
Machine Learning Approaches to Malicious PowerShell Scripts Detection and Feature Combination Analysis 167

*Corresponding Author: Yi-Wei Ma; E-mail: ywma@mail.ntust.edu.tw
DOI: 10.53106/160792642024012501014

Machine Learning Approaches to Malicious PowerShell Scripts Detection
and Feature Combination Analysis

Hsiang-Hua Hung, Jiann-Liang Chen, Yi-Wei Ma*

Department of Electrical Engineering, National Taiwan University of Science and Technology, Taiwan
m10907506@gapps.ntust.edu.tw, Lchen@mail.ntust.edu.tw, ywma@mail.ntust.edu.tw

Abstract

With advances in communication technology, modern
society relies more than ever on the Internet and various user-
friendly digital tools. It provides access to and enables the
manipulation of files, trips, and the Windows API. Attackers
frequently use various obfuscation techniques PowerShell
scripts to avoid detection by anti-virus software. Their doing
so can significantly reduce the readability of the script. This
work statically analyzes PowerShell scripts. Thirty-three
features that were based on the script’s keywords, format,
and string combinations were used herein to determine
the behavioral intent of the script. Ones are characteristic-
based features that are obtained by calculation; the others are
behavior-based features that determine the execution function
of behavior using keywords and instructions. Behavior-based
features can be divided into positive behavior-based features,
neutral behavior-based features, and negative behavior-
based features. These three types of features are enhanced
by observing samples and adding keywords. The other type
of characteristic-based feature is introduced into the formula
from other studies in this work. The XGBoost model was
used to evaluate the importance of the features that are
proposed in this study and to identify the combination of
features that contributed most to the detection of PowerShell
scripts. The final model with the combined features is found
to exhibit the best performance. The model has 99.27%
accuracy when applied to the validation dataset. The results
clearly indicate that the proposed malicious PowerShell script
detection model outperforms previously developed models.

Keywords: Machine learning, XGBoost, PowerShell,
Malicious scripts, Behavioral features analysis

1 Introduction

PowerShell provides various functions for connecting
and manipulating files, programs, and Windows APIs [1]. It
can help system administrators rapidly operate management
systems and achieve automation. It is the tool of choice for
many attackers due to its flexibility, robust structure, and
ability to execute scripts directly from the command line.
Attackers have also developed various methods to obfuscate
PowerShell scripts to avoid detection by anti-virus software
and have even developed automated tools to obfuscate

scripts, such as code tags, characters, and abstract syntax
trees [2].

Since 2016, Fileless Malware, a new attack technique,
has been attracting much attention in the limelight [3]. While
system administrators widely use PowerShell to manage
their computers, attackers frequently use this framework to
conduct attacks [4]. It has become one of the mainstream
techniques for attacking native applications [5]. In 2018, a
significant increase in the number of attacks of this type was
observed, as attackers used native applications on computers
to map malicious code directly into memory to attack without
writing to the disk, including attacks via PowerShell [6].
Dual-use PowerShell tools accounted for the largest share,
23%, of threats that were detected on endpoints in the second
half of 2020 [7]. Because of the global impact of COVID-19,
attackers used the theme of the epidemic to motivate victims
to click on emails and exploit the vulnerability of workers at
home and telecommuting to conduct cyber attacks, leading
to the growth of the Donoff Malware threat. The Q3 2021
Trellix ATR Report found that [8].

This study proposed machine learning approaches
to malicious PowerShell script detection and feature
combination analysis has the following contributions.
(1) This study uses static analysis to detect PowerShell
scripts and determine their behavioral intent based on their
keywords, formats, and string combinations. (2) Two feature
combinations are proposed; they are characteristic-based and
behavior-based. Behavior-based feature combinations can
be divided into positive behavior-based, neutral behavior-
based, and negative behavior-based. (3) A feature used
in a previous study was added to the characteristic-based
feature combination. (4) The three features are enhanced by
observing samples and adding keywords, and performance
analysis was conducted to ensure that the features that are
proposed in this study are helpful in the more effective
identification of malicious scripts. (5) A total of 33 features
support the high performance of the XGBoost algorithm.

This study uses static analysis to detect PowerShell
scripts and determine their behavioral intent based on
their keywords, formats, and string combinations. Two
types of feature combinations are proposed; they are
characteristic-based and behavior-based. Behavior-based
feature combinations can be divided into positive behavior-
based, neutral behavior-based, and negative behavior-based.
A feature that was used in a previous study was added
to characteristic-based of feature combination. The three

168 Journal of Internet Technology Vol. 25 No. 1, January 2024

features are enhanced by observing samples and adding
keywords, and a performance analysis was conducted to
ensure that the features that are proposed in this study are
helpful in the more effective identification of malicious
scripts. A total of 33 features support the high performance of
the XGBoost algorithm.

2 Related Works

2.1 PowerShell Malware Threats
This section reviews the current status of the PowerShell

malware threat. Kumar et al. [9] investigated and listed
research questions on new fileless malware. Afreen et al.
[10] observed a shift in information security threats. Afreen
et al. concluded by presenting the critical elements of the
AVT response strategies and techniques, such as behavioral
analytics, logging, least privilege rule, and content filtering.

2.2 De-obfuscation Techniques
Liu et al. [11] performed the detection and anti-

obfuscation for malicious PowerShell malware. They
proposed a method for the anti-obfuscation and analysis of
malicious PowerShell scripts that are embedded in Word
files. Ugarte et al. [12] introduced a static and dynamic multi-
level de-obfuscator for PowerShell attacks that was named
PowerDrive. They also provided a taxonomy of behavioral
models that are used to analyze the code and a complete list
of malicious domains that are contacted during the analysis.

2.3 Detection of Malicious PowerShell Scripts
In recent years, PowerShell de-obfuscation techniques

have matured, and many studies have focused on using
artificial intelligence to detect and analyze PowerShell
scripts. Hendler et al. [13] analyzed PowerShell malicious
scripts using a neural network detector.

Rusak et al. [14] proposed a hybrid approach that
combines traditional program analysis with abstract syntactic
trees and deep learning. Li et al. [15] designed a semantics-
aware PowerShell attack detection system to identify 31 new
semantic signatures using classical target-oriented association
mining algorithms for PowerShell attacks. Tajiri et al. [16]
construct word-level language models.

Fang et al. [17] proposed a hybrid feature-based
model. The model analyzes malicious and benign scripts.
They also used a word embedding and text classification
model, FastText, to extract semantic features and to detect
automatically malicious PowerShell scripts. They emphasized
that a mixture of manual and automatic features can
effectively enhance the performance of a detection model.

Song et al. [18] proposed an AI-based approach to
feature optimization to improve the accuracy of detection
of malicious PowerShell scripts. The optimized features are
trained in models of machine learning and deep learning.
Choi [19] proposed a GCN-based approach to detecting
malicious PowerShell scripts by extracting feature data from
previously identified PowerShell scripts and calculating
the Jaccard similarity between the new PowerShell and the
existing PowerShell scripts. Alahmadi et al. [20] presented
the MPSAutodetect model for the automatic detection of

malicious PowerShell scripts using stacked denoising auto-
encoders (SdAs). Their model extracts meaningful features
and feeds the valuable ones into the XGBoost classifier. The
main feature of MPSAutodetect is that the model does not
require the manual extraction of features, eliminating the
need for the manual finding of features.

3 Proposes System

The system architecture consists of five parts which are
data collection, data processing, feature definition, model
training, and model prediction. Figure 1. shows the system.
The proposes system includes data collection module, data
processing module, feature definition module, model training
module and model prediction module. In the data collection
phase, the malicious script uses psencmds, which is a public
dataset that was provided by the Unit 42 team of Palo Alto
Networks [21]. The benign script for this work is a crawler
for obtaining PowerShell-type scripts on the GitHub platform,
and the two are mixed in datasets of similar numbers of
benign and malicious scripts. In the data processing stage,
the content of the scripts is tagged, and incomplete data are
filtered out.

In the feature definition stage, 33 features are extracted
and categorized as characteristic-based or behavior-based,
based on observations of the results of labeling after data
processing, for subsequent training of the model used in
this work. In the model training and prediction stages, the
XGBoost model is used herein to evaluate the importance
of various combinations of features. In order to ensure
the stability of the model and prevent overlearning, it was
validated during the training process. The final results of this
system in the detection of benign and malicious scripts are
presented.

Figure 1. Proposed system architecture

3.1 Data Collection
The section introduces basic information about datasets

that are used in this work. First, the main techniques used
to obtain the data are described. The datasets that are used
in this study have two kinds of sources. The first kind is
open-source code platforms from which are obtained a large
number of random scripts that are identified and verified
as benign. The other source is a well-known information
security team, which provided samples of malicious attacks.

The benign scripts are collected from GitHub, using
crawling techniques to collect open-source PowerShell-type
scripts on its platform. Validation that the samples collected

Machine Learning Approaches to Malicious PowerShell Scripts Detection and Feature Combination Analysis 169

are benign is performed through two malware detection and
analysis services, Windows Defender and Virustotal. A total
of 5,189 scripts were collected.

The malicious scripts were obtained using psencmds, a
public dataset that is provided by the Palo Alto Networks
Unit 42 team, using AutoFocus, which is the Palo Alto
Networks’ highly realistic threat intelligence service. A total
of 4,100 PowerShell-type samples contained both command
and script-type content. These samples reveal which
techniques are widely used in PowerShell attacks.

3.2 Data Preprocessing
In the experiment, incomplete scripts and samples that

cannot be adequately run with PowerShell are discarded
to ensure that all data are available for subsequent tagging.
The source of the malicious scripts that are used in this
study was the Unit 42 team, who obtained them in 2017
using AutoFocus, which is a high-fidelity threat intelligence
service. The benign scripts were obtained on GitHub using
crawler technology. To ensure the integrity of the dataset by
assimilating the data from different sources, we followed the
Unit 42 team’s behavior tagging approach for PowerShell
scripts to merge benign and malicious datasets.

The number of datasets that were used in this study is
9289. Pre-processing to filter out invalid samples left a total
of 8197 datasets. The datasets are split into 80%: 20% by
Scikit-learn. 80% of datasets are used for training, and 20%
are used for model validation.

3.3 Feature Definition
Table 1 lists the main contributions of this study. A

total of 33 features are divided into two types, which are
characteristic-based and behavior-based. Behavior-based
features can be subdivided into positive, neutral, and negative
behavior-based. The algorithm that is used in machine
learning focuses depends on the weighting of the feature data,
so feature extraction is crucial. In addition, the proposed and
reinforced features are marked in red in the table.

Table 1. Thirty-three features

3.3.1 Characteristic-based Features
Characteristic-based features are calculated or described

in a state based on the content presented in the PowerShell
script. F1 to F3 are intuitive features that observe or calculate
states to measure and mark the script. F4 and F5 are the
results that are obtained by calculating various attributes,
the simultaneous annotation of which requires a large
amount of data and allows the machine learning model to
perform grouping and generalization. Table 2 presents the

characteristic-based features.
F5 Information Entropy is the average amount of

information content of all words in a text. Obfuscated
scripts are to make it challenging to understand the intention
and content. According to Choi et al. [22], the presence of
obfuscated characters reduces entropy. Fang et al. [17] also
applied a method to calculate the information entropy from
PowerShell scripts.

Table 2. Characteristic-based features
ID Name Description

F1 One Liner The script that solely exists on one line.

F2 Variable
Extension

The wildcard «*» is used when setting
the variable in the script.

F3 Abnormal
Size

The size of the script is abnormal, the
word count is too large or the line count
is too high.

F4 Obfuscation

Calculate various properties of
obfuscated scripts and observe
the unique properties of malicious
obfuscated scripts.

F5 Information
Entropy

The average amount of information
contained in each script received.

Table 3. Positive-behavior features
ID Name Description

F6 Positive
Content

Keywords with positive meaning, such
as: the official development package
name.

F7 Script
Logging Use commands related to logging.

F8 FunctionBody Use Annotated Functions in the script.

F9 License Annotate copyright notices in the script.

3.3.2 Positive Behavior-based Features
Behavior-based type of features are used to observe the

function or keyword of each command in the script, and
they are classified into three types. Positive behavior-based
means that the command or keyword has a positive meaning,
indicating that the script has used the command correctly.
F6 is a keyword that is observed to have positive behavioral
meaning, and F7 to F9 are instructions or syntax that are
observed to have positive behavioral meanings. Table 3
presents positive behavior-based features.

F6 Positive Content mainly refers to management-
type scripts that commonly perform management functions
on enterprise endpoints. Such scripts will appear in the
command or keyword, such as ToolTip or Readme. We
have enhanced the feature of F6 with new keywords for the
MessageBox and WinGet functions. MessageBox means that
the script has designed the user interaction function with the
purpose of building a GUI interface; WinGet implies that the
script has used the official package management module.
3.3.3 Neutral Behavior-based Features

Behavior-based type of features are used to observe the
function or keyword of each command in the script, and
they are classified into three types. Neutral behavior-based
features are those the instruction or keyword is in a neutral

170 Journal of Internet Technology Vol. 25 No. 1, January 2024

position and may exist in both malicious scripts and benign
scripts. Table 4 presents neutral behavior-based features.

Table 4. Neutral-based features
ID Name Description

F10 Downloader Commands to download files locally or
load files into memory.

F11 Start Process Commands to start one or more
processes on the local computer.

F12 Script
Execution

Commands to execute commands or
expressions on the local computer.

F13 Crypto Commands to create symmetric and
asymmetric encryption sub-objects.

F14 Enumeration
Commands to search for shared
resources and user information in the
system.

F15 Hidden
Window

Commands to set the window of the
session to be hidden.

F16 Custom Web
Field

Commands to insert the new header
and its value into the HttpHeaders
collection.

F17 Persistence Commands to set the process using
schtacks or windows service.

F18 Registry Commands to working with Registry
Keys.

F19 Sleeps
Commands to suspends the activity in a
script or session for the specified period
of time.

F20 SysInternals
Commands to use Windows Sysinternals
tools host advanced system utilities and
technical information. ex: ProcDump.

F21 Compression Commands to compress or decompress
data.

F22 Uninstalls
Apps Commands to uninstall the app.

F23 Byte Usage Commands to writes the specified byte
array to the file.

Table 5. Negative behavior-based features
ID Name Description

F24 Negative
Content

Keywords with negative meaning,
commands frequently used in malicious
scripts.

F25 Known
Malware

Regnex patterns or collections of
keywords that uniquely identify known
malicious scripts.

F26 Code
Injection

A combination of commands and
keywords means code injection software
attacks.

F27 DNS C2
A combination of commands and
keywords means use DNS to gain
control of C2 (Command and Control).

F28 AppLocker
Bypass

A combination of commands and
keywords means bypassing some
warnings and tools using the regsvr32
registry.

F29 AMSI Bypass
A combination of commands and
keywords means bypassing ant i-
malware scanning tool AMSI.

F30 Embedded
File

Keywords for embedding in DOS MZ
executables.

F31 Clear Logs Commands to clears event log records
executed by scripts.

F32 Disabled
Protections

Commands to disable protect ion
p r o g r a m s s u c h a s a n t i - s p y w a r e
programs, malware scanners.

F33 Screenshot Commands to execute the action of the
screenshot.

3.3.4 Negative Behavior-based Features
Behavior-based type of features are used to observe the

function or keyword of each command in the script, and they
are classified into three types. Negative behavior-based refers
to an instruction or keyword that has a negative meaning or is
characterized by aggressive intent in their execution. Table 5
presents negative behavior-based features.

F24 Negative Content refers to a keyword that is
commonly found in malicious scripts but cannot be classified
by function. Attackers often use text storage sites such as
Pastebin to download actual malware. Some red teams release
scripts for penetration testing on the network, and attackers
may intercept or use fragments of these scripts directly. This
feature compares the behavior of scripts to determine whether
it is used in penetration testing scripts. Two additional
security analysis scripts are added to strengthen this feature.

F25 Known Malware compares scripts with known
malicious scripts such as PowerSploit, nishang, and others, to
determine if the script of interest includes a known malicious
script. The new known malicious script PowerMemory is
added to strengthen this feature.

3.4 Architecture of Detection Model
The two standard algorithms in ensemble learning are:

bagging and boosting. The XGBoost classification model,
based on the boosting algorithm, is used in this study [23].
Although the training speed and memory consumption are
not comparable to those of LightGBM, the overall accuracy
of XGBoost is superior, and the model is well developed.
XGBoost has excellent parameter tuning and is less prone
than LightGBM to overfitting.

The experiment that focuses on the classification of
benign and malicious scripts is performed. The boosting
calculation is performed using a tree-based model that is
called gbtree. The maximum depth of the tree is initially set
to a default value of six. The optimal number of trees in the
XGBoost is 100.

4 Performance Analysis

The XGBoost model was used to obtain the feature
importance scores of each feature type to evaluate the ability
of the model to detect malicious PowerShell scripts.

4.1 Analysis of Performance in Strengthening Features
This section presents feature-based analysis and

experiments using the XGBoost model. Its purpose is
to analyze the main feature items that affect the model
and evaluate the performance thereof. Finally, results are
presented for a mixture of various feature types.

Machine Learning Approaches to Malicious PowerShell Scripts Detection and Feature Combination Analysis 171

4.1.1 Analysis of Characteristic-based Features
F1 to F5 are characteristic-based features. Figure 2

show the results of performance analysis by XGBoost.
Information Entropy (F5) is the most robust feature, followed
by OneLiner (F1) and Obfuscation (F4). Therefore, the
value of the new Information Entropy feature in this work
has differs between benign and malicious scripts. The
accuracy, precision, recall, F1 score, log loss and AUC are
77.38%, 100%, 55.19%, 71.13%, 7.8133 and 77.60% before
strengthening. The accuracy, precision, recall, F1 score, log
loss and AUC are 81.04%, 100%, 61.46%, 76.13%, 6.5497
and 80.73% after strengthening.

Figure 2. Performance of characteristic-based features

4.1.2 Analysis of Positive Behavior-based Features
F6 to F9 are positive behavior-based features. Figures

3 present the results of the feature importance analysis by
XGBoost. The Positive Content (F6) was the worst feature.
The experimental results showed that the enhanced Positive
Content (F6) improved the detection effect. The accuracy,
precision, recall, F1 score, log loss and AUC are 98.48%,
98.68%, 98.33%, 98.50%, 0.5265 and 98.48% before
strengthening. The accuracy, precision, recall, F1 score, log
loss and AUC are 99.09%, 99.04%, 99.16%, 99.10%, 0.3159
and 99.08% after strengthening.

Figure 3. Performance of positive behavior-based features

4.1.3 Analysis of Negative Behavior-based Features
F24 to F33 are negative behavior-based features. Figure

4 show the results of the feature importance analysis by
XGBoost. The enhanced Negative Content (F24) and Known
Malware (F25) exhibited improved effectiveness. Known
Malware (F25) identifies known malware, and Negative
Content (F25) enhances the keywords in the red team
exercise scripts. The accuracy, precision, recall, F1 score, log
loss and AUC are 99.06%, 83.83%, 99.52%, 91.00%, 3.4328
and 89.97% before strengthening. The accuracy, precision,
recall, F1 score, log loss and AUC are 92.07%, 86.73%,
99.64%, 97.74%, 2.7378 and 91.95% after strengthening.

Figure 4. Performance of negative behavior-based features

4.2 Comparison of Study
Table 6 compares the predictive performances of models

that are proposed in this and previous studies that are based
on the same dataset. The XGBoost algorithm is applied to the
same dataset for training and testing. The malicious scripts
in this and the comparative studies are based on the public
dataset psencmds, and the benign scripts are extracted from
the GitHub platform.

Table 6. Comparison with the results of different studies

Effective method for
detecting malicious
PowerShell scripts

based on hybrid features
(2021)

Our proposed
system

Dataset GitHub + Psencmds

Algorithm Random Forest XGBoost

Accuracy Original scripts: 98.93%
Mixed scripts: 97.76% 99.27%

Precision 97.79% 99.52%

Recall 97.69% 99.04%

F1 Score 97.73% 99.28%

The proposed detection model outperforms other
models with respect to accuracy by 0.3%, precision by

172 Journal of Internet Technology Vol. 25 No. 1, January 2024

1.7%, recall by 1.3%, and F1 score by 1.5%. Therefore, the
proposed detection model, based on the XGBoost algorithm,
excellently classifies benign and malicious PowerShell
scripts.

4.3 Summary
In this study, 33 features were divided into five groups,

which are characteristic-based, positive behavior-based,
neutral behavior-based, negative behavior-based, and All.
The features that were enhanced in this study effectively
improved the performance of the model over that achieved
using the original set of features. The new features are
Information Entropy (F5), and the enhanced features are
Positive Content (F6), Negative Content (F25), and Known
Malware (F25).

To conclude this section, Table 7 presents the five groups
of features in this study. Several particular phenomena can
be observed in the table. The model with positive behavior-
based features does not identify benign scripts well, resulting
in more FPs (false positives). The model with negative
behavior-based features does not identify malicious scripts
well, resulting in more FNs (false negatives). The All-
Features model performs best with an accuracy of 99.27%, a
precision of 99.52%, a recall of 99.04%, and an F1 score of
99.28% with the validation dataset.

Table 7. Performance summary for feature combination

Testing Features Acc
(%)

Precision
(%)

Recall
(%)

F1
Score
(%)

AUC
(%)

Characteristic-
based 99.09 99.04 99.16 99.10 99.08

Positive
behavior-based 92.07 86.73 99.64 92.74 91.95

Neutral
behavior-based 96.46 98.99 94.00 96.43 96.50

Negative
behavior-based 81.04 100 61.46 76.13 80.73

All features 99.27 99.52 99.04 99.28 99.27

5 Conclusions

This work proposed an identification and classification
system, based on the XGBoost algorithm, for detecting
malicious PowerShell scripts. Two types of features,
characteristic-based and behavior-based features, are
investigated. The behavior-based features can be subdivided
into positive behavior-based, neutral behavior-based, and
negative behavior-based. A total of 33 features are proposed
for training models to identify malicious PowerShell scripts.
Four features are enhanced; these are Information Entropy
(F5), Positive Content (F6), Negative Content (F24), and
Known Malware (F25). Feature analysis shows that the
processing of features improves model performance, the
accuracy of threat detection, and attack intent identification.
In the future, the author will conduct research on unbalanced
sets and repeated random cross-validations for improve the
system effectiveness. Based on the experimental results in
this study, three main goals are for future work are proposed;

they are the collection of more sample data to increase the
generalizability of the model; the proposal of an automated
approach to feature extraction to reduce labor and time costs,
and the application of the results herein to real-life situations
to achieve the study’s original purpose and to reduce the
number of actual victims of, and the damage done by,
malware.

References

[1] S. Wheeler, hananyajacobson, and shawnkoon, What
is PowerShell?, Retrieved from https://docs.microsoft.
com/en-us/powershell/scripting/ (last visited on
2022/06/30)

[2] D. Bohannon, Invoke-Obfuscation, Retrieved from
https://github.com/danielbohannon/Invoke-Obfuscation/
(last visited on 2022/06/30)

[3] C. Wueest, D. Stephen, The increased use of powershell
in attacks, Proc. CA, Symantec Corporation World
Headquarters, 2016, pp. 1-18.

[4] D. Patten, The evolution to fileless malware, Retrieved
from http://infosecwriters.com/Papers/DPatten_Fileless.
pdf (last visited on 2022/06/30)

[5] VMware Carbon Black, ‘PowerShell’ Deep Dive: A
United Threat Research Report, Retrieved from https://
www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/docs/vmwcb-report-powershell-deep-
dive.pdf (last visited on 2022/06/30)

[6] Trend Micro, Microsoft Detection Tools Sniff Out
Fileless Malware, Retrieved from https://www.
trendmicro.com/vinfo/us/security/news/cybercrime-
and-digital-threats/microsoft-detection-tools-sniff-out-
fileless-malware/ (last visited on 2022/06/30)

[7] Cisco Security Outcomes Study, Proven Success
Factors for Endpoint Security, Retrieved from https://
www.cisco.com/c/dam/en/us/products/collateral/
security/2021-outcomes-study-for-endpoint.pdf (last
visited on 2022/06/30)

[8] C. Beek, J. Fokker, D. McKee, S. Povolny, Trellix
Advanced Threat Research Report: January 2022,
McAfee Labs, 2022.

[9] Sudhakar, S. Kumar, An emerging threat Fileless
ma lware : a su rvey and resea rch cha l l enges ,
Cybersecurity, Vol. 3, No. 1, pp. 1-12, January, 2020.

[10] A. Afreen, M. Aslam, S. Ahmed, Analysis of fileless
malware and its evasive behavior, Proceedings of
the International Conference on Cyber Warfare and
Security, Islamabad, Pakistan, 2020, pp. 1-8.

[11] C. Liu, B. Xia, M. Yu, Y. Liu, PSDEM: a Feasible
De-obfuscation Method for Malicious PowerShell
Detection, Proceedings of the IEEE Symposium on
Computers and Communications, Natal, Brazil, 2018,
pp. 825-831.

[12] D. Ugarte , D. Maiorca, F. Cara, G. Giacinto,
PowerDrive: accurate de-obfuscation and analysis of
PowerShell malware, Proceedings of the International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Gothenburg, Sweden,
2019, pp. 240-259.

Machine Learning Approaches to Malicious PowerShell Scripts Detection and Feature Combination Analysis 173

[13] D. Hendler, S. Kels, A. Rubin, Detecting Malicious
Powershell Commands using Deep Neural Networks,
Proceedings of the Asia Conference on Computer and
Communications Security, Incheon, Republic of Korea,
2018, pp. 187-197.

[14] G. Rusak, A. Al-Dujaili, U. M. O’Reilly, Ast-based
Deep Learning for Detecting Malicious Powershell,
Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, Toronto,
Canada, 2018, pp. 2276-2278.

[15] Z. Li, Q. Chen, C. Xiong, Y. Chen, T. Zhu, H. Yang,
Effective and Light-weight Deobfuscation and
Semantic-aware Attack Detection for Powershell
Scripts, Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, London,
United Kingdom, 2019, pp. 1831-1847.

[16] Y. Tajiri, M. Mimura, Detection of Malicious Powershell
using Word-level Language Models, Proceedings of the
International Workshop on Security, Fukui, Japan, 2020,
pp. 39-56.

[17] Y. Fang, X. Zhou, C. Huang, Effective Method for
Detecting Malicious PowerShell Scripts based on
Hybrid Features, Neurocomputing, Vol. 448, pp. 30-39,
August, 2021.

[18] J. Song, J. Kim, S. Choi, J. Kim, I. Kim, Evaluations of
AI‐based Malicious PowerShell Detection with Feature
Optimizations, ETRI Journal, Vol. 43, No. 3, pp. 549-
560, June, 2021.

[19] S. Choi, Malicious Powershell Detection using Graph
Convolution Network, Applied Sciences, Vol. 11, No.
14, Article No. 6429, July, 2021.

[20] A . A lahmad i , N . A lkh raan , W. B inSaeedan ,
MPSAutodetect: A Malicious Powershell Script
Detection Model Based on Stacked Denoising Auto-
Encoder, Computers & Security, Vol. 116, Article No.
102658, May, 2022.

[21] Karttoon, PowerShellProfiler, Retrieved from https://
github.com/pan-unit42/public_tools/tree/master/
powershellprofiler/ (last visited on 2022/06/30)

[22] Y. H. Choi, T. G. Kim, S. J. Choi, C. W. Lee, Automatic
Detection for Javascript Obfuscation Attacks in Web
Pages through String Pattern Analysis, Proceedings
of the International Conference on Future Generation
Information Technology, Jeju Island, Korea, 2009, pp.
160-172.

[23] T. Chen, C. Guestrin, Xgboost: A Scalable Tree
Boosting System, Proceedings of the 22nd ACM Sigkdd
International Conference on Knowledge Discovery and
Data Mining, San Francisco, California, USA, 2016, pp.
785-794.

Biographies

Hsiang-Hua Hung was born in Taiwan
in 1998. She received the M.S. degree
in electrical engineering from National
Ta iwan Univers i ty o f Sc ience and
Technology, Taipei, Taiwan, in 2022. Her
main research interests include machine
learning, feature engineering and malware
detection.

Jiann-Liang Chen Prof. Chen was born
in Taiwan on December 15, 1963. He
received the Ph.D. degree in Electrical
Engineer ing f rom Nat ional Taiwan
University, Taipei, Taiwan in 1989.
Since August 1997, he has been with the
Department of Computer Science and
Information Engineering of National

Dong Hwa University, where he is a professor and Vice
Dean of Science and Engineering College. Prof. Chen joins
the Department of Electrical Engineering, National Taiwan
University of Science and Technology, as a Distinguished
professor and Dean now. His current research interests are
directed at cellular mobility management, cybersecurity,
personal communication systems and Internet of Things
(IoT).

Yi-Wei Ma is an associate professor in
National Taiwan University of Science and
Technology. His research interests include
Internet of Things, Cloud Computing, and
Future Network.

