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Abstract

With the widespread application of deep neural networks 
in image detection, adversarial sample attacks have gradually 
become a hot issue of concern for researchers. In this paper 
we propose a new adversarial sample detection approach 
called AdvDetector, which combines image generation 
through label fusion with image similarity detection. 
AdvDetector enhances sample quality and effectively 
identifies adversarial samples. Specifically, the method 
generates images by selecting seed pixels, the labels of deep 
neural network classification, and the pixel distribution 
learned from training data, and detects them using image 
similarity comparison methods. During the sample 
generation process, we introduce the AdvDetector method 
for adversarial sample detection to improve the quality of 
generated samples. We evaluated the effectiveness of the 
method on three publicly available image datasets, MNIST, 
Cifar-10, and GTSR, and the results show that the method is 
superior to existing baseline methods in terms of adversarial 
sample detection rate and sample generation quality.

Keywords: Adversarial samples, Deep neural networks, 
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1  Introduction

With the widespread application of deep learning models 
in various fields, the security issues of these models are 
receiving increasing attention. One of the most important 
security issues is the vulnerability of adversarial samples [1-
4], which are carefully crafted by adding carefully designed 
perturbations to legitimate inputs to deceive the model. 
Adversarial samples [5] not only reduce the accuracy of 
the model, but also pose potential threats to safety critical 
applications such as autonomous driving [6-8], facial 
recognition [9], image recognition [10], speech and text 
processing [11-14], and medical diagnosis.

To address this problem, various adversarial defense 
methods have been proposed. In this paper, we propose 
a new method for detecting adversarial samples called 
AdvDetector. This method is based on the FGSM adversarial 

sample generation method and uses a complementary 
network to detect adversarial samples by calculating the 
similarity between samples. Compared to other methods, 
AdvDetector has higher accuracy and lower false positive 
rates, and can detect more adversarial samples. We conducted 
comprehensive experimental validation on multiple datasets, 
including ImageNet, CIFAR-10, and CIFAR-100. Our 
method is based on image similarity and gradient background 
information, and detects adversarial perturbations by dividing 
the image into small blocks. Our results demonstrate that 
AdvDetector performs well in detecting adversarial attacks 
and has higher robustness and accuracy than existing 
methods. Furthermore, our method can help improve the 
robustness and accuracy of deep learning models by better 
understanding adversarial perturbations.

We organize the rest of this paper as follows. In 
Section 2, we provide a brief overview of background on 
adversarial sample detection methods. Section 3 introduces 
the AdvDetector method in detail. In Section 4, we describe 
our experimental settings and present the results of our 
experiments. Finally, we conclude the paper in Section 5 with 
a summary of our findings and suggestions for future work.

The contributions of our work are as follows:
• We propose a new method for detecting adversarial 

samples called AdvDetector, which uses image 
similarity and gradient background information to 
detect adversarial perturbations.

• We conduct comprehensive experimental validation 
on multiple benchmark datasets to demonstrate that 
AdvDetector performs well in detecting adversarial 
attacks.

• We compare the performance of AdvDetector 
with existing methods and show that it has higher 
robustness and accuracy.

• We improve the robustness and accuracy of 
deep learning models by analyzing the impact of 
adversarial perturbations.

2  Background

The complexity of constructing deep neural networks and 
the issues caused by gradient descent, like misclassification, 
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have led to a significant focus on high-quality adversarial 
sample detection methods in academic research. Adversarial 
examples refer to subtle, imperceptible perturbations that can 
lead to target model classification errors. Input samples with 
such perturbations are termed adversarial samples, and the 
process of crafting them to deceive neural networks is called 
adversarial attacks. The concept of adversarial samples was 
introduced by Szegedy et al. in 2013 [5].

To counter adversarial threats, research has explored 
methods to improve model accuracy in classifying or 
detecting adversarial samples. Adversarial training, which 
involves adding adversarial samples during training, has 
been effective. For instance, GoodFellow proposed using 
the FGSM method for adversarial sample generation [15]. 
However, the effectiveness of such methods depends on the 
quality and quantity of adversarial samples used in training.

Li et al. [8] introduced a method for adversarial sample 
detection by compressing samples through pixel reduction 
and blurring. While this approach simplifies detection, it 
focuses solely on data-related issues, neglecting the inherent 
characteristics of deep neural networks. This can limit its 
ability to enhance network robustness.

Detecting misclassified samples,  especially for 
unlabeled data, is a challenging task. Manual inspection of 
large datasets is inefficient and lacks long-term accuracy. 
Therefore, this article proposes a novel approach: amplifying 
features in adversarial samples that affect deep neural 
network classification, using label-related features to generate 
potential samples, and then comparing them to the originals 
to detect adversarial samples. Figure 1 shows the framework 
of AdvDetector.

Figure 1. The framework of AdvDetector

3  AdvDetector

3.1 Image Generation with Tag Fusion 
Existing methods like DeepFool [16] and GAN [17] 

networks generate images based on sample features. This 
paper proposes a new method incorporating pixel continuity 
into label fusion to improve image generation quality and 
reliability. The method trains the likelihood distribution of 
pixels and improves joint distribution using the guiding effect 
of labels.  

3.2 Image Similarity-Based Adversarial Sample Detection 
We propose an adversarial sample detection method based 

on image similarity comparison. Traditional image similarity 
comparison methods, including Euclidean distance, cosine 
similarity, and Kullback-Leibler divergence (KLD) [18-19], 
are introduced. We also present the PxielDefend (PD) method 
for detecting adversarial samples.

3.3 Sample Generation Based on Adversarial
Sample Detection 
1) Image Transformation Rule Pool We construct an 

image rule mutation pool, including affine transformations, 
layer-based shape mutation, and image filters. We aim to 
establish a transferable adversarial sample rule library to 
simulate real camera angles or object motion and test model 
robustness.

2)  Coverage-Guided Sample Generat ion Using 
neuron coverage in deep neural networks, we guide image 
generation by determining whether the image coverage rate 
increases. We generate three types of image samples: benign, 
adversarial, and incorrect samples. For benign and incorrect 
samples, we decide whether to add the sample to the original 
dataset based on the coverage rate increase. For adversarial 
samples, we use the GGBLF adversarial sample detection 
method to detect and record misclassification rules.

4  Experiment

4.1 Adversarial Sample Detection Datasets 
The purpose of facilitating experimental comparison with   

other benchmark methods, this study employs widely used 
image datasets, including MNIST [20], CIFAR-10 [21], and 
the German Traffic Sign Recognition Benchmark (GTSRB 
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[22]), to evaluate the performance of adversarial sample 
detection methods. These datasets have been widely adopted 

in the field of adversarial sample detection. Table 1 presents 
relevant information for these datasets.

Table 1. Information on adversarial sample detection datasets

Dataset Number of classes Training set size Test set size Total
MNIST 10 50,000 10,000 60,000
CIFAR-10 10 50,000 10,000 60,000
GTSRB 43 39,209 12,630 51,839
Autonomous driving dataset 42 52,000 11,000 63,000

4.2 Evaluation Metrics 
Adversarial Sample Detection Evaluation Metrics
In the adversarial sample detection methods, this 

experiment uses the same detection methods as existing 
research to ensure the reliability of the experimental results.

In the adversarial sample detection method proposed 
in this paper, since the situation where the classifier can 
correctly detect adversarial samples is not within the scope 
of adversarial sample detection, there are only two detection 
situations in this experiment:

• True Negative (TN) and True Positive (TP): The 
classification result is y or y’ , and the actual 
detection is a benign sample.

• False Negative (FN) and False Positive (FP): 
The classification result is y or y’ , and the actual 
detection is an adversarial sample.

• Adversarial Sample Detection Accuracy (ADR), i.e., 
the proportion of adversarial samples detected by the 
method in the existing dataset to the total number of 
adversarial samples:

.TP nADR TPR
TP FN N

= = =
+

                          (1)

In this passage, n represents the number of adversarial 
samples actually detected, while N denotes the total number 
of adversarial samples in the dataset. ADR stands for the 
probability of detecting adversarial samples. The False 
Positive Rate (FPR) of adversarial sample detection refers 
to the proportion of benign samples that are mistakenly 
identified as adversarial samples in the given dataset:

.FP psFPR
FP TN ns

= =
+

                               (2)

In this context, ps represents the number of benign 
samples that are misidentified as adversarial samples by the 
method, while ns denotes the total number of benign samples 
in the dataset. FPR, or False Positive Rate, refers to the rate 
of false positives in sample detection during the experiment.

For the rule-guided image generation experiment, this 
paper evaluates the proposed method based on the neural 
coverage (NC) of deep neural networks and the accuracy 
of detecting adversarial samples. Here, we focus on three 
criteria: neural coverage, the number of generated samples, 
and the accuracy of detecting adversarial samples.

Inject test cases into the neural network, and during each 
training or testing process, each neuron in each layer of the 
neural network has an output value. If this output value is 
greater than a certain threshold, it indicates that the neuron is 
activated. [23] The ratio of the number of activated neurons 
to the total number of neurons is defined as neuron coverage. 
The neuron coverage can be defined as follows:

{ | : ( , ) }( , ) .
| |

n T x n tNCov T x
N
φ∃∈ >

=                       (3)

The deep neural network coverage obtained under 
different sample quantities can be compared by comparing 
the coverage of different sample quantities:

.CovCovG
N

=                                       (4)

In the equation, N represents the number of generated 
samples, Cov represents the coverage of the deep neural 
network for N generated samples, and CovG represents the 
coverage of the deep neural network for a single sample.

Samples generated during the process may cause deep 
neural networks to fail to classify normally due to their 
inherent uncertainty. The DeepHunter method does not detect 
adversarial samples, while the DeepSmartFuzz method 
restricts the labels of generated samples, and labels that are 
different from the original samples are considered adversarial 
samples. This paper will detect the number of adversarial 
samples using an adversarial sample detection method, and 
the accuracy of the adversarial sample detection will be 
measured by comparing the number of detected adversarial 
samples with the total number of generated samples:

.nadv umAdvRate
N

=                                  (5)

4.3 Benchmark Methods 
To evaluate the effectiveness of the proposed AdvDetector 

method, we selected relevant baseline methods for compari- 
son, including the I-Defender method by Zheng [24] et al. the 
PixelDefend method by Song [25] et al. These methods use 
similar datasets and are briefly introduced below:

• I-Defender method:An unsupervised approach for 
detecting adversarial inputs, it builds a hidden state 
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distribution for natural data, excelling in black-box 
and gray-box attacks without the need for specific 
attack method attention or adversarial sample 
training.

• PixelDefend method: Purifying tampered images 
by repositioning them within the training data 
distribution, it enables correct classifier operation 
without requiring knowledge of the adversarial attack 
method. This forward approach allows easy reuse 
across various models and integration with other 
defense methods, mitigating the impact of adversarial 
attacks on deep neural networks.

After validating the proposed adversarial sample detection 
method, this paper introduces a data augmentation  method 
based on coverage-guided mutation pool to generate samples. 
To evaluate the effectiveness of this method,  comparisons 
are made with DeepHunter, a coverage-guided  fuzzing 
framework proposed by Xie et al. [26], and DeepSmartFuzz, 
a test case generation method proposed by Demir et al. [27].

• DeepHunter:A coverage-guided fuzzing framework, 
introducing image mutation techniques for efficient 
image augmentation. It prioritizes seeds, ensuring 
testing efficiency, and employs testing and assertion 
on mutated images to identify error triggers.

• DeepSmartFuzz: This approach utilizes Monte Carlo 
Tree Search (MCTS) [28] and coverage guidance 
for test case generation. It employs MCTS to select 
image mutation rules, guide the mutation process, 
and limit the maximum mutation distance to prevent 
deviations from benign samples. The generated 
samples are then compared with testing predictions 
to assess their utility.

4.4 Experiment Settings 
Experiment 1: Adversarial  Sample Detection 

Comparative Experiment
To verify the accuracy of the Adversarial Sample 

Detection (ASD) part of our proposed method, we replaced 
10% of the original dataset with adversarial samples that 
were misclassified by the target deep neural network. We 
compared our method with existing ones by identifying the 
number of detected adversarial samples and the false positive 
rate (FPR) of benign samples. The experiment process is 
shown in Figure 2.

Figure 2. Adversarial sample detection experiment flowchart

Specifically, the experiment was conducted in two ways:
• Replacing 10% of the dataset with adversarial 

samples, we evaluate detection using metrics like 
Adversarial Detection Rate (ADR) and False Positive 
Rate (FPR) for comparison.

• Assessing defense against various attacks, we added 
diverse attack types to the neural network, generating 
1000 samples each. We manually assessed attack 
accuracy, comparing defense effectiveness of the 
three methods against different tools.

In this experiment, we test the adversarial sample 
detection method proposed for the mentioned datasets. We 
conducted 30 control experiments. The results are shown in 
Figure 3 to Figure 5:

Figure 3. Experiments on the MNIST dataset (no adversarial 
attacks)

Figure 4. Experiments on the CIFAR-10 dataset (no adversarial 
attacks)

Figure 5. Experiments on the GTSRB dataset (no adversarial 
attacks)

The average results on the initial test set are in Table 2. 
The proposed method performs better in terms of adversarial 
sample detection rate and false positive rate. For the MNIST 
dataset, our method improves detection accuracy by 9.7% 
compared to I-Defender and reduces the false positive rate by 
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50% compared to Pixel-Defend. For CIFAR-10, it improves 
the detection rate by 10.3% compared to IDefender but has 
a lower misjudgment rate for benign samples. For GTSRB, 
it outperforms the other methods, improving the detection 

rate by 12. 1% compared to IDefender, but the misjudgment 
rate for benign samples is 23.5% lower than Pixel-Defend. 
Overall, the proposed method has a higher detection rate and 
can identify benign samples, proving its effectiveness.

Table 2. Adversarial sample detection experiment results (no adversarial attacks)

Dataset ADR FPR
I-Defender

Pixel-Defend
AdvDetector

MNIST
MNIST
MNIST

0.896
0.873
0.983

0.0012
0.0006
0.0003

I-Defender
Pixel-Defend
AdvDetector

CIFAR-10
CIFAR-10
CIFAR-10

0.695
0.638
0.767

0.0043
0.0037
0.0081

I-Defender
Pixel-Defend
AdvDetector

GTSRB
GTSRB
GTSRB

0.728
0.685
0.816

0.0023
0.0017
0.0021

To demonstrate the ability and generalization of the 
proposed method, we will detect adversarial attacks under 
several attack methods. This experiment follows the universal 
standard, ignoring samples that cannot be successfully 
attacked.

We will conduct data analysis through 30 control 
experiments for different attack methods. The average values 
in the table, and the better results highlighted in bold.

Table 3 shows the accuracy of the three adversarial ex- 
ample detection methods under different adversarial attacks 
in this experiment. For all attacks, the proposed method in 
this study outperformed the other two detection methods, 
except for a slight decrease in detection rate compared 
to the PD method for the PGD-4 adversarial attack. In 
particular, the proposed method achieved a 97.7% detection 
rate for the DeepFool adversarial sample detection method 
and successfully detected 100% of cases in 30 controlled 
experiments. In white-box attacks, the proposed method 
showed significant improvement over the other two methods, 
with a detection rate increase of 108.9% compared to the ID 
method and 77.8% compared to the PD detection method.

Table 3. Adversarial sample detection methods on the MNIST 
dataset

ADR (%)
Attack-ɛ I-Defender Pixel-Defend AdvDetector
DeepFool 0.753 0.882 0.977

C&W 0.649 0.902 0.936
FGSM-8 0.782 0.869 0.916
MIN-4 0.687 0.765 0.831
MIN-8 0.638 0.825 0.855
PGD-4 0.693 0.837 0.835
PGD-8 0.657 0.875 0.895
PGD-16 0.737 0.819 0.836

WB 0.371 0.436 0.775

For the CIFAR-10 dataset, Table 4 demonstrates that 
the proposed method maintains an advantage in detecting 

adversarial samples. The detection accuracy of the three 
methods varies with the DeepFool attack, especially for 
Pixel-Defend, which only detects 18.9% of adversarial 
samples. However, the proposed method increases the 
detection rate by 8 percentage points compared to IDefender. 
For the C& W attack method, all three detection methods 
perform well, with the proposed method achieving 99. 1% 
detection accuracy and even reaching 100% in multiple trials. 
The box plot in Figure 7 demonstrates that the proposed 
adversarial example detection method exhibited more stable 
detection rates across 30 controlled experiments compared to 
the other two methods. Figure 8 shows that it was more stable 
in 30 controlled experiments for different attacks compared 
to the other two methods.

Table 4. Adversarial sample detection methods on the CIFAR-10 
dataset

ADR (%)
Attack-ɛ I-Defender Pixel-Defend AdvDetector

DeepFool 0.536 0.189 0.582
C&W 0.831 0.984 0.991

FGSM-8 0.857 0.992 0.982
MIN-4 0.382 0.765 0.811
MIN-8 0.396 0.730 0.804
PGD-4 0.725 0.648 0.696
PGD-8 0.784 0.682 0.547
PGD-16 0.810 0.714 0.602

WB 0.165 0.139 0.264

Table 5 shows that the proposed method had a high 
detection accuracy for adversarial samples in the GTSRB 
dataset under various attack methods. The detection accuracy 
for the proposed method for DeepFool, C&W, and FGSM-
16 attack methods was above 90%. In white-box attacks, the 
proposed method achieved a detection accuracy of 88.6%, 
which was an improvement of 161% and 123.8% compared 
to the other two adversarial sample detection methods.
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Table 5. Adversarial sample detection methods on the GTSRB 
dataset

ADR (%)
Attack-ɛ I-Defender Pixel-Defend AdvDetector

DeepFool 0.683 0.479 0.925
C&W 0.601 0.734 0.971

FGSM-16 0.611 0.884 0.963
MIN-8 0.325 0.791 0.864
MIN-16 0.384 0.975 0.881
PGD-4 0.412 0.840 0.812
PGD-8 0.327 0.841 0.869
PGD-16 0.386 0.993 0.886

WB 0.331 0.386 0.864

Based on the experimental results and analysis above, 
the proposed method of adversarial sample detection based 
on label fusion image generation network achieved good 
detection results compared to existing adversarial sample 
detection methods under different datasets and adversarial 
attacks. Especially in white-box attacks, the proposed method 
of adversarial sample detection on the CIFAR-10 dataset 
outperformed other detection methods significantly. The 
effectiveness of the proposed method has been validated 
through the experimental analysis.

Experiment 2: Data Generation Experiment Based on 
Adversarial Sample Detection

To validate the effectiveness of the data generation, 
this paper will conduct comparative experiments using the 
sample detection data mentioned in DeepSmartFuzz and 
compare it with DeepHunter. However, since DeepHunter 
and DeepSmartFuzz primarily focus on LeNet-3 and LeNet-5 
[29] deep neural networks corresponding to the MNIST 
dataset, and do not experiment with the wide residual 
convolutional neural network (w-ResNet) used in this 
paper, we will compare some experimental results from the 
aforementioned papers and verify them using the open-source 
code from DeepSmartFuzz and DeepHunter.

In this experiment, the generation status of the MNIST 
dataset under the LeNet-5 network and the CIFAR-10 dataset 
under the W-ResNet network will be analyzed based on 
neuron coverage rate and adversarial sample detection rate. 
The experimental architecture of this method is shown in 
Figure 6.

Figure 6. Sample generation experiment flowchart

Figure 7. Bar chart of neuron coverage for CIFAR-10 dataset

Figure 8. The number of generated samples and detected adversarial 
samples within 10 hours for the MNIST dataset under the W-ResNet 
network

Table 6 displays the average results of 10 data generation 
experiments on the MNIST dateset using the LeNet-5 
network model. Compared to the DeepSmartFuzz method, 
the proposed method achieved the same coverage rate with 
only 785 generated samples, while DeepSmartFuzz generated 
1024 samples. The CovG increased by 30% compared to 
DeepSmartFuzz, indicating higher sample quality using the 
proposed method. Although the proposed method detected 
fewer adversarial samples (139) due to fewer generated 
samples, its detection ratio of adversarial samples was 0.177 , 
higher than the DeepSmartFuzz method’s. 

Table 6. The average results under the LeNet-5 network model

Neuron 
coverage rate

Sample 
generation 
quantity

Adversarial 
sample 

detection 
quantity

DeepHunter 99.8% 1765 0
DeepSmartFuzz 100% 1024 163

AdvDetector 100% 785 139

Table 7 presents the analysis of sample generation results 
for the MNIST dataset in the W-ResNet network using three 
experimental methods mentioned in this paper, at a coverage 
rate of 60%. Under equal coverage rates, the proposed 
method in this paper demonstrates significantly higher sample 
quality compared to the other two coverage-guided sample 
generation methods.
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Table 7. Sample generation results in W-ResNet network for 
Cifar-10 dataset after 10 hours

Neuron 
coverage rate

Sample 
generation 
quantity

Adversarial 
sample 

detection 
quantity

DeepHunter 43.1% 10703 0
DeepSmartFuzz 52.6% 4096 503

AdvDetector 62.8% 2781 849

Table 8 presents the sample generation results analysis 
for the three experimental methods used in this study on the 
MNIST dataset under W-ResNet network at 60% coverage 
rate. Due to the uncertainty of generated samples, the 
coverage rate of the three methods is higher than 60%. Under 
the same coverage rate, our proposed method can achieve the 
experimental requirements by generating only 1864 benign 
samples, which is far superior in sample quality compared to 
the other two coverage-guided sample generation methods.

Table 8. The results of sample generation with 60% coverage

Neuron 
coverage rate

Sample 
generation 
quantity

Adversarial 
sample 

detection 
quantity

DeepHunter 62.4% 7265 0
DeepSmartFuzz 60.3% 4096 503

AdvDetector 61.2% 1864 325

In this study, we will demonstrate the effectiveness of our 
method by comparing the sample generation results under the 
autonomous driving dataset. We will prove the effectiveness 
of the method proposed in this paper by comparing it with 
the DeepSmartFuzz method. For the autonomous driving 
dataset, this experiment will be conducted using the Rambo 
deep neural network for training and testing. The Rambo 

deep neural network model is implemented with a 32-layer 
network architecture and can efficiently and accurately 
classify autonomous driving datasets.

As shown in Table 9, the proposed method achieved a 
81.3% deep neural network neuron coverage under 12946 
generated samples in 72 hours, while the DeepSmartFuzz 
generated 10240 samples with a final neuron coverage result 
of 72.6%. The proposed method had a single sample cover- 
age rate of about 0.092 , which was about 29% higher than 
the single sample coverage rate of 0.071 in DeepSmartFuzz, 
indicating higher quality of generated samples. For adver-
sarial sample detection, the proposed method detected 2360 
adversarial samples, which was significantly higher than the 
783 adversarial samples detected by DeepSmartFuzz. This 
result demonstrates the ability of the proposed method to 
accurately identify adversarial samples in complex sample 
scenarios. 

Figure 9 shows the bar chart of the single sample 
coverage rate and the adversarial sample detection rate in this 
experiment.

Figure 9. Bar graph of single sample coverage and adversarial 
sample detection ratio

Table 9. Sample coverage and results of generated samples within 72 hours

Neuron coverage rate Sample generation quantity Adversarial sample 
detection quantity

Adversarial
sample ratio

DeepSmartFuzz 72.6% 10240 783 7.6%
AdvDetector 81.3% 8931 2360 18.2%

5  Conclusion and Future Work

Image recognition is a major research direction in the 
current and future deep neural network studies. Due to the 
inherent characteristics of deep neural networks, the existence 
of adversarial samples is an unavoidable problem. Currently, 
research on finding methods to generate adversarial samples 
involves directly attacking the neural network through 
appropriate attack methods or using metamorphic testing 
to generate samples that do not affect the original labels. 
The former method may produce samples with large 
differences from the original samples, which may hinder the 
generalization of adversarial sample generation. The latter 
method requires a high level of understanding in the relevant 

field and manually defining rules, which is inefficient and 
may lead to rule correctness issues.To address the above 
issues, this paper proposes the method AdvDetector to solve 
the problem.

This paper verifies the applicability and effectiveness 
of the proposed method by applying it to existing open- 
source datasets such as MNIST, CIFAR-10, and the German 
standard traffic dataset GTSRB, as well as the classic deep 
neural networks LeNet-5 and W-ResNet.

In the future, we will explore approaches of tackling 
class imbalance problem faced by most HBR prediction 
scenarios. We will also work on constructing more effective 
classification algorithms to improve the performance of the 
model. Besides, future studies could put effort to provide 
interface for real-time interactive bug report labelling.
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