
DroidExaminer: An Android Malware Hybrid Detection System Based on Ensemble Learning 105

*Corresponding Author: Wenying Zheng; E-mail: zhengwy0501@126.com
DOI: 10.53106/160792642024012501009

DroidExaminer: An Android Malware Hybrid Detection System
Based on Ensemble Learning

Zhongxiang Zhan1, Sai Ji1,2, Wenying Zheng3*, Dengzhi Liu4

1 School of Computer Science, Nanjing University of Information Science & Technology, China
2 Taizhou University, China

3 School of Computer Science and Technology, Zhejiang Sci-Tech University, China
4 School of Computer Engineering, Jiangsu Ocean University, China

a213zhong@126.com, jisai@nuist.edu.cn, zhengwy0501@126.com, liudz@jou.edu.cn

Abstract

Android is an open-source mobile operating system, with
more than 70% of the mobile market share, widely popular
on various intelligent devices. At the same time, the number
of new malicious applications keeps increasing every year. In
this paper, we first discuss the advantages and disadvantages
of various detection methods for malicious software. A single
detection method can only cover specific types of malware.
Therefore, we propose a system that combines static structural
analysis and dynamic detection of malware. This system has
dual detection capability, which consists of a client and a
server. The client is a lightweight Android application that is
used to obtain the relevant data information of the installation
package. The server is responsible for static analysis of APK
and dynamic running of monitoring logs to get the relevant
feature information. Based on the feature information, the
Bagging algorithm of ensemble learning is adopted, and the
decision tree and random forest are combined to identify the
malware accurately. We collected 4210 Android software
samples, with malicious apps accounting for about 20% of
the total. Cross-testing of malware detection on this sample
set showed that DroidExaminer achieved approximately 96%
accuracy in detecting malware. It can resist confusion and
conversion techniques, and the test performance overhead
is less. In addition, DroidExaminer can alert the user to the
details of malware intrusion so that the user can prevent
malware intrusion.

Keywords: Android malware, Software detection, Android
software safety, Hybrid detection

1 Introduction

With the increasingly powerful functions of smartphones,
they can replace many jobs of personal computers and enrich
people’s daily life. Android is a popular mobile operating
system. According to the statistics of Statcounter [1], by
December 2021, Android has occupied 70.01% of the market
share of mobile operating systems. The source code of the
Android system is open source, which is customized by major
mobile phone hardware manufacturers and runs on various

brands of mobile phones. Due to the openness of Android,
it is more likely to become the target of malware attacks.
Statistics show that the annual growth of Android malware
is doubling. According to security firm ESET, Android
banking malware continues to grow dramatically, increasing
by 158.7% in 2021. Smartphones bring great convenience
to people’s work and life, but also hidden security risks such
as malware and viruses, which damage the mobile phone
system, steal private data, and consume users’ network traffic.

The first step of detection is to analyze the characteristics
of malicious behavior of Android applications and
identify the operation mode of malicious applications. For
example, decompress the Android application package,
embed advertisements through malicious packaging, or
load malicious code to consume traffic. Cam [2] proposed
a system named uitRAAD that can be used to detect
repackaged Android applications using representative
graphs. He [3] proposed a novel method to detect repackaged
Android malware based on Mobile Edge Computing (MEC).
MEC servers can collect network traffic traces generated
by both original and repackaged apps in large degrees
and then analyze these traffic traces to detect repackaged
malware. Tian [4] proposed a new Android repackaging
malware detection technology based on code heterogeneity
analysis. The code structure of the application was divided
into multiple code subsets based on dependency, and
each region was independently classified according to its
behavior characteristics, thus realizing the detection method
of malware based on multiple dependencies. However,
software developers are limiting the repackaging of such
malicious applications through hardened and shelled
safeguards. Permpair [5] identified the dangerous functions
of applications based on permission analysis, extracted
permissions from the list files of applications, compared the
graph structure of ma ware and benign samples, authenticated
the permission declaration during program installation, and
identified the malware with dangerous permission pairs. Kim
[6] et al. obtained multiple static characteristic information
such as code attribute string, function, permission, shared
library, and environment from Android APK file and then
detected and classified the malware through a deep learning
algorithm. RTPDroid [7] is an approach to detect implicitly
malicious behaviors and bugs brought by the Runtime

106 Journal of Internet Technology Vol. 25 No. 1, January 2024

Permission Model (RPM). Notions of user-aware contexts
as well as user-aware call graphs are defined and utilized for
the detection. Application developers prevent static analysis
in several ways for software security. Static analysis is
complicated when the core code is mixed up multiple times,
or when the program is dynamically loaded and compiled
into binaries. Surendran [8] proposed a novel TAN (Tree
Augmented naive Bayes) based hybrid malware detection
mechanism by employing the conditional dependencies
among relevant static and dynamic features (API calls,
permissions, and system calls) which are required for the
functionality of an application. Marvin [9] as a hybrid
detection technique, relies on a number of static API-based
features to find multiple vulnerabilities in applications. These
detection schemes are designed for malware analysts and are
difficult for ordinary mobile device users to install on their
devices that can detect and prevent malware.

Various detection methods can obtain the characteristic
information of Android programs, then conduct sample
training, and combine with machine learning classification
algorithm to distinguish benign and malicious software.
According to the running state of the application during
detection, it can be divided into three types, namely static
detection, dynamic detection and hybrid detection. Android
malware is constantly evolving in an attempt to circumvent
existing detection methods. The memory usage of application
installation packages is increasing, and the resource
consumption of static scanning and analyzing Android
applications is rising. Some applications strengthen the
confidentiality, confound the program code, and then harden
and shell the APK package to prevent decompilation, making
static detection more and more difficult. Dynamic detection
depends on simulation environment execution, efficiency
is relatively low, and a single detection method has certain
limitations.

1.1 Contributions
Based on the existing detection methods and ensemble

learning algorithm, we designed a detection system
with broader coverage of malicious features and better
performance. It can reduce the detection time and improve
the accuracy of malware detection. The main contributions of
the scheme are shown as follows:

•	 We design a hybrid Android malware detection
system based on ensemble learning, which avoids
the shortcomings of the existing static and dynamic
single detection schemes and is a new scheme with
dual detection capabilities.

•	 Improve the performance and accuracy of the
detection system, and optimize the automated
execution script of the Android simulation container.
The cross-validation algorithm experiment is
carried out through the mixed training data model of
ensemble learning. With fewer hardware resources,
the accuracy rate is 96%.

•	 The detection system will cover a broader scope of
malicious feature detection, which includes the log
monitoring of the malware through multi-level API
and classification of the characteristic behaviors of
the malware. In addition, the distributed design of

the system enhances the scalability of the system,
and the detection methods for new malware have the
ability to update synchronously.

1.2 Related Work
The characteristic behavior of Android malware is

constantly changing, and the harm way is more and more
extensive. Existing research schemes have different emphases
on the detection of malware. According to the running
state of the program at the time of detection, there are three
types, namely static detection, dynamic detection and hybrid
detection. Machine learning is widely used in classification
recognition, and the recognition accuracy of machine learning
on different data sets is different. The researchers designed
a variety of detection systems and achieved ideal detection
accuracy on some data sets.

Static detection and dynamic detection have their
respective focus. Static detection analyzes application
code and file information to obtain static characteristics
for classification and identification. Android application
installation package is the APK file, through the decompile
analysis tool can get AndroidManifest.xml, smali file and
other information. Wang et al. [10] proposed a lightweight
framework for Android malware identification. The proposed
method combines network traffic analysis with a machine
learning algorithm that is capable of identifying Android
malware with high accuracy. Shen et al. [11] proposed a new
technique to detect mobile malware based on information
flow analysis. The structure, patterns and relations accurately
capture the complex behavior exhibited by both recent
malware and benign applications. Meng [12] proposed
a precise semantic model of Android malware based on
Deterministic Symbolic Automaton (DSA) for the purpose
of malware comprehension, detection and classification.
Drebin [13] is based on performing extensive static analysis,
collecting as many application feature attributes as possible,
and then classifying them through machine learning. Amin
[14] proposed an anti-malware system that uses customized
learning models, which are sufficiently deep, and are End to
End deep learning architectures which detect and attribute
the Android malware via opcodes extracted from application
bytecode. Droidchameleon [15] is a systematic framework
with various transformation techniques. Dynamic detection
runs an Android application in a simulated environment
(such as a sandbox [16-17]), and the runtime behavior
characteristics obtained are called dynamic characteristics.
Dynamic analysis includes system calls, application
programming interface calls, network traffic, and CPU
data. [18-20] are all based on the behavior detection of the
Android runtime. Discover all kinds of malicious behavior
characteristics of Android software in different states.
DeepDroid [21] is a dynamic enterprise security policy
enforcement scheme on Android devices. It is implemented
by dynamic memory instrumentation of a small number of
critical system processes without any firmware modification.
[22-24] are some methods based on dynamic taint analysis of
applications to monitor the use of sensitive data to distinguish
malware. Maldeep [25] visualizes the feature information
of the application, and identifies malware based on image
difference comparison and machine learning algorithms. Liu

DroidExaminer: An Android Malware Hybrid Detection System Based on Ensemble Learning 107

[26-27] proposes a method for secure mutual authentication
and storage checking. It can be used for Android data
integrity detection. Based on the simulation environment is a
common method of dynamic detection. The operating system
environment is relatively complex, resource consumption is
large during detection, and detection accuracy is a challenge.

Hybrid detection consists of static analysis and dynamic
analysis. It covers a wider detection range, reduces the
limitations of a single detection method, and achieve an ideal
state of balance. Madam [28] is a behavior-based detection
method that analyzes features at the four levels of kernel,
application, user and package to detect malicious behaviors
of Android applications. DroidCat [29] is an application-
level interface call and component communication dynamic
characteristics analysis method to capture the function of the
application execution structure and realize the classification
and identification of malware. Whether static or dynamic,
most recognition and classification methods rely on a
variety of machine learning algorithms. Ensemble learning
is a commonly used scheme to avoid the limitations of a
single machine learning classification. A classification target
with high accuracy is achieved by the ensemble learning
algorithm. ICCDetector [30] uses the communication
mechanism between components to identify the detection
method of malware and uses a support vector machine and
ten-double cross-validation for measurement experiments
and performance evaluation. DroidFusion [31] fuses
several different classification methods and achieves good
performance and detection accuracy on experimental datasets.
Ma et al. [32] proposed a combination method for Android
malware detection based on the machine learning algorithm,
and three detection models for Android malware detection
regarding API calls, API frequency, and API sequence aspects
are constructed. Droid detector [33] associates the features
from the static analysis with features from the dynamic
analysis of Android apps and characterizes malware using
deep learning techniques. Feng [34] proposed an effective
dynamic analysis framework, called EnDroid, in the aim
of implementing highly precise malware detection based
on multiple types of dynamic behavior features. Extracting
behavior features through a runtime monitor, EnDroid is able
to distinguish malicious from benign applications with an
ensemble learning algorithm. As the characteristic behavior
changes of Android malware become more and more
complex, the combination of multiple algorithms and features
of ensemble learning can better identify the malware.

2 Background

In this section, we will introduce the structure of an
Android application, discuss the basic background knowledge
of Android malware, and discuss Android malware
characteristic behavior-related detection methods, which are
essential knowledge needed for the design of the detection
system.

2.1 The Structure of An Android Application
Using static detection of Android malicious applications,

the Android program installation package decompiles

multiple files, then analyzes the detailed information of each
file, the information through the classification algorithm
and machine learning methods to identify the malware. An
Android application is a compressed package ending in APK,
which includes information such as data area and central
directory area. A signed installation package will add an APK
signing block. A signature is a security mechanism to prevent
the installation package from being tampered with or inserted
by Trojan horses, effectively preventing the APK from being
repackaged maliciously. The signature area information
includes the block length, ID-value sequence, and fixed
magic value information. The difference before and after the
signature is in Figure 1.

Figure 1. Differences before and after the installation package is
signed

The Apk installation package contains assets, lib, res,
and META-INF directories, and files AndroidManifest,
Resources.arsc, and classes.dex. Table 1 lists the introductory
information for each document. The above files need to be
manipulated by the decompiler apktool. The Jadx tool can
parse the decompiled class files.

Table 1. Apk file structure
File name Describe
AndroidManifest.xml Application declaration file
Classes.dex Java source compilation file
Lib Called library file
Res Various resource files
Assets Related file information
META-INF Metadata

AndroidManifest.xml is an extensible markup language
(XML) file. The AndroidManifest.xml has a start tag and an
end tag for each piece of information. Applications request
permissions using the tag of ˂permission˃. There are also
four types of components, which are activity, service, content
provider and broadcast receiver. An activity represents a
UI interface on the device that can interact with the user.
Services are long-running background components without
a user interface, and their function is to support background
running tasks. Content providers are used to obtain system
data resources. Broadcasting is a way for an operating system
to interact data across processes. Each component has a
different function and is isolated from the others. Android
passes data using intents, which are messaging objects where
one component requests an action from another. Typically,
a component can use intents to start an activity, a service, or
deliver a broadcast. There are two types of intents: explicit

108 Journal of Internet Technology Vol. 25 No. 1, January 2024

and implicit. The explicit intent is to start the component
with the whole class name. Implicit intents do not require the
name of the component.

The dex file is a compressed file after the java code
source file is compiled into the class. Figure 2 shows the
format information of the dex file. The code information of
the application program can be obtained by parsing the dex
file, and then the key API call graph can be extracted. The
characteristic behaviors of the malware can be classified by
sample training. With the prevention measures such as code
confusion and dynamic loading, the detection accuracy of
this detection method will be reduced.

Figure 2. Dex compression file field information

2.2 Common Detection Methods
Android malware detection methods According to the

running state of the application, the three main analysis
methods are static detection, dynamic detection and hybrid
detection.

Static methods parse program source code without
executing the application, advance permissions, API
calls, application library features and combine them with
recognition algorithms or machine learning models to
detect software. The advantage of static analysis is that it
does not need to set a complex execution environment, but
it cannot detect malicious software that uses transcoding,
polymorphism, encryption technology and dynamic loading.
Therefore, the static analysis method has a short time for the
new family of malicious software.

The dynamic analysis method is to execute the
application in the simulation environment, monitor the
running characteristics of the program, and monitor various
abnormal behaviors such as system calls, network access,
file and memory modification, information access mode and
high resource consumption. Dynamic detection needs to
solve the performance problems of the running environment.
Continuous runtime scanning of a running application puts a
lot of pressure on the CPU of the device, resulting in a large
amount of hardware resource consumption, significantly
shortening battery life, and a challenge to the timeliness
and stability of detection. The selection of machine learning
technology has a significant impact on the accuracy rate. A
single machine learning method has limitations, which only
covers specific samples and is not widely used. After being
extended to the ensemble learning method, the application
can be accurately classified through experiments with various
machine learning algorithms.

Static and dynamic methods are complementary and can
be used in combination to increase code coverage. Hybrid
detection is a solution that balances the advantages and
disadvantages of static and dynamic methods, combining
the two methods in different forms. The hybrid approach
provides a better balance between resource and time
efficiency, code coverage, method robustness and detection
accuracy.

3 The Overview of DroidExaminer

DroidExaminer consists of two parts: a client and a
server. An Android app runs on the smartphone, monitors
the download of APK files, and the user uploads the APK
to a server. The other part is the server side, which contains
three services for processing data from the client, dynamic
detection, and ensemble learning of the classification
model. DroidExaminer has dual detection capabilities, the
first detection is static, based on the application manifest
file information, it is a fast and efficient detection process.
Double detection is a dynamic detection process based on the
container environment. The mobile application uploads the
installation package to the server, installs it into the container
environment through automated scripts and generates log
files through automated testing. The following describes
the detection methods and correlation of the two stages
respectively.

3.1 First Detection
The first detection is a static detection method, which

relies on static information related to Android application
files. The Android app monitors the APK download file
on the smartphone and detects file changes by tracking the
phone’s memory and SD card directory. If there is a new
APK file, the detection service program is triggered. Users
can upload the installation package to the server. On the
server, the Apktool is used to decompile the APK file into
the manifest and classes.dex, and then analyze and process
the manifest. The manifest file contains the declaration of
permissions and information about various components. The
permission mechanism is one of the most important security
mechanisms of Android. Sensitive information (location,
phone and address book, etc.) and important resources
(network, camera and bluetooth, etc.) need to apply for
related system permissions in the manifest. Generate feature
vectors based on permissions and component information.

The feature vector obtained by the first detection
generates three text files, namely package.txt, permission.
txt and component.txt documents. These three files hold the
values of various attributes in the APK file and do not contain
source code information. These attribute values will filter out
duplicate data, build three related documents according to
benign software and malicious software respectively, count
the frequency of benign software and malicious software,
and sort the attribute values according to the frequency. The
values of these feature attributes are filtered according to the
Chi-square test method and are finally used as input data for
the ensemble learning model.

DroidExaminer: An Android Malware Hybrid Detection System Based on Ensemble Learning 109

3.2 Double Detection
Double testing is a dynamic testing process. The server

obtains the installation package (APK) file from the mobile
phone. Start the automated script to install APK into the
container environment. Run this Android application and call
the automated test script. Android operating system is running
on the container environment. In the dynamic detection
stage, we developed an automated test script program to
improve detection efficiency by reducing the repetition rate.
In order to better detect the state of the running environment,
open-source lightweight containers are used. We added a log
tracking method to the key API of Android source code and
then compiled and packaged it into a file named android.img.
Android container environment loads this IMG file, and the

API call information can be obtained when the application
runs. According to this log information, feature vectors are
generated and input into the ensemble learning model.

4 Feature Discovery and Computation

4.1 Feature Selection
In order to get enough log information, we have a

hierarchical classification of Android’s key APIs. The call
resources from the API are divided into five types, and
these types of APIs are tracked and monitored. These are
application layer APIs, Android framework APIs, virtual
machine APIs, system capability APIs, and special API types.
Table 2 lists the details of each type of API.

Table 2. API type classification, these API classes and methods are more related to the behavioral characteristics of malware
API type Invoke classes and methods Description

Application layer
API

ContentProvider Some predefined content resources
Context Provides application context information
Intent The intention to transmit data

Android framework
API

ActivityManager Active interface management class
PackageManager Android package management class

Telephony/SmsManager/LocationManager Call, SMS and location services management
classes

Virtual machine API
DexClassLoader Load files such as class and dex externally
Runtime.getRuntime.exec() Runtime executes Linux commands at runtime
LoadLibrary Method of dynamically loading library files

System capability
API

NetworkInfo/WifiManage/ConnectivityManager Network and connection related classes
DownloadMananger Download management class
HttpURLConnection Universal network connection
myPid() and killProcess() in the Process class Process management class
IO package File read-write class

Special API The Crypto class Encryption, decryption, and key negotiation
operation

The characteristic data of the application obtained
from the two detections represents the structured form of
the sample, and it is important to get the key information
right. The representative characteristic set of malicious
behavior is adopted. It can establish the recognition model
with high accuracy. Application layer APIs are used by
applications to obtain system content resources, program
context information, and interaction information between
multiple activities and services. Content providers can access
sensitive information on mobile phones without obtaining
the necessary authorization. The Context class provides
global application information. Intents communicate between
multiple active interfaces with MIME data information.
The Android framework API provides all kinds of resource
information such as active interface, installation package,
phone and SMS. The virtual machine API monitors the
outsourcing of loading classes and running dangerous Linux
commands and parameters. This type of malware cannot be
detected in static detection, but can only be detected through
dynamic monitoring. The System Capability API is necessary
to monitor process management, file reading and writing,
and network data monitoring. Many malware programs send
sensitive information over the network to external servers.

Special APIs are encryption and decryption related calls that,
if used for malicious encryption, will destroy the availability
of the system. DroidExaminer’s detection mechanism selects
key features based on API calls. In addition to the common
management class log tracking in Table 2, some methods
to obtain key privacy data will be included in the tracking
scope. For example, getDeviceId(), getSubscriberId(),
sendTextMessage() and other calls to access sensitive data
and resources of the phone, the malware tries to get this
information without the user’s consent and abuse it. These
API calls will make the application suspicious, helping the
application to be accurately labeled as malicious or benign.
The calculation of collecting the API list and API call
frequency of each application may be relatively large. We
obtain the key API call information according to the five
types, which makes the calculation cost lower, the feature
set is strongly correlated, and the number of API calls to be
considered is reduced. Some redundant data and irrelevant
feature information are eliminated. These features are used
for identification and classification. The label coding method
we adopt is set to 1 if a feature exists, and 0 if it does not,
thus the initial feature vector data set is constructed.

110 Journal of Internet Technology Vol. 25 No. 1, January 2024

4.2 Feature Filtering
The feature data set obtained in the detection process is

screened and filtered to improve the efficiency and accuracy
of the learning model. The feature screening of classification
problems usually includes the Chi-square test, F-test
classification and mutual information regression. We use the
Chi-square test algorithm to filter the feature data. This is a
common statistical method used to determine whether there
is a correlation between two features. The association of a
feature X in an Android app with malware. We can use the
following four-cell Table 3 data case to illustrate.

Table 3 is an enumeration of the data, it can be seen that
the proportion of malice containing feature X is higher, when
we cannot exclude the sampling error of this difference.
Assuming that feature X is independent of whether it is
a malicious application, the probability of an application
belonging to the malicious category is P, P is the proportion
of all malware to the total, which is 61.8%.

Table 3. Sample data for characteristic X
Group Malware Not malware Total
Not include X 20 24 44
Include X 35 10 45
Total 55 34 89

X is a characteristic attribute. The data in the table
indicates which software contains X. Calculate the correlation
between X and malware.

Table 4. Theoretical data for characteristic X
Group Malware Not malware Total
Not include X 27 17 44
Include X 28 17 45

The data in the table is recalculated according to the
probability P, as a theoretical value for comparison.

The hypothesis of irrelevance generates a new four-cell
Table 4 of theoretical values. The x2 value is calculated by the
following formula, where A is the actual value and T is the
theoretical value.

2
2 () .A Tx

T
−

= ∑ (1)

x2 is used to measure the difference between the actual
value and the theoretical value. After obtaining the x2 value,
query the Chi-square distribution critical value table. There
is a value of the degree of freedom in the query, where the
degree of freedom is 1. The possibility that an application
contains feature X is less than 0.5% independent of whether it
is a malicious application, indicating that the probability that
feature X is associated with malicious applications is greater
than 99.5%. The filtered feature set reduces the time spent
on irrelevant features in subsequent classification steps and
improves the efficiency of ensemble learning.

4.3 Ensemble Learning Model
Machine learning is used to classify Android characteristic

data and judge whether the Android software is malicious or
benign. There are many kinds of classification algorithms in
machine learning, and different machine learning algorithms
have different accuracy rates on the same data set. We use an
ensemble learning algorithm to classify a large range of data
sets. There are two paradigms of ensemble learning methods,
namely serial ensemble method and parallel ensemble
method, represented by AdaBoost and Bagging respectively.
The serial ensemble method is the serial association of
multiple learners before and after. The learning of the parallel
ensemble method is independent of each other, and the final
conclusion can be judged according to the results of the
mutually independent base classifiers. These two methods are
superior to the single classifier and can significantly reduce
the error. We’re going with a random tree, which is Bagging’s
way of leveling up. This method refers to random feature
selection. When each decision tree selects the segmentation
point, the random forest selects a feature subset at first, and
carries out the traditional segmentation point selection on
the subset. The training set is divided into several samples
and the bagging sampling technique is used to carry out the
partial sampling. By combining the classification results
of multiple classifiers, the algorithm can classify the test
samples. The algorithm has a better classification effect and
generalization ability than a single classifier.

The detection classification stage consists of two parts,
namely the training stage and the detection stage. In the
training stage, the decision tree set and the corresponding
weight value are generated through multiple training sample
subsets. We sampled the total samples in a put-back way
and segmented N sample training subsets altogether. The
probability that each sample in the training set fails to be
extracted is

1(1-) .Np
N

= (2)

When N → ∞ , p ≈ 0.368, indicating that there is a
36.8% probability that the extraction process of each sample
set is not extracted. The extracted feature attributes are
selected to perform node splitting according to the decision
tree generation algorithm, and pruning is not carried out in
the splitting process, so as to obtain a decision tree from the
training subset. The above steps are repeated for K times to
establish K decision trees and generate a random forest.

The random forest was used for the classification and
detection of the test sample set. All decision trees had
K classification results, and the classification effect was
evaluated. Finally, the test sample category was determined
by the voting principle. Since the feature subset is randomly
selected, the decision trees are independent of each other
during algorithm training, which is a parallelization method.
Each decision tree has a different effect on our subsequent
voting, so add a concept of weight. For the decision tree T, T
is applied to the sample set S for classification, and the true

DroidExaminer: An Android Malware Hybrid Detection System Based on Ensemble Learning 111

category of each sample is known. The number of samples
for the correct classification of T is O. By comparing the
classification conclusion with the real category, the accuracy
PT is calculated.

.T
T

T

OP
S

= (3)

PT was used as the weight of the decision tree, and the
samples were classified and weighted by the random forest
classifier. In the detection process, T represents the random
forest size, and T(x) represents the result after the classification
test, with the value of 1 or 0. C is the final category of the
sample, so C can be calculated as follows.

()
1

(()).
T

x T
t

C max T P
=

= ∑ (4)

Random forest is an important representative of the
ensemble learning method. The calculation method used in
this paper has been cross-tested on multiple samples and
achieved the expected recognition accuracy. Due to the
modular design adopted by DroidExaminer, more ensemble
learning methods can be introduced in future experiments.

5 System Design

In this section, we’ll cover the architecture and
implementation details of DroidExaminer with the goal
of designing a detection system suitable for real-world
application scenarios. The system has desirable scalability
and accuracy, and the detection ability is updated as the
malware evolves. There is a good balance between system
performance and detection accuracy. Android static detection
relies on decompilation tools, which extract the APK file
and retrieve the contents. Restore the relevant information

to the source file according to the compressed file format.
Parsing code files is time-consuming. As APK anti-
decompile algorithms become more and more complex,
the source file information obtained is incomplete, which
greatly reduces the accuracy of static detection. The running
sandbox environment of dynamic detection is complex.
With the rapid upgrade of the Android operating system,
many detection environments cannot meet the requirements
of dynamic detection, resulting in a significant increase in
the complexity of dynamic detection. Dynamic detection
execution relies on automated scripts, which can be a major
challenge to the functional coverage of an application. In
the process of designing DroidExaminer system, both static
and dynamic detection capabilities are realized. Figure 3 is
the framework flow chart of DroidExaminer. Static analysis
obtains the installation package from the mobile end and
uploads it to the DPS module of the server. DPS analyzes the
package information and manifest file information of APK.
With the development of code obfuscation and APK shell
hardening, it is more and more difficult to analyze dex static.
Therefore, dex analysis is abandoned for static detection
and supplemented by dynamic analysis. The second step in
double-checking is to build a virtual runtime environment
for dynamic testing. When the dynamic analysis is used,
the classification time may be long, and this aspect of the
design is automated. After the APK is uploaded to the server,
it is automatically installed on the VM. The automated test
script starts the application, covers as much functionality
as possible, and generates the appropriate monitoring logs.
Feature information is obtained from monitoring logs,
ensemble learning and classification is performed, and the
interpreted classification result is returned to the mobile
terminal. As the features of Android malware are constantly
evolving, a single machine learning classification method has
a low classification accuracy for some malicious features.
We adopt the ensemble learning method and modular design,
which can update and extend the detection service on the
server side.

Figure 3. Workflow of DroidExaminer

(The dotted line represents the static detection process of hybrid detection, and the solid line represents dynamic detection.)

112 Journal of Internet Technology Vol. 25 No. 1, January 2024

Considering the advantages and disadvantages of various
detection methods, DroidExaminer is designed as a hybrid
detection system that takes advantage of both static and
dynamic detection. Optimize the execution process algorithm,
and improve the efficiency and performance of the system.
A scalable distributed service with four key components:
an Android application, a Data processing service (DPS),
a Dynamic test service (DTS), and an ensemble learning
classification service (ECS). Classification service based on
ensemble learning stochastic forest model. By using cross-
training sample data experiments, the system achieves high
efficiency and high accuracy.

The first component is an app that runs on an Android
phone and interacts with the user. The app monitors new APK
files in the phone’s file directory and allows the user to select
which apps to scan. In the Android operating system, APK is
an executable program that resembles a compressed package.
It contains two core files, the manifest file, which is the key
file for static detection, and the DEX file, which is compiled
from the executable code of the application. Our application
sends the APK file to the server component, which returns
the analysis results. In the case of malware identification,
the information returned also includes the reason why the
application is classified as malware.

The server consists of three components: Data processing
service (DPS), dynamic detection service (DTS), and
ensemble learning classification service (ECS). The DPS
connects to the client app through HTTP. When it receives
the APK file, it also obtains the information about the
APK file on the mobile terminal. The APK file is quickly
and statically parsed into three txt files for static detection.
Dynamic detection transfers the APK file to the DTS, which
installs the APK in the virtual environment and runs it,
simulating the real detection scenario of the mobile Android
operating system. The image file of the Android operating
system ends with IMG. We modified the key API of the
framework layer of the Android system source code, added
a certain format of log information, and then recompiled
the source code into the IMG image file to mount and run
on the virtual machine. The APK installation package is
installed into the virtual environment through a python script,
and the automatic script DroidTest is used for dynamic
coverage test. The log file information is generated. The
feature vector is advanced from the log file, and the feature
information extracted twice is sent to ECS for identification
and classification, and the classification results are fed back
to the mobile application. The Android phone will receive the
result information twice. The first classification detection is
to realize the fast response in the real scene, and the detection
conclusion is usually reached in about 10 to 15 seconds. The
second test is a dynamic test that usually takes between five
and eight minutes, depending on the inherent complexity of
the Android app.

We classify and describe the signature and permission
information of static detection and the API call log
information of dynamic detection. The following describes
the design of four key capabilities of the system. One is to
monitor the APK file changes of file directories on the mobile
terminal, monitor the file directories downloaded by default
through the FileObserver class, and prompt the user whether

to detect the downloaded APK file. Users can also select the
APK file in the corresponding directory to upload the APK to
the server for detection.

The second key capability is that DPS gets information
about APK installation package signatures, permissions in
manifest files, active components and so on. This information
generates three files: package.txt, permission.txt, and
component.txt. We removed the duplicate attributes, each
as a line message, and the three files will be uploaded to the
ECS.

Figure 4. Dynamic detection process diagram

The third key capability is the dynamic detection process
for APK installation packages to be uploaded to the server’s
virtual environment. Figure 4 is the flow chart of dynamic
detection. Includes a container, an automated execution script,
and an ensemble learning classification model. We optimized
the automatic execution algorithm. When the server obtains
the APK file, it triggers the automatic detection algorithm
program and installs the APK into the Android container
environment. First, determine whether the service program of
the container environment is running. In the case of normal
operation, install the APK file into the container, and then
start the Android application to execute the automated test
program. Through the operation of the program, obtain the
call API log and system feature information of the program.
In the execution algorithm, we add a repetitive operation filter
judgment. An activity interface is considered to have been
fully tested if the repeated click operations reach 96% within
a certain period of time. Meanwhile, the click range of the
operation is recorded to reduce the time for the next repeat
execution and the number of clicks within the same range.
The maximum coverage of all functions of the application,
effectively improves the efficiency of dynamic detection.

The fourth key capability of the server is the ensemble
learning classification and recognition module. The ensemble
learning classification stage consists of two parts. The role
of the training part is to generate the decision tree set and the
corresponding weight value. Multiple cross-sampling was
conducted according to the feature vector set of sample data
to form multiple training subsets, and the decision tree set
was generated according to the data of training subsets. The
detection module is to classify and identify the test samples.
In order to effectively define the classification effect, it
defines a group of detection effect indicators.

•	 True positive (TP): The application is malicious
software. It was detected as malware.

•	 False positive (FP): The application is not malicious

DroidExaminer: An Android Malware Hybrid Detection System Based on Ensemble Learning 113

software. It was identified by faulty detection as
malware.

•	 True negative (TN): The application is actually
benign software. It was detected as benign software.

•	 False negative (FN): The application is actually
malware. It was incorrectly detected as not malware.

•	 True positive rate (TPR): The proportion of the
amount of malware correctly detected to the actual
malware.

.TPTPR
TP FN

=
+

(5)

•	 Precision (PR): The proportion of correctly identified
malware in all identified malware.

.TPPR
TP FP

=
+

(6)

•	 Accuracy (Acc): The proport ion of correct
identification in the total number of tested samples.

.TP TNAcc
TP TN FP FN

+
=

+ + +
(7)

•	 F-score: A measure of test accuracy that takes into
account both test accuracy and recall rates.

2* * .TPR PRF - score
TPR PR

=
+

(8)

Among them, the true positive rate, accuracy rate and
F score are three very important indicators used to evaluate
the reliability of the system. The higher the three values, the
better the classification effect.

6 Performance Evaluation

6.1 Experimental Apparatus
The client of the DroidExaminer system is a mi10

mobile phone. A server is a computer. The computer’s CPU
is an eight-core AMD processor, with 16GB of RAM and
512GB of the hard drive. It is installed with Linux kernel
5.10. The Android runtime container uses the anbox tool.
The Android operating system uses Android7.0, which is
packaged as an android.img file with modified API source
code, and then loaded into the anbox emulator to run.
Software development includes Android applications, server-
side programs, automated execution scripts and ensemble
learning simulation programs. During the simulation test
phase, a server can detect six applications and generate log
information after each execution.

Sample data sets are from common malware storage sites.
Samples of the malware used were collected between July
2021 and June 2022, while benign apps were downloaded
from Google’s official Store and Xiaomi’s App Store at the
same time. A total of 6240 applications were collected and

the number of malicious samples trained was 2,030. The
number of other programs used for detection was 4,210, of
which 839 were malware and 3,371 were benign. With far
fewer malware applications than benign ones, this sample set
is reasonably proportional.

The application running on the phone contains a
monitoring Service and an Activity interface. The server
application container environment is based on the anbox
tool for Linux, which is a lightweight Android running
container. The code is open-source and can be modified for
extensibility. Ensemble learning relies on the open-source
machine learning algorithm library Scikit learn, which
provides implementations of a variety of machine learning
algorithms, including the random forest algorithm we will be
using. Scikit learn supports feature processing and process
design methods, and many existing machine learning libraries
are implemented with Scikit learn compatible interfaces.

6.2 Evaluation
We evaluate the performance and accuracy of the

detection system. DroidExaminer improves the dynamic
detection performance and achieves a high detection
accuracy. Due to the modular design idea of the system,
the scalability of the detection system is better. In the
experiment, it is estimated that about 70% of the time is spent
in the feature information acquisition stage, 20% of the time
is used for classification recognition, and 10% of the time
is consumed in the communication transmission between
modules.

The double detection capability of the system, in order
to quickly respond to users at the first time, the time of the
first detection is controlled in a short time range. The second
detection time is strongly related to the size of the installation
package and the dynamic detection performance. Automated
script execution through Droidtest to improve detection
performance. Compared with the direct use of commonly
used test tools monkey and MonkeyRunner, we evaluated
three aspects: CPU consumption, memory consumption and
functional coverage of the same running time. As shown
in Table 5, DroidTest achieves a wide range of application
function testing on the basis of less CPU and memory
consumption. Droidtest’s memory usage is only 0.2% more
than Monkey, much less than MonkeyRunner. This is due
to the addition of the repeated coverage calculation method,
in order to reduce the detection time and achieve wider
functional coverage.

Table 5. Automated test tool comparison
Tool CPU Memory Scope
DroidTest 5.8% 4.7% 89.3%
Monkey 7% 4.5% 76%
MonkeyRunner 11% 7.3% 84%

The recognition of the classification module is calculated
according to the three indicators of true positive rate,
accuracy rate and F score mentioned above. We take integer
statistics on the test sample data of more than 4000. The
sample data is divided into a stage every 500 for training
tests. Figure 5 shows the changes in the three measures

114 Journal of Internet Technology Vol. 25 No. 1, January 2024

during the testing of the data set. The sample data reached
more than 2000, and the recognition accuracy reached 96%,
indicating that our system model design was reasonable. It
has high accuracy in recognition. Our detection system is in
the experimental stage. In the future, we can introduce more
efficient ensemble learning and recognition model to further
improve the accuracy.

Figure 5. True positive rate, Accuracy rate and F-score

DroidExaminer takes distributed deployment and
scalability into consideration in system design, and can
update the training sample data set of the classification
model according to the future evolution of Android malware
to achieve better detection results. In our experiment, the
random forest algorithm of ensemble learning is adopted, and
the weight of the decision tree is considered to distinguish the
difference between a strong classifier and a weak classifier.
On the other hand, in the selection of feature attributes, more
relevant information is selected to enhance the differentiation
of Android applications. Multiple cross-experiments
show that the classification model has better detection and
classification accuracy. Our sample set is not complete
enough for a large number of malicious software. Due to
the optimization of automatic script execution performance,
the dynamic detection efficiency of the system is improved
and the consumption of hardware resources is reduced.
The DroidExaminer system achieves the balance between
resource consumption and detection efficiency, which
improves the application value of the detection system.

7 Conclusion

The malware of Android smartphones is constantly
changing, and various detection schemes have different
detection scopes for the malware. DroidExaminer is divided
into the first detection scheme with fast response and the
second dynamic detection scheme with high accuracy. Obtain
representative feature sets and filter the data that is strongly
associated with malware. Classification recognition by
ensemble learning can improve accuracy and reduce false
negative rates. DroidExaminer’s modular design is conducive
to the expansion and update of the detection system. The
system has a high degree of automation, taking into account
the constant change and development of Android malware.

We tested the data set and achieved a desirable accuracy.
DTS service and ECS service are standardized designs,
and interface invocations in different scenarios. Dynamic
detection can check the situation of code reflection and
dynamic code loading, and future research will cover a
broader range of API calls.

The data characteristic analysis and detection results of
this experiment achieve the expected effect. According to
the analysis of the experimental process, we can still make
some improvements. The data selection range of the sample
is not large enough, so the sample size can be expanded.
We use the parallel algorithm, which can be extended to the
serial algorithm of ensemble learning. Comparative testing
on the weight difference and priority of feature attributes
can get a better detection effect on large-capacity data. The
performance of dynamic detection can be further improved.
DroidExaminer supports the scalability of distributed
services. Other ensemble learning and malware detection
algorithms can be introduced in future research.

Acknowledgment

This work is supported by the National Natural Science
Foundation of China under Grants No. 62102169, No.
61922045, No. U21A20465, No. 62172292, and Science
Foundation of Zhejiang Sci-Tech University (ZSTU) under
Grants No. 22222266-Y.

References

[1]	 Statcounter GlobalStats, Mobile operating system
market share worldwide. 2020, Recuperado de: https://
gs. statcounter.com/os-market-share/mobile/worldwide,
December, 2021.

[2]	 N. T. Cam, N. H. Khoa, T. T. An, N. P. Bach, V.-H.
Pham, Detect repackaged android applications by using
representative graphs, 2021 8th NAFOSTED Conference
on Information and Computer Science, Hanoi, Vietnam,
2021, pp. 102-106.

[3]	 G. He, L. Zhang, B. Xu, H. Zhu, Detecting repackaged
android malware based on mobile edge computing,
2018 Sixth International Conference on Advanced
Cloud and Big Data, Lanzhou, China, 2018, pp. 360-
365.

[4]	 K. Tian, D. Yao, B. G. Ryder, G. Tan, G. Peng, Detection
of repackaged android malware with code-heterogeneity
features, IEEE Transactions on Dependable and Secure
Computing, Vol. 17, No. 1, pp. 64-77, January-February,
2020.

[5]	 A. Arora, S. K. Peddoju, M. Conti, Permpair: Android
malware detection using permission pairs, IEEE
Transactions on Information Forensics and Security,
Vol. 15, pp. 1968-1982, October, 2019.

[6]	 T. Kim, B. Kang, M. Rho, S. Sezer, E. G. Im, A
multimodal deep learning method for android malware
detection using various features, IEEE Transactions on
Information Forensics and Security, Vol. 14, No. 3, pp.
773-788, March, 2019.

[7]	 J. Zhang, C. Tian, Z. Duan, L. Zhao, Rtpdroid:

DroidExaminer: An Android Malware Hybrid Detection System Based on Ensemble Learning 115

Detecting implicitly malicious behaviors under runtime
permission model, IEEE Transactions on Reliability,
Vol. 70, No. 3, pp. 1295-1308, September, 2021.

[8]	 R. Surendran, T. Thomas, S. Emmanuel, A tan based
hybrid model for android malware detection, Journal of
Information Security and Applications, Vol. 54, Article
No. 102483, October, 2020.

[9]	 M. Lindorfer, M. Neugschwandtner, C. Platzer, Marvin:
Efficient and comprehensive mobile app classification
through static and dynamic analysis, 2015 IEEE 39th
annual computer software and applications conference,
Vol. 2, Taichung, Taiwan, 2015, pp. 422-433.

[10]	 S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, Z. Jia,
A mobile malware detection method using behavior
features in network traffic, Journal of Network and
Computer Applications, Vol. 133, pp. 15-25, May, 2019.

[11]	 F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, L.
Ziarek, Android malware detection using complex-
flows, IEEE Transactions on Mobile Computing, Vol.
18, No. 6, pp. 1231-1245, June, 2019.

[12]	 G. Meng, Y. Xue, Z. Xu, Y. Liu, J. Zhang, A. Narayanan,
Semantic modeling of android malware for effective
malware comprehension, detection, and classification,
Proceedings of the 25th International Symposium on
Software Testing and Analysis, Saarbrücken, Germany,
2016, pp. 306-317.

[13]	 D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K.
Rieck, Drebin: Effective and explainable detection of
android malware in your pocket, 21st Annual Network
and Distributed System Security Symposium, NDSS
2014, San Diego, CA, USA, 2014, pp. 23-26.

[14]	 M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F.
A. Khan, S. Anwar, Static malware detection and
attribution in android byte-code through an end-to-end
deep system, Future generation computer systems, Vol.
102, pp. 112-126, January, 2020.

[15]	 V. Rastogi, Y. Chen, X. Jiang, Droidchameleon:
e v a l u a t i n g a n d r o i d a n t i - m a l w a r e a g a i n s t
transformation attacks, Proceedings of the 8th ACM
SIGSAC symposium on information, computer and
communications security, Hangzhou China, 2013, pp.
329-334.

[16]	 B. Kondracki, B. A. Azad, N. Miramirkhani, N.
Nikiforakis, The droid is in the details: Environment-
aware evasion of android sandboxes, Proc. Network and
Distributed Systems Security Symposium (NDSS), NDSS
2022, San Diego, California, USA, 2022, pp. 1-16.

[17]	 M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, J.
Hoffmann, Mobile-sandbox: combining static and
dynamic analysis with machine-learning techniques,
International Journal of Information Security, Vol. 14,
No. 2, pp. 141-153, April, 2015.

[18]	 K. Tam, S. Khan, A. Fattori, L. Cavallaro, Copperdroid:
Automatic reconstruction of android malware behaviors,
22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA,
2015, pp. 1-15.

[19]	 H. S. Galal, Y. B. Mahdy, M. A. Atiea, Behavior-
based features model for malware detection, Journal of
Computer Virology and Hacking Techniques, Vol. 12,

No. 2, pp. 59-67, May, 2016.
[20]	 S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam,

M. Ahmadi, J. Kinder, L. Cavallaro, Droidscribe:
Classifying android malware based on runtime behavior,
2016 IEEE Security and Privacy Workshops (SPW), San
Jose, CA, USA, 2016, pp. 252-261.

[21]	 X. Wang, K. Sun, Y. Wang, J. Jing, Deepdroid:
Dynamically enforcing enterprise policy on android
devices, 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California,
USA, 2015, pp. 1-15.

[22]	 W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth, Taintdroid:
an information-flow tracking system for realtime
privacy monitoring on smartphones, ACM Transactions
on Computer Systems (TOCS), Vol. 32, No. 2, pp. 1-29,
June, 2014.

[23]	 M. Sun, T. Wei, J. C. Lui, Taintart: A practical multi-
level information-flow tracking system for android
runtime, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
Vienna, Austria, 2016, pp. 331-342.

[24]	 S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J.
Klein, Y. Le Traon, D. Octeau, P. McDaniel, Flowdroid:
Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps, ACM
SIGPLAN Notices, Vol. 49, No. 6, pp. 259-269, June,
2014.

[25]	 Y. Zhao, C. Xu, B. Bo, Y. Feng, Maldeep: A deep
learning classification framework against malware
variants based on texture visualization, Security and
Communication Networks, Vol. 2019, pp. 1-11, April,
2019.

[26]	 D. Liu, Z. Li, C. Wang, Y. Ren, Enabling Secure Mutual
Authentication and Storage Checking in Cloud-Assisted
IoT, Mathematical Biosciences and Engineering, Vol.
19, No. 11, pp. 11034-11046, August, 2022.

[27]	 D. Liu, Z. Li, D. Jia, Secure Distributed Data Integrity
Auditing with High Efficiency in 5G-enabled Software-
Defined Edge Computing, Cyber Security and
Applications, Vol. 1, Article No. 100004, December,
2023.

[28]	 A. Saracino, D. Sgandurra, G. Dini, F. Martinelli,
Madam: Effective and efficient behavior-based android
malware detection and prevention, IEEE Transactions
on Dependable and Secure Computing, Vol. 15, No. 1,
pp. 83-97, January-February, 2018.

[29]	 H. Cai, N. Meng, B. G. Ryder, D. D. Yao, Droidcat:
Unified dynamic detection of android malware,
Department of Computer Science, Virginia Polytechnic
Institute & State, Tech. Rep. TR-17-01, 2016.

[30]	 K. Xu, Y. Li, R. H. Deng, Iccdetector: Icc-based
malware detection on android, IEEE Transactions on
Information Forensics and Security, Vol. 11, No. 6, pp.
1252-1264, June, 2016.

[31]	 S. Y. Yerima, S. Sezer, DroidFusion: a novel multilevel
classifier fusion approach for android malware
detection, IEEE Transactions on Cybernetics, Vol. 49,
No. 2, pp. 453-466, February, 2019.

[32]	 Z. Ma, H. Ge, Y. Liu, M. Zhao, J. Ma, A combination

116 Journal of Internet Technology Vol. 25 No. 1, January 2024

method for android malware detection based on control
flow graphs and machine learning algorithms, IEEE
Access, Vol. 7, pp. 21235-21245, January, 2019.

[33]	 Z. Yuan, Y. Lu, Y. Xue, Droiddetector: android malware
characterization and detection using deep learning,
Tsinghua Science and Technology, Vol. 21, No. 1, pp.
114-123, February, 2016.

[34]	 P. Feng, J. Ma, C. Sun, X. Xu, Y. Ma, A novel dynamic
android malware detection system with ensemble
learning, IEEE Access, Vol. 6, pp. 30996-31011, June,
2018.

Biographies

Zhongxiang Zhan is currently working
toward the M.E. degree at the Nanjing
University of Information Science and
Technology (NUIST), Nanjing, China.
His current research interests include
information security, software security and
malware detection.

Sai Ji received his Ph.D. degree from the
Nanjing Aeronautics and Astronautics
University (NUAA), Nanjing, China,
in 2014. He is currently a Professor at
Taizhou University. His current research
interests are in the areas of computer
measurement and control, structural health
monitoring, applied cryptography and

WSNs. He has published more than 60 journal/conference
papers. He is a Principle Investigator of three NSF projects.
He is a member of ACM, CCF and IEEE.

Wenying Zheng received the M.E. degree
in Electronic Engineering from Chosun
University, Gwangju, Korea, in 2009, and
the Ph.D. degree in Computer Science
from Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 2022,
respectively. She is currently working
with the School of Computer Science and

Technology, Zhejiang Sci-Tech University, Hangzhou, China.
Her research interests include cloud storage security, security
systems and network security.

Dengzhi Liu received the M.E. degree and
Ph.D. degree from the Nanjing University
of Information Science and Technology,
in 2017 and 2020, respectively. He is
currently an Associate Professor with the
School of Computer Engineering, Jiangsu
Ocean University, China. He mainly
focuses on the security and privacy issues

in data storage and transmission. He has authored more than
50 research papers and published in international conferences
and journals. His current research interests include cloud
computing security, cyber security, and data security.

