 210 2420 10 continuous, multi-class
lung DS5 203 3312 5 continuous, multi-class

Table 2. Parameter settings of the considered algorithms
Algorithms Parameters Values

Common to
all algorithms

K for cross-validation 10
Number of iterations 100

Population size 10
Number of runs 30

Dimensions Number of features
Domain {0,1}-Binary

GBRUN Transfer Function S, V, U
BRUN Transfer Function S, V, U
BJAYA lb, ub 0, 1
BWOA b 1
BHHO β 1.5
BGWO α [0,2]
BSSA lb, ub and Transfer Function 0, 1 and S
BSCA lb, ub 0, 1

348 Journal of Internet Technology Vol. 25 No. 3, May 2024

Table 5 shows the performance of all algorithms.
GBRUN-V achieves optimal fitness on the warpPIE10P
and lung datasets. GBRUN-U achieves optimal fitness on
the GLIOMA, Yale, and colon datasets. The parallel strategy
can effectively improve the inter-individual information
interaction ability and increase the search stability, and the
improved GSR mechanism can enhance the algorithm search
ability and achieve better performance.

The above data show that the parallel strategy can
effectively improve the inter-individual information
interaction ability and increase the search stability, and the
improved GSR mechanism can enhance the algorithm search
ability and achieve better performance. In particular, the
GBRUN algorithm can filter out redundant features more
effectively in terms of the number of features selected.

5 Combining with Neural Networks for
Feature Selection Problems

Since the outbreak of COVID-19, many researchers have
proposed machine learning and deep learning-based methods
to classify images of COVID-19 [42-44]. However, neural
networks often contain huge number of parameters, and it is
exceptionally difficult to train neural networks from scratch.
This manuscript proposes a method to perform migration
learning using trained neural networks, extract the output
features of the previous layer of the fully connected layer
of the model after migration learning, and use the GBRUN

algorithm to perform feature selection on the extracted
features for image classification. This manuscript combines
the GBRUN algorithm of EfficientNet to classify the CT
images of COVID-19 [45].

5.1 EfficientNet
Convolutional neural networks are usually developed

with a fixed resource budget and scaled up to obtain better
accuracy if more resources are available [46-47]. Mingxing
Tan and Quoc V. Le propose an efficient and straightforward
composite coefficient to scale up the network from depth,
width, and resolution dimensions. Experiments show that
EfficientNet is much faster than other networks and has
higher accuracy.

This manuscript uses EfficientNet for feature extraction
of CONVID-19 CT images. EfficientNet designs the baseline
network by multi-objective neural structure search.After the
image input A, it first passes through the convolution layer,
followed by the MBConv stage, the pooling stage, and the
output stage.

EfficientNet provides a pre-trained model of its
benchmark network EfficientNet-b0. First, this manuscript
transfers the retained weights to the new model by transfer
learning so that the new model can perform the binary
classification task [48]. Finally, the 1280-dimensional feature
vector of the pooling layer is extracted for the next step of
feature selection. efficientNet-b0 and its detailed parameters
are shown in Table 6.

 Table 3. Mean classification accuracy
Data
set GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

DS1 0.1617 0.2725 0.2725 0.1553 0.2133 0.2122 0.0914 0.1542 0.1611 0.1600 0.1361 0.1406

DS2 0.0963 0.1397 0.1523 0.0968 0.1302 0.1334 0.0589 0.0932 0.0961 0.1099 0.0857 0.0923

DS3 0.3135 0.3683 0.3882 0.3177 0.3388 0.3388 0.2325 0.3118 0.3123 0.3175 0.3090 0.3072

DS4 0.2254 0.4629 0.4473 0.2257 0.3553 0.2973 0.1689 0.2242 0.2277 0.2327 0.2208 0.2236

DS5 0.8656 0.9100 0.9050 0.8671 0.8926 0.8976 0.8421 0.8643 0.8652 0.8749 0.8645 0.8636

Table 4. Mean selected feature subsets
Data
set GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

DS1 2433.80 647.40 509.40 2340.30 929.07 1136.10 2760.47 2463.63 2141.20 2271.63 3244.40 2781.73

DS2 543.00 137.07 155.93 577.77 205.23 251.30 636.13 548.83 504.07 529.07 695.50 645.53

DS3 1161.87 363.20 354.23 1213.90 547.53 734.83 1250.57 1144.10 1088.50 1034.03 1499.93 1280.50

DS4 1214.20 142.90 98.57 1187.43 251.10 505.83 1482.60 1348.30 1146.33 1245.27 1751.53 1501.20

DS5 1732.83 217.23 387.43 1830.80 538.37 672.87 2061.77 1832.67 1657.30 1733.50 2400.50 2101.20

Table 5. Mean fitness values
Data
set GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

DS1 0.8239 0.6984 0.6969 0.8289 0.7578 0.7612 0.8943 0.8313 0.8211 0.8236 0.8554 0.8478

DS2 0.8851 0.8240 0.8129 0.8863 0.8364 0.8356 0.9251 0.8882 0.8833 0.8715 0.8985 0.8939

DS3 0.6812 0.6092 0.5901 0.6786 0.6418 0.6465 0.7604 0.6824 0.6805 0.6742 0.6939 0.6902

DS4 0.7610 0.5132 0.5271 0.7601 0.6176 0.6780 0.8202 0.7649 0.7574 0.7547 0.7747 0.7686

DS5 0.1539 0.0887 0.0961 0.1539 0.1102 0.1074 0.1812 0.1566 0.1530 0.1450 0.1649 0.1613

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 349

Table 6. EfficientNet-b0 baseline network

Stage Operator Image
resolution Channels Layers

1 Conv 3×3 224×224 32 1

2 MBConv1,
k3x3 112×112 16 1

3 MBConv6,
k3x3 112×112 24 2

4 MBConv6,
k5x5 56×56 40 2

5 MBConv6,
k3x3 28×28 80 3

6 MBConv6,
k5x5 14×14 112 3

7 MBConv6,
k5x5 14×14 192 4

8 MBConv6,
k3x3 7×7 320 1

9 Conv1x1
Pooling & FC 7×7 1280 1

5.2 Database Used
In this section, the COVID-19 CT database was chosen

to predict COVID-19 [49]. There are 699 chest CT images
of COVID-19 patients and 397 chest CT images of non-
COVID-19 patients in the COVID-19 CT dataset. The
accuracy of this dataset has been confirmed by the physicians
involved [50].

5.3 Experimental Settings
In this experiment, SVM is used to classify the feature

data. The approach is to find a hyperplane that separates
the features of a given data set into two classes. SVM trains
a model that maps the training samples as points in space
and maximizes the separation between the two categories.
Finally, it maps the test samples into space and determines
which category they belong to based on their position in
space. There are five evaluation metrics in SVM: Accuracy,
Recall, Precision, F1 − Score, Area Under Curve (AUC) and
Receiver Operating Curve (ROC).

TP TNAccuracy
TP TN FP FN

+
=

+ + +
. (41)

TPRecall
TP FN

=
+

. (42)

TPPrecision
TP FP

=
+

. (43)

1 Precision RecallF Score
Precision Recall

×
− =

+
. (44)

 ● True Positive (TP): COVID-19 patients were
diagnosed as positive.

 ● True Negative (TN): Healthy people were diagnosed
as negative.

 ● False Positive (FP): Healthy people diagnosed with
COVID-19 infection.

 ● False Negative (FN): COVID-19 patients were
diagnosed as negative.

The relevant parameters regarding the experiment are
shown in Table 7.

Table 7. Parameter settings of the considered algorithms

Algorithms Parameters Values

Common to
all algorithms

Kernel rbf
Test Size 40%

Number of iterations 100
Population size 10

Dimensions 1280
Domain {0,1}-Binary

GBRUN Transfer Function S, V, U
BRUN Transfer Function S, V, U
BJAYA lb, ub 0, 1
BWOA b 1
BHHO β 1.5
BGWO α [0,2]

BSSA lb, ub and Transfer
Function 0, 1 and S

BSCA lb, ub 0, 1

Table 8. Results of the considered algorithms
Evaluation
indicators GBRUN-S GBRUN-V GBRUN-U BRUN-S BRUN-V BRUN-U BJAYA BWOA BHHO BGWO BSSA BSCA

Fitness 0.0721 0.0292 0.0361 0.0754 0.0420 0.0510 0.0869 0.0778 0.0763 0.0851 0.0880 0.0744
Accuracy 0.9404 0.9725 0.9679 0.9450 0.9587 0.9541 0.9450 0.9450 0.9450 0.9450 0.9450 0.9495

Recall 0.9510 0.9902 0.9706 0.9608 0.9706 0.9608 0.9510 0.9510 0.9608 0.9510 0.9510 0.9510
Precision 0.9238 0.9528 0.9612 0.9245 0.9429 0.9423 0.9327 0.9327 0.9245 0.9327 0.9327 0.9417
F1-core 0.9372 0.9712 0.9659 0.9423 0.9565 0.9515 0.9417 0.9417 0.9423 0.9417 0.9417 0.9463
AUC 0.9775 0.9887 0.9842 0.9830 0.9855 0.9837 0.9817 0.9819 0.9838 0.9806 0.9814 0.9807

Feature
subsets 396 77 142 591 72 190 898 681 619 846 904 664

350 Journal of Internet Technology Vol. 25 No. 3, May 2024

5.4 Experimental Results and Discussion
Figure 7 shows the convergence curves of all algorithms.

As shown in Figure 7, the GBRUN algorithm can obtain
better fitness values than BRUN and other advanced
algorithms in the early iterations. During the 10th iteration
to the 85th iteration, the GBRUN algorithm relies on its
powerful search ability to search for better solutions in high-
dimensional space. The best fitness value is obtained for
GBRUN-V in the proposed algorithm.

Figure 7. The convergence curves of all algorithm

Figure 8, Figure 9, and Figure 10 are the ROC curves of
GBRUN-S, GBRUNV and GBRUN-U, respectively.

Figure 8. The ROC curve of GBRUN-S

Figure 9. The ROC curve of GBRUN-V

Figure 10. The ROC curve of GBRUN-U

The experimental results of all algorithms in Acc, recall,
precision, F1 − Score, and AUC are shown in Table 8. The
Table 8 shows that the proposed GBRUN-V, GBRUN-U
method can reduce the number of features from 1280 to
77 and 142, which reduces the feature dimensionality by
85%-90% compared to BJAYA, BWOA, BHHO, BGWO,
BSSA, and BSCA. Analysis of the data in Table 8 shows
that GBRUN-V achieves the best fitness value of 0.0291,
improving 66.51%, 60.88%, 65.76%, 61.86%, 62.59% and
66.93% over the BJAYA, BSCA, BGWO, BHHO, BWOA,
BSSA algorithms. Similarly, the GBRUN algorithm has been
improved to varying degrees relative to other comparative
algorithms in Accuracy, Recall, Precision, F1 − Score, and
AUC evaluation metrics.

6 Conclusion

In this manuscript, three different transfer functions are
designed to convert the continuous RUN algorithm to the
BRUN algorithm. The improved GSR mechanism is applied
to BRUN to enhance the exploration capability. The GBRUN
algorithm gains a stronger exploration capacity, allowing it
to quickly eliminate a large number of redundant features
when dealing with high-dimensional FS problems. In order
to evaluate the performance of the proposed algorithm, five
standard datasets were selected for testing in this manuscript.
The experimental results show that the proposed GBRUN
algorithm outperforms other state-of-the-art algorithms in
terms of the number of features selected and the classification
accuracy.

In addition, this manuscript combines the GBRUN
algorithm with EfficientNet for the COVID-19 CT image
classification problem. The GBRUN algorithm achieves the
best results on Accuracy, Recall, Precision, F1 − Score, AUC,
and ROC compared with other algorithms. The GBRUN
algorithm is not yet combined with other neural networks
to test the performance. The neural networks used need to
perform migration learning first, which consumes a long time.
Later, we will consider how to use untrained neural networks
to extract features and reduce resource consumption.

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 351

References

[1] D. L. Donoho, High-dimensional data analysis: The
curses and blessings of dimensionality, AMS math
challenges lecture, pp. 1-32, August, 2000.

[2] V. Kumar, S. Minz, Feature selection: a literature
review, Smart Computing Review, Vol. 4, No. 3, pp.
211-229, June, 2014.

[3] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino,
J. Tang, H. Liu, Feature selection: A data perspective,
ACM computing surveys, Vol. 50, No. 6, pp. 1-45,
November, 2018.

[4] Z. Behesht i , S . M. H. Shamsuddin, A review
of population-based meta-heurist ic algorithm,
International Journal of Advances in Soft Computing
and its Applications, Vol. 5, No. 1, pp. 1-35, March,
2013.

[5] T. Bäck, H.-P. Schwefel, An overview of evolutionary
algorithms for parameter optimization, Evolutionary
computation, Vol. 1, No. 1, pp. 1-23, March, 1993.

[6] A. Chakraborty, A. K. Kar, Swarm Intelligence: A
Review of Algorithms, in: S. Patnaik, X. S. Yang, K.
Nakamatsu (Eds.), Nature-Inspired Computing and
Optimization: Theory and Applications, Springer
International Publishing, 2017, pp. 475-494.

[7] T.-T. Nguyen, T. Dong-Nguyen, T.-G. Ngo, V.-
T. Nguyen, An Optimal Thresholds for Segmenting
Medical Images Using Improved Swarm Algorithm,
Journal of Information Hiding and Multimedia Signal
Processing, Vol. 13, No. 1, pp. 12-21, March, 2022.

[8] J.-S. Pan, M. Gao, J.-P. Li, S.-C. Chu, A compact
GBMO applied to modify DV-Hop based on layers in
a wireless sensor network, International Journal of Ad
Hoc and Ubiquitous Computing, Vol. 39, No. 1-2, pp.
20-36, February, 2022.

[9] K. V. Price, Differential Evolution, in: I. Zelinka, V.
Snášel, A. Abraham (Eds.), Handbook of optimization,
Springer, 2013, pp. 187-214.

[10] S. Mirjalili, Evolutionary algorithms and neural
networks, Springer, 2019.

[11] D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from
architectures to learning, Evolutionary intelligence, Vol.
1, No. 1, pp. 47-62, March, 2008.

[12] N. Hansen, The CMA Evolution Strategy: A Comparing
Review, in: J. A. Lozano, P. Larrañaga, I. Inza, E.
Bengoetxea (Eds.), Towards a New Evolutionary
Computat ion: Advances in the Es t imat ion o f
Distribution Algorithms, Springer Berlin Heidelberg,
2006, pp. 75-102.

[13] J. D. Knowles, D. W. Corne, M-PAES: A memetic
algorithm for multiobjective optimization, Proceedings
of the 2000 Congress on Evolutionary Computation.
CEC00 (Cat. No. 00TH8512), California, USA, 2000,
pp. 325-332.

[14] R. A. Rutenbar, Simulated annealing algorithms: An
overview, IEEE Circuits and Devices Magazine, Vol. 5,
No. 1, pp. 19-26, January, 1989.

[15] J.-J. Yan, J.-S. Fang, J. S.-H. Tsai, C.-H. Huang, S.-
M. Guo, Robust Digital-Redesign Tracking control for

Uncertain Systems: PID sliding mode Control and PSO
Algorithm, Journal of Network Intelligence, Vol. 6, No.
4, pp. 668-687, November, 2021.

[16] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf
optimizer, Advances in engineering software, Vol. 69,
pp. 46-61, March, 2014.

[17] X.-S. Yang, S. Deb, Cuckoo search: recent advances and
applications, Neural Computing and Applications, Vol.
24, No. 1, pp. 169-174, January, 2014.

[18] L. Kong, J.-S. Pan, P. Tsai, S. Vaclav, J. N. Ho, A
Balanced Power Consumption Algorithm Based on
Enhanced Parallel Cat Swarm Optimization for Wireless
Sensor Network, International Journal of Distributed
Sensor Networks, Vol. 11, No. 3, Article ID 729680,
March, 2015.

[19] J.-S. Pan, X.-F. Ji, A. Liang, K.-C. Huang, S.-C.
Chu, Parallel Binary Cat Swarm Optimization with
Communication Strategies for Traveling Salesman
Problem, Journal of Internet Technology, Vol. 22, No.
7, pp. 1621-1633, December, 2021.

[20] Q.-W. Chai, S.-C. Chu, J.-S. Pan, W.-M. Zheng,
Applying Adaptive and Self Assessment Fish Migration
Optimization on Localization of Wireless Sensor
Network on 3-D Te rrain, Information Hiding and
Multimedia Signal Processing, Vol. 11, No. 2, pp. 90-
102, June, 2020.

[21] S.-C. Chu, X.-W. Xu, S.-Y. Yang, J.-S. Pan, Parallel fish
migration optimization with compact technology based
on memory principle for wireless sensor networks,
Knowledge-Based Systems, Vol. 241, Article No.
108124, April, 2022.

[22] J.-S. Pan, T.-K. Dao, T.-S. Pan, T.-T. Nguyen, S.-C. Chu,
J. F. Roddick, An Improvement of Flower Pollination
Algorithm for Node Localization Optimization in WSN,
Information Hiding and Multimedia Signal Processing,
Vol. 8, No. 2, pp. 486-499, March, 2017.

[23] C.-Y. Ning, L.-C. Liao, T.-T. Nguyen, K.-C. Huang,
J.-S. Pan, A Routing Optimization in Wireless Sensor
Networks Based on Reverse Elite Sparrow Search
Algorithm, Journal of Network Intelligence, Vol. 6, No.
4, pp. 763-775, November, 2021.

[24] P. Hu, S.-C. Chu, V. Snasel, J.-S. Pan, Binary
Equilibrium Optimizer Algorithm, Journal of Network
Intelligence, Vol. 7, No. 1, pp. 45-58, February, 2022.

[25] A. Faramarzi, M. Heidarinejad, B. Stephens, S.
Mirjalili, Equilibrium optimizer: A novel optimization
algorithm, Knowledge-Based Systems, Vol. 191, Article
No. 105190, March, 2020.

[26] M. Alshayeji, B. Behbehani, I. Ahmad, Spark-based
parallel processing whale optimization algorithm,
Concurrency Computation: Practice Experience, Vol.
34, No. 4, Article No. e6607, February, 2022.

[27] T. G. Crainic, M. Toulouse, Parallel Strategies for Meta-
Heuristics, in: F. Glover, G. A. Kochenberger (Eds.),
Handbook of metaheuristics, Springer, 2003, pp. 475-
513.

[28] Y. Su, Y. Dai, Y. Liu, A hybrid parallel Harris hawks
optimization algorithm for reusable launch vehicle
reentry trajectory optimization with no-fly zones,
Soft Computing, Vol. 25, No. 23, pp. 14597-14617,

352 Journal of Internet Technology Vol. 25 No. 3, May 2024

December, 2021.
[29] G. Dheemanth, V. Skanda, R. Nagpal, Parallel Antlion

Optimisation (ALO) and Grasshopper Optimization
(GOA) for Travelling Salesman Problem (TSP), In:
H. S. Saini, R. Sayal, A. Govardhan, R. Buyya (Eds.),
Innovations in Computer Science and Engineering,
Springer, 2021, pp. 787-793.

[30] H.-J. Wang, J.-S. Pan, T.-T. Nguyen, S. Weng,
Distribution network reconfiguration with distributed
generation based on parallel slime mould algorithm,
Energy, Vol. 244, Article No. 123011, April, 2022.

[31] I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X.
Chu, H. Chen, RUN beyond the metaphor: an efficient
optimization algorithm based on Runge Kutta method,
Expert Systems with Applications, Vol. 181, Article No.
115079, November, 2021.

[32] J. C. Butcher, A history of Runge-Kutta methods,
Applied numerical mathematics, Vol. 20, No. 3, pp.
247-260, March, 1996.

[33] I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-
based optimizer: A new metaheuristic optimization
algorithm, Information Sciences, Vol. 540, pp. 131-159,
November, 2020.

[34] W. S. Noble, What is a support vector machine?,
Nature biotechnology, Vol. 24, No. 12, pp. 1565-1567,
December, 2006.

[35] L. E. Peterson, K-nearest neighbor, Scholarpedia, Vol.
4, No. 2, Article No. 1883, February, 2009.

[36] M. A. Awadallah, M. A. Al-Betar, A. I. Hammouri,
O. A. Alomari, Binary JAYA algorithm with adaptive
mutation for feature selection, Arabian Journal for
Science Engineering and Engineering, Vol. 45, No. 12,
pp. 10875-10890, December, 2020.

[37] A. G. Hussien, D. Oliva, E. H. Houssein, A. A. Juan,
X. Yu, Binary whale optimization algorithm for
dimensionality reduction, Mathematics, Vol. 8, No. 10,
Article No. 1821, October, 2020.

[38] T. Thaher, A. A. Heidari, M. Mafarja, J. S. Dong, S.
Mirjalili, Binary Harris Hawks Optimizer for High-
Dimensional, Low Sample Size Feature Selection, in:
S. Mirjalili, H. Faris, I. Aljarah (Eds.), Evolutionary
machine learning techniques, Springer, 2020, pp. 251-
272.

[39] Q. Al-Tashi, S. J. A. Kadir, H. M. Rais, S. Mirjalili, H.
Alhussian, Binary optimization using hybrid grey wolf
optimization for feature selection, IEEE Access, Vol. 7,
pp. 39496-39508, March, 2019.

[40] R. M. Rizk-Allah, A. E. Hassanien, M. Elhoseny, M.
Gunasekaran, A new binary salp swarm algorithm:
development and application for optimization tasks,
Neural Computing Applications, Vol. 31, No. 5, pp.
1641-1663, May, 2019.

[41] K. S. Reddy, L. K. Panwar, B. Panigrahi, R. Kumar,
A new binary variant of sine–cosine algorithm:
development and application to solve profit-based unit
commitment problem, Arabian Journal for Science and
Engineering, Vol. 43, No. 8, pp. 4041-4056, August,
2018.

[42] G. Muhammad, M. S. Hossain, COVID-19 and non-
COVID-19 classification using multi-layers fusion from

lung ultrasound images, Information Fusion, Vol. 72,
pp. 80-88, August, 2021.

[43] S.-H. Wang, V. V. Govindaraj, J. M. Górriz, X. Zhang,
Y.-D. Zhang, Covid-19 classification by FGCNet with
deep feature fusion from graph convolutional network
and convolutional neural network, Information Fusion,
Vol. 67, pp. 208-229, March, 2021.

[44] S.-H. Wang, D. R. Nayak, D. S. Guttery, X. Zhang, Y.-
D. Zhang, COVID-19 classification by CCSHNet with
deep fusion using transfer learning and discriminant
correlation analysis, Information Fusion, Vol. 68, pp.
131-148, April, 2021.

[45] M. Tan, Q. Le, Efficientnet: Rethinking model scaling
for convolutional neural networks, International
conference on machine learning , Long Beach,
California, USA, 2019, pp. 6105-6114.

[46] T. Kattenborn, J. Leitloff, F. Schiefer, S. Hinz, Review
on Convolutional Neural Networks (CNN) in vegetation
remote sensing, ISPRS Journal of Photogrammetry and
Remote Sensing, Vol. 173, pp. 24-49, March, 2021.

[47] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of
convolutional neural networks: analysis, applications,
and prospects, IEEE Transactions on Neural Networks
and Learning Systems, Vol. 33, No. 12, pp. 6999-7019,
December, 2022.

[48] Y. Pathak, P. K. Shukla, A. Tiwari, S. Stalin, S. Singh,
P. K. Shukla, Deep transfer learning based classification
model for COVID-19 disease, Irbm, Vol. 43, No. 2, pp.
87-92, April, 2020.

[49] J. Zhao, Y. Zhang, X. He, P. T. Xie, Covid-ct-
dataset: a ct scan dataset about covid-19, arXiv
preprint arXiv:.13865, March, 2020. https://arxiv.org/
abs/2003.13865v1

[50] M. Barstugan, U. Ozkaya, S. Ozturk, Coronavirus
(covid-19) classification using ct images by machine
learning methods, arXiv preprint arXiv:.09424, March,
2020. https://arxiv.org/abs/2003.09424

Biographies

Zhi-Chao Dou received his B.S. degree.
B.S. in Software Engineering from
Yantai Nanshan College. Master degree
in Software Engineering from Shandong
University of Science and Technology.
His current research interests include
populat ion intel l igence and image
processing

Shu-Chuan Chu received the Ph.D. degree
from the School of Computer Science,
Engineering and Mathematics, Flinders
University, South Australia, in 2004. She
joined Flinders University, Australia, in
December 2009. After nine years, she
was with Cheng Shiu University, Taiwan.
She has been a Research Fellow with the

College of Science and Engineering, Flinders University,
since December 2009. Currently she is a Ph.D. Advisor with

GBRUN: A Gradient Search-based Binary Runge Kutta Optimizer for Feature Selection 353

the College of Computer Science and Engineering, Shandong
University of Science and Technology, since September
2019. Her research interests are mainly in swarm intelligence,
intelligent computing, and data mining.

Zhongjie Zhuang received the B.S.
degree in network engineering from
Shandong Agricultural University, the
M.S. degree in Computer application
technology from Shandong University
of Science and Technology, where she is
currently pursuing the Ph.D. degree. Her
current research interests include swarm

intelligence, pattern recognition and image processing.

Ali Riza Yildiz is a Professor in the
Department of Mechanical Engineering,
Bursa Uludağ University, Bursa, Turkey.
His research interests are the finite
element analysis of structural components,
lightweight design, vehicle design, vehicle
crashworthiness, shape and topology
optimization of vehicle components, meta-

heuristicoptimization techniques, and additive manufacturing.

Jeng-Shyang Pan received the B.S.
degree in electronic engineering from the
National Taiwan University of Science
and Technology in 1986, the M.S. degree
in communication engineering from
National Chiao Tung University, Taiwan,
in 1988, and the Ph.D. degree in electrical
engineering from the Universi ty of

Edinburgh, U.K., in 1996. He is currently the Professor of
Shandong University of Science and Technology. He is the
IET Fellow, U.K., and has been the Vice Chair of the IEEE
Tainan Section.

