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Abstract

Cardiovascular diseases (CVDs) are the leading cause of 
mortality globally. To effectively prevent CVDs, a variety of 
techniques have been employed to evaluate the mechanical 
properties of arteries, among which, aortic stiffness measured 
by aortic pulse wave velocity (PWV) has been proven to be 
an independent predictor of CVDs. However, the traditional 
way to measure PWV is complex and time consuming. 
Recent studies suggest the digital volume pulse (DVP) 
waveform to be an effective non-invasive method to obtain 
PWV. In this study, we present a cloud computing system 
that analyzes and calculates the relevant indices of arterial 
stiffness after receiving the measured DVP signals. The result 
of the analysis can be retrieved online for the user to view or 
download for further analysis. With this technique, arterial 
Stiffness Index (SI) for population can be obtained easily and 
inexpensively. This will help health authorities to do mass 
screening at population level and, hence, establish references 
of arterial SI for different cohorts by age, gender, ethnicity, 
and diseases.

Keywords: Cardiovascular, Photoplethysmography, Pulse 
wave velocity, Arterial stiffness, Digital volume pulse

1  Introduction

Cardiovascular diseases (CVDs) are the leading cause 
of death globally. An estimated 32% of all global deaths are 
from CVDs in 2019 and 85% were due to heart attack and 
stroke [1]. Many factors attribute to the disease including 
aging, diabetes, hyperlipidemia, hypertension, hereditary 
disease, smoking, lack of sleep, and poor lifestyle habits. 
But an important direct indicator of the severity of plaques 
in the carotid artery and severity of plaques in the aorta is 
the arterial stiffness, which is found to have a strong positive 
association with common carotid intima-media thickness, 
and in turn, association with CVDs [2-3]. In general, 
arteries stiffen gradually with age. Premature stiffness 
may be caused by the combination of arteriosclerosis and 
atherosclerosis. Studies have reported an association between 
arterial function indices and cardiovascular risk factors, as 

well as the risk of incident cardiovascular events, including 
coronary heart disease and stroke. Technically, measuring 
arterial stiffness directly by measuring changes in arterial 
pressure and diameter simultaneously is challenging. Usually, 
arterial stiffness is diagnosed in clinical settings by imaging 
techniques such as ultrasound, computed tomography, 
and magnetic resonance imaging [4-6]. However, these 
approaches require professional intervention and are costly 
and time-consuming. Developing a portable way in non-
clinical setting to obtain an objective measure of arterial 
stiffness is critically needed to screen CVDs at the general 
population level.  To date, pulse wave velocity (PWV), the 
velocity of arterial pulses moving from the aortic valve to the 
periphery, is the most widely used non-invasive method for 
determining arterial stiffness. The technique is based on the 
fact that blood flows faster when blood vessels are stiffened 
to a higher degree. It has been developed and proven to be 
a powerful, highly reproducible, and independent predictor 
for detecting arteriosclerosis and aortic stiffness [7-10]. 
The extant research results are overwhelmingly in favour 
of an independent role for aortic PWV in predicting fatal 
and non-fatal cardiovascular events in healthy and diseased 
populations and in evaluating cardiovascular risk [11-
12]. PWV has been recognized by the European Society of 
Hypertension as an early indicator of large arterial stiffening 
[10]. This method shows high performance but has poor 
usability since the traditional way of measurement requires 
skilled technicians to operate the specialized equipment. 
Recently, the newly algorithm allows PWV to be obtained by 
noninvasive photoplethysmography (PPG), with which PWV 
can be retrieved by contour analysis of the digital volume 
pulse (DVP) wave. This pulsation is propagated from heart 
through the arterial tree and is affected by reflected waves 
from the arterial branching sites [13]. Due to the COVID-19 
epidemic, using a portable pulse oximeter that implements 
PPG is becoming popular. The non-invasive principle of the 
device is to measure infrared light transmitted through the 
finger pup. Adopting this technique and promoting it to the 
general population is naturally the next step in preventing 
cardiovascular diseases.  Thus, we utilize PPG in this 
research to provide a portable way for the general population 
to assess the healthiness of their arteries.



1448  Journal of Internet Technology Vol. 24 No. 7, December 2023

Using the DVP wave obtained through PPG, we 
determine the time it takes for pulse waves to travel through 
the arteries. The speed by which the pulse travels through 
the arteries is reflected to the heart is directly related to 
arterial stiffness. This measurement makes PWV an effective, 
noninvasive tool for assessing vascular changes [13]. The 
advantages of this technique include simplicity, portability, 
easy to set up, low cost, and independence in operation. PPG 
has been widely applied for various indices such as blood 
oxygen saturation, heart rate, and cardiac output. However, 
the existing research on portable devices to calculate arterial 
stiffness only has capacity for small patient groups. To 
effectively prevent CVDs, quantifying and monitoring the 
degree of arterial stiffness with a comprehensive model for 
general population at a large capacity is in an urgent need

For this reason, we developed a cloud-based computing 
system that detect arterial stiffness in two steps. First, the 
DVP signals are uploaded after measurement. Secondly, the 
system automatically analyzes and calculates the relevant 
indices of arterial stiffness, with which the subject can 
compare the current indices with the previous measures and 
better monitor their cardiovascular health condition. With 
these easy steps that can be done in a non-clinical setting, 
mass screening for arterial stiffness for the general population 
can be achieved, and vast amounts of data would be gathered 
for establishing the references of arterial stiffness across age 
groups, ethnicity, disease groups, or other relevant categories. 

Thus far, there is no well-defined standard for a limit of 
arterial stiffness index [14]. Styczynski et al. suggest that 
the PWV is averaged 5.05 m/s for a healthy population. The 
value increased with age, and the average PWV is 6.77 m/
s for health elder aged from 61 to 70. The high index has 
been shown to be with prognostic significance for arterial 
stiffening [14-15]. According to the current research results, 
if the PWV is greater than 14 m/s, there will be higher 
arteriosclerosis and risk of cardiovascular disease [16]. 
Specifically, SI elevates for patients with hypertension and 
CVDs. However, further reference values are yet to be 
established for more detailed disease category group [15]. 

Moreover, the raw data from each device for measuring 
the DVP signal are not shared since the device has a 
dedicated program. Gathering vast amounts of data across 
cohorts is essential for mass screening for arterial stiffness in 
the general population. To our knowledge, no SI calculation 
system is performed on a cloud-based environment. The 
existing algorithm is executed by dedicated software provided 
by the manufacturers. With this cloud-based computing 
system developed in this research, the goal of forming an 
extensive database and implementing data sharing will be 
achieved in the near future.

This study was approved by the research ethics 
committee of Nation Taiwan University (NTU-REC No.: 
202002ES017). Informed consent was obtained from all 
subjects before the experiment began. This paper is organized 
as follows. Section 2 provides computational methods and 
the architecture of the web-based system proposed in this 
study. Section 3 explains the web service for the estimation 
arterial stiffness through contour analysis of a DVP wave. 
The conclusions are drawn in the final section.

2  Materials and Methods

The DVP is an optically obtained circulatory signal 
related to pulsatile volumes of blood in the microvascular 
bed of tissues. It can be acquired rapidly and simply by 
measuring the transmission of infrared light through the 
finger pulp [13]. Fingertip DVP indicates that changes in 
the blood volume are as pulse waves, providing information 
on beats of aortic origin, attributes of the vascular system, 
properties of the peripheral vessels and the blood flow status 
[17]. The contour of the DVP is determined primarily by 
features of the systemic circulation, including pressure wave 
reflection and PWV of pressure waves in the aorta and large 
arteries [18-19]. Hence, the timing of discrete components 
of the DVP can be used to formulate an index that relates to 
artery stiffness [20]. The descriptions of the estimation of the 
relevant indices are as flows.

2.1 Computational Methods
The contour of DVP measureed by PPG at fingertips 

exhibits an early systolic peak and a latter peak followed by 
a diastolic peak of reflection that occurs shortly after the first 
peak in early diastole, as shown in Figure 1. The systolic peak 
is a forward-going pressure wave moving along a direct path 
from the left ventricle to the finger. The diastolic peak arises 
from pressure waves transmitted along the aorta to small 
arteries in the lower body where they reflect back along the 
aorta and travel to the finger. The time for the waves traveling 
between the systolic and diastolic peaks can be used to infer 
the transit time taken for pressure wave that propagates along 
the aorta and large arteries to the major sites of reflection in 
the lower body back to the root of the subclavian artery [17]. 
The passage of time is assumed to be proportional to subject 
height, as a measure of the path length, based on which, a 
so-called stiffness index (SI) would be derived, as shown in 
equation (1) [20-23]. 

Stiffness Index ,
DVP

hSI
T

=
∆

                      (1)

where h represents the body height and ∆TDVP is the time 
between the systolic and diastolic peaks, as given in Figure 1.

Figure 1. Stiffness index is related to the time delay between the 
systolic and diastolic components of the waveform and the subject’s 
height (h) (from [20])
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In addition, reflection index (RI) can be applied to the 
measurement for arterial compliance. RI is derived as a ratio 
of pulse inflection peak amplitude (diastolic peak) to the 
pulse max amplitude (systolic peak). RI provides a window 
to vascular age and arterial compliance and is defined as 
follows.

.Diastolic

Systolic

Peak
RI

Peak
=                                   (2)

The original DVP waveforms are coarse with noises 
caused by respiratory rhythm and other higher frequency 
disturbances. The de-trending and low-pass filtering 
techniques are adopted in our system in the pre-processing 
stage to delineate the waveforms accurately. The peak 
detection algorithm is applied to the filtered signal.  

2.2 System Architecture
The existing researches on portable device to calculate 

arterial stiffness mainly focus on the indicators identification 
based on a small number of population. For example, Wu et 
al. had 80 subjects in the pulse wave and DVP study [21], 
and Millasseau et al. used 87 subjects [20]. To quantify and 
monitor the degree of arterial stiffness, a comprehensive 
model should be developed based on a large number of 
diverse cohorts. Thus, this study utilizes the existing network 
technology to design a cloud-based computing system to 
assist in sharing clinical trial data and establish physiological 
information across cohorts.  In the time of COVID-19 
pandemic and the social distance that must be maintained, 
it is more difficult than ever to obtain the measurements of 
DVP for the diverse cohorts in the community. To acquire 
the measurement data and, at the same time, to comply with 
the pandemic restrictions, it is crucial to design a system to 
that allows subjects to upload their measurement data by 
themselves. By doing so, the artery stiffness database can be 
established and the degree of stiffness across different age 
groups can also be explored.

The proposed cloud computing system in our study has 
several advantages, such as:

(1) The system fits all computer operating systems. No 
extra effor is needed to build an additional application for the 
different operating system. Users just need a web browser to 
access it through the internet.

(2) The system is updating itself in the central server; 
thus, users do not need to update the system.

(3) Since the system is running in a central server, end 
users do not need to install the application in each of users’ 
devices.

(4) All the data are centralized since the software is 
centralized. Thus, uploaded data are analyzed and compared 
in the pooled central server, which provides convenience and 
instantly up to date results to all the end users.

The proposed cloud computing consists of three main 
modules: signal browsing module, signal processing 
module, and pdf result module. The system architecture is 
given in Figure 2. When the proposed system is running, 
an application that coded by C# automatically detect the 
presence of uploaded data. Then it calls python interpreter to 

run the codes for analyzing the contour of DVP signal. Once 
the analysis is finished, the report in pdf format will be built 
automatically. The details of the three modules are as follows.

Figure 2. Three main modules and its functionalities of the 
proposed system

2.2.1 Signal Browsing Module
For users to conveniently browse the assessment results, 

the system automatically calls the signal processing module 
for data analysis after the DVP signals uploaded. In addition, 
the system could process signals that are generated by 
devices from various manufactures. The processed data are 
stored in a standardized format for retrieving and viewing 
online any time.
2.2.2 Signal Processing Module

Our cloud-based computing system aims to estimate 
the relevant indices of artery stiffness using DVP with 
appropriate computing method. After the DVP signals 
are uploaded, the system will pro-actively call for signal 
processing module. De-trending, filtering, peak detection, and 
estimation of indices are to be performed in this module. In 
the processes of de-trending, filtering, and peak detection, the 
pan-tompkins algorithm is adopted in the proposed system 
[24]. Among the methods for calculating stiffness index and 
reflection index [21, 25-27], we estimate the two indices 
based on basic derivative [20].
2.2.3 Report Module

One of the most exciting features of the system is 
the automatic generating of reports that summarize the 
information about arterial stiffness. The report design is easy 
to read and straightforward, thus guaranteeing a fast and 
direct overview of the input data and the derived indices. 
The report includes personal information such as age, gender 
and height, and statistics for SpO2, heartbeat, SI, and RI in 
our system. In addition, the system provides the waveforms 
of original and filtered signal and the location for each peak 
used to validate the signal processing module.

2.3 System Implementation
The proposed system was developed using Python, C#, 

APS.NET, jQuery and Bootstrap. jQuery and Bootstrap are 
popular programming frameworks for building responsive 
user interfaces. In the signal processing module, the 
algorithms of filtering and detection are developed using 
Python for its number of features such as easiness to code, 
object-oriented language, free and open source, extensibility, 
and portability. The signal browsing module is constructed 
by C# and APS.NET. The key features of using ASP.NET 
include the follows aspects:
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(1) ASP.NET drastically reduces the amount of coding 
requirement when building large applications. 

(2) ASP.NET and HTML together generate dynamic web 
pages smoothly.

(3) ASP.NET framework is language independent, 
meaning that there is great flexibili ty in choosing 
programming language. Anyone would suit the application 
well.

(4) With the built-in configuration information, ASP.NET 
is easy to deploy.

(5) The features of ASP.NET such as early binding, 
JIT compilation, caching services and native optimization 
supports give the application the high level of performance.

(6) With built-in Windows authentication and per-
application configuration, the applications are safe and 
secured.

The result module adopts a PDF library of iTextSharp 
that allows document creation in a portable format [28].

The data was stored in MS-SQL Server database running 
on the ASP.NET web server. The database consisted of four 
primary data stores; the schema for which was as follows: 
raw DVP signals, relevant processing information for each 
DVP signal, the report for each uploaded DVP signal and 
account administration. The database resided on an online 
server and was password protected to ensure privacy of 
information. By doing so, no identifiable information was 
collected. Containing a program coded by C#, the server 
allows the data to be available for various functions. It 
handled the flow of data collected from the users, processing 
the wave signals and PDF result compiling.

3  Results and Discussion

In this section, we demo the user interface, main 
software frameworks and technologies for the realization 
of the proposed system (http://120.125.78.221). The system 
is deployed on a virtual machine of HP 360G workstation 
(CPU:  Intel X5690*2; RAM: 32 GB; OS: Windows Server 
2016; hard disk: 300 GB) at the Medical Information 
Laboratory, Ming Chuan University. The server is connected 
to the Internet via a gigabit router. The information about 
adopted technologies is descripted as shown in Table 1. The 
presented user interfaces correspond to the modules are as 
aforementioned.

To validate the proposed system, we obtain DVP signal 
at fingertip by using the device AT101B with a sampling 
rate of 250 samples/s produced by Leadtek [29], a certified 
medical device by the Taiwan Food and Drug Administration 
(with certification No. 005876). Following the protocol 
provided by the manufacture, we program an application 
to receive the DVP signal by USB port, which will then 
be saved data in CSV format, as shown in Figure 3. In this 
study, DVP signal measurements are collected concurrently 
from both left and right index fingers for studying and 
analyzing arterial conditions. All subjects are requested to 
rest five minutes before the DVP recording to ensure the 
stability of cardiovascular performance. Each recording lasts 

for a durations of thirty seconds. During the measurements, 
subjects remain calm and breathe normally in a sitting 
position.

Table 1. Development tools and operating environment of system

Environment Software

OS MS Windows Server 2016 Standard Edition

Web platform ASP.NET on IIS

Development 
tool

Microsoft Visual Studio 2019, 
Anaconda (Ver. 4.10.1)

Programming 
language C#, Python (Ver. 3.8.3 64-bit)

Database Microsoft SQL Server 2017 Standard Edition

Figure 3. The application that receive DVP signal by USB port

3.1 The Interface of Signal Browsing Module
The signal browsing module provides two functions. 

The first function is for users to login into the system (or 
to register an account for the first-time users), as shown in 
Figure 4 and Figure 5, respectively. For new users, after 
submitting the application during registration, the information 
of the user will be reviewed by the authorized personnel and 
then stored in the central database. The second function is 
the uploading and analyzing of the DVP signals of registered 
users. After the uploading is completed, analyses of the 
signals are performed sequentially, then the results would 
be compiled in PDF format for viewing online or download. 
For non-registered users, the proposed system provides a 
temporary account, i.e. “Test”, to analyze the measurement. 
This temporary account is not kept in the database. Its 
password is just a date format of “MMddyyyy”. If the date of 
login is “2023/01/15”, then the password is “01152023”.

Figure 4. The login form in the proposed system
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Figure 5. The register form in the proposed system

For the registered users, after logining successfully, 
the system would switch to the main menu, in which three 
functions were built: Upload, Analysis and Admin. The user 
utilizes the Upload function to transmit the DVP signal to the 
system. However, to cope with the DVP signal of instruments 
of different brands, we define the data format to include DVP 
signal, gender, height, age, and sampling rate, as shown in 
Figure 6. The data for each row of signal has IR signal, Red 
signal, SpO2 value and heart rate value. The extension of the 
uploaded file must be CSV.

Figure 6. The upload form in the proposed system and the data 
format of CSV for DVP signal

The proposed system provides simultaneous upload of 
two measurements for two fingers, with which appropriate 
analysis would be performed based on the relevant 
information. Once the data is uploaded successfully, the 
user can browse the DVP signal, as shown in Figure 7(a). 
The information about the locations of systolic and diastolic 
peaks can be viewed when the data is analyzed by the signal 
processing module, as illustrated in Figure 7(b).

     

(a) Raw signal

 

(b) Analyzed signal

Figure 7. The browsing function in the proposed system 

3.2 The Signal Processing Module
To estimat the stiffness index of the DVP signal at the 

fingertips, the locations about the first systolic peak and the 
early diastolic peak (or inflection point) must be detected. 
Since baseline wandering usually occurs in measuring the 
DVP signal at the fingertips, it must be removed in order to 
calculate the reflection index accurately. This calculation 
needs the correct magnitude of the first systolic peak and 
the early diastolic peak/inflection point. Hence, the signal 
processing module provides baseline wandering removing, 
low-pass filtering and peak detection.

To implement the algorithms, we adopt Python as the 
programming tool to build the signal processing module. 
The advantage of adopting Python is its easiness to debug 
and analyze in the development of the algorithm. Once 
done, the proposed system would automatically integrate 
the code. A recorded DVP signal with baseline wandering is 
filtered is given in Figure 8. The peak detection of the filtered 
DVP signal is shown in Figure 9. To carefully observe the 
relationship between the detected peak location and the first 
derivation, information between 5 and 10 seconds is extracted 
for review. As shown in Figure 10, the systolic peak and 
diastolic peak or inflection point can be detected successfully.

     

(a) Original DVP signal with baseline wandering

   (b) Filtered DVP signal

Figure 8. A recorded DVP signal
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(a) The peak detection of Filtered DVP signal

(b) The first derivative of Filtered DVP signal

Figure 9. The filtered DVP signal

Figure 10. The peak detection of Filtered DVP signal between 5 
and 10 seconds

When the relevant peaks are detected, we take a segment 
consisted of the initial 30% samples and the last 70% samples 
referenced at the peak point and sampling rate. For every ten 
seconds, the average segment waveform is obtained. DVP 
signals were recorded over a total 30s duration; in which we 
obtain a single waveform by ensemble-averaging over a ten-
second period, and the rolling sequential waveforms were 
recorded every 5-second interval. Thus, over the 30-second 
duration, five waveforms were obtained with 5-second 
overlaps with the subsequent waveforms. The results 
are shown in Figure 11. SI and RI indices would then be 
calculated based on these averaged waveforms.

Figure 11. The averaged waveform from a recorded DVP signal

3.3 The Interface of pdf Report Module
The relevant data is generated after analyzed of 

specify DVP signal, the report in pdf format will be built 
automatically for users to view online and download, as 
shown in Figure 12.

Figure 12. The report sample for a specific DVP signal

Several parts constitute the pdf report, as exhibited in 
Figure 13. The section of Basic Info. contains subject’s age, 
height, gender; section of SpO2 and Heart Rate measurement 
present the maximum, mean and minimum values; the 
sections of SI and RI indices presents the five DVP signals, 
means and standard deviations of RI and SI; lastly, in the 
graph section, original DVP signal, filtered DVP signal, 
five average waveforms, and detected peaks of filtered DVP 
signal are presented. The steps of the waveforms processing 
and computation are shown in panels (b) through (d) in the 
graph section. By so doing, the reliability of the proposed 
system could be validated. Furthermore, if the measurements 
are collected concurrently from the left and right index 
fingers, the reports can be viewed, as illustrated in Figure 
13(e).
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(a) The relevant information

   

(b) Original and filtered DVP signal   (c) The averaged waveform

(d) The detected peaks

(e) Multiple reports for simultaneous measurements

Figure 13. The PDF report

To test the proposed system, we collected DVP signals 
from 31 healthy individuals with ages ranging from 20 to 
69 in the pilot analysis. The DVP signals at fingertip of both 
hands are obtained simultaneously. The estimated indices of 
SI and RI for all subjects are illustrated in Figure 14. From 

the results, the SI and RI of elderly are higher than younger 
subjects, consistent with expectation. Our results also show 
that the indices differ slightly between the measurements 
taken from left and right hands; but the two measures are 
highly correlated. The raw pulse waveforms measured from 
aged subjects (and also subjects with premature arterial 
stiffening or CVDs) may exhibit indistincinct pulse contours 
that lead the systolic and diastolic peaks become difficult to 
identify. Following the technique proposed by Millasseau 
[20], our system generates SI and RI to be a trustworthy 
estimate of arterial properties, as shown in the steps of Figure 
8 to Figure 11, and Figure 13.

(a) The distribution of SI for left and right hand

(b) The distribution of RI for left and right hand

Figure 14. Box plot for SI and RI of different age groups

The result of this research shows that our proposed 
system analyzes DVP signals effectively, and accurately, 
and demonstrates the capacity for large-scale screening 
for CVDs. The future goal of this study is to collect the 
DVP signals from healthy people as well as patients from 
different CVD categories with diverse age groups to establish 
references of SI and RI for different cohorts. Our system 
features a platform that generates reports in PDF format with 
summary of the assessment results. The report is readily 
for viewing, downloading, and providing information for 
verifying the estimated indices.  It can be important source 
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of information for subjects to discuss with their cardiologists 
if abnormity is detected. The accuracy of SI calculation 
depends on the measured accuracy of ∆TDVP, according to 
the definituin of SI formula. Wu et al. proposed an improved 
SI calculation utilizing Hilbert-Huang transformation to 
decompose the original DVP waveform for obtaining a 
certain intrinsic mode function (IMF5) that used to calculate 
∆TDVP [21, 26]. However, in this research, we only estimated 
SI in the manner of the original calculation of SI for two 
reasons. First, our study results show satisfactory preliminary 
accuracy after computing the 1st and 2nd-order derivatives 
of the waveforms, as shown in Figure 9 through Figure 
11. Secondly, our primary goal in this study is to develop 
a cloud-based assessment tool. In future studies, we will 
incorporate the algorithm of Wu et al. [21] after collecting 
a large amount of data. By doing so, the comparison of the 
accuracy between different SI calculations using the abundant 
cohorts’ information for cross-references of SI data among 
different age groups and disease groups will be possible.

4  Conclusion

This paper proposed a cloud computing system that is 
an online web framework designed for health monitoring 
for CVDs preventation. Integrating the web technology that 
adopts ASP.NET and high-level object-oriented language 
Python, the system automatically receives and analyzes 
uploaded DVP signals and then generated reports of arterial 
stiffness index (SI) and reflection index (RI).  The process 
includes analysis of DVP wave, estimation of the relevant 
indices, and creation a PDF report file. The execution time 
took 5850 ms for two DVP signals (left and right index 
fingers).

The benefits of the proposed system are fourfold. First, it 
is done is a non-clinical setting. The measurement taken by a 
portable device can be performed anytime and anywhere with 
great accuracy. Secondly, the computing technology designed 
in the system can effectively reduce system construction time 
and improve data processing accuracy. Thirdly, a registered 
user can compare the analyzed results between repeated 
measurements over time. Lastly, the indices of SI and RI 
calculated from the uploaded DVP signals from each subject 
will allow for the construction of the cardiovascular indices’ 
databank at a great population level. This will help health 
authorities to build standards and references of SI and RI for 
different cohorts by age, ethnicity, and disease groups. This 
is also suitable for comparative analysis for drugs efficacy 
applied before and after patients receiving vasoactive drugs 
[30]. 

The proposed system only requires DVP signals, it is 
suitable for ubiquitous home healthcare applications. With 
this cloud-based comprehensive computing module, a simple 
objective measure can be quickly obtained to understand 
how one’s vascular system is functioning. Early prediction 
for future CVDs for patients will be achieved at individual 
level [31]. Applied at a greater scale, this system allows 
for screening for general population. Consequently, mass 
screening for high-risk patients to prevent CVDs at the 
population level will be accomplished.
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