
Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 195

*Corresponding Author: Haehyun Cho; E-mail: haehyun@ssu.ac.kr
DOI: 10.53106/160792642024032502003

Hybrid Dynamic Analysis for Android Malware Protected by
Anti-Analysis Techniques with DOOLDA

Sunjun Lee, Yonggu Shin, Minseong Choi, Haehyun Cho*, Jeong Hyun Yi

School of Software, Soongsil University, Republic of Korea
starj1024@gmail.com, tls09611@gmail.com, gigacms@gmail.com, haehyun@ssu.ac.kr, jhyi@ssu.ac.kr

Abstract

A lot of the recently reported malware is equipped with
the anti-analysis techniques (e.g., anti-emulation, anti-
debugging, etc.) for preventing from being the analyzed,
which can delay detection and make malware alive for
a longer period. Therefore, it is of the great importance
of developing automated approaches to defeat such anti-
analysis techniques so that we can handle and effectively
mitigate numerous malware. In this paper, by analyzing
1,535 malicious applications, we found that 18.31% of them
equipped with anti-analysis techniques. Next, we propose a
novel, dynamic analyzer, named DOOLDA, for automatically
invalidating anti-analysis techniques through dynamic
instrumentation. DOOLDA monitors executions of Android
applications’ entire code layers (i.e., bytecode and native
code). Based on monitoring results, DOOLDA finds the code
related to anti-analysis techniques and invalidates the anti-
analysis techniques by instrumenting it. To demonstrate the
effectiveness of DOOLDA, we show that it can invalidate all
known anti-analysis techniques. Also, we compare DOOLDA
with other dynamic analyzers.

Keywords: Malware analysis, Dynamic analysis, Mobile
security

1 Introduction

Mobile malware targeting Android devices is not only
increasing in number but also is evolving to avoid various
detection techniques. Consequently, it is getting more difficult
to automatically analyze them. As various code protection
techniques developed to protect mobile applications began to
be applied to malware. For example, adversaries started using
obfuscation and packing techniques to hinder static analyses
[1-5], which derived security experts to use dynamic analysis
approaches [6-7]. For thwarting dynamic analyzers, attackers
are using anti-analysis techniques so that they can prevent
them from being analyzed.

We have observed several security incidents caused by
malware implementing anti-analysis techniques. By using
such anti-analysis techniques, malware called Skinner could
stay in Google Play for two months without detection. For
the two months, Skinner tracked a lot of users’ locations and

actions and can execute code from its command and control
server without the users’ permission. Specifically, in order
to avoid detection, Skinner used anti-emulation and anti-
debugging techniques. As another example, Avaddon, which
was used in various cyber-attacks in 2020 and leaked more
than 574GB of data from 23 companies, exploited anti-
debugging techniques to protect itself from being analyzed
by security experts.

In this work, our goal is to automatically invalidate
anti-emulation and anti-debugging techniques by which
we can quickly find malicious behaviors from them and
respond to them. To this end, we first investigated of
existing anti-analysis techniques. We, then, reclassified anti-
analysis techniques based on features collected through the
investigation and we designed an invalidation strategy for
each technique.

Also, we implemented a dynamic instrumentation
tool, called DOOLDA, that monitors and instruments an
Android application, for automatically invalidating anti-
analysis techniques. Because Android applications can
have two different types of code (i.e., bytecode and native
code), the architecture of DOOLDA consists of two parts:
DaBIDA which instruments the bytecode, and DaNIDA
which instruments the native code. DOOLDA monitors an
application’s execution to find code implementing known
anti-analysis techniques. If it found the code, DOOLDA
hooks the code for instrumenting. And if not, it just skips the
code instrumenting step. In the instrumenting step, DOOLDA
instruments the code to invalidate anti-analysis techniques.
Also, DOOLDA records each instruction with data to help
security analysts.

To demonstrate the effectiveness of DOOLDA, we
performed experiments with real-world malware using
the Android Malware Dataset (AMD) [8], finding and
invalidating anti-analysis techniques implemented in them.
Our evaluation results show that how much Android malware
uses anti-analysis techniques and DOOLDA can effectively
invalidate anti-analysis techniques in real-world malware.

In summary, this paper makes the following contributions:
(1) We surveyed the existing studies, reclassified the collected
signatures, and established an invalidation strategy for each
of the anti-analysis techniques; (2) We propose a novel
approach, named DOOLDA, that automatically invalidates
anti-analysis techniques used in Android malware; (3) We
evaluate DOOLDA with real-world malware.

196 Journal of Internet Technology Vol. 25 No. 2, March 2024

2 Background

2.1 Executables in Android Applications
Android applications are deployed by using the APK

file format. The APK file contains has two different types
of code: Bytecode, and native code. The bytecode is stored
in a Dalvik executable (.dex) file and the native code is in a
shared object (.so) file. In Android applications, we use the
Java Native Interface (JNI) which defines a way to interact
between the bytecode and native code. Android applications
can equip anti-analysis techniques (e.g., anti-debugging)
in each code layer to prevent being analyzed. Malicious
applications, also, use those techniques to make analysis very
difficult so that they can hide their internal logic or behaviors.
Therefore, to successfully analyze such Android malware, we
should identify and instrument both the bytecode and native
code.

Listing 1. A motivating example: The Android malware with the
anti-emulation techniques

1 public class ActivityStart extends Activity {
2 protected void onCreate(Bundle arg5) {
3 ...
4 if(!n.a(this.getApplicationContext())) {
5 n.b(this.getAppcationContext());
6 ...
7 }
8 }
9
10 public class n {
11 public static boolean a (Context arg6) {
12 boolean v1 = false;
13 boolean v4 = arg6.getSystemService(“phone”)
14 .getDeviceId()
15 .equals(“000000000000000”);
16 int v0 = (Build.MODEL.contains(“google_sdk”)) || ... ?
 1 : 0;
17 int v3 = !Build.DEVICE.startsWith(“generic”) || ... ?
 0 : 1;
18
19 if ((v4) || (v0 != 0) || (v3 != 0)) {
20 v1 = true;
21 }
22 return v1;
23 }
24
25 public static void b (Context arg7) {
26 if (Build$VERSION.SDK_INT >= 19) {
27 arg7.getSystemService(“alarm”) ...
28 new Intent(arg7, AlarmReceiverKnock.class), ...);
29 } else {
30 arg7.startService(new Intent(arg7, knock.class));
31 }
32 ...
33 }

2.2 Motivating Example
Listing 1 shows a code snippet of real-world Android

malware that uses anti-analysis techniques. In the code
snippet, the method b of class n enables the alarm receiver
to steal the contents of SMS and MMS services of a device.

It is invoked by onCreate method and onCreate method
will be invoked when the ActivityStart activity is initialized.
However, the method b will not be invoked if an application
executes on an emulator. The method a implements the
anti-emulation techniques that check whether or not the
application is running on an emulator because dynamic
analyzers usually employ an emulator. To this end, it checks
system properties such as DeviceId, Build.MODEL, Build.
DEVICE, etc. If the method finds that the application is
not running on an actual device, the method b will not
be invoked and thus we cannot analyze the application’s
malicious behavior as a result. The code presented in Listing
1 can effectively prevent being analyzed from existing
dynamic analyzers based on the emulator [9-11] and dynamic
analyzers based on customized system [6-7, 12].

Other than the anti-emulation techniques such as the
given example, the anti-debugging techniques can thwart the
dynamic analyzer using debugging features [13-14]. Such
techniques check if a debugging process exists in the process
list or checks whether the PTRACE system call is used or not.
In addition, some techniques scan network ports to examine
a device is being traced or debugged remotely to avoid
debuggers.

3 Overview

In this paper, we aim to provide an automated solution to
thwart anti-analysis techniques used in advanced malware.
To this end, we propose a dynamic analysis platform, named
DOOLDA, that can effectively invalidate anti-analysis
techniques. DOOLDA, also, can be used to dynamically
instrument the other code of malware.

Figure 1 shows how DOOLDA analyzes Android
malware equipped with the anti-analysis techniques via
instrumenting its code during runtime. DOOLDA first finds
code that implements anti-analysis techniques and invalidates
it by dynamically instrumenting it.

The both modules of DoolDA operate based on a
Dynamic Binary Instrumentation (DBI) framework. DaBIDA
uses Android’s built-in instrumentation module, and DaNIDA
uses Valgrind, which dynamically instrument code while
malware is running. Therefore, there is no need to find the
code snippet through reversing malware. Also, there is
no need to recompile after the instrumentation. DoolDA
simply intervenes between DBI tool’s IR (Intermediate
Representation) translation and IR compilation phases to
monitor and instrument code in malware.

(1) Monitoring Code: In the monitoring phase,
DOOLDA examines the IR translated by the DBI tool. This
allows DOOLDA to know the actual behavior of the code.
DOOLDA monitors the code before it executes using IR and
checks whether the code contains anti-analysis techniques
or not. If so, DOOLDA hooks the code for instrumenting.
Otherwise, it just skips the code instrumentation phase.

(2) Instrumenting Code: In the Instrumenting phase,
based on the results inspected in the monitoring phase,
DOOLDA instruments the code to invalidate the anti-
analysis techniques. For invalidating anti-analysis
techniques, DOOLDA replaces code or data used for anti-

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 197

analysis techniques with code that makes an application
keeps executing. Furthermore, DOOLDA can be used for
instrumenting the other code of malware: it can dynamically
patch code that will execute at any point while runtime.

The above methodology can also be implemented by
using a static analysis instead of instrumentation through

DBI. However, there is a limitation that a static analysis-
based approach cannot be used when anti-analysis
techniques such as obfuscation and packing are applied onto
applications. Therefore, we designed DOOLDA based on the
dynamic analysis through DBI.

Figure 1. The workflow of DOOLDA

4 DOOLDA

4.1 Anti-Analysis Techniques
To achieve our goal, we first analyzed real-world malware

and surveyed state-of-art research work on anti-analysis and
anti-anti-analysis techniques of Android applications [7, 15-
24]. As the results, we classify the anti-analysis techniques in
three-fold as follows.

(1) Anti-rooting techniques: To prevent executions on
a rooted device, the anti-rooting techniques are to figure
out that the device is rooted or not. The most widely
used techniques are checking whether the rooting-related
applications are installed (AR1 in Table 1) and checking the
existence of binary and directory that only can be seen on
a rooted device (AR2 in Table 1). Furthermore, there is a
technique that checks the system properties related to root
permissions (AR3 in Table 1).

(2) Anti-emulation techniques: In general, the emulation
environment is used to test or analyze an application. Most
of automated analyzers run on emulators customized for their
purposes [6, 10-11, 25]. Hence, for preventing executions on
an emulator, the anti-emulation techniques check the traits
that imply the emulation environment. An emulator such as
Android Virtual Device (AVD) has virtualized hardware and
a system with arbitrary data. By checking the configuration
data of Android system, an application can identify whether
it is running on a real device or not. The well-known
techniques are checking the hardware configuration (AE1 in
Table 1), checking build information (AE2 in Table 1) and
checking system properties (AE3 in Table 1). Also, checking
files related to an emulator is also widely used to figure out

an emulation environment (AE4 in Table 1), it is because an
emulator has specific binaries and directories that cannot be
seen on a real device. In addition, an emulation environment
has a lot of additional layers to compose emulated components
and they make runtime performance low. By using this
feature, there is an anti-emulation technique that checks an
execution time of a specific task (AE5 in Table 1).

(3) Anti-debugging techniques: On Android, we can
check installed or running debugger-related programs (AD1
in Table 1) and the usage of system calls (AD2 in Table 1) to
figure out a device is being debugged or not. Also, checking
the activation status of JDWP (AD3 in Table 1) and checking
debuggable flags (AD4 in Table 1) can be used to identify
the existence of a debugger. Moreover, similar to the anti-
emulation techniques, there is an anti-debugging technique
that checks an execution time (AD5 in Table 1).

The summary of our investigation about the anti-analysis
techniques is illustrated in Table 1. As a result, we found
that most of the anti-analysis techniques check the device
status such as the system properties (AR3, AE2, AE3,
AD2, AD3, AD4), hardware information (AE1), running
processes, or files existence (AR1, AR2, AE4, AD1). Also,
we confirm that the Android malware checks the device
status in 2 layers not just native system-level but also
Android Framework’s bytecode level. This means covering
only 1 layer (instrumenting only bytecode level [26] or
native system-level [27]) is not sufficient. For obtaining a
status of the device, anti-analysis techniques use pre-defined
properties and APIs that the Android framework offers, or
Linux standard library functions provide. Using this common
ground, we set up a strategy in DOOLDA (DaNIDA and

198 Journal of Internet Technology Vol. 25 No. 2, March 2024

DaBIDA to cover the bytecode and native code) that always
returns the correct value collected from a normal real device.
The collected data is stored with the related properties, APIs,
and functions. Therefore when anti-analysis techniques try to
check the device status in a known way, we can deceive the

checking process by hooking the related code and returning
the stored correct data. In the case of the timing-based anti-
analysis techniques (AE5 and AD5), we can deceive it by
returning a fixed time value because they usually check that
the execution time exceeds the limit or not.

Table 1. The categorized anti-analysis techniques and detailed classification results
Category Types Description Practical cases

Anti-
rooting
techniques

AR1: Check rooting
applications

Checks whether rooting-
related applications are
installed.

com.devadvance.rootcloak,
com.grarak.kerneladiutor,
com.jrummy.root.browserfree,
com.koushikdutta.superuser, etc

AR2: Check binary
files / directories

Check the existence of files
/ directories that only can be
seen on rooted device.

/system/xbin/su, /system/bin/su,
/system/xbin/.../xbin/su, /system/xbin/busybox,
SuperSU, Magisk, Luckypatcher, etc

AR3: Check system
properties

Check the value of system
properties related to root
permission.

ro.secure, ro.debuggable,
service.adb.toor, etc.

Anti-
emulation
techniques

AE1: Check hardware
configurations

Checks hardware
information of the device

TelephonyManager.getDeviceId(),
TelephonyManger.getNetwork*(),
TelephonyManager.getSimSericalNumber(),
Android device ID, IMEI, IMSI, MAC addresss,
/proc/cpuinfo (goldfish is not allowed), etc

AE2: Checks build
Information

Checks whether it has the
build information that real
devices do not have.

Build.PRODUCT, Build.BOARD, Build.BRAND,
Build.DEVICE, Build.FINGERPRINT, Build.ID,
Build.MODEL, Build.TAGS, etc.

AE3: Check system
properties

Checks whether it has the
system properties that real
devices do not have.

ro.bootloader, ro.bootmode, ro.hardware,
ro.product.model, ro.product.device,
ro.produce.name, init.svc.qemud, etc.

AE4: Check binary
files / directories

Checks whether the
specific files that imply
the emulation environment
exists.

/dev/socket/qemud, /dev/qemu_pipe,
/proc/tty/drivers, /system/lib/libc_malloc_debug_
qemu.so,
/sys/qemu_trace, /system/bin/qemu-props, etc.

AE5: Timing checking
Checks the delay of
execution time caused by
emulation environment.

gettimeofday(), currentTimeMillis(),
System.nanoTime(), etc.

Anti-
debugging
technique

AD1: Check debugger
programs

Check the debugger
programs are running or
installed on the device.

/proc/self/maps, ps
(for detecting gdb, Frida-agent-*.so, etc).

AD2: Check system
calls C

Checks the usage of system
calls such as ptrace, strace,
etc.

ptrace, strace, /proc/self/status
(for checking TracePid), etc.

AD3: Checks the
usage of JDWP

Checks the JDWP is
activated in Dalvik VM.

DVMGlobals, JdwpAdbState,
count member of BreakpointSet structure, etc.

AD4: Checks
debuggable flag

Checks the value of
debuggable flag of the
application.

BuildConfig.BUILD_TYPE,
BuildConfig.DEBUG, android:debuggable, etc.

AD5: Timing
checking

Checks the delay of
execution time caused by
breakpoints.

gettimeofday(), currentTimeMillis(),
System.nanoTime(), etc

Figure 2. The process of executing a target application

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 199

Table 2. Instrumentation events and handler interfaces in ART
Event Event handler interface

MethodEntered MethodEntered(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t
dex_pc)

MethodExited MethodExited(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t
dex_pc, const JValue& return_value)

MethodUnwind MethodUnwind(Thread* thread, Handle<mirror::Object>, ArtMethod* method, uint32_t dex_pc)

DexPcMoved DexPcMoved(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t
dex_pc)

FieldRead FieldRead(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t dex_
pc, ArtField* field)

FieldWritten FieldWritten(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t
dex_pc, ArtField* field, const JValue& field_value)

ExceptionCaught ExceptionCaught(Thread* thread, mirror::Throwable* exception_object)
Branch Branch(Thread* thread, ArtMethod* method, uint32_t dex_pc, int32_t offset)

InvokeVirtualOrInterface InvokeVirtualOrInterface(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method,
uint32_t dex_pc, ArtMethod* target)

Thread

TopManagedStack

ShadowFramesManagedStacks

TopShadowFrame

ShadowFrame

Argument 1

Argument 2

. . .

Register 1

Register 2

. . .

Figure 3. The virtual stack structure in ART

4.2 Application Launcher
DOOLDA uses a dedicated application launcher to

dynamically instrument an application’s bytecode and native
code. The module launches an application after loading
DaNIDA and DaBIDA into a process. We implement it by
modifying the app_process of Android [28] which performs
a series of pre-processing to execute an application. With the
launcher, DOOLDA can control all executable code of an
application.

Figure 2 shows the execution process of DOOLDA’s
application launcher. First, DOOLDA loads DaNIDA when
it starts. Since DaNIDA aims to instrument native code, it
needs to be loaded first to gain control overall the various
shared libraries which are loaded by an application later.
After that, the Android runtime engine, ART [29], is loaded
to the process. Then, DOOLDA load DaBIDA that works
with the runtime. DOOLDA also loads the pre-compiled dex
file, called dummy dex, at this time. The dummy dex contains
code and data that are going to be replaced with logic for
implementing anti-analysis techniques in an application.
Lastly, the launcher loads the target application and starts an
application.

4.3 DaBIDA
DaBIDA is a bytecode instrumentation module that

operates by an event-driven mechanism. Precisely, DaBIDA
catches an event, such as MethodEntered, which arises when

ART interprets bytecode that starts executing a method, to
inspect and instrument an application. Table 2 shows the
events and interfaces of the event handlers that DaBIDA
uses. DaBIDA traces an application’s execution by using the
handlers.

Instrumenting an instruction. To trace each instruction
being executed, DaBIDA utilizes ArtMethod and dex_pc that
the most of event handlers use except for ExceptionCaught
and Branch. ArtMethod object manages the bytecode of a
method and dex_pc refers to the offset value of an instruction
to be executed. By combining these two data, DaBIDA can
trace the bytecode of an application.

In addition, DaBIDA monitors data stored in virtual
registers used by the bytecode that DaBIDA is tracing.
The virtual registers are stored in a virtual stack called
ShadowFrame. To monitor the virtual registers, DaBIDA
uses the Thread object that exists in all of the instrumentation
events. As presented in Figure 3, Thread object has a field
that is pointing to the TopManagedStack and ManagedStack
has a field pointing to the TopShadowFrame. Hence, DaBIDA
accesses the ShadowFrame by using the Thread object that
transferred from the instrumentation event and monitors
the virtual register value and other data stored in the virtual
stack. The data stored in virtual registers can be simple data
such as an integer value or a memory address that points to
an object such as String, ArtMethod. If the data is a pointer,
DaBIDA finds an object that the pointer is pointing to and an

200 Journal of Internet Technology Vol. 25 No. 2, March 2024

exact value of it because it can be an important value used in
anti-analysis techniques.

DaBIDA repeats the monitoring process for every
bytecode instruction of a target application. Through the
monitoring process, DaBIDA identifies the instruction
related to the anti-analysis techniques such as obtaining
property information of a device. Also, the DaBIDA handles
it according to the strategy represented in Section 4.1 by
replacing it with the dummy method or dummy data to make
the anti-analysis techniques fail to prevent analysis.

For the case of the instruction that gets the property
information, we instrument the result of the property data
after executing the instruction. Figure 4 shows an example
that how we instrument such instructions with DaBIDA.

Figure 4. The result of instrumenting virtual registers and opcode
using DaBIDA

Before the instrumenting, the result of code sget-object
v0, Ljava/lang/String; android.os.Build.MODEL on Line
20 is 0x7faae62270 which is the address of a String object
that stores android.os.Build.MODEL data. However, after
the instrumentation, the result of the code on line 20 is
0x7fc74161e0 which is the address of a String object that
stores our dummy data collected from the normal device. As
the result, the return value of the method becomes 0x00 from
0x01.

Instrumenting an invocation of a method. There are
two ways to invoke a method in the bytecode of an Android
application. One is to use dexcache and another one is to
use a dispatch table such as vtable or itftable. Both of them
have similar mechanisms that find a new method using the
index of the method represented in the bytecode’s operand.

DaBIDA handles both cases by using the mechanism that
replaces the target method referenced by the operand of the
bytecode with the dummy method.

When a method is invoked by using the dexcache,
DaBIDA instruments the bytecode as presented in Figure
5. Before the instrumentation, the method[1234] stored
in the ResolvedMethods array managed by dexcache
points to the original Method@1234 method. However,
after the instrumenting, the method[1234] stored in the
ResolvedMethods array points to the Dummy Method. As
the result, when an application invokes the method@1234
method, Dummy Method will be invoked instead of the
original one. Likewise, when a dispatch table such as the
vtable is used for invoking a method, DaBIDA instruments
the table as illustrated in Figure 6. After DaBIDA instruments
the table, the table entry that pointed to the method[1234]
points to the Dummy Method.

Figure 5. In the case of method invocation with dexcache, the
instrumenting result by DaBIDA

Figure 6. In the case of method invocation with vtable, the
instrumenting result by DaBIDA

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 201

Figure 7 i l lustrate an example of how DaBIDA
instruments the code for invalidating anti-emulation
techniques that checks the DeviceId and Build.MODEL
information. Through the monitoring process, DaBIDA can
identify the code related to the anti-emulation techniques that
using android.telephony. TelephonyManager.getDeviceId
and android.os.Build.MODEL. The former method is
invoked through the vtable. Therefore, DaBIDA replaces the
element of vtable to invoke a dummy method that returns
996156449799883 string which is the device ID obtained
from a normal device. Also, after the instruction that gets the
android.os.Build.MODEL property, DaBIDA overwrites the
String object to have Nexus 5 string. As a result, the proper
data will be used and the anti-emulation techniques in the
application will be invalidated.

Figure 7. Bytecode instrumenting using DaBIDA

4.4 DaNIDA
In Android, the native code starts executing by a request

from the bytecode through the JNI. Therefore, DaNIDA
starts monitoring the execution of the native code when the
JNI is called by an application. To implement DaNIDA, we

used a dynamic binary instrumentation framework: Valgrind.
DaNIDA monitors native codes and manages the execution
flow of an application. To this end, DaNIDA translates the
native code to VEX Intermediate Representation (IR). VEX
is an architecture-agnostic, side-effects-free representation of
a num ber of target machine languages.

Figure 8 shows the translation result of Mov ebp, [esp +
16] instruction to the IR. The IR uses an internal temporary
variable on its own, and an IR statement is mapped to a
computing operation. Accordingly, one machine instruction
can be represented as multiple IR statements. The IMark
statement stores the address and length of the instruction
and the following IRs are as below: (1) Store a value of ESP
register in t9; (2) Add 16 to t9 and store in t8; (3) Store, in
t10, a value pointed by the address stored in t8; (4) Store
the value of t10 in EBP; and (5) Insert an address of the
instruction to be executed next into EIP.

00 th | ------ IMark(0x11DAB8BB, 4, 0) ------
01 th | t9 = GET:I32(24)
02 th | t8 = Add32(t9,0x10:I32)
03 th | t10 = LDle:I32(t8)
04 th | PUT(28) = t10
05 th | PUT(68) = 0x11DAB8BF:I32

mov ebp, [esp + 0x16]

Machine Code
(x86)

VEX IR

Figure 8. Example of translating machine code to Vex IR

VEX generates and executes one basic block and
generates the next basic block according to the execution
result of the previous basic block. Figure 9 shows the
structure of the basic block used in VEX. One basic block has
IR statements corresponding to the plurality of instructions,
and each IR is distinguished by Tag. There are two ways for
a basic block to find the next basic block. When an address
intended to branch is a constant value, the corresponding
value becomes the start address of the next basic block and
when the address is not a constant value, the execution result
of the corresponding basic block is stored in a temporal
variable and the result value of the corresponding temporary
variable becomes the start address of the next basic block.

After the translation of a basic block is finished,
DaNIDA’s monitoring module checks if the anti-analysis
techniques are implemented in the basic block. To this end,
we collect and implement known anti-debugging, -emulation,
and -rooting techniques shown in Table 1. Looking at the
various signatures collected, we found that most anti-analysis
techniques use the form of human-readable strings in the
native code. Therefore, in order to use those signatures,
DaNIDA checks string constants and function names for
detecting anti-analysis techniques.

IRTypeEnv * tyenv
IRStmt ** stmts

Int stmts_size
Int stmts_used

IRExpr * next
IRJumpKind jumpkind

Int offsIP

IRStmt * [IR 1]
…

IRStmt * [IR M]
…

IRStmt * [IR N]

Tag Ist_IMark

UInt len
Addr addr

UChar delta

Tag Ist_Put

IRExpr * data
Int offset

Tag Iex_Const
IRConst * con

Tag Iex_RdTmp
IRTemp tmp

Tag Ico_U32
UInt NextAddr

NextAddr

Is
Const?

Basic Block
IR Statements IR Statement

Yes

No

IR Expr

IR Expr

IR Const

Figure 9. The basic block structure of VEX IR.

202 Journal of Internet Technology Vol. 25 No. 2, March 2024

Normally, by monitoring IRs translated from the
native code, DaNIDA cannot know what the method is
or what string is used. There are two main reasons for
this. First, there are only addresses or const values in IRs.
Second, applications are published after removing symbols
unnecessary to execute the native code. Therefore, it is
difficult to obtain string information directly from the native
code.

To overcome the challenge, we map the address of a basic
block monitored by DaNIDA and library functions because
the symbol table of a native library contains addresses and
names of functions. By using /proc/<pid>/maps file, we
can check where the starting address of the basic block, and
we can find out which native library has the current basic
block. Similarly, if the library is identified, the offset of
the method can be known through the symbol table of the
library. Through the previously extracted information, it is
possible to identify which method in which the library was
called based on the starting address of the basic block during
the execution. In the monitoring stage, when a function is
called, an address value is converted into human-readable
information that tells us which function is executing.
DaNIDA compares the information with the signatures
collected in advance to determine whether anti-analysis
techniques are used by an application.

When DaNIDA detects anti-analysis techniques, it selects
a invalidating function of the corresponding anti-analysis
techniques. DaNIDA’s IR instrumentation module changes
basic blocks to bypass anti-analysis techniques by modifying
execution flows. Figure 10 illustrates how DaNIDA
instruments a function by using a code snippet for checking
the su binary to figure out the device is rooted or not. When
the corresponding method is executed, the same result
produced as hooking of the corresponding function may be
performed by deleting the existing IR, inserting 0 into EAX
and modifying IR to run the termination instruction. In this
way, DaNIDA can change the content of a function before it
executes.

Function : boolean
com.example.sample.MainActivity.checkForSuBinary()
00 th | ------ IMark(0x11FBF00C, 7, 0) ------
01 th | t18 = GET:I32(24)
02 th | IR-NoOp
03 th | t2 = GET:I32(8)
04 th | IR-NoOp
05 th | IR-NoOp
06 th | ------ IMark(0x11FBF013, 3, 0) ------
07 th | t4 = Sub32(t18,0x2C:I32)
08 th | PUT(24) = t4
09 th | PUT(68) = 0x11FBF016:I32
...
51 th | ------ IMark(0x11FBF037, 2, 0) ------
52 th | t48 = CmpEQ32(t39,0x0:I32)
53 th | t47 = 1Uto32(t48)
54 th | t45 = t47
55 th | t49 = 32to1(t45)
56 th | t40 = t49
57 th | if (t40) { PUT(68) = 0x11FBF06C:I32; exit-Boring }

Function : boolean
com.example.sample.MainActivity.checkForSuBinary()
00 th | PUT(8) = 0x0:I32
01 th | t50 = 0x11D46055:I32

Figure 10. Method hooking with IR using DaNIDA

For another example, using the PTRACE function is
a widely-used technique by anti-debugging techniques. If
the target process is a process executed by the debugger,
PTRACE returns -1 with an error and 0 on success. Anti-
debugging techniques can use this feature to whether the
process is debugged or not. However, with DaNIDA, if the
PTRACE function is called, DaNIDA changes IR to return
0 instead of executing the original code of the PTRACE
function so that detecting a debugger is not possible.

5 Evaluation

In this section, we evaluate DOOLDA with Android
malware provided by the argus group [8]. Specifically, we
address the following three research questions.

• RQ1. How much Android malware uses anti-analysis
techniques?

• RQ2. Can DOOLDA automatically invalidate real-
world malware equipped with anti-analysis techniques?

• RQ3. What does DOOLDA do better than the other
dynamic analyzer?

5.1 Implementation
We implemented the prototype of DOOLDA with dual

instrumentation modules, DaBIDA and DaNIDA. DaBIDA
is implemented based on the instrumentation module in ART
and DaNIDA is implemented based on the VEX module of
Valgrind. DOOLDA’s instrumentation modules are loaded
into a process and trace the execution of an application,
invalidating anti-analysis techniques. Because DOOLDA
uses the same virtual memory space with a target application,
it can manipulate the target application’s data and code
without any restriction.

5.2 Experimental Setup
Setup. Our evaluations were performed on the Android

Virtual Device (AVD) and a mobile device (Nexus 5) with
the Android system (version 5.1). Also, we used the device
with remote gdb for detecting malware equipped with anti-
debugging techniques.

Malware dataset. Since there was no verified dataset of
malware equipped with anti-analysis techniques, we need
to extract samples from a reliable malware dataset. We,
thus, used Android malware provided by the argus group
[8]. The dataset contains 24,650 android malwares (as APK
files), and each of them is classified into each category.
Among them, we first found malware samples that use anti-
analysis techniques and were executable. First, by using
the signatures in Table 1, we checked whether the signature
exists each application. After that, we checked whether the
app is executable and whether the execution result changes
according to the execution environment. For example, there
are samples that run when it execute on a mobile device, but
not on the emulator. Consequently, we could select 1,535
samples in total.

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 203

5.3 Measuring Anti-Analysis Techniques
We performed experiments to find how many Android

malware is using anti-analysis techniques with the dataset. In
this experiment, we directly checked behaviors of malware
in various execution environments (i.e., on a normal device,
Android Virtual Device (AVD), and with the remote gdb).
The classification result presents in Table 3. 16.87% of
malware applies anti-emulation techniques, and 2.28%
of malware applies anti-debugging techniques. The most
commonly used technique is anti-emulation techniques and
the malware that applies at least one type of anti-analysis
technique accounts for 18.31% of the dataset.

Usually, if an anti-analysis technique is used by an
application, it first executes the technique to check whether
the application is running on an analyzer. Therefore,
we checked whether the main activity of an application
normally executes in various environments. We note that this
experiment does not aim to observe malicious behaviors of
malware, but to analyze whether the anti-analysis techniques
were successfully bypassed by DoolDA, and which anti-
analysis is used by malware.

Because we use the sampled data, two cases can occur
when running a malicious application using DoolDA: Either
the app runs because an anti-analysis technique was bypassed
by DoolDA, or the app does not execute because DoolDA

could not bypass an anti-analysis technique. Also, after
launching each malware, we can check the log of DoolDA to
see if the anti-analysis technique was successfully bypassed.
When we met a case where an application does not run
occurs because DoolDA fails to bypass the application’s anti-
analysis technique, we added a signature so that DoolDA can
bypass the anti-analysis technique by manually analyzing
the application. By repeatedly performing this process, we
performed measurements on all malware samples, adding
signatures. In addition, the samples that we chose from
the dataset contain only malware that equips anti-analysis
techniques. Consequently, it is worth noting that, in our
measurement results, there are no false-positives.

In addition to anti-emulation and anti-debugging
techniques, there is a well-known anti-analysis technique
called anti-rooting. Commercial applications such as
banking applications usually use the technique. As shown
in Table 4, in our dataset, no malware uses anti-rooting
techniques. However, there is 77 malware that checks the
root permission. Listing 2 shows a code snippet of malware
that requires the root permission (AR2 in Table 1). If there is
a file in the path, the FALSE value will be returned, and the
application will show a message that the application cannot
run because it does not have the root privilege. Such malware
checks the root permission and utilize it to do malicious
actions.

Table 3. The applying rate of anti-analysis techniques for the dataset

Category Anti-emulation tech Anti-debugging tech Not applied Sub-total

AndroRAT 0 (0%) 0 (0%) 30 (100.00%) 30
Minimob 14 (21.53%) 6 (9.23%) 48 (73.84%) 65
BankBot 26 (6.87%) 0 (0%) 352 (93.12%) 378
FakeDoc 0 (0%) 13 (86.66%) 2 (13.33%) 15
Vidro 14 (77.77%) 11 (61.11%) 3 (16.66%) 18
Nandrobox 10 (31.25%) 0 (0%) 22 (68.75%) 32
Penetho 4 (30.76%) 0 (0%) 9 (69.23%) 13
DroidKungFu 1 (2.00%) 0 (0%) 49 (98.00%) 50
Utchi 0 (0%) 0 (0%) 10 (100.00%) 10
Svpeng 1 (25.00%) 0 (0%) 3 (75.00%) 4
Winge 0 (0%) 0 (0%) 5 (100.00%) 5
GingerMaster 1 (4.00%) 0 (0%) 24 (96.00%) 25
Mtk 7 (28.00%) 0 (0%) 18 (72.00%) 25
Lotoor 61 (66.30%) 5 (5.43%) 26 (28.27%) 92
Jisut 0 (0%) 0 (0%) 90 (100.00%) 90
SimpleLocker 0 (0%) 0 (0%) 56 (100.00%) 56
Opfake 2 (50.00%) 0 (0%) 2 (50.00%) 4
Triada 1 (3.44%) 0 (0%) 28 (96.55%) 29
Youmi 86 (22.63%) 0 (0%) 294 (77.37%) 380
Dowgin 31 (14.48%) 0 (0%) 183 (85.51%) 214
Total 259 (16.87%) 35 (2.28%) 1,254 (81.69%) 1,535

204 Journal of Internet Technology Vol. 25 No. 2, March 2024

Listing 2. Case study - root detection: source code of malware
that runs malicious script

1 protected void onCreate(Bundle arg10) {
2 ...
3 if(!hasRootPermission()) {
4 v1.setTitle(«Check root permission»);
5 v1.setMessage(«Sorry, you don\’t have root permission ...
«);
6 } else {
7 ...
8 new AppInitializer(((Context)this), ...).start());
9 }
10 }
11
12 public static boolean hasRootPermission {
13 Boolean v2 = true;
14
15 if(!new File(«/system/bin/su»).exists()
16 && !new File(«/system/xbin/su»).exist()
17 && !new File(«/system/sbin/su»).exist()) {
18 v2 = false;
19 }
20 ...
21
22 public class AppInitializer extends Thread {
23 public void run() {
24 v1.exec(
25 «chmod 755
26 /data/data/com.aps.hainguyen273.app2card/.app2card_
tmp/getinfo.sh\n
27 /data/data/com.aps.hainguyen273.app2card/.app2card_
tmp/getinfo.sh info»
28)
29 }
30 }

5.4 Analyzing the Malware Equipped with Anti-Analysis
Techniques using DOOLDA
DOOLDA discovered and invalidated all anti-analysis

techniques successfully in 281 malware as in Table 3.
In this section, we show how DOOLDA analyzes the
malware equipped with anti-analysis techniques through the
following case studies. The case studies consist of malware
implementing anti-emulation, anti-debugging techniques.
DOOLDA defeats each case of the anti-analysis techniques
by instrumenting the target malware successfully.
5.4.1 Case Study: Anti-Emulation Techniques

Listing 3 shows the code of malware using anti-
emulation techniques. In the code, the method setAlarm
of class n enables the alarm receiver to steal the contents
of SMS and MMS. Therefore, setAlarm is the main target
to analyze and we have to execute the code to analyze it
dynamically. It is invoked by onCreate method and onCreate
method will be invoked when the ActivityStart activity is
initialized. However, the method setAlarm is not always
invoked. setAlarm method will be invoked according to
the result of method isEmulator of the class n. It will be
invoked according to the result of the method isEmulator
of the class n. The method isEmulator has the code related
to the anti-analysis techniques especially blocking the
analyzer with a virtual environment. In this case, there are
techniques corresponding to AE1 and AE2 in Table 1. It
checks the information such as DeviceId, Build.MODEL,
Build.DEVICE, etc. If at least one of the information implies
that the application is running on an emulator, the method
isEmulator will return TRUE and the method setAlarm will
not be invoked.

Table 4. The applying rate of anti-rooting techniques for the dataset
Category Desiring root Anti-rooting tech Do not need root Sub-total
AndroRAT 2 (6.66%) 0 (0%) 28 (93.33%) 30
Minimob 5 (7.69%) 0 (0%) 60 (92.31%) 65
BankBot 0 (0%) 0 (0%) 378 (100.00%) 378
FakeDoc 0 (0%) 0 (0%) 15 (100.00%) 15
Vidro 0 (0%) 0 (0%) 18 (100.00%) 18
Nandrobox 9 (28.12%) 0 (0%) 23 (71.88%) 32
Penetho 2 (15.38%) 0 (0%) 11 (84.62%) 13
DroidKungFu 15 (30.00%) 0 (0%) 35 (70.00%) 50
Utchi 0 (0%) 0 (0%) 10 (100.00%) 10
Svpeng 0 (0%) 0 (0%) 4 (100.00%) 4
Winge 0 (0%) 0 (0%) 5 (100.00%) 5
GingerMaster 8 (32.00%) 0 (0%) 17 (68.00%) 25
Mtk 0 (0%) 0 (0%) 25 (100.00%) 25
Lotoor 19 (20.65%) 0 (0%) 73 (79.35%) 92
Jisut 5 (5.55%) 0 (0%) 85 (94.44%) 90
SimpleLocker 2 (3.57%) 0 (0%) 54 (96.42%) 56
Opfake 0 (0%) 0 (0%) 4 (100.00%) 4
Triada 1 (3.44%) 0 (0%) 28 (96.55%) 29
Youmi 7 (1.84%) 0 (0%) 373 (98.16%) 380
Dowgin 2 (0.93%) 0 (0%) 212 (99.07%) 214
Total 259 (16.87%) 35 (2.28%) 1,254 (81.69%) 1,535

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 205

Listing 3. Case study of the anti-emulation: malware steals the
contents of the message in java code

1 public class ActivityStart extends Activity {
2 ...
3 protected void onCreate(Bundle arg5) {
4 super.onCreate(arg5);
5 ...
6 if(!n.a(this.getApplicationContext())) {
7 n.b(this.getAppcationContext());
8 ...
9 }
10 }
11
12 public class n {
13 ...
14 public static boolean isEmulator (...) {
15 boolean v1 = false;
16 boolean v4 = arg6.getSystemService(«phone”)
.getDeviceId()
17 .equals(«000000000000000»);
18 int v0 = (Build.MODEL.contains(«google_sdk»)) || ... ?
1 : 0;
19 int v3 = !Build.DEVICE.startsWith(«generic») || ... ? 0 :
1;
20
21 if ((v4) || (v0 != 0) || (v3 != 0)) {
22 v1 = true;
23 }
24 return v1;
25 }
26
27 public static void setAlarm (Context arg7) {
28 if (Build$VERSION.SDK_INT >= 19) {
29 arg7.getSystemService(«alarm») ...
30 new Intent(arg7, AlarmReceiverKnock.class), ...);
31 } else {
32 arg7.startService(new Intent(arg7, knock.class));
32 }
34 }
35 }
36 }

For a successful analysis, we have to make the result of
method isEmulator to be FALSE. In this case, DOOLDA
invalidated the anti-emulation techniques by instrumenting
the bytecode of the isEmulator method with DaBIDA to make
the method returns FALSE. As a result, with DOOLDA, we
can successfully found the malicious behavior as in Figure
11 that llustrates the malware leaks SMS information after an
SMS message is received.

For a successful analysis, we have to make the result of
method isEmulator to be FALSE. In this case, DOOLDA
invalidated the anti-emulation techniques by instrumenting
the bytecode of the isEmulator method with DaBIDA to make
the method returns FALSE. As a result, with DOOLDA, we
successfully found the malicious behavior as in Figure 11
that illustrates the malware leaks SMS information after an
SMS message is received.

 boolean isEmulator(android.content.Context)
 reg6(obj) - android.app.Application
 ...
 [10] invoke-virtual {v0}, java.lang.String
 android.telephony.TelephonyManager.getDeviceId()
 String com.dummy.Dummy_method.getDeviceId()
 [0] sget-object v0, com.dummy.Dummy_string.deviceId
 [1] return v0
 RETURN-V(String) : “996156449799883”
 [13] move-result-object v0
 [14] const-string v3, "000000000000000"
 [16] invoke-virtual {v0, v3}, boolean
 java.lang.String.equals(java.lang.Object)
 [19] move-result v4
 [20] sget-object v0, Ljava/lang/String; android.os.Build.MODEL
 // overwrited to “Nexus 5”
 [22] const-string v3, "google_sdk"
 [24] invoke-virtual {v0, v3}, boolean java.lang.String.contains
 (java.lang.CharSequence)
 [27] move-result v0
 ...
 RETURN-V(uint_8) : <0x00> // FALSE

 ...
 void m.a(android.content.Context, java.lang.String)
 reg3(obj) - android.app.Application
 reg4(string) - {“module”:”sms”,”tel”:”01002102410”,
 “body”:”Your Google verification code is
 G-554053”, ”time”:”Wed Jul 08 22:58:19 EDT}
 ...
 java.lang.String r.a(java.lang.String, org.json.JSONObject)
 reg5(string) - http://childgura.in/beloado/index.php
 reg6(obj) - org.json.JSONObject
 ...

Figure 11. The analysis result of DOOLDA with code instrumenting
of DaBIDA

5.4.2 Case Study: Anti-Debugging Techniques
Listing 4 presents the code of malware equipped

with anti-debugging techniques. In the code, the method
rootShell executes shellcode and installs a new application
for conducting malicious behaviors. Therefore, rootShell is
the main target to analyze and we have to execute the code
to analyze it dynamically. It is invoked by onClick method
and onClick method will be invoked after the MainActivity
is created. In the control flow of this application, there is
no restriction of invoking rootShell method. However, it
has a pre-configuration step in the native library. When the
MainActivity is created, the DBGChecker instance is also
created. DBGChecker is a class defined in a native library and
it has the function named wwx. The wwx function preempt the
PTRACE system call for denying the analysis with PTRACE
as in AD2 of Table 1.

DOOLDA can analyze the malware by invalidating the
anti-debugging techniques with DaNIDA. If the analysis
target program uses the PTRACE system call shown in
Listing 4, it can be easily detected and invalidated through
DaNIDA. First, DaNIDA knows the names and locations of
other libraries with the process map. With this information,
before the library code is executed, by using the offset of
the functions included in the library based on the execution
address, it is possible to know which function is scheduled to
be executed next. Through this, DaNIDA can notice that the
PTRACE system call is the next function to be executed.

Then, DaNIDA modifies IR statements in the PTRACE
system call to return right after the system call executes.

The instrumentation and analysis results are shown in
Figure 12. After DaNIDA modified the original PTRACE
system call’s IR statements, the malware returns from the
PTRACE system call, and then, installs the systemservice.
apk.

206 Journal of Internet Technology Vol. 25 No. 2, March 2024

Listing 4. Case study of the anti-debugging: malware installs
another malicious application
1 // sec.cpp
2 void wwx() {
3 if(ptrace(PTRACE_ATTACH, p_pid, NULL, NULL) == 0)
{
4 ...
5 ptrace(PTRACE_CONT, p_pid, NULL, NULL);
6 }
7 }
8
9 jint JNI_OnLoad(JavaVM* vm, void* reserver) {
10 …
11 wwx();
12 }
13
14 // MainActivity.java
15 protected void onCreate(Bundle savedInstanceState) {
16 ...
17 DBGChecker v11 = new DBGChecker();
18 }
19
20 public void onClick(DialogInterface arg10, int arg11) {
21 InputStream v2 = this.getAssets().open(“assets/libx86.so”);
22 FileUtils.copyInputStreamToFile(v2, new File(“/sdcard/
 fc.key”));
23 ...
24 new shell_m().rootShell();
25 }
26
27 public void rootShell() {
28 sh.execCommand(new String[]{“mount -o rw,remount /
 system”, ...,
29 “mv /sdcard/fc.key/system/app/systemservice.apk”,
30 “chmod 644 /system/app/systemservice.apk”, “reboot”},
 true);
31 …
32 }

void com.smsbombardment.MainActivity$100000001
 .onCreate(Bundle savedInstanceState)
 ...
 [17] invoke-direct {v0}, void
com.smsbombardment.scurity.DBGChecker.<init>()

==
Object : /data/app/xxx.zzzz.cccc/lib/x86/libSec.so
0 th | ------ IMark(0x120F8864, 2, 0) ------
...
42 th | ------ IMark(0x120F86C0, 6, 0) ------ // jump to ptrace()
43 th | t30 = Add32(t21,0x20:I32)
44 th | t11 = LDle:I32(t30)

object : /system/lib/libc.so
0 th | ------ IMark(0x4A246C0, 1, 0) ------ // 0x4A246C0 == PTRACE
1 th | PUT(8) = 0x0:I32
2 th | t42 = 0x11D46055:I32 // ret
==
...
void com.smsbombardment.MainActivity$100000001
 .onClick(android.conetent.DialogInterface, int)
 ...
 void com.smsbombardment.shell_m.rootShell()
 reg9(obj) - com.smsbombardment.shell_m
 ...
 [9] const-string v7, “mount -o rw,remount /system”
 [11] aput-object v7, v5, v6
 . . .
 [16] const/4 v6, #+1
 . . .
 [65] const-string v7, “chmod 644 /system/app/systemservice.apk”
 [67] aput-object v7, v5, v6
 ...
 [71] const/4 v5, #+7
 [72] invoke-static {v4, v5},
 com.smsbombardment.shell_m$CommandResult
 com.smsbomardment.shell_m.execCommand(java.lang.String[],
 boolean)

Figure 12. The analysis result of DOOLDA with code instrumenting
of DaNIDA

5.4.3 Case Study: Comparison with Other Dynamic
Analyzers
In order to show differences from other dynamic

analyzers, we compare analysis results of DOOLDA with
other analyzers by using applications to which anti-emulation
and anti-debugging techniques are applied. The comparison
results are summarized in Table 5.

As presented in Figure 13 to Figure 16, DOOLDA can
analyze all the cases successfully. However, DexMonitor [6],
DroidScope [11] and Frida [14] failed to analyze some cases
of the anti-emulation and anti-debugging techniques.

Table 5. The analyzability of dynamic analyzers including DOOLDA

DexMonitor DroidScope Frida DoolDA

Anti-emulation
techniques

Checking
device properties ✓ ✗ ✓ ✓

Checking
system properties ✗ ✗ ✓ ✓

Checking
signature files ✓ ✓ ✓ ✓

Anti-debugging
techniques

Checking
debugging flag ✓ ✓ ✓ ✓

Checking
process list ✓ ✓ ✗ ✓

Ports scanning ✓ ✗ ✗ ✓

System calls ✓ ✓ ✗ ✓

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 207

6 Limitations

DOOLDA is a novel system that has dual instrumentation
modules to cover the whole code of the Android applications
and can handle the malware equipped with anti-analysis
techniques. In this paper, we presented the prototype of
DOOLDA and proved its superiority in Section 5. However,
as in other analyzers, some limitations still exist in DOOLDA
and we leave them as future work.

DOOLDA can invalidate only known anti-analysis
techniques. For invalidating anti-analysis techniques,
DOOLDA has to detect the code related to anti-analysis
techniques first. However, the detection is based on the
information that was previously reported. Therefore,
DOOLDA cannot handle unknown anti-analysis techniques.
In addition, DaNIDA cannot support the latest version of
the Android system. Because DaNIDA is implemented
based on the VEX module of Valgrind and the VEX module
supports up to Android system version 5.1. To overcome this
limitation, we can change the base module of DaNIDA from
Valgrind to Address Sanitizer (ASAN) [30].

7 Related Work

In this section, we discuss previously proposed systems
for dynamically analyzing Android malware.

There are dynamic analyzers implemented by modifying
the Android operating system [6-7, 12, 25, 31]. Such in-the-
box analyzers can directly monitor executions of malware
without a semantic gap. Also, as far as they run on bare-
metal, they can minimize the risk of being detected by
analyzed applications. However, they have a couple of
limitations. First off, in-the-box analyzers have Android
system version dependency as they run in a specific version
of Android system. For example, if the system is updated,
there is a hassle of analyzing the updated Android system
code and re-creating an analysis tool based on it. In addition,
execution environments for using such analyzers can be
limited to actual devices. This is because, if they run on an
emulator, anti-emulating techniques can hinder analysis.

Dynamic analysis tools based on the emulator have
the advantage of being able to configure environmental
conditions [9-11]. Also, another advantage is that they
can even analyze the most privileged attacks because they
analyze malware in a controllable sandbox. However, their
downsides are that (1) they should rebuild the semantic
information; and (2) they can be thwarted by anti-emulation
techniques.

Dynamic code instrumentation approaches do not have
environmental limitations related to executions of applications
as in the in-the-box and emulator-based analyzers [14, 32-
33]. However, as far as they use a debugging bridge or
system calls for debugging such as PTRACE, those analyzers
cannot analyze applications implementing anti-debugging
techniques without bypassing them.

8 Conclusion

In this paper, we propose DOOLDA, a novel system
using dual instrumentation modules for handling both the
native code and bytecode, to analyze the malware equipped
with anti-analysis techniques. Through our evaluations,
we showed that DOOLDA can invalidate anti-analysis
techniques by automatically instrumenting code that is about
to be executed. We believe that DOOLDA can be used as an
effective dynamic malware analysis framework for analyzing
advanced malware.

Acknowledgments

This work was supported in part by the National
Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT (MSIT), and Future Planning
under Grant NRF-2020R1A2C2014336 and Grant NRF-
2021R1A4A1029650.

References

[1] B. Bichsel, V. Raychev, P. Tsankov, M. Vechev,
Statistical Deobfuscation of Android Applications, In
Proceedings of the 2016 ACM Conference on Computer
and Communications Security, Vienna Austria, 2016,
pp. 343–355.

[2] A. Dinaburg, P. Royal, M. I. Sharif, W. Lee, Ether:
malware analysis via hardware virtualization extensions,
Proceedings of the 15th ACM Conference on Computer
and Communications Security, Alexandria, VA, USA,
2008, pp. 51-62.

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, D. A. Wagner,
Android permissions demystified, Proceedings
of the 18th ACM Conference on Computer and
Communications Security, Chicago, Illinois, USA,
2011, pp. 627–638.

[4] S. Rasthofer, S. Arzt, M. Miltenberger, E. Bodden,
Harvesting Runtime Values in Android Applications
That Feature Anti-Analysis Techniques, In Proceedings
of the 2016 Annual Network and Distributed System
Security Symposium, San Diego, CA, USA, 2016, pp.
1–15.

[5] P. Royal, M. Halpin, D. Dagon, R. Edmonds, W. Lee,
PolyUnpack: Automating the Hidden-Code Extraction
of Unpack-Executing Malware, Proceedings of the 22nd
Annual Computer Security Applications Conference,
Miami, FL, USA, 2006, pp. 289–300.

[6] H. Cho, J. H. Yi, G.-J. Ahn, DexMonitor: Dynamically
Analyzing and Monitoring Obfuscated Android
Applications, IEEE Access, Vol. 6, pp. 71229–71240,
November, 2018.

[7] L. Xue, H. Zhou, X. Luo, Y. Zhou, Y. Shi, G. Gu, F.
Zhang, M. H. Au, Happer: Unpacking Android Apps via
a Hardware-Assisted Approach, 2021 IEEE Symposium

208 Journal of Internet Technology Vol. 25 No. 2, March 2024

on Security and Privacy, San Francisco, CA, USA,
2021, pp. 1641–1658.

[8] Y. Li, J. Jang, X. Hu, X. Ou, Android Malware
Clustering Through Malicious Payload Mining,
Proceedings of the 20th International Symposium on
Research in Attacks, Intrusions and Defenses, Atlanta,
GA, USA, 2017, pp. 192–214.

[9] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T.
Li, X. Wang, X. Wang, Things You May Not Know
About Android (Un)Packers: A Systematic Study
based on Whole-System Emulation, Proceedings of the
2018 Annual Network and Distributed System Security
Symposium, San Diego, CA, USA, 2018, pp. 1–15.

[10] K. Tam, S. J . Khan, A. Fat tori , L. Cavallaro,
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors, Proceedings of the 2015 Annual
Network and Distributed System Security Symposium,
San Diego, CA, USA, 2015, pp. 1–15.

[11] L. K . Yan , H . Yin , Dro idScope : Seamless ly
Reconstructing the OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis, Proceedings of
the 21st USENIX Security Symposium, Bellevue, WA,
USA, 2012, pp. 569–584.

[12] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, D.
Gu, AppSpear: Bytecode Decrypting and DEX
Reassembl ing fo r Packed Andro id Malware ,
Proceedings of the 18th International Symposium on
Research in Attacks, Intrusions and Defenses, Kyoto,
Japan, 2015, pp. 359–381.

[13] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G.
Heiser, R. B. Lee, Catalyst: Defeating last-level cache
side channel attacks in cloud computing, Proceedings
of the 22nd IEEE Symposium on High Performance
Computer Architecture, Barcelona, Spain, 2016, pp.
406–418.

[14] O. A. V. Ravnås, Frida: Dynamic instrumentation
toolkit for developers, reverse-engineers, and security
researchers, 2021, https://frida.re/.

[15] M. K. Alzaylaee, S. Y. Yerima, S. Sezer, EMULATOR
vs REAL PHONE: Android Malware Detection Using
Machine Learning, Proceedings of the 3rd ACM on
International Workshop on Security And Privacy
Analytics, Scottsadale, AZ, USA, 2017, pp. 65–72.

[16] S. Berlato, M. Ceccato, A large-scale study on the
adoption of anti-debugging and anti-tampering
protections in android apps, Journal of Information
Security and Applications, Vol. 52, Article No. 102463,
June, 2020.

[17] B. Brenner, Android malware anti-emulation techniques,
2017, https://news.sophos.com/en-us/2017/04/13/
android-malware-anti-emulation-techniques/.

[18] A. Druffel, K. Heid, DaVinci: Android App Analysis
Beyond Frida via Dynamic System Call Instrumentation,
Proceedings of the 2020 International Conference on
Applied Cryptography and Network Security, Rome,
Italy, 2020, pp. 473–489.

[19] D. Jang, Y. Jeong, S. Lee, M. Park, K. Kwak, D. Kim,
B. B. Kang, Rethinking anti-emulation techniques for
large-scale software deployment, Computers & Security,
Vol. 83, pp. 182–200, June, 2019.

[20] K. Lim, Y. Jeong, S.-J. Cho, M. Park, S. Han, An
Android Application Protection Scheme against
Dynamic Reverse Engineering Attacks, Journal of
Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, Vol. 7, No. 3, pp. 40–52,
September, 2016.

[21] D. Maier, T. Müller, M. Protsenko, Divide-and-
Conquer: Why Android Malware Cannot Be Stopped,
Proceedings of the 9th International Conference
on Availability, Reliability and Security, Fribourg,
Switzerland, 2014, pp. 30–39.

[22] N. Miramirkhani, M. P. Appini, N. Nikiforakis, M.
Polychronakis, Spotless Sandboxes: Evading Malware
Analysis Systems Using Wear-and-Tear Artifacts, 2017
IEEE Symposium on Security and Privacy, San Jose,
CA, USA, 2017, pp. 1009–1024.

[23] V. Sihag, M. Vardhan, P. Singh, A survey of android
application and malware hardening, Computer Science
Review, Vol. 39, Article No. 100365, February, 2021.

[24] S.-T. Sun, A. Cuadros, K. Beznosov, Android rooting:
Methods, detection, and evasion, Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, Denver, CO, USA,
2015, pp. 3–14.

[25] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. D.
McDaniel, A. Sheth, TaintDroid: An Information Flow
Tracking System for Real-time Privacy Monitoring on
Smartphones, ACM Transactions on Computer Systems,
Vol. 57, No. 3, pp. 99–106, March, 2014.

[26] X. Wang, S. Zhu, D. Zhou, Y. Yang, Droid-AntiRM:
Taming Control Flow Anti-Analysis to Support
Automated Dynamic Analysis of Android Malware,
Proceedings of the 33rd Annual Computer Security
Applications Conference (ACSAC), Orlando, FL, USA,
2017, pp. 350–361.

[27] L. Xue, Y. Zhou, T. Chen, X. Luo, G. Gu, Malton:
Towards On-Device Non-Invasive mobile malware
analysis for ART, Proceedings of the 26th USENIX
Security Symposium, Vancouver, BC, 2017, pp. 289–
306.

[28] Google git, Main entry of app_process, 2021, https://
android.googlesource.com/platform/frameworks/
base/+/0419ab9e4a7761e2aac7e1bec73057b3beba97ec/
cmds/app_process/app_main.cpp.

[29] Android Developer, Android Runtime (ART) and Dalvik,
2021, https://source.android.com/devices/tech/dalvik.

[30] Android Developer, Address Sanitizer, 2021, https://
developer.android.com/ndk/guides/asan.

[31] M. Sun, T. Wei, J. C. S. Lui, TaintART: A Practical
Multi-level Information-Flow Tracking System for
Android RunTime, Proceedings of the 2016 ACM
Conference on Computer and Communications Security,
Vienna, Austria, 2016, pp. 331–342.

[32] V. Costamagna, C. Zheng, ARTDroid: A Virtual-
Method Hooking Framework on Android ART Runtime,
Proceedings of the 1st International Workshop on
Innovations in Mobile Privacy and Security, London,
UK, 2016, pp. 20-28.

[33] L. Xue, X. Luo, L. Yu, S. Wang, D. Wu, Adaptive
unpacking of Android apps, Proceedings of the 39th

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 209

International Conference on Software Engineering,
Buenos Aires, Argentina, 2017, pp. 358–369.

Biographies

Sunjun Lee r ece ived the B .S and
M.S degrees in Computer Science and
Engineering from Soongsil University in
2019 and 2021, respectively. His research
interests include binary analysis, reverse
engineering, system security and mobile
security.

Yonggu Shin received the B.S and
M.S degrees in Computer Science and
Engineering from Soongsil University in
2019 and 2021, respectively.

Minseong Choi received the B.S and
M.S degrees in Computer Science and
Engineering from Soongsil University in
2019 and 2023, respectively.

Haehyun Cho is an Assistant Professor
in the School of Software at Soongsil
University, Seoul, Korea. He received the
B.S. and M.S. degrees in computer science
from Soongsil University and the Ph.D.
degree in computer science at School of
Computing, Informatics and Decision
Systems Engineering of Arizona State

University.

Jeong Hyun Yi is a Professor in the School
of Software at Soongsil University, Seoul,
Korea. He received the B.S. and M.S.
degrees in computer science from Soongsil
University, in 1993 and 1995, and the
Ph.D. degree in information and computer
science from the University of California,
Irvine, in 2005.

210 Journal of Internet Technology Vol. 25 No. 2, March 2024

Appendix

(a) The Analysis result of DOOLDA

(b) The analysis result of DexMonitor

Figure 13. The analysis result of the malware with anti-emulation of DOOLDA and DexMonitor.

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 211

(a) The analysis result of DroidScope

(b) The analysis result of Frida

Figure 14. The analysis result of the malware with anti-emulation of DroidScope and Frida.

212 Journal of Internet Technology Vol. 25 No. 2, March 2024

(a) The analysis result of DOOLDA

(b) The analysis result of DexMonitor

Figure 15. The analysis result of the malware with anti-debugging of DOOLDA and DexMonitor.

Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA 213

(a) The analysis result of DroidScope

(b) The analysis result of Frida

Figure 16. The analysis result of the malware with anti-debugging of DroidScope and Frida.

