
Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   241

*Corresponding Author: Iftekhar Salam; E-mail: iftekhar.salam@xmu.edu.my
DOI: 10.53106/160792642024032502007

Implementation of A Blockchain-based Searchable Encryption for 
Securing Contact Tracing Data

Zheng Yao Ng, Iftekhar Salam*

School of Computing and Data Science, Xiamen University Malaysia, Malaysia
swe1904870@xmu.edu.my, iftekhar.salam@xmu.edu.my 

Abstract

We developed a blockchain-based multi-keyword 
searchable encryption scheme for securing COVID-19 
contact tracing data. In this scheme, we used AES-GCM 
to encrypt the contact tracing data, guaranteeing that only 
authorized users can perform decryption. Our scheme 
employed a Ciphertext-Policy Attribute-based searchable 
encryption to encrypt the search index, ensuring only users 
with appropriate attributes can perform search operations. 
The scheme supports dynamic updates of the search index. 
The blockchain-based storage with smart contract ensures 
immutability and non-repudiation of storage and retrieval. 
Overall, the evaluation of the scheme shows that it works 
efficiently without compromising the security goals. This 
is one of the first works to implement a solution for secure 
storage and search of contact tracing data with blockchain-
based searchable encryption. Compared to the existing 
searchable contact tracing schemes, it provides more features 
and maintains efficiency even if a large search index is used.

Keywords: Contact tracing, Attribute-based searchable 
encryption, Blockchain, Smart contract, Privacy preserving 
encryption

1  Introduction

The COVID-19 epidemic changed the economy and 
lifestyles worldwide. The government of many nations 
implemented systematic control techniques using mobile 
applications like TraceTogether [1], PriLok [2], Pronto-C2 
[3], DP3T [4], BeepTrace [5], and MySejahtera [6]. These 
applications operate by processing personal information such 
as names, ID card numbers, current locations, and recently 
visited locations. The collected data is used to monitor 
COVID-19 virus-infected clusters. Therefore, the security 
of the information possesses a high priority. Currently, in 
Malaysia, only a limited number of research addressing the 
security of confidential data stored in the cloud have been 
published. Several of the existing works highlight the risk 
posed to privacy when data is stored in the cloud without 
adequate security measures. Jung et al. [7] found that 70% 
of location data exposes owners’ precise details such as 
residence, workplace, hobbies, and routines. Thus such data 
may cause severe violations of the security and privacy of 

the owner. Aside from that, on October 2021, the Ministry 
of Health of Malaysia (MOH) reported that a third party had 
misused the MySejahtera register functions API to send fake 
emails and SMS to users. This incident may have resulted 
in the collection of certain information by a third party and 
raised concerns among the public regarding the system’s 
security. Cloud storage security should also be a concern, 
along with the security issues related to the application. Most 
users maintain “trusted-but-curious” attitudes towards cloud 
storage; however, numerous cases [8-9] have shown that even 
without an active adversary, the database may be accidentally 
leaked. Hence, appropriate and effective practices must be 
applied to sensitive information before outsourcing to the 
cloud.

The confidentiality of contact tracing data can be 
protected using encryption algorithms before outsourcing 
the data to the cloud. However, the system’s usability will be 
affected if the cloud users cannot search over the encrypted 
data. The naïve way for a receiver to search for a particular 
desired data requires downloading and decrypting the whole 
encrypted dataset and then searching for the desired data in 
plaintext. This will significantly decrease the efficiency of the 
data analysis or management process if a complete encrypted 
dataset needs to be downloaded before every operation. 
Hence, searchable encryption schemes were introduced to 
tackle the lack of efficiency in the searchability of encrypted 
data. Incorporating searchable encryption with blockchain 
might be a viable solution to address the security of the data 
without affecting functionality and efficiency. Therefore, in 
this work, we implement a searchable encryption scheme 
using blockchain for contact tracing data and assess its 
viability to assure different security goals while maintaining 
efficiency. This is an extended version of the work reported at 
ISPEC 2022 [10]. 

 
1.1 Related Work

The COVID-19 pandemic has recently brought attention 
to contact tracing. Only a few schemes address the problem 
of searchable contact tracing. Many contact tracing systems 
use blockchain for security features [3, 5, 11]. These schemes 
focus on maintaining privacy but do not include search 
functionality. A few existing schemes propose to process 
contact tracing data in a searchable, cryptographically 
privacy-preserving manner. Tahir et al. [12] implemented 
a blockchain-based searchable encryption scheme using 
Hyperledger Fabric (HLF) for secure contact tracing. In this 



242  Journal of Internet Technology Vol. 25 No. 2, March 2024

scheme, users register with the application server, uploading 
encrypted data to the blockchain. When a COVID-19 case 
is confirmed, the hospital notifies the enterprise, triggering 
decryption of patient and close contact data. However, a 
single entity, the system developer, handles all encryption 
and decryption, raising privacy concerns. This can result in 
undesirable situations where the third party misuses user 
data. Also, under this system, authorized personnel are 
determined by the organization. Company administrators 
determine authorization to view contact tracing data. If a 
malicious person is enrolled in the system with an insider’s 
help, the system will not be subject to access policies, 
compromising data confidentiality. Also, this scheme only 
supports searching for a single keyword.

A surveillance system with searchability on encrypted 
COVID-19 data was proposed by Nabil et al. [13]. The 
similarity values   between visitor and patient embedding 
vectors are computed in this work without requiring data 
retrieval from the cloud. This work uses an offline key 
distribution center to distribute the cryptographic keys. 
Each party uses a separate key. The keys must be updated 
frequently to avoid security problems. This work prohibits 
the server from learning any data that helps the computation 
process. However, no emphasis was placed on the integrity 
of the results or data used in the computations. Moreover, 
this scheme does not support distributed storage of contact 
tracing data.

Since the searchable encrypted contact tracing data over 
the blockchain network is linked for data analysis, most 
schemes tend to directly process the data once it’s retrieved 
from the smart contract. Consequently, little attention is paid 
to the retrieval of data for organizational review. This leads 
to a situation where only the results of the analysis can be 
viewed by the organization, but not the underlying data used 
for the analysis. Based on the review of the existing schemes, 
multi-keyword search functionality is more desirable than 
single-keyword search as COVID-19 cluster analysis 
typically involves large datasets. So, using a single keyword 
scheme is less efficient for the scheme mentioned above. 
Also, centralized storage should be avoided to combat data 
misusage [14]. 

 
1.2 Our Contribution

We adopted and implemented Guo et al.’s Attribute-
Based Searchable Encryption (ABSE) [15]. Their scheme 
supports multi-owner to multi-user attribute-based single-
keyword searching. Each owner generates their own attribute 
sets and corresponding public keys for the encryption of 
the data, and each receiver generates a search token based 
on their attribute. However, Guo et al.’s scheme may cause 

unstandardized secret key generation on the receiver side 
since each owner may possess different attribute sets. 
Furthermore, the dynamic update is not supported within 
their scheme. This may affect the effectiveness of the system 
in a multi-owner writing scenario. In our work, we proposed 
several tweaks to Guo et al.’s scheme, such as: 

i. incorporating an Attribute Authority Center (AAC) 
to address the unstandardized key generation of 
multiple data owners, 

ii. enabling a dynamic update to ensure that the search 
index is not rebuilt each time new data is uploaded,

iii. enabling multi-keyword search functionality, and
iv. incorporating with blockchain where the search index 

is uploaded to the smart contract and the encrypted 
data is uploaded to the InterPlanetary File System 
(IPFS).

We employed Advanced Encryption Standard (AES) 
for encrypting contact tracing data and Attribute-Based 
Searchable Encryption (ABSE) for encrypting the search 
index, ensuring confidentiality. We also used blockchain 
and smart contracts to store/access encrypted search indexes 
and retrieve files, respectively. We used InterPlanetary File 
System (IPFS) to outsource the encrypted data. The usage 
of blockchain enables us to log the access of files and search 
index, thus achieving non-repudiation. The immutability 
property of blockchain also ensures the integrity of the 
stored content. Evaluation shows our system is efficient, with 
search efficiency scaling linearly to the index size, and low 
deployment costs for smart contracts.

2  Overview of the System Framework

The proposed framework assumes that the data should 
only be accessible by the government and other government-
authorized organizations such as research companies and 
hospitals. The contact tracing datasets include name, identity 
card number, gender, check-in date, time, and visited 
location. Four keywords are used to identify the datasets: 
the organization that provides the data, the location area 
coverage for the contact tracing data, and the month and year 
of the collected data. Since the contact tracing datasets are 
confidential and not available publicly, the dataset used in 
this paper is randomly generated dummy data following the 
type of values that the MySejahtera app uses. 

Table 1 shows a sample of  the data generated, 
whereas Table 2 shows the sample of keywords for the 
data. Each dataset has four keywords to be registered for 
the corresponding data owner. The sample from Table 1 
shows the content datasets within a plaintext form data file 
associated with the keywords in Table 2. 

Table 1. Sample datasets of generated contact tracing data

Name IC number Gender Date Time Visited location
Daron Robe 000-33-4851 Female 05-02-22 7:28 AM Kip Mall
Lucas Smith 254-75-5861 Male 06-02-22 6:24 AM Aeon Mall

Matt Thompson 471-32-3650 Male 04-02-22 1:30 PM Aron Mall
Kieth Ulyatt 872-61-2400 Male 08-02-22 5:29 AM KFC



Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   243

Table 2. Sample keywords for the data

Organization Location Month Year
OrganizationABC Salak Tinggi February 2022

If the data requester intends to search, they need to search 
for keywords set by the data owner. For example, in this case, 
to retrieve the datasets from Table 1, the data requester can 
search either one of the four keywords: “OrganizationABC”, 
“Salak Tinggi”, “February”, and “2022” in order to get the 
file associated with Table 2. The more keywords the data 
requester includes, the more specific the search results will be 
returned to the data requester. For example, if only “February” 
is searched, all datasets associated with “February” will be 
returned. They could be datasets with keywords “February”, 
“2021”, or “OrganizationBCC”, “February”. Hence, if the 
data requester wishes for a specific set of datasets as the 
results, more keywords must be entered into the system.

2.1 High-Level Overview of the Proposed System
The system mainly consists of four parties, Data Owner 

(DO), Data Requester (DR), Attribute Authority Center 
(AAC), and Cloud Service Platform (CSP). Figure 1 shows 
a high-level overview of the proposed system. A brief 
discussion of these entities are discussed below:

Figure 1. High-level overview of the proposed system

i. Data Owner (DO): The DO, typically a local hospital 
or center, collects contact tracing data and uploads 
the initial data to the system. The DO encrypts and 
uploads contact tracing data to the CSP, along with 
the encrypted search index and access policy to the 
smart contract.

ii. Data Requester (DR): The DR, which may be a 
government department or research center, can 
request encrypted data from the system. Each DR has 
specific attributes, and decryption is possible only if 
their attributes align with the access policy set by the 
Data Owner (DO).

iii. Attribute Authority Center (AAC): AAC is the entity 
responsible for generating and distributing the public 

and private keys for all system users. Depending on 
the system, AAC could be a trusted third party or an 
internal department of the organization.

iv. Cloud Service Platform (CSP): CSP is responsible 
for storing the encrypted data. The results returned 
from the smart contract can be used to retrieve the 
desired files.

The DO and DR use the smart contract to interact with 
the system. DO uploads the index to the smart contract 
within the blockchain network, whereas DR interacts with 
the smart contract to retrieve the encrypted data that matches 
the desired keywords.

2.2 Workflow of the System
The workflow of the system is demonstrated as a 

sequence diagram in Figure 2. 

Figure 2. Sequence diagram of the proposed system

The steps involved in the sequence diagram include:
i. AAC generates the system parameters and a master 

private key. Then, the system parameters are 
distributed to DO through a secure communication 
channel.

ii. DO generates an encrypted keyword search index 
with an access policy and encrypts the contact tracing 
data with AES-GCM. The encrypted contact tracing 
data will be outsourced to CSP for storing purposes.

iii. DO stores the encrypted search index into a smart 
contract and deploys it onto the blockchain network 
for fair payment and searching purposes.

iv. AAC generates a private key based on the attributes 
of DR and distributes it to that particular DR through 
a secure communication channel.

v. DR generates a search token, deploys a smart 
contract for search-related functions and sends it to 
the blockchain to make a transaction. The search 
operation will proceed only if a sufficient fee is 
given.

vi. After executing the search operation, a list of files 
with the desired keywords will be retrieved from the 



244  Journal of Internet Technology Vol. 25 No. 2, March 2024

CSP.
vii. The result is sent to DR; upon receiving the 

encrypted data file, DR decrypts the encrypted files.

3  Construction of the Scheme

For our implementation, the datasets are encrypted via 
Advanced Encryption Standard (AES), whereas the search 
index is encrypted via a modified version of Guo et al.’s 
[15] Attribute-Based Searchable Encryption. The detailed 
mathematical description of the scheme can be found from 
the referred article [15]. 

AES-Galois/Counter Mode (AES-GCM) [16] is chosen 
particularly for this system due to its efficiency and security. 
It utilizes an authentication tag during the decryption process 
to determine whether the user can perform decryption. 
During the decryption operation, the results will not be 
displayed to the user if the generated tag does not match the 
authentication tag stored within the encrypted dataset.

The search index is secured using a modified version 
of Guo’s asymmetric encryption scheme [15] for enhanced 
security. This encrypted search index is stored in a smart 
contract, while the encrypted datasets are stored in the 
InterPlanetary File System (IPFS), a distributed network 
for data storage and sharing. Unlike a centralized authority 
like CSP, IPFS reduces the risk of data abuse by authorities. 
With content stored across multiple nodes, IPFS ensures 
availability and accuracy, even in the face of malicious 
actions. The IPFS desktop, chosen for this implementation, 
offers a user-friendly interface, making it easier for users to 
manage content, link to services, and track connected peers 
compared to other command-line-operated IPFS versions.

3.1 System Setup
Attribute-Based Encryption is used for the encryption of 

the search index, and AES-GCM has been used for the file 
encryption. For prime number mapping purposes, the JPBC 
library [17] has been imported to generate keys for attribute-
based encryption. The public key was generated using a 
preset properties file provided by JPBC for bilinear prime 
mapping. Then, a list of attribute sets that contains all the 
possible attributes for the DR has been inputted into AAC to 
generate a master private key. After initializing the required 
system parameters, the public key is distributed to the data 
owner to encrypt the search index. Algorithm 1 shows the 
key generation process.

Algorithm 1. Key generation algorithm
Input: All possible user attributes
Output: Public Key and Master Private Key

1. Initialize JPBC for bilinear mapping
2. Set new Element for each parameter
3. for each attribute
4. Get the grouping in master private key
5. for each attribute
6. Get the grouping for each attribute in public key
7. Perform multiplicative operations for each element
8. end

3.2 File Encryption
The data owner generates a secret key and distributes it to 

the data requester beforehand. The secret key is used in AES-
GCM for encryption and decryption. The data owner can set 
a password during the encryption; hence, the data requester 
must also know the password to decrypt the file. The file 
encryption process is shown in Algorithm 2.

Algorithm 2. File encryption via AES-GCM
Input: Contact tracing data in plaintext form and 
password
Output: Encrypted contact tracing data

1. Initialize AES-GCM for encryption using the javax.
crypto library

2. Convert the plaintext file into a byte
3. Generates a random salt and IV
4. Encrypts the byte file with salt, IV, and password
5. if file encryption succeeds then
6. Writes encrypted bytes into the same directory
7. end

First, AES-GCM is initialized using javax.crypto library. 
After the initialization, it reads the plaintext file into byte 
form for encryption. A random salt and IV alongside the 
password are generated for the encryption. Upon successful 
encryption, the encrypted bytes are written into a file and 
stored within the directory of the file. Next, the data owner 
generates a search index and encrypts it using AES-GCM but 
with a different preinstalled key within the system. The key 
differs from the key used for file encryption, and with the aid 
of using a password during encryption, the adversary will 
not be able to encrypt/decrypt the file easily, even if the keys 
were to be learnt. After successful encryption, the encrypted 
data are uploaded to the IPFS.

3.3 Index Generation
The encrypted search index for the particular file is then 

uploaded to the smart contract. The smart contract holds an 
array class mapped to a SearchIndex structure. The uploaded 
search index is added to the array class for searching. The 
structure consists of seven variables, which are summarized 
in Table 3. Algorithm 3 shows the process of index 
encryption and upload. Smart contract stores the SearchIndex 
structure and maps it with an incremental count representing 
its location within the structure. 

Table 3. Summary of search index structure

Index structure Explanation
id The unique ID number for each file
ipfsHash The hash values for the file within IPFS
organization The organization that owns the data
location The location area of the collected data
month The month of the data collection
year Year of the data collection
token Token generated from access policy



Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   245

Algorithm 3. Index generation and uploads
Input: Keyword Index and access policy token
Output: Encrypted search index in smart contract

1. Convert the keyword index into an encrypted index
2. Pass the access policy into ABSE
3. Generates a file token based on the access policy
4. Upload the encrypted index along with token to smart 

contract
5. Smart contract stores the encrypted index and token 

within a new position within the SearchIndex structure 
array

6. A unique ID corresponding to the position has been 
generated for the particular file position

7. End

After the keyword index encryption, ABSE generates a 
file token by comparing the access policy and attribute set. 
Algorithm 4 shows the generation of the file token. The token 
and encrypted index are then uploaded to the smart contract. 
Smart contract stores the SearchIndex structure and maps it 
with an incremental value to represent its location within the 
structure array.

Algorithm 4. File token generation
Input: Access policy and attribute
Output: File token for authentication purpose

1. Initialize JPBC using it.unisa.dia.gas.jpbc library
2. for each attribute in the system 
4. if the attribute is within the access policy
5. Multiply the token with corresponding public 

parameters with the attribute
4. else 
5. Multiply the token with corresponding public 

parameters without the attribute
6. Perform multiplicative operations for each element in 

accordance with the scheme
7. End

The search index is dynamically updated by adding 
keywords to the structure. Each time a new file structure is 
added, the unique id increments by one, representing the 
file’s position for variable retrieval. Using the addIndex() 
function within the smart contract, a search index that 
supports dynamic updates for the addition of records is 
implemented. It is fulfilled by adding another value into the 
structure, which is essentially adding another column to the 
array. Hence, the search index does not require to be rebuilt 
each time a new index is added.

 
3.4 Searching and Access Control

The data requester first enters their attribute set and 
desired keywords to generate a search token. A transaction 
is then invoked to retrieve five string arrays from the smart 
contract to the client. First, the comparison between searched 
keywords and four string arrays, organization[], location[], 
month[] and years[], is performed. If the searched keyword 
for the corresponding array is not null and contained within 
the array, the keyword’s position is stored within an array, 
position[]. Once every array has been compared, the last 
array retrieved from the smart contract, token[], is used to 

verify whether the data requester has met the requirements to 
access the encrypted data. This is because if the token were 
to verify first before searching for the file with the desired 
keywords, the system needs to run through all of the tokens 
retrieved from the smart contract, where the size is essentially 
the size of the whole search index. This significantly impacts 
the efficiency of the system. If the search token of the data 
requester matches the retrieved token, then the data requester 
can view the encrypted data. This process is repeated for 
each file that satisfies the desired keywords. After that, 
the ipfsHash is retrieved from the smart contract and used 
to download the file. Algorithm 5 shows the process of 
searching and access control.

Algorithm 5. Searching and access control
Input: Desired keywords in plaintext and attribute set 
of the data requester
Output: Hash value for encrypted file associated with 
desired keywords

1. Generate search token based on the attribute sets
2. Retrieve organization[], location[], month[], year[] 

and token[] from smart contract, 
3. for each array 
4. if desired keywords NOT null
5. Check for searched keyword locations
6. Store the result within results[]
7. Remove duplicate values within results[]
8. for each element in results[]
9. Compare search token with token[results]
10. if (search token != token[results]) then
11. Remove the element from results[]
12. Retrieve ipfsHash from smart contract using results[]
13. Download the encrypted data using the ipfsHash
14. end

Table 4 shows an example of the organization array 
retrieved from the smart contract. If the data requester’s 
desired keywords for the organization value is “OrgA”, then 
the file hash value associated with the keyword “OrgA” is 
stored in ID 0 and 3 in the structure. Then, the token in the 
corresponding position determines whether the data requester 
fits the access policy. If the data requester is permitted access, 
they could request the ipfsHash value from the smart contract 
and get access to the encrypted file. If the data requester 
searches for two keywords, the same operation will be 
applied for both arrays, and their results will be compared. 

Table 5 shows an example of a location array retrieved 
from the smart contract. If the data requester desired 
keywords for organization value is “OrgA” and the location 
value is “Klang”, the only matched location would be 
location 0. Hence, only a token from location 0 must be 
computed for access control. The same logic applies to 
scenarios where more keywords were to be added within the 
system. After getting the IPFS hash value, the data can be 
downloaded and decrypted to retrieve the desired data.

Table 4. Example of organization array

[0] [1]  [2] [3]
OrgA OrgB OrgC OrgA



246  Journal of Internet Technology Vol. 25 No. 2, March 2024

Table 5. Example of location array

 [0]  [1]  [2]  [3]
Klang Nilai Klang Sepang

3.5 File Decryption
Once the index of the file is retrieved from the search 

results, a transaction can be made to retrieve the IPFS 
hash value for the file. The value is used to download the 
encrypted data from IPFS and decrypt it using AES-GCM. 
The data requester needs to input the password and secret 
key. If both inputs match the values used during encryption, 
then only the decryption is performed successfully. Algorithm 
6 shows the decryption of the encrypted file retrieved from 
IPFS. 

Algorithm 6. File decryption
Input: Password and secret key
Output: Printed decrypted file in plaintext form

1. Initialize AES-GCM for decryption using javax.crypto 
library

2. Buffers the IV, Salt and Ciphertext
3. Reads and initialize the secret key
4. Upload encrypted index & token to smart contract
5. if password invalid
6. Decryption process failed. 
7. else
8. Decrypts the encrypted file using the secret key
9. Print the decryption output into a file.
10. end

3.6 User Interfaces
For this implementation, Java Swing is used to 

implementing user interfaces for the implemented scheme. 
A GUI form is prepared within the IntelliJ IDE Swing UI 
Designer tool. As multiple types of actors are expected to 
interact with the system, a card panel is used to demonstrate 
the interfaces of different types of users rather than opening 
multiple individual windows, which may cause the procedure 
to be untidy if all of the windows are operated within a single 
device. JTextField is used to get the input of the user, and 
JButton is used to create an event listener to perform the 
functions for the particular sections.

 Figure 3 depicts the key generation center interface 
where AAC generates public and master private keys based 
on entered attribute sets. The navigation bar facilitates user 
interface navigation. In Figure 4, the data owner interface 
allows file encryption with AES-GCM by entering the file 
path and password. After encryption and upload, the data 
owner adds the file to the search index. Figure 5 shows 
the data requester interface, enabling attribute set input for 
secret key generation. Users can search for files, download 
encrypted files from IPFS, and perform decryption.

Figure 3. Key generation center interface

Figure 4. Data owner interface

Figure 5. Data requester interface

4  Analysis of the Implemented Scheme

In this section, we first evaluate the system regarding its 
security and efficiency. Next, we discuss the results of the 
functionality tests. Lastly, we present a comparison between 
the implemented and existing systems.

4.1 Security Analysis
In the implemented scheme, the security of the contact 

tracing data is being prioritized over the searching efficiency 
and computational overhead. Hence, several security goals 
are inspected.
4.1.1 Confidentiality of Contact Tracing Data 

The CSP/IPFS cannot extract meaningful data from 
outsourced datasets. Even if an adversary gains access to the 
encrypted file, they cannot directly read datasets or perform 
common attacks, such as known ciphertext attacks, to recover 
the original file. 

We used AES-GCM for the encryption of datasets, along 
with a password chosen by the data owner. The encryption 
process has been performed with a symmetric key generated 
by the data owner and a password. After the encryption has 
been done, the encrypted file will then only be uploaded to 
the IPFS storage network. Hence, the knowledge of both 
values, the key and the password, must be known for the 
file decryption operation to produce the original file. An 
adversary without the knowledge of these values will not 
be able to decrypt the file and learn any meaningful data. 
Aside from that, the pattern of the ciphertext block will be 
randomized completely. Additionally, the authentication 
tag will detect any modification of the data. Hence, the 
confidentiality and integrity of the outsourced contact tracing 
data are assured.



Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   247

4.1.2 Non-repudiation and Immutability of Data 
Storing a search index on the local server or outsourcing 

data to the CSP may risk the confidentiality and integrity of 
data as the CSP may view or modify the content. We used a 
smart contract for the search index and stored the outsourced 
data in the IPFS. This allows any accidental or deliberate 
modification attempts to be identified. Any access to the data 
will be logged so that the data requester will not be able to 
deny their transactions.

In this scheme, the search index is uploaded to the 
Ethereum blockchain, which possesses immutability 
properties and distributed ledgers. Therefore, anything stored 
within the blockchain network must check its validity with 
the network participants before any transactions can be made. 
Any tampers made to the data within the network can be 
easily identified. Aside from the search index, the outsourced 
data stored within IPFS possess the same properties. Any 
amendments to the content of the stored data in the IPFS will 
significantly affect the hash values within the blockchain 
network. When the value for one participant has been 
changed, the other nodes will not be affected. Hence, any 
form of amendment will be recognized immediately.
4.1.3 Access Control of the Data Requester 

The unauthorized data requester cannot access the data 
content even if there are matching files with their searched 
keywords. The attribute set of the data requester determines 
whether they are permitted to retrieve the encrypted file from 
the smart contract. The data requester’s attribute sets must 
also be entirely matched with the access policy.

In this scheme, the entire attribute variables set by 
the organization have been buffered into key generation 
during the setup stage. A master private key that contains 
all attribute variables has been created. Each time the data 
requester generates a private key based on their attributes, 
the entire attribute sets will be used along with the master 
private key to determine which attributes the data requester 
possesses and which do not. This way, the private keys 
generated with different attributes cannot be used to produce 
a pattern for attributes the data requester does not own, as the 
master private key is required for the generation. Hence, a 

data requester without attributes that match the access policy 
cannot retrieve the item from the smart contract.

4.2 Performance Evaluation
We used dummy data to assess the performance, as 

contact tracing datasets are not publicly available due to their 
sensitive nature. Multiple aspects, including encryption and 
decryption, search, and cost, are considered in the evaluation.
4.2.1 Encryption Efficiency

We used the speed of the encryption operations over 
different datasets with different sizes, e.g., 10 MB, 50 MB, 
100 MB and 200 MB, to assess the encryption efficiency. We 
utilised the System.currentTimeMillis() function before and 
after the encryption and determined the time to complete the 
operation by calculating the interval. Figure 6(a) illustrates 
a slight curve in the time taken for the encryption operation 
to be completed when the data size increases from 10 MB to 
200 MB. This indicates a potentially exponential growth in 
the time required for the encryption operation when the file 
size increases. This is mainly due to the trade-off of achieving 
stricter security goals. The same pattern is observed for the 
decryption time, as illustrated in Figure 6(b).
4.2.2 Index Searching Efficiency

We evaluated the search efficiency according to the time 
required for the system to search through the index to get the 
desired file. This process includes comparing each keyword 
array and computing token to see whether the data requester 
can retrieve the encrypted file from IPFS. The search index 
is filled with keywords and up to 80 files’ search index. The 
search query will be encrypted in the designed application 
to reduce the workload on the blockchain server and the 
network data transmission time. Figure 7(a) shows the time 
to search through the search index for a single keyword. 
The time taken to complete the search operation is directly 
proportional to the search index size. Figure 7(b) shows the 
time to search through the search index for two keywords. It 
is observed that there is no considerable difference between 
the time for searching one keyword or multiple keywords. 
Hence, this scheme supports the search without significantly 
increasing the search time.

            

                                               (a) Encryption time                                                                             (b) Decryption time

                                                                          Figure 6. Time taken for encryption and decryption



248  Journal of Internet Technology Vol. 25 No. 2, March 2024

4.2.3 Ethereum Gas Price
Deploying the smart contract for search index storage 

and access costs 1,131,872 gas, amounting to 5,659,360 gwei 
(0.00565936 ETH) as of July 2, 2022, with one gas priced 
at five gwei. The cost-effectiveness is achieved by moving 
complex algorithms to a designated application rather than 
embedding them in the smart contract. The deployment cost 
overhead is directly proportional to the initial data load. For 
instance, deploying a smart contract with 500 search indexes 
incurs an overhead of 565,936,000 gas, equivalent to 2.82968 
ETH—a relatively low, one-time cost. Figure 8 illustrates the 
transaction costs of the smart contract deployment. 

Figure 8. Transaction cost for deploying the smart contract

Aside from the deployment costs, the search index upload 
and retrieval and IPFS hash retrieval require gas. Table 6 
shows the estimated costs for each function within the smart 
contract in ETH. The amount of ETH needed is low for each 
transaction as adding the index only requires approximately 
6 USD per transaction and 0.14 USD per search. To address 
the limitation posed by currency within the system, the 
designed application can be integrated into web browsers and 
coupled with an officially recognized and highly reputable 
extension, such as Metamask, widely trusted by Ethereum 
web developers. This approach ensures that researchers can 
access the system from anywhere around the world.

Table 6. Estimated ETH costs for each function

Functions Transaction costs (Gas) ETH
Add index 1131860 0.0056593
Get index 26227 0.000131135
Get IPFS 41830 0.00020915

4.3 Testing of Functionalities
Any misuse of the sensitive information provided by 

contact tracing data will result in a breach of privacy for the 
particular person. Hence, the system must be working as 
intended. Assuming multiple Data Owner (DO) has uploaded 
their file to IPFS and search index to the smart contract, and a 
user / Data Requestor (DR) from government officials such as 
authorities from the Ministry of Health, a series of testing is 
conducted to ensures that the implemented system is working 
as intended. The keyword is not stored in encrypted form to 
differentiate the keywords from each other to facilitate the 
testing process. However, note that it would be encrypted for 
the actual system.
4.3.1 Test 1: DO Encrypts Dataset

Assuming the data owner encrypts the datasets, they 
must input the targeted file path and password into the 
system. Then AES encryption operation is performed, and 
the encryption results are shown within the targeted file path 
with its file name categorized. Figure 9 shows the system 
input and output for this test scenario. The encrypted file is 
then uploaded to IPFS. Figure 10 shows that the uploaded 
data within the IPFS network is encrypted and working as 
expected.
4.3.2 Test 2: DO Uploads Search Index

Assuming the encrypted file is uploaded to IPFS, the 
data owner creates a search index for the file by entering the 
file link, keywords, and access policy. If the input of access 
policy attributes is valid, the index is uploaded successfully. 
An error message is displayed if one of the elements within 
the access policy does not exist within the system’s attribute 
sets. Figure 11 shows the complete attribute sets within the 
system. The input is “DataProvider, DataAnalytics, Dep1, 
Dep2, Dep3, SeniorExecutive, JuniorExecutive”. Figure 12 
and Figure 13 show the outcome of successful and failed test 
cases. Notice that “Dep1” in Figure 12 is a valid input for 
the access policy as the attribute exists within the complete 
attribute sets, and “Dep” in Figure 13 is not a valid input. 
Therefore, due to incorrect input in the access policy, an error 
message is displayed for the test case of Figure 13. On the 
other hand, for the test case of Figure 12, as expected, the 
index is successfully uploaded. After the search index is built 
successfully, it is uploaded to the smart contract. Figure 14 
displays the information stored within the smart contract after 
the successful upload.

   

                                                    (a) Single keyword                                                                   (b) Two keywords

Figure 7. Time taken for the searching operation



Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   249

Figure 9. Functionality of encryption function

Figure 10. Uploaded file in IPFS in encrypted format

Figure 11. Total attributes within the system

Figure 12. The index is successfully uploaded

Figure 13. An error message pop due to incorrect input in access policy



250  Journal of Internet Technology Vol. 25 No. 2, March 2024

4.3.3 Test 3: DR Searched for Existing Keywords
Figure 15 shows the search index saved into the smart 

contract. These are retrieved from the system after the data 
requester calls the searching function. Index[0] can be 
retrieved by “DataAnalytics, Dep1” attributes; Index[1] can 
be retrieved by “DataAnalytics, Dep2” attributes; Index[2] 
can be retrieved by “Dep2, SeniorExecutive” attributes.

For searching, the data requester first generates their 
private key corresponding to their attribute set. Afterwards, 
they can search for their desired keyword file. The data 
requester with the “DataAnalytics, Dep1” attribute is being 
tested in this test case. Based on the indices specified above, 
the expected outcome is that the data requester can retrieve 
only Index [0]. 

After the keyword searching, authentication functions 
will check whether the data requester is permitted for the file. 
Accordingly, the corresponding position for the file hash will 
be returned to the data requester. Figure 16 shows the result 
of the searched keyword “2022”. Notice from Figure 15 that 
for the keyword “2022”, the desired files are in Index[0] and 
Index[2]. Therefore, this is a valid request; however, based 
on the access policy defined above, the data requester with 
attributes “DataAnalytics, Dep1” can only retrieve the file 

in Index[0]. In this scenario, the data requester’s attribute 
does not match the access policy of Index [2], and this is 
not retrieved. Hence, only Index [0] is retrieved as a result. 
Figure 16 shows the interfaces for key generation for the 
data requester and the searching functions for this test case, 
which shows that the file with the searched keyword that 
matches the access policy was found. As expected, the test 
returned Index[0] as the output of the file location for this test 
scenario. In our implementation, the search function reveals 
the index of the desired file in a .txt file and is then used to 
retrieve the IPFSHash value from the smart contract.
4.3.4 Test 4: DR Search with Incorrect Attributes Set

The same search index from Figure 15 is used for this 
test case. Assuming the data requester attribute set is “Dep1, 
SeniorExecutive”, the expected outcome for the test case is 
data requester can retrieve no results. A similar search query 
is used with the keyword “2022”. As the attribute set of the 
data requester does not fulfill any matched keyword file, no 
results should be received. Figure 17 shows the output of the 
search functions for the test case works as expected, where 
no results have been found when the attribute of the data 
requester is set to be “Dep1, SeniorExecutive”, even though 
there are two files that satisfy the desired keywords.

Figure 14. The search index is successfully uploaded onto smart contract

Figure 15. Saved search index within smart contract

Figure 16. Generation of private key and search functions



Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   251

Figure 17. The output for test case 4

4.3.5 Test 5: DR Decrypts with Correct Password
Following test case 3, the data requester can decrypt the 

file through the system after retrieving the encrypted file from 
Index[0] via the hash value taken from the smart contract. 
The file will be decrypted successfully when the correct 
password is input into the system. For the test scenario, the 
correct password is “Tester1”. Figure 18 shows the retrieval 
of IPFS value from the smart contract. As shown in the 
figure, the link to download the file with Index[0] is retrieved 
from the IPFS, and the data requester can download the 
encrypted data from it.

After the data requester downloads the file, they can 
decrypt the encrypted file using the correct password. Figure 
19 shows the input of the file location and the password. As 
expected, Figure 20 shows the successful decryption output 
results for the correct password.
4.3.6 Test 6: DR Decrypts with Incorrect Password

In this scenario, using the same encrypted file from test 
case 5, the data requester inputs the incorrect password 
for the decryption process. Figure 21 shows the input for 
decryption operations, whereas Figure 22 shows the output 
of the decryption operations. As shown in Figure 21, the 
incorrect password “Tester2” is the password field input. The 
expected result in this scenario is that the decryption results 
will not be shown to the data requester. Even though Figure 
21 shows that the decryption operation has been performed; 
however, the content of the decrypted file is empty due to an 
incorrect authentication tag. Hence, it is proven that without 
the correct password, the output of the decryption operation 
will not be meaningful. Hence, it is proven that using the 
wrong password will not return the decryption results to the 
data requester.

Figure 18. Retrieving data from smart contract index[0]

Figure 19. Input for the decryption operations

Figure 20. The encrypted file is successfully decrypted



252  Journal of Internet Technology Vol. 25 No. 2, March 2024

4.4 Comparison with Existing Schemes
A set of features has been compared between related 

work and the proposed scheme, as shown in Table 7. Our 
implementation utilizes attribute-based encryption, whereas 
the rest schemes use symmetric searchable encryption. 
These schemes have no advanced access policies, as anyone 
with the search token can search for the encrypted contact 
tracing data. Our scheme will only reveal the desired search 
results to users with authorized attributes with the required 
secret key and password. Any attribute mismatch with the 
same search query will not return the results. For both of the 
existing schemes, the search index is reconstructed each time 
a new file is added for the related works discussed in Section 
1.1. Contrary to this, our system supports a dynamic update 
of the search index. This is achieved by adding new column 
and row into the search index each time a new data has been 
added into the index. Any modification does not require the 
index to be rebuilt, reducing the effort and cost of building a 
new search index.

Table 7. Comparison of our implementation with other existing 
works

Features
Schemes

[12] [13] This paper
Search index encryption SSE SSE ABSE

Multi-keyword û ü ü

Dynamic update û û ü

Storage integrity Search index 
only

Search index 
only ü

Non-repudiation ü ü ü

Encrypted search index ü ü ü

Encrypted search query û ü ü

(ü: Supported,  û: Not Supported)
 

Besides, the scheme proposed by Tahir et al. [12] 
only supports single-keyword searching. This results in 
an inefficient search over datasets with a large number of 
features. By using multi-keyword searching, our scheme 
greatly increases the efficiency of search, hence reducing the 
overall operation time. Our scheme also assures the integrity 
of both the search index and encrypted data. This is because 
the search index is stored within a smart contract, and the 
encrypted data is stored within IPFS. Both smart contract and 
IPFS could identify any modifications that are being made 
to the content. The search index is stored within a smart 
contract for all the schemes discussed in this section; hence, 
all these schemes support non-repudiation as the access of 
the search index and encrypted file will be automatically 
logged by the transactions. Aside from that, all schemes 
encrypted their search index before storing it within the smart 
contract. This way, the adversary cannot learn the keywords 
for each requested file. However, Tahir et al.’s scheme 
does not encrypt the search query when the data requester 
searches for the encrypted file using the keywords; hence, the 
adversary can learn the keywords of the retrieved file. Once 
the file’s keyword has been retrieved, any file with the same 
keywords will reveal the encrypted search index. This issue is 
eliminated within our scheme as we incorporated encryption 
into our keyword searches.

5  Conclusion

We implemented a secure and efficient system for storing 
COVID-19 contact tracing data by combining searchable 
encryption with blockchain technology. Our approach utilizes 
AES encryption for data security and employs attribute-
based searchable encryption to establish controlled access 
policies. Ciphertext-Policy Attribute-based searchable 

Figure 21. Incorrect password input for decryption

Figure 22. The decrypted file does not contain any words due to failed decryption process



Implementation of A Blockchain-based Searchable Encryption for Securing Contact Tracing Data   253

encryption is used to encrypt the search index, ensuring that 
only users meeting the access policy criteria can access files. 
The dynamic update feature allows seamless additions to the 
search index within the smart contract, preventing the need 
for reconstruction. All access to the data are meticulously 
recorded through blockchain transactions, enabling swift 
action in enforcing compliance or policies. 

The implemented scheme performs well even with a 
larger search index. While achieving high efficiency, the 
security goals of confidentiality, integrity and non-repudiation 
are maintained. Overall, compared to the existing schemes 
related to COVID-19 contact tracing data, our implemented 
system provides more features on searchability over 
encrypted contact tracing data while maintaining security 
goals. In conclusion, an attribute-based encryption scheme is 
suitable for encrypting contact tracing data that only allows 
a group of users that fulfilled the requirement to access and 
perform decryption on the encrypted data. This approach 
efficiently implements access control for the data while 
assuring the confidentiality of the data. The involvement 
of blockchain technology towards the data access system 
is feasible, and it helps to achieve several security goals 
such as immutability, non-repudiation, and no point-of-
failure. Overall, this work has presented a scheme involving 
symmetric encryption, multi-keyword asymmetric searchable 
encryption and blockchain technology to implement a secure 
and efficient system for storing COVID-19 contact tracing 
data.

Acknowledgements

This  work  was  funded  by  Xiamen  Univers i ty 
Malaysia Research Fund (XMUMRF) under the Grant no. 
XMUMRF/2022-C9/IECE/0032.

References

[1] Tracetogether App, Available from: https://www.
developer.tech.gov.sg/products/categories/digital-
solutions-to-address-covid-19/tracetogether/overview.
html

[2] P. Esteves-Verissimo, J. Decouchant, M. Völp, A. 
Esfahani, R. Graczyk, Prilok: Citizen-protecting 
Distributed Epidemic Tracing, arXiv, June, 2020. 
https://arxiv.org/abs/2005.04519

[3] G. Avitabile, V. Botta, V. Iovino, I. Visconti, Towards 
Defeating Mass Surveillance and Sars-cov-2: The 
Pronto-c2 Fully Decentralized Automatic Contact 
Tracing System, Cryptology ePrint Archive, April, 2020. 
https://eprint.iacr.org/2020/493

[4] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. 
Larus, E. Bugnion, W. Lueks, T. Stadler, A. Pyrgelis, 
D. Antonioli, L. Barman, S. Chatel, K. Paterson, S. 
Čapkun, D. Basin, J. Beutel, D. Jackson, M. Roeschlin, 
P. Leu, B. Preneel, N. Smart, A. Abidin, S. Gürses, M. 
Veale, C. Cremers, M. Backes, N. O. Tippenhauer, R. 

Binns, C. Cattuto, A. Barrat, D. Fiore, M. Barbosa, R. 
Oliveira, J. Pereira, Decentralized Privacy-Preserving 
Proximity Tracing, arXiv, May, 2020. https://arxiv.org/
abs/2005.12273

[5] H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, 
M. A. Imran, Beeptrace: Blockchain-enabled Privacy-
Preserving Contact Tracing for Covid-19 Pandemic and 
Beyond, IEEE Internet of Things Journal, Vol. 8, No. 5, 
pp. 3915-3929, March, 2021.

[6] Mysejahtera App, Available from: https://mysejahtera.
malaysia.gov.my/.

[7] G.  Jung,  H.  Lee ,  A.  Kim,  U.  Lee ,  Too Much 
Information: Assessing Privacy Risks of Contact Trace 
Data Disclosure on People with Covid-19 in South 
Korea, Frontiers in Public Health, Vol. 8, Article No. 
305, June, 2020.

[8] Chinese Start-up Leaked 400gb of Scraped Data 
Exposing 200+ Million Facebook, Instagram and 
Linkedin Users, SafetyDetectives, Available from: 
https://www.safetydetectives.com/blog/socialarks-leak-
report/.

[9] Threatpost, Microsoft Leaves 250m Customer Service 
Records Open to the Web, Available from:  https://
threatpost.com/microsoft-250m-customer-service-
records-open/152086/.

[10] Z. Y. Ng, I. Salam, Blockchain-Based Multi-keyword 
Search on Encrypted COVID-19 Contact Tracing Data, 
International Conference on Information Security 
Practice and Experience, Taipei, Taiwan, 2022, pp. 75-
92.

[11] Z. Hee, I. Salam, Blockchain Based Contact Tracing: 
A Solution Using Bluetooth and Sound Waves for 
Proximity Detection, Cryptology ePrint, February, 2022. 
https://eprint.iacr.org/2022/209

[12] S. Tahir, H. Tahir, A. Sajjad, M. Rajarajan, F. Khan, 
Privacy-Preserving Covid-19 Contact Tracing Using 
Blockchain, Journal of Communications and Networks, 
Vol. 23, No. 5, pp. 360-373, October, 2021.

[13] M. Nabil, A. Sherif, M. Mahmoud, W. Alsmary, M. 
Alsabaan, Privacy-Preserving Non-Participatory 
Surveillance System for Covid-19-Like Pandemics, 
IEEE Access, Vol. 9, pp. 79911-79926, May, 2021.

[14] T. L. Tan, I. Salam, M. Singh, Blockchain-Based 
Healthcare Management System with Two-Side 
Verifiability, PLOS ONE, Vol. 17, No. 4, pp. 1-25, April, 
2022. 

[15] W. Guo, X. Dong, Z. Cao, J. Shen, Efficient Attribute-
Based Searchable Encryption on Cloud Storage, Journal 
of Physics: Conference Series, Vol. 1087, No. 5, pp. 
1-10, October, 2018. 

[16] D. McGrew, J. Viega, Recommendation for block cipher 
modes of operation: Galois/Counter Mode (GCM) and 
GMAC, NIST Special Publication 800-38D, November, 
2007.

[17] A. De Caro, V. Iovino, JPBC: Java Pairing Based 
Cryptography, 2011 IEEE Symposium on Computers 
and Communications, Kerkyra, Greece, 2011, pp. 850-
855.



254  Journal of Internet Technology Vol. 25 No. 2, March 2024

Biographies

Zheng Yao Ng received the bachelor’s 
degree in software engineering from 
Xiamen University Malaysia in 2023. He is 
currently working as a Software Consultant 
with Fusionex Group, Malaysia. His 
research interest includes encryption and 
cryptography.

Iftekhar Salam received the B.Eng. 
from Multimedia University, Malaysia, 
in 2008, the M.S. degree from Dongseo 
University, South Korea, in 2011, and the 
Ph.D. degree from Queensland University 
of Technology, Australia, in 2018. He 
is currently an Associate Professor at 
Xiamen University Malaysia. His research 

interest includes cryptography, cryptanalysis, authenticated 
encryption, cryptographic protocols.


