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Abstract

Macaque brains are very close to human brains, so it’s 
an effective way to deepen the understanding of human 
brain functions by studying macaque brain structures. In 
order to segment subcortical nuclei of macaque brains more 
accurately, a multi-atlas segmentation algorithm based on 
an improved sparse representation has been designed in this 
paper. Firstly, a type of labeling information for atlas brain 
images is introduced when sparse patch-based representation 
is constructed, and then mutual information is improved by 
changing the calculation method of the information entropy, 
and it is used to measure the similarity between the target 
image and the atlas images. These two make the weights of 
the atlas more reasonable during fusion. Secondly, in order 
to fuse the segmentation results from two methods, nonlocal-
patch-weighted method and the sparse representation 
method, a new similarity index based on a combination of 
dice coefficient and cosine distance is proposed. Finally, 
the experimental results show that this algorithm proposed 
in this paper has improved the accuracy of segmentation of 
hippocampus, striatum, claustrum and other nuclei, and it has 
better robustness.

Keywords: Image segmentation, MRI, Macaque, Multi-atlas, 
Label fusion

1  Introduction

Human brain, the major holder of high-level intelligence, 
one of the most complex organs in our body, seating at the 
highest level of our neural system, has continually been in the 
spotlight among scientific research frontiers. Due to moral 
limits, some of the brain research and experiments cannot 
be carried out on humans’ body. Alternatively, relevant 
studies have shown that the brain structures of macaques 
(non-human primates with high intelligence) and humans 
are significantly similar [1]. Macaque brains possess great 
intelligence and a visual system highly similar to humans’. 
Therefore macaque brains represent the best invasive model 
to examine and verify hypotheses of human brain research 
[2]. Studying on macaque brains helps researchers reveal the 
principles of neuro information processing across different 
brain regions, through multiple levels and with simultaneous 
handlings. Meanwhile, the research has an important guiding 

significance for constructing and perfecting computing 
models of artificial intelligence. For all the reasons above, the 
research of macaque brains is growing more popular in recent 
years [3-4].

Analyzing MR brain images is extremely important 
for brain research. The analyzing procedure generally 
includes segmentation of different brain regions such as 
cerebral cortex, gray matter, white matter, cerebrospinal 
fluid, subcortical nuclei and so on. The crucial part of the 
procedure is always located at the accuracy and robustness 
of segmentation algorithms. First, the segmentation tools 
commonly used (such as FSL) are designed for analyzing 
human brains, not for macaque brains. So the segmentation 
results need to be manually adjusted and corrected by 
researchers. Second, due to the complexity of the spatial 
structures and patterns of some subcutaneous tissues such 
as hippocampus or lenticular nucleus, it usually requires 
highly-trained professionals to correct segmentation results. 
Third, the fuzziness of subtle structure boundaries poses a 
certain challenge to the segmentation algorithms. Overall, 
all these conditions above have caused a bottleneck to the 
research efficiency, so it is necessary to achieve a reliable and 
automatic segmentation algorithm specifically for macaque 
brain research.

The automatic segmentation framework released by 
Martin Styner et al. [5]. The steps of this framework are to 
first train the target region’s map from the existing data set, 
and then segment it through the map. In 2017, Balbastrey 
[6] improved Gaussian Mixture Model (GMM) method and 
released a segmentation tool for macaques. It was integrated 
into BrainVISA version 4.6 as a component and applied to 
segment T2 images of macaque brains. The shortage of the 
tool is that the number of brain tissues it can mark up at one 
time is limited. 

Compared with Balbastrey’s method, multi-atlas image 
segmentation methods can introduce more priori information 
to improve accuracy. Therefore many researchers focus on 
multi-atlas segmentation methods. Some of the researchers 
have published various MRI templates, MR images and 
data sets of rhesus monkeys [7-9]. M. P. Milham et al. [10] 
compared the existing public datasets of non-human primates. 
Weidao Chen et al. [11] used multi-atlas segmentation to 
identify macaque brain tissues. Recently, with the rapid 
development of AI, deep learning methods have also applied 
to MR image segmentation algorithms. Huo et al. [12] used 
3D-UNET to segment human brains. Zhao et al. [13] used 
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deep learning methods to extract useful information of on-
human primate brains. However, for accurate segmentation 
of macaque brains, multi-atlas methods need a large amount 
of training data, but the current macaque datasets are not 
sufficient. So, as of today, instead of using multi-atlas, most 
researchers use single-atlas to segment macaque brains, but 
they desire more datasets and more reliable multi-atlas tools.

In the field of human brain multi-atlas segmentation, 
Zhang et al. [14] introduced the sparse representation 
algorithm into multi-atlas label fusion, and achieved 
excellent results. Another paper proposed by Meng Yan et 
al. [15-16] has also contributed the sparse representation by 
using label fusion method. Rui Xia et al. [17] proposed an 
improved multi-atlas image segmentation algorithm based on 
resampling. Liu et al. [18] proposed an effective segmentation 
method based on atlas registration and linearization, but 
running this algorithm consumes a lot of time.

Julia A. Scott  [19] et  al .  obtained the required 
segmentation results by registering macaque data into the 
existing atlas, and then manually modifying it. S. Gouttard 
[20] and others trained the atlas with spatial probability prior 
by using the manually marked training set, successively 
registered the atlas image to the target image to obtain 
the deformation field, applied the deformation field to the 
corresponding atlas probability map, and took 0.5 as the 
threshold to segment the lateral ventricle, hippocampus, 
putamen, caudate nucleus, globus pallidus and amygdala. R. 
Wolz [21] combined the multiple map segmentation method 
and the map cutting method to construct the probability 
map of the specific region of interest, without relying on 
the manually labeled training set, and divided six pairs of 
subcortical nuclei. Wu et al. [22] proposed clustering the 
atlases after common registration, thus providing an effective 
strategy to find the most similar example atlases to improve 
the accuracy of segmentation.

To sum up, after studying the currently existing 
methods of MRI segmentation, this paper chose the way of 
segmentation based on multi-atlas images with the sparse 
representation algorithm for in-depth research. By elaborate 
analyses, we found that the common algorithm contains 
insufficient information during the fusion process, and it 
only considers the voxels related to target image voxels, and 
it lacks global similarity measurement. Moreover, sparse 
representation also loses some information of image patches, 
which will lead to segmentation errors. So an improved 
multi-atlas segmentation label fusion algorithm based on an 
improved sparse representation (ISRLF) is proposed here. 
This algorithm introduces mutual information by changing 
the calculation method of information entropy, and then 
adjusts the weight of each atlas image during fusion process 
to make it more reliable, so as to improve the accuracy for 
macaque brain segmentation. Besides, the algorithm also 
proposes a similarity index, which synthesizes the results 
of the weighted fusion algorithm of nonlocal patches and 
the results of sparse representation, and overcomes the 
shortcoming that sparse representation will lose information 
to some extent. The similarity index includes an improved 
L-Dice coefficient and cosine distance, and finally achieves 
better segmentation results.

2  Background Description

Sparse representation was originally applied in the field 
of signal processing. Its idea is to replace the original signal 
with a combination of some basic signal marks, so that to 
reduce the amount of processing data as much as possible. 
As shown in formula (1) blow, T is the represented signal and 
D is the dictionary matrix, α is the sparse coefficient. Sparse 
representation has been applied to image compression, super-
resolution reconstruction and feature extraction in the field of 
image processing. Sparse coefficient α is obtained by formula 
(2), Where x is the original signal to be represented.

T = Dα .                          (1)

2

2 1
ˆ argmin x D

α
α α λ α= − + .                       (2)

3  ISRLF Method

3.1 Methodology Framework
In this paper, the segmentation method of multi-atlas 

sparse representation has been improved, and a new label 
fusion algorithm combining sparse representation fusion 
method and nonlocal-patch-weighted method is proposed to 
segment the subcortical nuclei of macaque monkey brains. 
Figure 1 is a frame diagram of the new method.

The algorithm steps are as follows:
(1) Obtain linearly registered images Li by linear regis-

tration calculating on atlas gray images.
(2) Obtain non-linearly registered images Fi by non-lin-

ear registration calculating. Then register atlas label 
images to target image to obtain registered images Ii.

(3) Obtain pre-segmentation results by locally weighted 
fusion method on target image.

(4) Create target label patches Tpx and atlas label patch-
es Tpi. All the atlas label patches (cdi) form a com-
plete dictionary D, that is, D = [Tp1, Tpi , Tpn]], for 
sparse representation.

(5) Introduce mutual information, improve the calcula-
tion algorithm of information entropy, measure the 
global similarity of the corresponding atlas planes 
after linear registration, calculate the average val-
ue, and improve sparse representation to calculate 
weights.

(6) Two fusion methods, sparse representation label fu-
sion and nonlocal-patch-weighted label fusion, are 
both used to segment the target image, and obtain 
two fusion results (not the final result).

(7) The combination of Dice coefficient and cosine dis-
tance is used to measure the segmentation results, 
and the segmentation results of the two fusion meth-
ods are fused again to obtain the final segmentation 
result.
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3.2 The Construction of Target Image Label Patches and 
Atlas Image Label Patches
Among most common sparse representation methods, 

the information contained in image patches is just gray 
values, which are limited and do not make full use of priori 
information. In this paper, the gray information of atlas 
images and the label information of the label images are 
combined and introduced into target image as well as atlas 
gray images respectively, to form the target image label 
patches and the atlas image label patches, so as to enrich the 
information carried by image patches, so as to optimize the 
weight of each atlas image during label fusion.

In this paper, D99-SL, NMT and inia19 were used for 
segmentation. In order to introduce the label information in 
the atlas, the target image needs to be pre-segmented. This 
method uses a locally weighted method to pre-segment the 
target image. After constructing the initial image patches 
which only contain gray information, the corresponding label 
value patches are transformed into binary forms, and then 
combined with the initial image patches to form a new set of 
image label patches. The specific way of the binarization is to 
take the label value of a center voxel as the reference value, 
and then all the label values that are equal to the reference 
value are recorded as 1, otherwise they are recorded as 0.

The specific process of constructing the atlas image label 
patches is shown in Figure 2. First, taking the voxel x of 
the atlas gray image Fi (nonlinear registration) as the center 
and r×r×r as the size, construct the initial image patch adi. 
Second, from the nonlinear atlas image It, taking the label 
at the corresponding position as the center and r × r × R as 
the size, construct the label patch bdi and binarize it. Third, 
transform adi and bdi respectively into column vectors and 
splice them to form the atlas image label patch Tpi.

The construction process of target image label patches is 
similar to that of atlas image label patches. First, taking the 
target voxel x as the center and r × r × r as the size, construct 
target image patch adx. Second, taking the corresponding 
position x of the pre segmentation result as the center, and r 

× r × r as the size, construct label patch bdx. Third, transform 
adx and bdx into column vectors respectively, and combine 
them to form target image label patch Tpx.

For the target image label patches Tpx, select each label 
patch Tpi to form an complete dictionary D, that is, d = [Tp1, 
Tpi, Tpn]. Calculate the sparse matrix according to formula 
(2), where x is the target image label patch. And then take the 
calculated sparse coefficient as the initial weight matrix W1 
of the atlas.

Figure 2. The construction of atlas image label patches

3.3 Image Similarity Calculation Based on Mutual 
Information
The sparse representation label fusion method only 

considers the voxels in the target image patch that is centered 
on the target voxel, and does not consider the similarity 
between the atlas images and the target image from a global 
perspective. So in the process of label fusion, adding a 
measurement of the overall image similarity is helpful to 
improve the segmentation effect. In information theory, there 
is a concept called mutual information, that is, in the field 
of image processing, the similarity of two images is often 
determined by measuring the information entropy of two 

Figure 1. Method framework
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images. Therefore, this method introduces mutual information 
to measure the similarity of atlas gray images. Larger value 
of mutual information between two images means they are 
more similar. Formula (3) is the calculation formula of the 
image information entropy, in which the probability PM is 
obtained from formula (4). Gray level histograms are used 
during the calculation of formula (4), where hi represents the 
number of voxels whose gray value is i, and the denominator 
represents the total number of voxels in the image.

( ) ( ) log ( ).M M
M

H M p m p m= −∑ .                     (3)

1

0

.i
M N

i
i

h
p

h
−

=

=

∑                                       (4)

Usually, the mutual information between gray images 
is calculated from gray histograms, but this way has a 
shortcoming for NMR analysis. For example, the voxels with 
the gray value 0 in the MRI image represents the background 
of the image, and generally, those background voxels are 
included in the calculation for mutual information. But MRI 
images only focus on the brain region, so the background 
can be basically ignored. If there are many voxels with zero 
gray value and few voxels with none-zero value, the mutual 
information value will be very large, whereas the actually 
important part, the brain structures, may not be very similar. 
In addition, due to the limited prior information for common 
calculation of mutual information based on gray histograms, 
the similarity of the two images cannot be well measured.

In order to solve the two problems above, this method 
modifies the formula for calculating information entropy. 

Firstly, the voxels with the gray value 0 are eliminated 
and not included in the probability calculation. The adapted 
probability pM of gray value is calculated according to 
formula (5).

' 1

1

.i
NM

i
i

h
p

h
−

=

=

∑                                       (5)

Secondly, due to the importance of brain gray matter, this 
method focuses on subcortical nuclei. Therefore, this method 
obtains the probability ratio β of the gray matter in the 
overall image of the brain according to formula (6), so as to 
achieve the purpose of measuring the voxel similarity of the 
brain structure. And ratio β is introduced into the information 
entropy calculation of gray images.

( ) .
( ) ( )

p G
p W p G

β =
+

                                 (6)

In order to increase the prior information, label images 
are introduced to calculate the information entropy, 
according to formula (7). IM represents the label image, and 
m represents the number of subcortical nuclei in the image. 

Since Dice coefficient can represent the similarity of nuclei, 
it is introduced into the calculation process as a parameter 
to enrich the priori information. As shown in formula (8), 
the dice coefficient of the target image segmentation results 
IA and IB for label j are obtained, and the result introduced 
into the calculation of the improved information entropy as a 
parameter γ.

1
( ) ( ) log ( ).

j j

m

M M M
j

H I p I p I
=

= ∑                        (7)

( , ).
j jA BDice I Iγ =                                  (8)

Thus, the improved expression of information entropy 
is formula (9). For the given two images A and B, H1(A) 
and H1(B) are the information entropies, and the calculation 
methods are formula (10) and (11). H1(A,B) is the joint 
information entropy of both A and B, and its calculation is 
formula (12). I1(A,B) is the mutual information between A 
and B, and its calculation is formula (13).

1( ) ( ) ( ).MH M H M H Iβ γ= +                         (9)       

' '1 1( ) ( ) log ( ) ( ).AA A
a

H A p a p a H Iβ γ= − +∑             (10)

' '1 1( ) ( ) log ( ) ( ).BB B
a

H B p b p b H Iβ γ= − +∑             (11)
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( , ) ( , ) log ( , )

( , ).

A B A B
a b

A B

H A B p a b p a b

H I I

β

γ

⋅ ⋅
⋅

= −

+

∑
            (12)

1 1 1 1( , ) ( ) ( ) ( , ).I A B H A H B H A B= + −                (13)

Take the calculated mutual information of sagittal plane, 
coronal plane and axial plane as matrixes Sim1, Sim2 and 
sim3, extract the similarity value corresponding to the target 
voxel (a, b, c) in the matrixes, and calculate the similarity 
value of voxel x according to formula (14). Then calculate 
the final map fusion weight according to formulas (15) and 
(16).

1( ) 2( ) 3( )( ) .
3

Sim a Sim b Sim cSim x + +
=                (14) 

2 1 ( ).W W Sim x= ∗                                 (15)

2
3

( ) min( ) .
min max

W iW i −
=

−
                             (16)

3.4 Label Fusion
There are two image patch-based label fusion methods. 

One is nonlocal-patch-weighted fusion method that measures 
the similarity between all image patches participating in the 
label fusion and the patches of the target image. The other 
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is sparse representation method, in which it uses sparse 
to represent the target image patches and the atlas image 
patches.

Nonlocal-patch-weighted label fusion method does 
not discard the image patches involved in the fusion, and 
has more redundant information, which is an advantage. 
Compared with the nonlocal-patch-weighted fusion method, 
the sparse representation fusion method will discard some 
details. However, sparse representation fusion method also 
has an incomparable advantage that it’s better to give clearer 
boundary points in the segmentation result.

In order to combine all the advantages of the two 
methods and improve the segmentation accuracy for brain 
subcutaneous nuclei, this method combines nonlocal-patch-
weighted method with sparse representation method, and 
proposes a new label fusion method -- ISRLF.

The process of image patch-weighted fusion method is as 
follows:

 (1) Each atlas gray image and label image are registered 
into the target image T to obtain the registered gray image Fi 
and label image Ii.

 (2) From T, extract target image patch Tpx which takes x 
as the center and r × r × r as the size (r=3 in the experiments). 
The extraction process is that in each atlas image, taking 
voxel x as the center and r × r × r as the size, search 
neighborhood to extract all image patches Tpi involved in 
label fusion.

 (3) Calculate the weight of each image patch, and then 
calculate the label value probability according to formula 
(17).

 (4) Calculate label results according to formula (18).
The image patches extracted in this method are image 

label patches. The common nonlocal-patch-weighted method 
uses the normalized correlation coefficient (NCC) to measure 
the similarity between the target image patches and the 
extracted atlas image patches. The label fusion method of 
sparse representation is to construct the target image label 
patches and the atlas image label patches, take the atlas image 
label patches as an over complete dictionary d = [TP1, TPI, 
TPN], calculate the sparse coefficient according to formula 
(2), and then obtain the final atlas weights through formulas 
(14), (15) and (16). Then, the segmentation result is obtained 
according to formulas (17) and (18).
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                              (17)
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                       (18)

In order to fuse the two segmentation methods, a 
similarity measure function has been created in this paper as 
in formula (19). The function consists of two parts. The first 
part is Dice coefficient and the second part is cosine distance. 
In the formula, similarity value is inversely proportional to 

dice coefficient and directly proportional to cosine distance, 
R is pre segmentation result at the target voxel x, R is the 
pre segmentation result at voxel x, R1 is the fusion result of 
nonlocal-patch-weighted method, and R2 is the fusion result 
of sparse representation fusion method.

1 (1 )cos( ( ), ( ))
( , )

1, 2.

Ri iD p x p x
Dice R Ri d

i

µ µ= + −
+

=
      (19)

In formula (19), Dice(R,Ri) is the dice coefficient of the 
pre segmentation result and R1 or R2, and d is a constant. The 
constant d is added to prevent the denominator from being 
zero. pi(x) represents the column vector transformed from 
an image patch that is centered on voxel x from the result 
of nonlocal-patch-weighted method or sparse representation 
method. cos(p(x),pi(x)) is the cosine distance of two column 
vectors. μ and 1 - μ represent their weights. The greater the 
DRi value, the lower the similarity.

Formula (20) is the fusion formula of the two methods. 
When the two label values of the two segmentation methods 
are equal, the label value is given to voxel x. When the 
segmentation results of the two methods are different, 
the similarity value is calculated through formula (19). If 
DR1>DR2, it shows that the difference between R1 and R is 
larger than that between R2 and R, and the result R2 is given 
to voxel x. If DR1<DR2, the result R1 is given to voxel x.

1 1 2 1 2

1 1 2

  ( )    ( )
( ) .

  ( )                      
R R

T
R R

R if R R or D D
L x

R if D D
= <

=  >
            (20)

4  Experiment and Result Analysis

4.1 Data Introduction
The test data set used in the experiment is the macaque 

data set published by Oxford University. The data set 
collected data of 20 male macaques with 3T scanner. The 
data set includes T1, resting fMRI, and T1 data were used in 
this experiment. The age distribution of rhesus monkeys is 
2.41-6.72 years (average age is 4.01 years) and the weight 
distribution is 4.35-11.7 kg (average weight is 6.57 kg). The 
voxel resolution is 0.5 × 0.5 × 0.5mm, TE is 4.01ms, TR is 
2500ms, TI is 1100ms, and the turnover angle is 8 °.

4.2 Evaluation Index
Dice coefficient is selected to evaluate the segmentation 

quality in the experiment, and its calculation method 
is shown in formula (21). In the formula, A represents 
the expert standard segmentation result (the standard 
gold result), |?| Represents the number of voxels in 
each set, |A ∩ B| represents the number of voxels with 
the same voxel label corresponding to set A and set B,  
| a | + | B | represents the number of voxels in set A and set B. 
The value range of Dice coefficient is 0 to 1. The closer it is 
to 1, the higher the accuracy.

Dice coefficient
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( , ) 2 .
A B

Dice A B
A B
∩

=
+

                           (21)

4.3 Result Analysis
In this experiment, three methods were selected to 

compare the segmentation results of hippocampus, striatum 
and claustrum with the standard gold result. The methods 
are Majority Voting (MV), Joint Label Fusion (LW Joint), 
Weighted fusion algorithm (WV), Non local block based 
algorithm (PATCH)and the method in this paper (ISRLF).

Figure 3(a) to Figure 3(f) show the segmentation results 
of the five different methods respectively. Among them, 
Figure 3(a) is the standard gold segmentation result, Figure 
3(b) is the MV segmentation result, Figure 3(c) is the LW Joint 
segmentation result, Figure 3(d) is the WV segmentation 
result, Figure 3(e) is the PATCH segmentation result and 
Figure 3(f) is the ISRLF segmentation result. It’s clear that 
among these figures the LW Joint result is the worst, and the 
ISRLF result is the best.

Table 1 shows the segmentation accuracy of selected 
nuclei using the above five methods on the macaque dataset 
from Oxford University. Figure 4 is a box diagram of dice 
coefficients of segmentation results of five methods. It 
can be seen from Table 1 and Figure 4 that although the 
segmentation accuracy of MV method for hippocampus is 
higher than that of LW joint, the stability of this method is 
very poor, the accuracy fluctuates greatly, and the accuracy 
of hippocampus fluctuates more than 10% relative to the 
average value. The accuracy of LW joint method fluctuates 
within 10% relative to the average value, and the stability is 
good, but only the claustrum segmentation accuracy exceeds 
that of MV method. The method of this paper improves all 
the accuracies of the three nucleus segmentations, especially 
for striatum segmentation, which is about 8% higher than 
MV method. The improvement on claustrum segmentation is 
not significant, but the result fluctuates within 5%, which is 
much better than MV and LW joint, indicating the stability 
of ISRLF is the highest among the five methods. Among 
the four algorithms compared with this algorithm, PATCH 
algorithm has the best segmentation effect, followed by 
WV algorithm. PATCH algorithm is slightly lower than WV 
algorithm in the segmentation accuracy of striatum. The 
similarity of Dice coefficients of other nuclei has achieved 
the best results except this algorithm. It can be seen that 
the method proposed in this paper has better robustness 
compared with other methods.

Figure 5 is an effect diagram showing the coronal 
segmentation results of three nuclei separately. The first to 
the third rows are hippocampus, striatum and claustrum. The 
first to fourth columns are the gold standard, MV method 
segmentation result, LW joint segmentation result, Weighted 
fusion algorithm (WV) segmentation result. Non local block 
based algorithm (PATCH) segmentation result and ISRLF 
segmentation result respectively. It can be seen that this 
paper’s segmentation results are better than those of other 
methods.

(a) Gold standard

(b) MV method segmentation result

(c) LW joint segmentation result

(d) WV segmentation result

(e) PATCH segmentation result

 

(f) ISRLF segmentation result

Figure 3. Segmentation results of three different methods
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Table 1. Dice coefficient results of three methods
MV LW

joint
ISRLF

Hippocampus 38.56% 31.18% 58.92%
Hippocampus ± 12.94% ± 9.64% ± 2.45%

Striatum 67.56% 50.46% 87.91%
Striatum ± 4.01% ± 8.54% ± 1.05%

Claustrum 33.83% 45.25% 62.43%
Banded nucleus ± 9.65% ± 5.61% ± 2.10%

WV PATCH ISRLF
Hippocampus 52.00% 54.66% 58.92%
Hippocampus ± 6.55% ± 4.20% ± 2.45%

Striatum 85.61% 85.37% 87.91%
Striatum ± 1.60% ± 1.61% ± 1.05%

Claustrum 57.58% 59.03% 62.43%
Banded nucleus ± 2.98% ± 2.28% ± 2.10%

Figure 4. Dice coefficient

Figure 5. Cross sectional segmentation results of hippocampus, 
striatum and claustrum

5  Conclusion

This paper has proposed a multi-atlas brain MR image 
segmentation algorithm based on an improved sparse 
representation, and it has applied the algorithm to the 
segmentation of macaque brain subcutaneous nuclei. The 
algorithm increases the prior information of image patches, 
improves the mutual information by changing the calculation 
method of information entropy, and uses the mutual 
information to measure the global similarity to make the 
weight of each map more reasonable during fusion. Then a 
similarity index is proposed to synthesize the segmentation 
results of sparse representation label fusion method and 
nonlocal-patch-weighted label fusion method, so as to 
obtain the final segmentation result. By comparing the Dice 
coefficient with the results obtained by other methods, it is 
proved that this proposed method in this paper has higher 
accuracy and better robustness.
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