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Abstract

To protect the increasing cyberspace assets, attack 
detection systems (ADSs) as well as intrusion detection 
systems (IDSs) have been equipped in various network 
environments. Recently, with the development of big data, 
machine learning, deep learning, neural networks and other 
artificial intelligence (AI) technologies, more and more 
ADSs/IDSs based on Artificial Intelligence are presented 
in academia and industry. Particularly, depending on the 
outstanding performance and efficiency in recognizing and 
classifying images, computer vision algorithms have been 
employed to detect malicious software and malicious traffic. 
However, we found that in wireless networks, the results 
vary significantly depending on the mapping methods used to 
transform the original network traffic data into visual images. 
Therefore, in this paper, we propose an AI-based attack 
detection scheme (TV-ADS) by introducing a novel traffic-
image mapping method, which segments the sequential 
network traffic into individual event cells and transforms 
variant images to a uniform standard size, and design a CNN 
model to recognize normal and malicious traffics with these 
visible network event images. Finally, the results of our 
experiments on the AWID3 dataset demonstrate that our TV-
ADS outperforms the existing schemes in terms of accuracy, 
precision, recall, F1-score and efficiency.

Keywords: Wireless network, Attack detection, Image 
visualization, Convolutional neural network

1  Introduction

In today’s digital era, wireless networks have pervaded 
all aspects of our daily routine. From basic home Wi-Fi 
connections to wireless LANs in major corporations, and 
even the widespread integration of IoT devices. Wireless 
advancements have granted us unparalleled convenience 
and flexibility, rendering wireless technology an essential 
component of modern existence and employment. According 
to the 2023 Global Networking Trends report by Cisco, the 
number of global Wi-Fi hotspots has quadrupled from 2018 
to 2023, and wireless connectivity will account for 45% of all 
connected devices by 2023 [1]. Although wireless networks 
offer significant convenience in our daily lives, they are 

susceptible to various security threats, especially attacks 
targeting the physical and data link layers [2]. However, 
research on machine learning-based attack detection systems 
specialized in detecting Wi-Fi attacks is lagging behind, 
making attack detection in wireless networks an important 
and urgent research topic.

Compared with traditional wired networks, wireless 
networks have many inherent security risks. Firstly, due to the 
special propagation mode of wireless signals, attackers can 
carry out eavesdropping attacks without establishing a direct 
physical connection with the target network. This situation 
provides the possibility of “man-in-the-middle”, sniffing 
and spoofing attacks. Secondly, since wireless networks are 
usually simple to access, it is easier for malicious users to 
join the network and launch internal attacks [3]. In view of 
the above security threats, wireless network attack detection 
has emerged as a crucial approach for ensuring the security 
of wireless networks. Its main purpose is to discover and 
respond to potential threats and attacks in real-time by 
monitoring and analyzing wireless network traffic. In the 
field of network attack detection, machine learning shows 
promising research and application value [4-5], which can 
effectively identify attacks by learning from a vast amount of 
network traffic datasets, extracting meaningful features and 
building models [6-7].

In the past few years, deep learning has made significant 
progress in several research and application areas [8-11], 
and it focuses on learning from large amounts of data using 
multi-layer neural network models for feature extraction and 
pattern recognition. One key architecture in deep learning 
is the Convolutional Neural Network (CNN) [12], which 
is particularly suited for processing images and audio data. 
CNNs can learn features directly from raw image data, 
eliminating the need for complex pre-processing and feature 
engineering. This method of learning from low-level to 
high-level features enables CNN to achieve exceptional 
performance in image recognition tasks. There are related 
studies that consider transforming other forms of data into 
images for analysis using image processing and computer 
vision techniques. For example, for time series data, Wang 
et al. [13] transformed time series data into various types of 
GAF and MTF images to classify them with computer vision 
techniques. For textual data, Saharia et al. [14] proposed a 
text-to-image model that can transform textual content into 
images. For malware detection, Wang et al. [15] introduced 
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traffic visualization for the classification of malware traffic 
in 2017. This data transformation method made full use of 
CNN’s successful experience in the image field to discover 
patterns and associations in the data with the help of 
computer vision technology, which promoted research and 
application in related fields.

In the field of attack detection in wireless network, 
the incorporation of deep learning techniques in wireless 
network attack detection has opened up a novel perspective 
on conventional approaches. However, CNNs are primarily 
utilized for image processing, which diverges considerably 
from the data structure created within the realm of wireless 
networks. Therefore, this paper proposes a method to 
visualize wireless network traffic data as images. Each pixel 
in the image represents information from a specific segment 
of a network packet. This transformation method provides us 
with a new perspective that allows us to observe and analyze 
network traffic from an image perspective. To detect potential 
attack patterns from these images, we design and train a CNN 
model. The formed images are then classified and identified 
using the CNN, allowing for binary classification of images 
and identifying normal and attack traffic, which ultimately 
leads to efficient attack detection. During the experimental 
phase, we use the well-known 802.11 oriented AWID 
family of datasets, specifically the AWID3 wireless network 
traffic dataset released in 2021 [16], which significantly 
complements and extends the previous AWID2 dataset by 
capturing and investigating the traces of various attacks 
initiated in IEEE 802.1X Extensible Authentication Protocol 
(EAP) environments set.

In summary, our contributions in this paper are as 
follows:

 ● Packet to image transformation. To tackle the 
challenge of detecting attacks on wireless network 
traffic, we propose a framework for attack detection 
techniques that transform wireless network traffic 
into color images, providing high scalability and 
detection accuracy. To evaluate encrypted traffic, we 
conducted an evaluation consisting of 7 attacks.

 ● Avoiding manual feature extraction. To improve 
the efficiency and accuracy of the analysis, we use 
unprocessed PCAP network traffic packets, split for 
direct examination without requiring any complex 
feature engineering or domain expertise. This method 
not only simplifies the attack detection process, but 
also outperforms traditional attack detection methods 
based on feature extraction in terms of detection 
performance.

 ● Simple 2D-CNN structure for classification. Using 
simpler 2D-CNN greatly reduces model complexity. 
We design a 2D-CNN deep learning model to 
evaluate the effectiveness of visualization-based 
detection in differentiating between normal and 
attack images. This model significantly improves 
classification efficiency and accuracy, achieving a 
classification accuracy of 99.90% and precision of 
99.88%.

The rest of this paper is organized as follows: Section 
2 presents the related work on attack detection in wireless 
networks. In section 3, we analyze the PCAP file and 

introduce the wireless traffic data splitting method. 
Furthermore, section 4 describes the event cell-based image 
transformation method. We discuss our attack traffic image 
detection model and its implementation in section 5. Section 
6 presents and discusses the experimental results of our 
model. Finally, Section 7 summarizes our work and analyzes 
the study’s limitations and future research directions.

2  Related Work

With the rapid advancement of wireless network 
technology, wireless network attack detection has become 
a significant research area in the field of network security. 
Researchers have explored different approaches to combat 
these security threats in light of the continuous evolution 
of attack methods. In this section, we present an analysis of 
the historical and modern developments in wireless network 
attack detection methods across three categories: feature-
based, behavior-based, and deep learning (DL)-based. Special 
attention is given to deep learning-based methods that use 
visualization for attack detection.

2.1 Feature-based Wireless Attack Detection Methods
Feature-based network attack detection methods heavily 

rely on predefined attack rules or feature libraries to identify 
malicious activities. When the detected activity matches 
a known attack signature, the system generates an alert. 
Although this type of method typically has a high level of 
accuracy, it often faces difficulties in recognizing novel or 
previously unknown attacks.

Regarding the feature selection challenge, Riyaz et 
al. [17] proposed a feature selection algorithm based on 
conditional random fields and linear correlation coefficients. 
This algorithm effectively identified features with significant 
contributions, resulting in an impressive classification 
accuracy of 98.88% using CNN. Ahmim et al. [18] 
circumvented manual analysis by employing rough set theory 
for feature selection through a data mining approach based 
on support vector machines. Wang et al. [19] presented an 
IDS based on sparse logistic regression for feature selection, 
unifying feature selection and classification in a single 
framework, ultimately achieving an experimental accuracy of 
97.86%.

To address the issue of excessive features in the original 
dataset, Jiang et al. [20] employed Z-score normalization 
for data, applied a compressive sampling method to reduce 
the dimensionality of features, and combined this with SVM 
for classifying the compressed results, effectively detecting 
denial-of-service attacks, probe attacks, and other intrusion 
attempts. Chowdhury et al. [21] introduced a network 
intrusion detection system based on optimal features, 
achieving a real-time traffic detection rate of 87.43%. Yang et 
al. [22] proposed an improved convolutional neural network-
based wireless network intrusion detection method, this 
yielded an accuracy improvement of 8.82% compared to the 
use of LeNet-5 [23] and 0.51% improvement with regard to 
the use of DBN [24].

In summary, feature-based attack detection methods for 
wireless networks offer high efficiency, accuracy, and ease 



TV-ADS: A Smarter Attack Detection Scheme Based on Traffic Visualization of Wireless Network Event Cell   303

of implementation and management. However, they also 
suffer from drawbacks such as over-reliance on known attack 
patterns and the challenge of dealing with unknown attacks.

2.2 Behavior-based Wireless Attack Detection Methods
Behavior-based attack detection methods for wireless 

networks rely on the establishment of a baseline for normal 
network or system behavior. When detected behavior deviates 
from this baseline, the system identifies it as a potential attack 
and triggers an alert. The advantage of this approach is that 
it doesn’t depend on known attack patterns and can detect 
unknown or novel attack types. However, it has a drawback 
of relatively high false alarm rates, as demonstrated by 
Hall et al. [25] in their study of an anomaly-based detection 
method, where the false alarm rate reached as high as 100%.

Butun et al. [26] implemented Min-Max normalization to 
the dataset and modeled normal behavior using a Gaussian 
mixture model to identify anomalous data. Regarding 
program system invocation behavior, Hoang et al. [27] 
proposed a fuzzy inference mechanism to establish a soft 
boundary between abnormal and normal behavior, leading 
to a significant reduction of false alarms by 48% in their 
empirical demonstration. Denning et al. [28] identified 
attacking behaviors by modeling parameters as independent 
Gaussian random variables. They defined a specific range 
of values for univariate variables, and identified data that 
deviates significantly from this range as attacking behavior. 
Ye et al. [29] introduced a multivariate quality control 
technique to establish a comprehensive normative record 
of normal activity in an information system and to detect 
intrusions using this record. García-Teodoro et al. [30] 
introduced a model based on time series analysis, employing 
interval timers and event counters. This model classifies 
traffic instances as anomalous if they manifest with an 
unexpectedly low probability during a specified timeframe.

In summary, behavior-based methods for detecting 
wireless network attacks have advantages in detecting 
unknown attacks, but also face challenges such as 
establishing a behavioral baseline, dealing with a high 
false alarm rate, and the need for significant computational 
resources.

2.3 DL-based Wireless Attack Detection Methods
The deep learning methods circumvent the need 

for manual design and feature engineering, which are 
traditionally labor-intensive and time-consuming. Moreover, 
the use of image-based data representation offers a unique 
perspective for network traffic analysis. By converting 
complex data into visual information, researchers attempt to 
detect network intrusions using image processing techniques 
[31-36].

Rong et al. [37] preprocessed the raw conversational 
network traffic by converting it into fixed-size RGB images 
and subsequently trained a deep transfer learning model 
based on ResNet-50 [38] for the detection of previously 
unseen malware samples. Ahmad et al. [39] utilized the GAF 
technique to convert Wi-Fi frames into images, which were 
subsequently fed into a deep-based intrusion detection system 
for intrusion detection. Similarly, to fully leverage CNNs for 
processing network traffic data. Feng et al. [40] introduced 

a visualization-based V-CNN model, which provided a 
visual representation of the data prior to the CNN model, 
making it suitable for image recognition. Lin et al. [41] 
employed Cycle-GAN to convert the dataset into images, 
and subsequently utilized it to learn normal data images for 
generating anomalous data images. The generated composite 
anomalous data was then combined with the original data 
for model training. Genge et al. [42] transformed one-
dimensional data into two-dimensional image data through 
data padding to identify attacks by learning effective features.

Recent research has emphasized the substantial 
potential of machine learning and deep learning methods 
for identifying cyberattacks. However, several persistent 
challenges still need to be addressed. Firstly, the present 
feature-to-image transformation process is notably intricate, 
entailing complicated feature extraction and screening. The 
integration of this feature-to-image transformation with 
standardized raw data processing markedly increases the time 
required for detection. Consequently, this extended timeframe 
diminishes the adaptability of the system in environments 
where real-time performance is imperative. Secondly, 
many studies overlook the unique challenges posed by 
wireless networks. Unlike their wired counterparts, wireless 
networks introduce greater uncertainties in transmission 
mediums, speeds, and device connectivity. This complexity 
is compounded in encrypted wireless traffic, where obtaining 
high-level feature information becomes difficult. Such 
constraints complicate the deployment of detection methods 
reliant on application-layer features. Moreover, most current 
methods rely on complex classification algorithms that 
increase information processing time and require higher 
hardware configurations. In stark contrast, this paper 
introduces a pioneering approach: we present a wireless 
network traffic visualization technique that bypasses feature 
extraction and harnesses a simpler 2D-CNN neural network 
for classification. This significantly enhances attack detection 
efficiency and accuracy.

3  Traffic Data Splitting Method

In this section, we analyze the PCAP file, and introduce 
a packet splitting method that efficiently splits wireless 
network traffic based on event cell.

3.1 PCAP Analysis
PCAP (Packet Capture) is a network packet capture file 

format that is commonly used to store network traffic data. It 
can be employed by various network tools, such as Wireshark 
and TCPDump, for capturing and analyzing network traffic. 
This format is widely used in network traffic analysis, 
troubleshooting, and intrusion detection. PCAP file provides 
detailed information about network packets, including 
source/destination IP addresses, ports, protocols, and payload 
content. For attack detection, PCAP file analysis is invaluable 
for detecting anomalous network behavior. However, when 
dealing with large-scale network traffic data, handling a 
single large PCAP file can be challenging, necessitating the 
need for file splitting. Splitting simplifies the management 
and processing of PCAP files, making it easier to identify and 
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analyze security events that occur at specific times, such as 
intrusion attempts and malicious activities.

PCAP’s feature engineering involves data preprocessing, 
feature extraction, and normalization, along with the 
integration of features for input classification. However, 
this process adds overhead to attack detection, and the 
feature extraction process can result in the loss of critical 
information. With the increasing complexity and diversity of 
network traffic, relying solely on predefined features may not 
be sufficient to capture all types of attack behaviors. In this 
paper, we depart entirely from the feature extraction process 
to develop a featureless deep learning method that is more 
conducive to attack detection. By splitting and visualizing 
PCAP files, we transform the binary data within these files 
into images, enabling the use of image analysis techniques 
for direct detection of anomalous patterns in network traffic.

3.2 Wireless Network Traffic Splitting
Advancements in deep learning technologies now permit 

us to train models by employing a direct and streamlined 
transformation of raw data. This enables the automatic 
learning of valuable feature representations from the raw 
data. The raw PCAP files collected are often large and 
challenging to analyze. There are various methods regarding 
the splitting of wireless network traffic, such as by packet, 
session, stream, and time. However, the methods of splitting 
by stream or by session are limited by whether the traffic is 
encrypted or not, and the method of splitting by time leads to 
too much difference in the size of transformed images.

In this paper, we propose an event cell-based splitting 
method, where an event cell is a specific network packet 
or frame captured at a specific time, and each event cell 
represents a single network communication event in wireless 
network communication. In a PCAP file, an event cell 
represents one line of data in the file, i.e., a single packet. 
This method of event cell splitting is both general and 
flexible enough to be independent of any particular network 
type or structure, and provides a fine-grained perspective for 
attack detection studies of wireless network traffic.

4  Transform Event Cell into Color Image

In this section, we propose a method for transforming 
wireless network traffic packets into images after splitting 
them based on event cell, and we introduce two methods for 
image scaling.

4.1 Image Generation Method
We use the event cell-based splitting strategy to split 

the individual packets in a PCAP document into separate 
PCAP documents. We transform raw traffic packet files from 
wireless network devices into colorful images. This process 
involves multiple steps designed to transform complex 
network data into a visual format that enhances our ability to 
understand and analyze it.

Each packet is initially stored as a sequence of bytes in 
the PCAP file. To visualize the data, we convert the bytes 
into hexadecimal strings. In this conversion process, each 
byte (comprising 8 bits) is represented by 2 hexadecimal 

characters. Consequently, each packet results in a lengthy 
string of hexadecimal characters. Subsequently, we divide 
these hexadecimal characters into 6 consecutive character 
segments. Each segment represents a 24-bit (3-byte) block 
of data, which corresponds to a color value. This color value 
comprises three channels: red (R), green (G), and blue (B). 
Each of the two hexadecimal characters is interpreted as 
a decimal integer ranging from 0 to 255, representing the 
value of the respective RGB color channel. This method 
allows us to represent the information from the original 
traffic packet within the image. Different regions of the color 
image correspond to different segments of the original traffic 
packet file structure. The pseudo-code for this transformation 
algorithm is shown in Algorithm 1.

Algorithm 1. Conversion from PCAP to color image

Input: Raw Network Traffic Packets
Output: Color Image
01: function HEX_TO_RGB(hex_str)
02:      R ← int (hex_str[0:2], 16)
03:      G ← int (hex_str[2:4], 16)
04:      B ← int (hex_str[4:6], 16)   
05:      return (R, G, B)  
06: end function
07: function PCAP_TO_COLOR_IMAGE(Input)
08:      packets ← readFromPCAPfile(Input)
09:      hex_str_value ← [ ]
10:      for each packet in packets do
11:         hex_str ← convert packetbytes to hexadecimal String
12:         hex_str_values.append(hex_str)
13:      end for
14:      rgb_values ← [ ]
15:      for each hex_str in hex_str_values do
16:          for i=0 to len(hex_str) step 6 do
17:               segment ← hex_str[i:i+6]
18:               if len(segment) == 6 then
19:                    color ← HEX_TO_RGB(segment)
20:                    rgb_values.append(color)
21:               end if
22:          end for
23:      end for
24:      image ← create color image using rgb_values
25:      return image
26: end function

4.2 Image Scaling Methods
To ensure consistency and validity of the produced color 

images, we employ a strategy of fixing the width of the 
image, which helps determine the extent of image scaling. 
Our method is to choose a fixed width, typically a power of 2 
pixels, and to scale the height of the image adaptively based 
on the event cell size. This selection of width is critical in 
the subsequent processing and analysis of the images. This 
process facilitates the conversion of event cells into images of 
uniform dimensions, enabling effective data representation. 
The image height is used as an adaptive parameter to fit the 
original event cell size. The height is determined by dividing 
the total pixel count by an integer 2n greater than the width. 
This method ensures that the image information remains 
consistent with the event cell size and adjusts to the distinct 
nature of various packets. It is crucial to preserve the integrity 
of the data and information content, as event cells of varying 
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sizes necessitate different image sizes for accurate depiction 
of their contents. The image is constructed using a systematic 
filling of pixels from left-to-right and top-to-bottom. This 
padding technique ensures the accuracy of the sequence of 
information in the event cell as it is presented in the image. 

The generated image is analyzed, and the length and 
width of the image are resized to create a new image. We 
analyze and compare two image scaling methods, a crop and 
pad method which maintains a fixed number of pixels through 
crop or pad operations and uses pixel elimination for pixels 
that are outside a specified range. For pixel shortages, we use 
pixel repetition alignment to ensure that the height and width 
of the new image remain consistent. The reason for using this 
scaling method is that for the high-level information that is 
encrypted in the event cell, we consider it to be information 
that is irrelevant for attack detection. This information is 
cropped out when the generated image is cropped. Another 
method is to perform a bilinear interpolation on the generated 
image so that the size of the image remains consistent. Figure 
1 shows the effect of using two image scaling methods for an 
event cell. 

Figure 1. The effect of two types of image scaling

5  CNN Model Design

The attack traffic image detection model employs deep 
learning techniques to process the transformed wireless traffic 
images. To detect attacks on wireless network traffic, a binary 
classification model is developed. The labeled dataset is 
utilized to train the 2D-CNN model, enabling it to accurately 
classify input images into specific classes. Subsequently, new 
images of wireless network traffic are classified by this model 
when making predictions.

The described 2D-CNN structure mainly comprises 
two parts: a feature extraction component and a feature 
mapping component. The feature extraction part includes 
a convolutional layer and a pooling layer that collaborate 
to automatically extract meaningful features from the input 
image. The feature mapping part consists of a sequence of 
fully connected layers, aimed at utilizing the features obtained 
from the feature extraction part for practical classification 
tasks. The structure of the 2D-CNN is illustrated in Figure 2.

With this 2D-CNN model, image data undergoes a 
series of processing steps, starting with the input of a color 
image with three channels. The input layer receives this data 
stream, which then passes through a 2D convolutional layer. 
In this convolutional layer, 16 filters of size 3x3 are applied, 
and the Rectified Linear Unit (ReLU) activation function is 

employed. The primary objective of the convolutional layer 
is to extract essential features from the input image.

Figure 2. The structure of the 2D-CNN

Subsequently, the data passes through a max-pooling 
layer with a filter size of 2x2. Pooling layers are typically 
used to reduce the spatial dimensions of the feature maps, 
thereby reducing computational complexity and enhancing 
model efficiency. Following the pooling layer, there is a 
dropout layer with a dropout ratio of 0.2. This means that in 
each iteration, the model randomly deactivates 20% of the 
neurons, which aids in preventing overfitting of the training 
data.

The pooled feature representations are then passed to a 
flatten layer, which transforms the multidimensional feature 
maps into one-dimensional feature vectors, preparing them 
for subsequent processing by the dense layers. Subsequent 
to the flattening operation, the feature vectors are fed into 
a dense layer that consists of 32 neurons, and the ReLU 
activation function is applied. To improve the model’s 
robustness and reduce the risk of overfitting, a dropout layer 
with a dropout rate of 0.4 is introduced.

Subsequently, the data passes through another fully 
connected layer consisting of 2 neurons and utilizes a softmax 
activation function. The softmax function is a commonly 
used activation function in classification tasks, which 
converts the outputs of neurons into predictive probabilities. 
The hyperparameters of the 2D-CNN model are detailed in 
Table 1.

Table 1. 2D-CNN model hyperparameters
Parameter Value
Optimizer Adam

Convolution layer activation function ReLU
Classification layer activation function Softmax

Early stopping monitor Val_loss
Learning rate 0.001

Convolution layer filters 16
Convolution layer kernel size 3×3

Pooling layer filter size 2×2

The model is trained using the Adam optimizer and cross-
entropy loss function. To prevent overfitting, we use an early 
stopping technique to monitor loss values on the validation 
set, allowing us to halt training prematurely if necessary. We 
set the model to show no progress on the validation set for 5 
consecutive training epochs, then training ends early. Each 
epoch processes 32 samples. 
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6  Experimentation and Analysis

In this section, we perform color image transformation 
and generation experiments on the AWID3 dataset, and 
evaluate the performance of our proposed TV-ADS attack 
detection method. Additionally, we analyze the impact of 
dataset size on detection performance, as well as the required 
model training and testing time at optimal performance.

6.1 Dataset and Experimental Environment
The AWID3 dataset represents a significant expansion 

and enhancement of the previous AWID2 corpus. It captures 
and investigates traces of various attacks conducted within 
the IEEE 802.1X Extensible Authentication Protocol (EAP) 
environment, with a particular focus on analyzing attack 
activities within the IEEE 802.11 wireless network setting. 
Building upon the foundation of AWID2, this dataset offers 
more detailed and comprehensive network traffic data by 
further extending and enriching its contents.

The data collection process for the AWID3 dataset 
involves simulating a variety of attacks within wireless 
network environments, each with different security levels. 
These attacks encompass a variety of types, including 
malicious packet injection, identity spoofing, and denial of 
service. We chose seven attacks from the AWID3 dataset 
because they are specific to wireless networks. The seven 
attacks are Deauthentication, Disassociation, Rogue AP, 
Reassociation, Krack, Kr00k, and Evil Twin. We approximate 
the ratio of the number of samples of the normal traffic 
data to the attack traffic data used to be 1:1 to avoid data 
imbalance. In the total dataset, 20% is allocated as the test 
set, with the remaining 80% of the data being designated for 
training purposes. During the training process, 20% of the 
training data is further partitioned to serve as a validation 
set. Table 2 provides the number of normal and attack frames 

in each attack file and the number used in our experiments. 
Figure 3 shows a series of color images that exemplify 
each type of normal and attack data processed through 
the two scaling modes: cropping and padding and bilinear 
interpolation.

The construction process of the AWID3 dataset 
meticulously replicates a real wireless network environment, 
capturing the actual occurrences of various attacks. This 
approach enables us to rigorously test our attack detection 
methodology in authentic scenarios, thereby enhancing our 
ability to assess its performance and feasibility.

Our experiment is conducted on a Windows 10 system, 
with a CPU of 13th Gen Intel® CoreTM i9-13900K running 
at 3.00 GHz, and equipped with 128GB of RAM and 2TB 
of storage capacity. The codebase for the experiment is 
developed in Python 3.8 and executed within the PyCharm 
2023 Integrated Development Environment.

Table 2. AWID3 attack types

File name
(PCAP)

Normal 
frames

Attack 
frames

Total 
frames

Deauth 1,587,527 38,945 1,626,472
Disass 1,938,588 75,131 2,013,719

(Re)Assoc 1,838,436 5,503 1,843,939
Rogue_AP 1,971,883 1,310 1,973,193

Krack 1,388,503 49,990 1,438,493
Kr00k 2,708,655 191,803 2,900,458

Evil_Twin 3,676,669 102,059 3,778,728
Total 15,110,261 464,741 15,575,002
Used 70,000 71,813 141,813

Training data 56,000 57,451 113,451
Testing data 14,000 14,362 28,362

Figure 3. Several color images of each type of normal and attack data for both scaling modes

6.2 Comparative Analysis
We compare two methods that also use the AWID3 

dataset for attack detection. We use four metrics, accuracy, 
precision, recall and F1 score, to evaluate and compare the 
performance of these methods.

Accuracy is the most intuitive performance evaluation 
metric, and it is also a basic metric for evaluating the 
classification performance of a model, quantifying the 
proportion of correctly classified samples out of the total 
number of samples. Accuracy is often used to evaluate the 
overall classification performance.



TV-ADS: A Smarter Attack Detection Scheme Based on Traffic Visualization of Wireless Network Event Cell   307

.TP TNAccuracy
TP TN FP FN
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Precision is a metric that measures the percentage of 
correctly predicted positive samples out of all samples 
that were predicted as positives by the model. It serves as 
a measure of the model’s accuracy in identifying positive 
categories. High precision means fewer false positive results.

Precision = .TP
TP FP+

                              (2)

Recall is the proportion of all samples that the model 
correctly predicts as positive categories out of all samples 
that are actually positive categories. It measures the model’s 
ability to recognize positive categories.

Recall .TP
TP FN

=
+

                                (3)

The F1 score is a harmonic mean that combines precision 
and recall, providing a comprehensive evaluation of a 
model’s performance. It considers the model’s trade-off 
between precision and recall and is particularly useful for 
assessing models in unbalanced classification problems.

1
Precision Recall2 .
Precision Recall

F ×
= ⋅

+
                          (4)

where, True Positives (TP): the number of positive category 
samples that the model correctly classifies as Positive.

False Positives (FP): the number of negative category 
samples that the model incorrectly classifies as positive.

True Negatives (TN): the number of negative category 
samples that the model correctly classifies as negative.

False Negatives (FN): the number of positive category 
samples that the model incorrectly classifies as negative.

As mentioned in Section 4.2, we use two methods 
to scale the generated images. The first method involves 
applying Cropping and Padding (C&P) as a scaling process, 
and subsequently training and testing the model after this 
pre-processing step, referred to as TV-ADS (C&P). The 
second method involves using Bilinear Interpolation (BI) 
as the scaling technique, and then training and testing the 
model after this pre-processing step, designated as TV-ADS 
(BI). Figure 4(a) shows the change in loss when the model is 
trained on the dataset processed using cropping and padding, 
and Figure 4(b) shows the change in loss when the model is 
trained on the dataset processed using bilinear interpolation. 
Figure 5(a) shows the confusion matrix for the TV-ADS 
(C&P) model on its test set. Figure 5(b) shows the confusion 
matrix for the TV-ADS (BI) model on its test set.

As can be seen from the detailed comparative analysis, 
our model performs well on all four metrics. It is worth 
noting that accuracy is an important metric for assessing the 
classification ability of a model. As shown in Table 3, our 
TV-ADS (C&P) method possesses an impressive accuracy 
rate of 99.90%. For practical applications, minimizing false 

alarms is essential, therefore, we emphasize precision. 
In this regard, TV-ADS (C&P) also performs well, with a 
precision rate of 99.88%. To provide a holistic performance 
assessment, we incorporate the F1 score, a combined 
metric of precision and recall. TV-ADS (C&P) achieves 
a 99.90% F1 score and 99.93% recall. Structurally, our 
model is elegantly simple. Our 2D-CNN model has just one 
convolutional layer, significantly trimming its complexity 
and computational demand. A visual comparison of various 
methods can be seen in the line graphs presented in Figure 6.

Figure 4. Plot of change in loss function

Figure 5. Confusion matrix on test data

Table 3. Comparison of model performance on AWID3 dataset, TV-
ADS (C&P) denotes images scaled with cropping and padding for 
model training, TV-ADS (BI) denotes images scaled with bilinear 
interpolation for model training

Method Accuracy Precision Recall F1 score

1D-CNN-
Binary [43] 94.60% 94.60% 95.10% 94.60%

A3C [44] 98.68% 98.40% 98.90% 98.68%

TV-ADS-
(C&P) 99.90% 99.88% 99.93% 99.90%

TV-ADS-
(BI) 99.85% 99.84% 99.86% 99.85%

Figure 6. Performance comparison line chart
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6.3 Incremental Analysis
To evaluate the model’s performance over different 

sizes of datasets, we conduct an incremental analysis. Our 
objective is to investigate whether increasing the volume of 
training data could enhance the model’s performance and to 
understand the precise influence of incremental data on its 
performance. Specifically, we test the performance of TV-
ADS (C&P) and TV-ADS (BI) models on different datasets. 
In this case, the ratio of attack samples to normal samples is 
1:1. We evaluate the model’s performance using accuracy, 
precision, recall, and F1 score.

This experiment examines the performance of the model 
on the dataset processed by two scaling methods. The 
performance metrics include accuracy, precision, recall, and 
F1 score. The table displays datasets that include the training 
set, validation set, and test set, and they are divided in the 
same way as presented in Section 6.1. As shown in Table 
4, The overall dataset size escalates from 1008 samples to 
141813 samples.

From the results of TV-ADS (C&P), all the performance 
metrics show a positive growth trend as the dataset size 
increases. Accuracy increases from 98.25% to 99.90%, 

precision from 97.54% to 99.88%, recall from 99.00% to 
99.93%, and F1 score from 98.27% to 99.90%. Particularly 
noteworthy is that all metrics are close to or exceed 99% 
by the time the dataset size reaches 8008 samples. The 
model’s performance gains become slower when the dataset 
is larger. When the dataset size exceeds 100000, the model 
performance has reached its optimum, and thereafter the 
model performance does not improve anymore as the dataset 
size increases.

For TV-ADS (BI), its overall performance is not as good 
as TV-ADS (C&P), similarly, the performance metrics show 
the same improvement as the dataset increases. Its accuracy 
increased from 93.56% to 99.85%, precision from 96.80% 
to 99.84%, recall from 90.09% to 99.86%, and F1 score 
from 93.33% to 99.85%. Compared to TV-ADS (C&P), the 
performance of TV-ADS (BI) is lower for small datasets but 
improves significantly as the dataset increases. Similarly, the 
model performance has been optimized when the dataset size 
reaches 100000.

In general, regardless of the image scaling method used, 
our model exhibits excellent performance beyond traditional 
methods, reaffirming the effectiveness and potential of 
visualizing traffic data for attack detection.

Table 4. Performance metrics for incremental analysis
TV-ADS (C&P) TV-ADS (BI)

Metrics 
Data size Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

1,008 98.25% 97.54% 99.00% 98.27% 93.56% 96.80% 90.09% 93.33%
2,002 98.75% 98.03% 99.50% 98.76% 97.25% 95.67% 99.00% 97.31%
4,004 98.87% 99.24% 98.50% 98.87% 97.62% 98.47% 96.75% 97.61%
8,008 99.25% 99.74% 98.75% 99.24% 98.25% 98.01% 98.50% 98.25%

10,010 99.40% 99.40% 99.40% 99.40% 99.20% 99.59% 98.80% 99.19%
29,998 99.51% 99.76% 99.26% 99.51% 99.70% 99.89% 99.50% 99.69%
71,314 99.85% 99.86% 99.86% 99.86% 99.73% 99.77% 99.69% 99.73%

100,000 99.92% 99.87% 99.97% 99.92% 99.87% 99.87% 99.88% 99.87%
120,002 99.87% 99.80% 99.95% 99.87% 99.85% 99.82% 99.88% 99.85%
141,813 99.90% 99.88% 99.93% 99.90% 99.85% 99.84% 99.86% 99.85%

6.4 Evaluation of Training Time and Testing Time
In addition to the accuracy and robustness of the model, 

time efficiency is also a key evaluation criterion. Especially 
in real-time or near real-time applications, the training and 
testing speed of a model directly determines its usability, we 
measured the training and testing time of the model to verify 
whether its time loss is acceptable in real scenarios. To ensure 
the best performance in this test section, As shown in Table 
5, we use 141813 total data, of which the test set accounts for 
20%, i.e., 28362 color images. 

Table 5. Training time and testing time

Training stage Testing stage
2946.93 seconds 10.86 seconds

During the training process on the dataset processed 
with the Cropping and Padding method, the model take 
2946.93 seconds. This duration isn’t arbitrary and it is 
influenced by three primary factors. Firstly, the size of 
the dataset plays a role, with larger datasets typically 
demanding longer training periods. Secondly, the model’s 

structural complexity is pivotal, more intricate models tend 
to consume more computational time. Lastly, the efficiency 
of the computational hardware also substantially impacts the 
training speed. In the testing phase, we evaluate the model on 
28362 samples, taking 10.86 seconds. Despite the extended 
training duration, the model predicts swiftly. For scenarios 
not demanding real-time responses, the model’s time 
overhead remains within acceptable bounds.

7  Conclusion

In this paper, we introduce a novel traffic-image mapping 
algorithm, which splits the original wireless network traffic 
records into event cells and transforms these event cells 
into standard images with uniform size. This can effectively 
preserve the integrity and centrality of the traffic’s original 
correlation features and can overcome the problem of poor 
detection performance caused by feature segmentation in 
other existing mapping methods. Then, we propose a new 
attack detection scheme TV-ADS based on our binary 
classification model with a 2D-CNN structure. Although TV-
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ADS outperforms the existing schemes in terms of accuracy, 
precision, recall, and F1-score in our experiments, it can 
only perform post-event detection and cannot detect attacks 
in real-time. Next, following the main idea in this paper, we 
will consider designing and constructing one incremental 
traffic-image mapping method, and utilize techniques such 
as subgraph matching to detect malicious network traffic as 
early as possible.
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