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Abstract

Since the inception of the Internet of Things (IoT), the 
security measures implemented on its devices have been too 
weak to ensure the appropriate protection of the data that 
they handle. Appealed by this, cybercriminals continuously 
seek out for vulnerable units to control, leading to attacks 
spreading through networks and infecting a high number 
of devices. On top of that, while the IoT has evolved to 
provide a higher degree of security, the techniques used by 
attackers have done so as well, which has led to the need 
of continuously studying the way in which these attacks 
are performed to gather significant knowledge for the 
development of the pertinent security measures.

In view of this, we analyze the state of IoT attacks by 
developing a high-interaction honeypot for SSH and Telnet 
services that simulates a custom device with the ARM 
architecture. This study is carried out in two steps. Firstly, 
we analyze and classify the interaction between the attacker 
and the devices by clustering the commands that they sent 
in the compromised Telnet and SSH sessions. Secondly, we 
study the malware samples that are downloaded and executed 
in each session and classify them based on the sequence of 
system calls that they execute at runtime. In addition, apart 
from studying the active data generated by the attacker, we 
extract the information that is left behind after a connection 
with the honeypot by inspecting the metadata associated with 
it. In total, more than 1,578 malicious samples were collected 
after 9,926 unique IP addresses interacted with the system, 
with the most downloaded malware family being Hajime, 
with 70.5% of samples belonging to it, and also detecting 
others such as Mirai, Gafgyt, Dofloo and Xorddos.

Keywords: Honeypot, Malware, IoT, Data analytics, Expert 
systems

1  Introduction

Nowadays, there are innumerable devices connected to 
the Internet which interact with each other, providing services 
to users that, until a few years ago, seemed unthinkable. 

The result of integrating technology in new environments 
different from conventional ones, namely the cloud, desktop 
or mobile, is what is we know as the Internet of Things (IoT). 
IoT devices make people’s lives easier by easing tasks that 
users perform on a daily basis. Using a mobile device for 
controlling household appliances or utilizing your own voice 
for turning on the light or the television are some examples.

This means that the IoT is heavily involved in the 
activities that a person carries out in many aspects of their 
life. As a consequence, due to the high number of interactions 
that are made between user and device, both actively and 
passively, the resulting volume of data that is managed in this 
environment is immense. In addition, since some of this data 
can have a high degree of sensitivity, cybercriminals find it 
very appealing to attack IoT units. Unfortunately, although 
these devices provide a great number of features that are 
attractive to users, the security measures implemented on 
them are not strong enough to stop these attacks, thus making 
them vulnerable due to such simple aspects such as using 
default and easily guessable user and password combinations, 
having weak default settings or running well-known-to-be 
outdated and vulnerable software.

The characteristics mentioned above, together with 
the lack of knowledge that many users have regarding the 
use of new technologies, have led cybercriminals to focus 
many of their efforts on attacking IoT devices and obtaining 
financial returns from them. According to a recent report [1], 
the number of attacks on these devices reached one hundred 
million in 2019, exceeding the number of attacks in 2018 by 
seven times.

Under these circumstances, it is important to understand 
what activities attackers perform in order to compromise 
IoT devices and what actions they carry out once they have 
gained access to a system. To study this, the use of honeypots, 
which are devices which simulate systems that present some 
kind of vulnerability, is a very effective approach to attract 
attackers, and a technique that has been successfully used in 
other experiments such as [2]. This allows for different types 
of attacks to be captured and, upon analysis, the extraction of 
knowledge regarding the multiple techniques and tools used 
by attackers for carrying out their criminal schemes.

In this work, we have deployed a high interaction 
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honeypot [3] that simulates a device with the Advanced 
Reduced Instruction Set Computer Machine (ARM) 
architecture. After performing an analysis of the interaction 
between this infrastructure and the attackers, the main 
contributions that can be extracted from this work are the 
following:

• We present a statistical analysis of the connections 
that took place in our honeypot, showing the 
geographical information about the origin of the 
attacks as well as the most commonly usernames 
and passwords used in brute force attacks, and the 
different remote hosts to which the attackers tried to 
connect once they had obtained valid credentials.

• We perform an evaluation of the interaction of the 
attackers with our system, classifying the sessions 
established according to the sequence of commands 
introduced by the attackers.

• We present an analysis of the files downloaded by 
the attackers in our infrastructure, mainly consisting 
of binary files, but also bash-scripts and compressed 
files.

• We evaluate the similarity between each pair of 
collected files and classify them using N-grams 
together with the Jaccard index.

The remainder of this paper is organized as follows. 
Section 2 studies the proposals form the scientific community. 
Section 3 describes the methodology followed, and Section 4 
presents the data analysis for the experiment that was carried 
out. Finally, Section 5 presents the main conclusions.

2  Related Work

The concept of a honeypot was first introduced more 
than two decades ago when the first worms started to spread 
through Windows and Linux systems [2]. Honeypots are 
monitored systems which are exposed to the Internet with the 
aim of obtaining information about attacks that are occurring 
in real time. These systems can be classified as low, medium 
and high interaction depending on the functionality that is 
available for attackers [3]. Low and medium interaction 
systems do not present a complete system to the attacker 
(i.e., lack of commands, static file system or fixed command 
outputs [4]), while high interaction systems do provide a 
complete system to attackers and, therefore, it makes it 
difficult to fingerprint the honeypot based on its interaction or 
the tools that are available [5].

Nowadays, one of the main attack trends is targeting IoT 
devices, for the most part because a substantially number of 
these devices are more focused on providing new features to 
users rather than providing security or privacy measures [6] 
for protecting themselves and the data that they handle. In 
addition, since they are limited devices in terms of resources, 
it is highly unusual to find them using additional security 
measures such as AntiVirus (AV) or Intrusion Detection 
Systems (IDS) [7]. Due to this insecure nature, the research 
community, as well as the industry itself, use honeypots 
for detecting new threats and learning about the tactics, 
techniques and procedures used by attackers against these 
devices.

Pa et al. [8] designed a honeypot focused on Teletype 
Network (Telnet) attacks by combining a low-interaction 
honeypot with a sandboxing system. This way, when a 
command is unknown, it is sent to the sandbox in order to 
give a reliable response to the entered command, and it is 
stored for future requests. Another solution proposed by 
Šemić et al. [9] is a low-interaction honeypot for the Telnet 
protocol. The honeypot has two frontends, one dedicated 
to manual attacks, simulating some of the commands and 
components of a real system, and one specifically designed to 
respond to Mirai malware.

Other protocols used by IoT devices have been studied 
by Wang et al. [10], which proposed a high-interaction 
honeypot for Message Queuing Telemetry Transport 
(MQTT) and Extensible Messaging and Presence Protocol 
(XMPP) modules, while device emulation was performed 
via a Representational State Transfer (REST) Application 
Programming Interfaces (API). Luo et al. [11] designed a 
honeypot with intelligent interaction based on the responses 
received from other real IoT devices which it actively 
scans and sends requests logged from previous attacks, 
and combines it with the use of a reinforcement learning 
algorithm to give the best possible response to attackers.

Vetterl et al. [12] proposed a high-interaction honeypot 
for capturing attacks on Customer Premise Equipment 
(CPE) and IoT devices through emulation of their firmware. 
The honeypot is designed to obtain information on how the 
system is compromised and once the attack vector is known 
it is blocked.

Tambe et al. [13] introduced the idea of making use of 
a high-interaction honeypot using Virtual Private Network 
(VPN) tunnels so that a physical IoT device can be listening 
in different geographic locations, simulating multiple devices.

Cowrie [14] is an open-source honeypot that was created 
as a continuation and extension of Kippo [15]. It supports the 
Telnet and Secure SHell (SSH) protocols and, although it was 
initially designed as a medium-interaction honeypot, it can 
be used as a high-interaction honeypot allowing the Cowrie 
logging system to be used transparently with real or virtual 
devices. Fraunholz et al. [16] uses Cowrie as a medium-
interaction honeypot to perform statistical and behavioral 
analysis on incoming attacks. 

In summary, there are different studies made by the 
research community that use honeypots to analyze the 
different attacks on protocols or services used in the IoT. 
Unlike most related work, we used a high-interaction 
honeypot to collect attacks on Telnet and SSH services, 
where we classified the attackers’ command sessions and 
downloaded malware samples to spread through these 
devices.

3  Methodology

In order to learn how SSH and Telnet services are 
exploited for gaining access to IoT devices and perform 
attacks through them, we deployed a high-interaction 
honeypot and monitored the actions and accesses carried out 
by exploiters. The methodology followed in this experiment, 
which is shown in Figure 1, is explained in this section. 
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Firstly, we describe the architecture of the deployed system 
and then we detail the configuration of the machines which 

simulated vulnerable devices. Finally, we present the analysis 
carried out in this study.  

Figure 1. Outline of the methodology followed in this work

3.1 System Architecture
The architecture consisted of a private server that was 

deployed in Germany. We hardened the server in order not 
to allow unauthorized access to the services in this machine, 
and, after that, we deployed the honeypot on this machine 
and redirected the connections directed to the SSH and Telnet 
services to the internal ports used by Cowrie. We configured 
Cowrie to work in proxy mode, redirecting the traffic that 
reached these services to virtual machines compatible 
with QEMU [17]. This allows Cowrie to become a high-
interaction honeypot because attackers are dealing with a 
complete system rather than an emulation of the file system 
and certain commands, thus making it more difficult for them 
to notice that they are not compromising a real system.

For user authentication, we only considered the root user 
and the top 10 most common passwords used by malware 
targeting IoT devices [18] as valid ones. This way, when 
an attacker entered valid credentials, Cowrie performed a 
successful login in the virtual machine, returned the response 
from the server of the virtual machine and started acting as a 
proxy, redirecting the input and output of commands between 
the attacker and the virtual machine. The proxy mode can be 
configured to redirect traffic to virtual machines or devices 
outside Cowrie, or Libvirt compatible virtual machines 
can be included and Cowrie can take care of deploying and 
restarting the machine when needed through this toolkit.

3.2 Virtual Machine Configuration
For the creation of the virtual machine used to emulate 

a real system, we used Buildroot [19], which automates 
the process of creating a Linux environment for embedded 
systems. Using this tool, we were able to build a Linux 
system for the ARM architecture by cross-compiling, so that, 
once that an attacker has gained access to the system and 
performs a reconnaissance of the environment, they find that 

the architecture being emulated is the most used one for IoT 
devices. 

For  the  L inux  sys tem compi led ,  we  inc luded 
compatibility for the old application interface (OABI), 
allowing the execution of binaries created for older ARM 
architectures. Finally, we included different tools such as 
BusyBox, Perl, and Python. as well as SSH and Telnet 
servers to allow Cowrie to connect in its proxy mode.

Once the machine was built with Buildroot, we obtained 
the kernel that would be emulated and a file system and 
utilities that resemble those that an attacker would find on 
a real device. The system generated was emulated using 
QEMU, and, in order for Cowrie to manage the virtual 
machine, it was necessary to generate an Extensible Markup 
Language (XML) file containing the configuration options 
that QEMU needed to emulate the machine. Since we are 
dealing with a high interaction honeypot, we add a series 
of preventive measures to reduce the exposure surface and 
prevent attackers from carrying out attacks through our 
system. We only allow inbound traffic to SSH and Telnet 
ports, denying connection attempts to these ports on the 
outside. We also allow connections to port 80 and 8080 
commonly used by the HTTP protocol and by attackers to 
download malware samples. Emulated virtual machines 
are rebooted and restored after a 10-minute time interval. 
We believe that these measures are sufficient to reduce the 
exposure of the honeypot, and that they in turn allow the 
collection of information on the most prominent attacks.

3.3 Data Analysis
In order to evaluate the actions carried out by the 

attackers, the metadata that could be extracted from the 
stored logs was thoroughly studied. This analysis was divided 
into three different tasks: the inspection of the data associated 
with the connections, the examination of the interaction that 
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the attackers made with the system, and the study the files 
that were downloaded in our honeypot.

Metadata analysis. In this phase, we analyzed the 
data associated with the connections made to our honeypot 
system. Firstly, we focused on the connection attempts made 
throughout the experiment, and then broke the data down 
into days of the week. Secondly, we evaluated all the login 
attempts that were made, also studying the username and 
password combinations most frequently used by the attackers. 
Thirdly, we studied the attacks that were attempted through 
the SSH feature known as port forwarding. This SSH feature 
allows the redirection of any Transmission Control Protocol 
(TCP) port and the sending of data via SSH, allowing, for 
example, accessing geolocation-restricted content, bypassing 
firewalls, etc. Therefore, the server would act similarly to 
a proxy and the connection data recorded on the target host 
would be from the SSH server. Finally, we analyzed the 
origin of the attacks by consulting the geolocation of the 
Internet Protocol (IP) addresses that interacted with our 
honeypot using public IP location services [20].

Interaction analysis. To analyze and classify the 
interaction, we extracted all the command sessions for each 
of the IP addresses. Then, we cleaned duplicated sessions 
from the same IP, i.e., sessions that are exactly the same 
and therefore have been created by bots that made another 
connection to the system and performed exactly the same 
tasks as in other connection. After this, we standardized the 
commands by eliminating specific semantics that can be 
variable and still be the same command. For this purpose, 
we replaced the following variables by constant values using 
pattern search and regular expressions:

• IP addresses and Uniform Resource Locators (URLs)
• Names of downloaded files or scripts
• Payload hardcoded in commands
• SSH keys
• Inserting users
• Replacing non-existing BusyBox commands
Once the commands entered had been standardized, 

we separated each one of them. In addition, those symbols 
that allow different commands to be chained together in 
the same order, such as the semicolon, were removed. 
After this cleaning and standardization stage, each session 
was composed of an ordered vector where each element 
represented a command.

For measuring the similarity between sequences and 
performing the classification, we use the cosine similarity 
between two vectors [21]. Given to sequences A and B, 
the first step is to transform each one of them into a vector, 
obtaining A



={a1, a2, …, an} and B


= {b1, b2, …, bn}, 
where ai and bi , represent the number of times in which 
the command in position i appears in the sequence, and n is 
the total number of different commands in the whole set of 
sequences that are being compared.

Finally, given two vectors of command sessions, we 
compute the cosine similarity as follows: 
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The obtained result is in the interval [0,1], with 1 
meaning a perfect similarity and 0 a nonexistent one. In other 
contexts, this interval can be [-1,1], but in this experiment it 
is not possible to obtain negative values for the vectors.

Analysis of downloaded samples. For the analysis and 
clustering of the downloaded files in the honeypot, we run 
the samples in an IoT sandbox environment [22], which 
automatizes the analysis and feature extraction process 
of pieces of malware from various architectures. For the 
clustering and classification tasks, we follow a dynamic 
approach, due to the fact these might be samples that are 
packed, so features based on static analysis are less robust 
to obfuscation and therefore more prone to false positives. 
We run each sample and extract its sequences of system calls 
(syscalls) of size N, also known as N-grams. For example, 
for the following trace of syscalls: [execve, time, getpid, 
getppid], the set of n-grams of size 2 that will be obtained is: 
(execve, time), (time, getpid) and (getpid, getppid). Once that 
the N-grams from the different samples were extracted, we 
calculated the similarity using the Jaccard index [23], which 
allowed us to determine the similarity between two sets in the 
following way: 
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where the numerator represents the subsets (N-grams) found 
in both samples and the denominator indicates all unique 
subsets between samples. The result is a value between 0 and 
1 representing the similarity between two sets.

4  Data Analysis

Our honeypot system ran for a period of 35 days. 
During this time, the actions carried out on the system were 
monitored and the corresponding data was collected. This 
section presents the results than can be extracted from this 
experiment. 

4.1 Metadata Analysis
In this section we analyze the information associated 

with the connections or connection attempts that were 
logged at the honeypot. Firstly, we perform a study based 
on the number of attempts and the time stamp at which they 
occurred. Secondly, we analyze the login attempts. Thirdly, 
we analyze the connection attempts via SSH tunnels to other 
hosts, and finally we analyze the origin of the IP addresses 
that interacted with the honeypot.

Analysis of connections. We analyze the timestamp of 
the connection attempts recorded by the honeypot using 
Spanish local time (Greenwich Mean Time +1). In the thirty-
five days of the experiment, the system captured a total of 
830,053 connection attempts. Figure 2 represents the number 
of attempts per protocol. It can be seen that most of the 
connections were through the SSH protocol, reaching a total 
of 781,339 connection attempts. Which is more noticeable 
from this data is that the number ofconnections captured via 
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the Telnet protocol (48,714) is so low, as for years it was the 
preferred protocol for brute-force attacks on IoT devices.

Figure 2. Percentage of connections by protocol

As for the timeline of the connection attempts captured, 
Figure 3 shows the attempts that occurred on each of the 
days of the experiment. Red represents those attempts that 
occurred between 00:00 and 08:00, yellow represents those 
that occurred between 08:00 and 16:00, and green represents 
those that occurred between 16:00 and 00:00. Looking at the 
results, it can be seen that, on average, there were 20,000 
attempts per day, with this figure even exceeding 30,000 on 
some days. In general, in terms of time periods, the number 
of attacks remains uniform and does not show any tendency 
towards a specific one. This indicates that most of the attacks 
were automated and not focused on out-of-office hours such 
as the 00:00 to 08:00 period. 

Figure 4 shows the connection attempts that were made 
on each day of the week. It can be seen that the number of 
attempts is very similar for each day and, although the peak 
is reached on Sunday, it does not seem to follow any trend. 

Analysis of login attempts. A total of 769,685 honeypot 
login attempts were captured, of which 539,369 (70.07%) 
succeeded in logging into the system and 230,316 (29.93%) 
were unsuccessful. The successful logins belonged to 1,534 
unique IP addresses, i.e., only 15.45% of the unique attackers 
managed to access the system. 

Of the login attempts that occurred on the system, 
70.91% and 71.19% of the login pairs were generated from 
the list of users and passwords used by Mirai and from a 

specific dictionary of users and passwords of IoT devices, 
respectively. Table 1 shows the top 10 most used both users 
and passwords, as well as the top 10 most used combinations 
for logging into the system. In the table it can be seen how 
the attackers try to use usernames and passwords that are 
clearly commands (e.g., iptables, ping, sh, shell, etc.). This 
is due to scripts that are not able to capture the fact that they 
are facing a system that requires authentication and the script 
continues its execution, evidencing the lack of sophistication 
of some attacks.

It can be seen that brute-force attacks on SSH and Telnet 
credentials are still one of the main methods of finding 
vulnerable systems and that the trend has continued since 
the release of Mirai, such methods allowing attackers to 
compromise systems quickly without investing too much 
effort or money in searching for vulnerabilities or zero-days.

Figure 3. Number of connection attempts captured
(Red represents attempts made between 00:00 and 08:00, yellow 
between 08:00 and 16:00 and green between 16:00 and 00:00.)

Figure 4. Number of connection attempts per day of the week

Table 1. Top 10 users, passwords and combinations of both most used by attackers
Users Total Passwords Total Pairs
root 640,170 admin 411,542 root/admin 410,365
admin 16,006 root 126,693 root/root 124,801
enable 4,295 123456 9,781 enable/system 4,293
sh 4,200 123 4,401 sh/shell 4,185
test 2,927 system 4,394 ping ; sh//bin/bu.. 2,002
user 2,596 shell 4,198 root/54321 1,888
ping ; sh 2,002 /bin/busy… 3,549 admin/888888 1,882
ubuntu 1,921 888888 2,771 root/8888 1,825
postgres 1,836 5555 2,590 root/5555 1,824
Iptables -F 1,547 password 2,095 root/111111111 1,821
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Direct TCP-IP connection analysis. We analyzed the 
connection attempts that allowed attackers to create TCP 
sessions in an SSH tunnel. In total, there were 1,278,006 
connection attempts using this SSH feature, of which 
33,804 were unique targeted hosts. It is important to note 
that all of these connection attempts were made by only 
96 attackers or bots. Figure 5 graphically shows the top 30 
hosts to which the most connection attempts were made. 
The red nodes represent the IPs of the attackers, while the 
blue nodes represent the hosts to which they tried to connect 
to. The edges represent whether there were any connection 
attempts between the attacker IP and the targeted node, and 
the thickness of the edges varies according to the number of 
times the attacker tried to connect to the targeted host through 
our SSH server. It should be noted that no connection was 
made from our honeypot to the outside. Also, those targeted 
hosts to which they tried to connect directly through their 
IP address were anonymised. As can be seen in the image, 
some well-known domains appear, such as Google, Amazon, 
Evernote or the Russian search engine ‘ya.ru’, to which 
30.5% of the total connection attempts belong to. Making 
requests to known domains could be a way to check whether 
the redirection is working correctly and whether they are in a 
honeypot.

Figure 5. Connection attempts via ssh direct TCP-IP
(The blue nodes represent the hosts or addresses they attempted 
to connect to and the red nodes represent the attacker’s ip address. 
The edge weight indicates the number of connections between both 
nodes.)

In addition, we analysed the destination ports to which 
the requests were directed. Table 2 shows the top 10 ports 
and indicates that most of the requests were directed to 
connections via the Hypertext Transfer Protocol (HTTP) 
and the Hypertext Transfer Protocol Secure (HTTPS). The 
rest of the connections in the top 10 are mainly related to 
sending and receiving email and the different protocols used 
for this. Therefore, they were trying to connect to Simple 
Mail Transfer Protocol (SMTP) servers to send emails 
anonymously, something commonly used in spam and 
phishing campaigns.

Table 2. Top 10 ports to which petitions were addressed
Port Total Protocol information
443 526,670 https
80 508,109 http
25 176,972 smtp
993 24,855 imaps
587 22,627 smtp over tls
465 5,183 smtp over tls
43594 4,802 runescape servers
143 3,409 imap
26 1,988 smtp
2525 1,952 smtp

Finally, an unusual port can be observed. After applying 
Open Source INTelligence (OSINT) [24] techniques, we 
observed that this port is used by the servers of RuneScape 
[25], an online role-playing game that is developed by Jagex. 
This could be used to perform a Distributed Denial of Service 
(DDoS) attack on the game server or to evade bans based on 
IP addresses in the game.

Origin of the attacks. In total, 9,926 unique IP addresses 
interacted with the system. We obtained the origin of the 
addresses by using location services and plotted them on a 
map. Figure 6 shows a heat map and the representation of 
the existing IP addresses in that geographical area. It can be 
seen that the origin of most attacks is in Asia, Europe and the 
United States, with China being the most common location 
with 28.03% of the IP addresses collected, followed by the 
United States (10.89%), France (5.67%), Brazil (4.49%) and 
South Korea (4.07%). It is worth noting that 51.42% of the 
IP addresses collected come from Asia, which is twice the 
number of IPs from Europe (24.20%). It is also relevant that 
the origin of the actors behind the attacks is not necessarily 
that location specifically, as they could be using some kind of 
proxy, virtual private networks (VPNs), Tor or systems that 
have been previously compromised through malware and are 
acting as bots looking for other vulnerable systems to spread 
malware.

4.2 Interaction Classification
This section presents an analysis of the interaction of the 

different attacker sessions via the SSH and Telnet protocols. 
As discussed in Section 4.1, only 1,534 unique IP addresses 
successfully logged in. Out of that entire pool of IP addresses, 
at least 1,402, or 91.4%, executed at least one command. In 
total, 4,217 sessions were established, i.e., some of these IP 
addresses connected to the honeypot several times.

To analyze the interaction, automated techniques were 
applied to classify the sessions and extract knowledge. 
Firstly, as described in Section 3.3, the commands entered 
were standardized and the most commonly used commands 
were extracted. Table 3 shows the top 10 commands most 
used by attackers. In the table, we can see some that are quite 
common, such as system, shell, and enable, and which are 
normally used on some devices such as routers to obtain shell 
or more privileged commands. Also, the command “echo 
CODE >> .file”, which dumps binary code to a file, can be 
observed. The most striking command is the one that was 
repeated most often as it is an invalid command. Attackers 
use the command /bin/busybox followed by non-existent 
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“command” names such as CORONA, TSUNAMI, FBOT, 
etc., in order to find out if the previous commands have been 
executed correctly [26].

Table 3. Top 10 most used commands
Command Total
/bin/busybox BUSYBOX 6,065
sh 4,483
shell 4,197
system 4,171
enable 4,171
linuxshell 3,397
/bin/busybox cat /bin/busybox 2,629
>.file 2,099
>file 1,930
echo CODE >>.file 1,272

Secondly, the similarity between each pair of sessions 
was calculated using the cosine similarity. In order to 
consider two similar sessions, different thresholds were 
tested, and finally we selected one with the value of 0.9, i.e., 
two sessions are similar if the cosine similarity is greater than 
0.9. Figure 7 shows the results of clustering sessions based 
on the commands entered during the session. The nodes 
represent the sessions, and the edges connect two sessions 
if their cosine similarity exceeds the set threshold. It can be 
seen that most of the sessions are similar to each other and 
that they are mostly grouped in 7-8 clusters, indicating that 
most of the connections were made by bots searching for 
vulnerable systems to download and install malware using 
similar tactics, techniques and procedures (TTP).

Figure 6. Origin of the attacks received in the honeypot

4.3 Downloaded Malware Analysis
This section presents the results of the analysis of the 

samples collected by the honeypot. In total, 1,578 samples 
were collected, of which 710 were unique. The unique 
samples included 590 Linux executable binary files, 35 
gzipped files, 82 bash script files and 3 perl scripts.

Binary files. These were executable and Linkable 
Format (ELF) binary files, mainly from the 32-bit ARM 
architecture (87.46%). The rest of the samples corresponded 
to other architectures such as Intel 80386, Microprocessor 
without Interlocked Pipeline Stages (MIPS), etc. For the 
classification of the samples, the syscall sequences were 
extracted as discussed in Section 3.3, and N-grams were 
extracted for each syscall sequence using four as the N-gram 

size. We use a dynamic approach and the extraction of 
syscalls since it allows analyzing and relating samples from 
other architectures (i.e., ARM, MIPS, Intel 80386). Figure 8 
shows the results of the clustering of the collected samples. 
The nodes represent each of the samples and the edges join 
nodes that have a similarity greater than 80%. It can be seen 
that there is one cluster that stands out from the rest, and then 
there are small clusters or sets of connected samples. 

We applied reverse engineering techniques in different 
samples from each cluster to confirm that the samples were 
clustered correctly. The samples that are clustered with any 
other sample based on the established similarity threshold are 
the following:
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• Hajime: To this category belong 70.5% of the 
samples found, and it is this grouping that stands out 
from the rest in Figure 8. This sample is Hajime’s 
downloader, a malware that first appeared in 2016 
and spreads mainly via Telnet and vulnerabilities 
whose exploits it has been incorporating into its 
scanning and propagation module [27]. It is a 
botnet that communicates with its C&C through a 
decentralized network and its real purpose is so far 
unknown as it has not launched any denial-of-service 
(DoS) attacks [28-29]. The binaries found all have 
the same size and are responsible for downloading 
the sample from the next phase [30]. Mainly, it is the 
same binary with only changes in the address and 
download port of the next stage of the malware.

• Mirai: This is the most popular family of malware 
that attacks IoT devices. It became famous because 
it generated the largest DDoS attack using IoT 
devices [31]. Its source code was leaked in 2016 and 
since then multiple Mirai variants have appeared. It 
accounts for 9.83% of the total binary files.

• Gafgyt: This accounts for 6.44% of the executable 
files collected. It is malware whose source code 
was leaked in 2015 and, like with Mirai, there are 
many variants of this malware family. Among its 
main features is the ability to perform various DDoS 
attacks [32].

• Dofloo: This is malware that allows DDoS attacks 
and the loading of cryptocurrency miners [33-34], 
and accounts for 1.52% of the samples.

• Xorddos: This is malware that affects Linux-type 
devices and allows different types of DDoS attacks 
[35]. This family accounts for 2.54% of the samples.

• Others: The remaining samples, which were not 
related to any other sample on the basis of the 
similarity index, belong to this category.

Bash-script. These were script files downloaded in the 
sessions and designed to download malware for different 
architectures and execute it. All scripts work in a similar way: 
1) they move to a directory where the user has permissions; 
2) they download the malware for different architectures via 
wget, tftp or curl; 3) they give the downloaded file execution 
permissions; and 4) they execute the file with or without 
arguments. All files perform the same task and differ only in 
the IP addresses they try to connect to, the filename and the 
architectures supported by the malware.

Perl-script. The downloaded scripts were Internet Relay 
Chat (IRC) bots written in Perl with command execution 
capabilities. All three scripts were based on source code that 
is publicly available on the Internet, with two of them even 
having the same comments as the versions they were based 
on [36-37].

Compressed files. These were files in “tar.gz” format 
that had a hidden folder with the name rsync. The sum of 
all the unzipped files was 979, 106 of which were unique. 
There were 34 shared libraries, 31 executable files and 
40 script files. In general, they were different versions of 
malware designed to mine cryptocurrencies. Such botnets 

provide cybercriminals with a network for distributed 
mining and financial gain, either by saving electricity bills 
or by obtaining cryptocurrencies [38]. Each compressed 
file contains several scripts that are responsible for finding 
and stopping the execution of any other mining malware 
and initiating the execution of its own malware. They also 
carry different versions of the executable used to perform the 
mining as well as the necessary libraries for ARM, x86 and 
x86-64 architectures.

Figure 7. Clustering of sessions according to the commands entered
(Each node represents a session and edges between two nodes 
indicate that the similarity is above the set threshold of 0.9.)

Figure 8. Clustering of the samples captured in the honeypot
(Each node is a sample and an edge connects two nodes if they have 
a similarity greater than 80%.)
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5  Limitations and Future Work

This study is focused on Telnet and SSH services and the 
actions that attackers take once they take control. In view of 
the results obtained, it can be seen that brute force attacks on 
these services continue to be one of the preferred methods to 
take control of devices and infect them. However, in addition 
to brute force, attackers also exploit known vulnerabilities in 
other services to gain access to devices (e.g., HTTP, HNAP, 
or UPnP).

Not only conventional protocols are targeted by 
cybercriminals, IoT-centered ones such as MQTT are as well. 
The study of these types of protocols opens an interesting line 
of research that, although is out of the scope of our work, can 
lead to gaining additional knowledge on how cybercriminals 
behave when operating in the IoT.

Additionally, the use of search engines in the early phases 
of the fingerprinting technique is another interesting aspect in 
which to delve into. This is of added interest when working 
with honeypots, as making them accessible by these types 
of tools can lead to cybercriminals suspecting that the IoT 
system that is behind the service is not a real one.

6  Conclusions

In this study, a high-interaction honeypot has been 
deployed for a period of one month, mimicking the 
behaviour of an IoT device. The data captured have been 
analysed yielding valuable insight of the actions carried out 
by the attackers once the Telnet and SSH services had been 
compromised. Firstly, a statistical analysis was performed 
based on connection attempts, authentication attempts, IP 
addresses and attack attempts using SSH port forwarding. 
Then, we analysed the interaction of the attackers with the 
honeypot and classified the sessions established. Finally, 
we analysed the different files that were downloaded on our 
honeypot system by classifying the ELF format binary files.

During this experiment, a total of 830,053 connection 
attempts were made to the system, the majority of them, 
namely 781,339, through the SSH protocol, with the rest 
of them made via Telnet. 769,685 times these connections 
were translated into login attempts, with 15.45% of them 
succeeding. In these sessions, 1,578 malicious samples were 
downloaded, and, after clustering them, it was determined 
that 70.5% of them belonged to the Hajime downloader 
malware family. However, others such as Mirai, Gafgyt, 
Dofloo and Xorddos were detected. With respect to the origin 
of the attacks, 9,926 unique IP addresses interacted with the 
system, with the top three attacking countries being China, 
the United Stated and France, with 28.03%, 10.89%, and 
5.67% of connections respectively.

The results show that most of the sessions established 
were conducted in an automated manner by bots searching 
for brute-force vulnerable servers on which to install and 
execute their malware. With respect to the variants found, 
it can be concluded that there are old malware families that 
are still operating and actively look for new systems to add 
to their botnet, as well as others that aim to use these devices 
for cryptocurrency mining.

With this work we have been able to gain a better 
understanding of the actions that attackers take when 
targeting vulnerable services, thus providing the research 
community with valuable knowledge on the behaviour of 
cybercriminals in the IoT, which is one of the main issues 
currently under study due to their importance for users and 
their data.
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