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Abstract

Recently Internet of things (IoT) and its applications 
are emerging as a momentous trend in industry. Numerous 
hardware and software providers have been entering the 
intense market competition in IoT related industries. 
Correspondingly, the attention on evaluation of IoT 
industry is growing. However, it is a main theme as how 
to consider the multiple dimensions and dependencies 
among the criteria in IoT supply chains simultaneously. By 
considering internal processes in DMUs as well as their 
interactions, this study designs the evaluation methods with 
network data envelopment analysis (NDEA) and multi-
objective programming (MOP) techniques. This work 
intends to estimate the efficiency of IoT businesses from 
the perspectives of R&D, manufacturing, sales and finance, 
and the overall performance. The proposed models are 
implemented with empirical case studies in IoT supply chains 
in Taiwan. The results show the usefulness and validity of the 
proposed methods in evaluating IoT related business.

Keywords: IoT supply chains, Network Data Envelopment 
Analysis (NDEA), Multi-Objective Programming (MOP), 
Case study in Taiwan

1  Introduction

1.1 Background of IoT
Internet of things (IoT) [1-5] is the developing technology 

to connect smart devices to the Internet. Recently IoT and 
its applications are emerging as a momentous trend in 
industry. Numerous hardware and software providers have 
been entering the intense market competition in IoT services. 
Correspondingly the attention on evaluation of IoT industry 
is growing. It has been a key opportunity in 3C industry 
and many domains of application, e.g. healthcare, smart 
home, entertainment, manufacturing automation, energy 
management, payment, and so on. IoT has caught intensive 
attention due to its high potential to change the business and 
industrial processes and generate enormous economic value 
[6]. 

Regarding the frameworks and design for IoT services, 
Yang and Wei [4] propose to design the conversion scheme 
for communication protocols of IoT devices (IoT-CPCS). 
Their design aims to integrate the formats of the data 
collected by different IoT devices, convert these data into 
useful and important information, present the converted 

information in readable message formats, and consequently 
store these messages in virtual servers built in the cloud 
platform. Later Hung [5] proposes a model for improving 
the flexibility of sensors to enhance the intelligence of IoT. 
The proposed model defines the quality levels of events and 
monitoring data for all types of monitoring, wherein the data 
or events with different levels have different transmission 
priority. In the model application, the sensors shorten the 
event detection and reaction times. Consequently, the 
efficiency of monitoring is enhanced. Also, business models 
for IoT services [7] and investments and challenges for 
enterprises entering IoT are discussed [8].

From the perspectives of services, Kim and Kim [6] 
propose an AHP model for assessing the viability of IoT 
applications consisting of 11 technology, market, and 
regulation factors. Their model based on expert rating 
was applied to assess and compare the prospect of IoT 
healthcare, IoT logistics, and IoT energy management. The 
results showed that IoT logistics is the most promising IoT 
application. Security is another focus in IoT studies. At the 
same time, security [2] and energy efficiency [9] have their 
non- negligible position in the areas of IoT services. 

Since IoT is leading to a paradigm shift in academia as 
well as industries, it is natural to examine IoT services and 
industry from a systematic view. The issue arises as how to 
consider the multiple dimensions and dependencies among 
the criteria in IoT supply chains simultaneously. This study 
intends to develop the evaluation model of IoT supply chains 
by integrating network DEA and multi-objective decision 
making methods. By considering the perspective from R&D, 
manufacturing, sales and finance, and their interactions 
as well as the overall performance, this study designs the 
evaluation framework with network DEA. Using multi-
objective programming (MOP) techniques, the network data 
envelopment analysis (NDEA) model is formulated and 
solved. With empirical case studies, the link of the methods 
and applications in IoT related industries can be demonstrated 
and validated.

1.2 DEA and Network DEA
Data envelopment analysis (DEA) [10-13] has been 

widely used in assessing the relative efficiencies of decision 
making units (DMUs). In business practices, it is common 
to define the relative efiiciency as the ratio of weighted 
sum of outputs to weighted sum of inputs. The BCC model 
developed by Banker et al. [10] assesses the relative 
efficiencies of DMUs by extending the constant-returns-to-
scale CCR model [12] to variable returns to scale. Consider n 
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DMUs (j = 1, … , n) under assessment. Each DMU consumes 
m inputs (i = 1, …, m) and produces s outputs (r = 1, ..., s), 
denoted by X1j, X2j, ..., Xmj and Y1j, Y2j, ..., Ysj respectively. The 
efficiency of DMUk can be computed by the BCC model as 
follows.
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In (1) the obective function defines the relative efficiency 
that is the ratio of weighted sum of  outputs to weighted 
sum of inputs. The first inequality as above sets the upper 
limit of all relative efficiencies to 1. In the BCC ratio model, 
the objective function Ek is maximized for every DMUk 
individually. In (1), Xik and Yrk are the i-th input and r-th 
output of DMUk; ur, vi are the weights of the outputs and 
inputs, respectively; ε is a small positive threshold which 
ensures all weights to be nonnegative. When the intercept of 
the production function u0 > 0, the efficiency frontier presents 
decreasing returns to scale; if u0 < 0, it manifests increasing 
returns to scale; if u0 = 0, the models turns out to be the 
constant returns to scale CCR model.

From the standpoint of decision making, evaluating a 
DMU involves examining its organization and process model 
from multiple perspectives. The departmental decision makers 
in an organization are expected to work collaboratively for 
common goals to maximize the overall DMU performance. 
Under such circumstances, the conventional DEA methods 
are insufficient to reflect the collaborative behaviors in a 
DMU.

Compared to conventional DEA models that operate by 
a black-box or a separation approach, network DEA  [14-
15] arises due to its competence in evaluating performance 
without neglecting internal interactions within DMUs. 
Recently, Tone and Tsutsui [16] proposed a general slack-
based network DEA approach called Network SBM that 
can deal with intermediate products formally. Later, Tone 
and Tsutsui [17] develop a related dynamic DEA based on 
the slacks-based measure approach, called dynamic SBM 
(DSBM). Eventually, they extend their work into a dynamic 
DEA model involving network structure in each period 
by using a slacks-based measure approach [18]. Based on 
network SBM (NSBM) and dynamic SBM (DSBM) models 
that were previously published separately, Tone and Tsutsui 
propose a hybrid of these two models. Lim and Kim [19] 
proposed a two-stage dynamic network DEA model that 
can consider variable time lag effects, namely multiple 
carryover schemes, optimized for each DMU in efficiency 

measurements. Lu et al. [20] later employed dynamic three-
stage network data envelopment analysis, considering 
parallel production in the agricultural and industrial sectors, 
to assess the impact of greenhouse gas emissions on the 
climate change and natural disaster stages. Tavassoli et a. 
[21] formulates a fuzzy network DEA (FNDEA) model 
for assessing the efficiency of Iran’s electricity distribution 
network components with sustainability considerations 
and uncertain data. They also proposes a fuzzy linear 
programming model to determine the optimal lower bound 
for all input and output weights.

This study intends to develop evaluation methods by 
the network data envelopment analysis. By considering the 
internal processes of the IoT business, we design and solve 
the evaluation model by network data envelopment analysis 
and multi-objective programming techniques for IoT supply 
chains. The rest of this work is organized as follows. Section 
2 addresses the problem statement and develops the network 
DEA models by using multi-objective programming. In 
Section 3, the empirical case studies are demonstrated. The 
discussions and concluding remarks are given in Section 4.

2  Problem and Model Formulation

Consider n companies in IoT supply chains (DMUs, j = 
1, …, n) consisting of K divisions (k = 1, …, K). Let mk and 
rk be the numbers of inputs to and outputs from Division k, 
respectively. The notations of the parameters and variables 
are summarized in Table 1. Based on BCC models, this work 
develops the following network DEA method.

Table 1. Parameters and variables
n Number of DMUs
K Number of departments (functions)
rk Number of outputs from department k
mk Number of inputs to department k

(k, h) The link from department k to department h
L The set of inter-department links

X kij The i-th input to department k at DMUj 

Y krj The r-th output from department k at DMUj 

Z jp
(k,h) The p-th link from department k to department 

h at DMUj

ϕ(k,h) The number of links from department k to 
department h

2.1 The NDEA-MOP Model
In the network DEA model, the efficiencies of a DMU 

and its subunits (divisions) are evaluated cohesively. Figure 1 
shows an example of using the NDEA approach. 

This study denotes the link streaming from Division k 
to Division h by (k, h) and the set of links by L. The input 
resources to DMUj at Division k are {xk

j∈R+
mk } (j = 1, ..., n; k 

= 1, ..., K); the output products from DMUj at Division k are 
{yk

j∈R+
rk } (j = 1, ..., n; k = 1, ..., K); the linking intermediate 

products from Division k to Division h are {zj
(k,h)∈  R+

ϕ(k,h)} (j 
= 1, ..., n; (k,h)∈L) where ϕ(k,h) is the number of items in Link 
(k, h). The NDEA-MOP model is formulated as (2)-(4).
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Figure 1. The NDEA model [16]

NDEA-MOP

( , )

( , )

( , )

1 ( , ) 1

( , )

1 ( , ) 1

1,..., .

k hk

g kk

tr
k k k k h
r ro h op k

r k h pk
o tm

k k k g k
i io g oq

i g k q

u Y Z
Max E k K

v X Z

µ α

ω

= ∀ =

= ∀ =

+ −
= =

+

∑ ∑ ∑

∑ ∑ ∑
(2)

    s.t.

( , )

( , )

( , )

1 ( , ) 1

( , )

1 ( , ) 1

1

k hk

g kk

tr
k k k k h
r rj h jp k

r k h p
tm

k k k g k
i ij g jq

i g k q

u Y Z

v X Z

µ α

ω

= ∀ =

= ∀ =

+ −
≤

+

∑ ∑ ∑

∑ ∑ ∑
 , k=1,...K; j = 1,..., n. (3)

 
( , )

( , )

1 1
1

g kk tm
k k k g k
i io g ro

i g
v X Zω

= =

+ =∑ ∑  , k=1,...K .                               (4) 

   , , , , 0,   unrestricted in signk k k k
r i h g k ku v wµ ω ε α≥ >

   1, 2, , ; 1, 2, , ;  ( , ), ( , )k kr r i m all k h g k L= = ∈ 

where uk
r, vk

i, are the weights of outputs and inputs of 
department k, respectively, μk

h, ωk
g are the weights of 

intermediate products (links) outgoing from k to h and 
incoming from g to k, respectively, and ε is a very small 
positive number constituting the lower bound of all weights. 

In the NDEA-MOP model, K objective functions are 
defined for the departmental efficiency Ek

o (k = 1,...K) as 
in (2). The constraints (3) set the upper limit of all relative 
efficiencies to 1. The constraint (4) turns the NDEA-
MOP into a linear model for feasibility in finding the 
optimal solutions. Notably, the NDEA-MOP is designed 
as a cooperative model; that is, the strategic resources are 
allocated collaboratively by each functional department, as is 
the DMU decision level. 

2.2 The Solution Process
Many techniques have been proposed for solving multi-

objective programming problems [22-26], and some of them 

are inspired by Zimmermann’s fuzzy approach [27]. This 
study develops the solution process for NDEA-MOP based 
on Zimmermann’s approach. The details for solution steps 
are described as below.

Step 1: Get the ideal solution of each objective.
To obtain the ideal solution, each objective is optimized 

independently regardless of other objectives. For DMUo, we 
maximize every Ek

o to acquire its ideal objective value Eo
k* 

individually.
Step 2: Get the anti-ideal solution of each objective.
To obtain the anti-ideal solution, each objective is 

computed in the opposite way regardless of other objectives. 
For DMUo, we minimize every Ek

o to acquire its ideal 
objective value Eo

k− , individually.
Step 3: Define the membership function of each objective 

by its ideal and anti-ideal solutions as below.
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The membership function evaluates the fulfillment level 
of each objective.

Step 4: Get the final solution. 
The final solution can be found by maximizing the total 

satisfaction level in two ways: Compensatory and non-
compensatory solutions.
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where λ is the mean value of all divisional efficiencies to be 
maximized.
Non-compensatory Solution

                             λMax

 s.t. (3)-(4) 

*( ) 1, 2, ,k
o

k k
k o o
o k kE

o o

E EE k K
E E

λ µ
−

−

−
≤ = =

−
 .           (7)

where λ is the minimum of all divisional efficiencies to 
be maximized. Considering the self-controlling and non-
compensatory natures in the internal process between 
the departments, this study uses the non-compensatory 
approach as (7) in solving the NDEA-MOP model. The 
flowchart of solution processes is depicted as Figure 2, 
where the  functional department of DMUo can be evaluated 
simultaneously, and the overall efficiency score for DMUo is 
calculated as the average of all departmental efficiencies.
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Figure 2. The flowchart for efficiency evaluation

3  Case Study

This study evaluates 30 listed companies in Taiwan IoT 
supply chains of automotive electronics and smart healthcare 
business. Notably, most of these samples have diversified 
investments in various product lines and services, not 
limited to IoT. The 30 businesses are classified according 
to their positions in the three layers of IoT supply chains 
[1] as in Table 2, where A means upstream (perceptiona 
layer), B means middlestream (netowrk layer), and C means 
downdstream (applicaiton layer) in the IoT supply chain. 
In each DMU (company), three functions (departments) are 
analyzed: research and development (R&D), manufacturing 
(manufacture), and sales and finance (Sales & finance). 
The inputs, outputs and links are collected from the annual 
reports for the fiscal years 2015 to 2020. All monetary values 
are measured in 100 millions (100 M) NT dollars, except 
that patents are converted to points. Some of the factors are 
adjusted by adding a suffucient number to avoid zero and 
negative values in the network DEA.

This study  formulate the structure and NDEA model 
based on general high tech business process that is also 
the base for business application systems, e.g. enterprise 

resources planning (ERP), management information systems 
(MIS), and so on. The business in high tech industry share 
similar process and operations. The factors we choose 
are what most stakeholders (management, employee, 
shareholders, customers, etc.) concern. The deparments and 
factors for evaluation are summarized as follow.

R&D department
Inputs: R&D expense
Link: intangible assets  (outgoing)
Output: patent

Manufacture department
Inputs: plant and equipment, cost of goods sold 
             (COGS)
Links: intangible assets (incoming), production
             (outgoing) 

Sales and finance
Inputs: sales and administration cost
Link: production (incoming)
Outputs: revenue, profit, earnings per share

Among the factors as mentioned above, the intangible 
assets include patents, copyrights, franchises, goodwill, 
trademarks, etc.; the patents are the patents filed in Taiwan 
patent search systems [28] and Patent and Trademark Office 
(USPTO) patent database [29]. The structure of evaluatiion is 
depicted as Figure 3.

Figure 3. The NDEA model for IoT industry

Table 2. Classification of the DMUs**

DMU DMU DMU
1 A 11 ABC 21 A
2 A 12 A 22 AB
3 AB 13 A 23 A
4 ABC 14 A 24 ABC
5 A 15 ABC 25 ABC
6 ABC 16 A 26 ABC
7 ABC 17 A 27 ABC
8 ABC 18 ABC 28 A
9 ABC 19 AC 29 A

10 ABC 20 A 30 A
** A: upstream (perceptiona layer), 
   B: means middlestream (netowrk layer), 
   C: means downdstream (applicaiton layer)
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By the MOP for NDEA designed in 2.1, this study 
computes the efficiency for the 30 companies in IoT supply 
chains. The results from the non-compensatory approach 
are obtained and compared by using LINGO 12.0 [30] as 
the solver. The overall efficiencies of the DMU are shown in 
Table 3; the departmental efficiencies of R&D, manufacturing 
and sales and finance are shown in Table 4 to Table 6, 
respectively.

Table 3. Overall efficiency of IoT DMU

2015 2016 2017 2018 2019 2020
1 0.5186 0.7734 0.6344 0.7285 0.6806 0.7158
2 0.7009 0.5959 0.7861 0.6083 0.5732 0.5792
3 0.7194 0.8744 0.8189 0.5313 0.8892 0.8815
4 1.0000 0.6421 0.5903 0.8291 0.6654 0.6650
5 0.7024 0.8598 0.9687 1.0000 0.9325 0.9107
6 1.0000 1.0000 1.0000 1.0000 0.6720 0.6874
7 1.0000 1.0000 1.0000 1.0000 0.6610 0.6526
8 0.4425 0.8257 0.6833 0.4675 0.5834 0.5941
9 0.6755 0.4096 0.7615 0.3833 0.6686 0.6683
10 0.5316 0.6421 0.5231 0.3965 0.5659 0.5759
11 0.5368 0.6399 0.7403 0.4494 0.6100 0.6095
12 0.5155 0.7608 0.9064 0.7013 0.6389 0.6512
13 0.8504 0.8072 0.6483 0.6654 0.6767 0.6925
14 0.5250 0.6555 0.8562 0.4484 0.5669 0.5320
15 0.4198 0.8307 0.6788 0.8334 0.5436 0.5142
16 0.2943 0.6365 0.6878 0.4783 0.6223 0.5513
17 0.4808 0.5587 0.6163 0.6159 0.5340 0.5084
18 0.5485 0.6087 0.7513 0.454 0.6417 0.6140
19 0.5215 0.7612 0.8570 0.2273 0.6765 0.6777
20 0.4393 0.8867 0.9618 0.5298 0.9819 0.8337
21 0.5121 0.5187 0.6916 0.7620 0.5294 0.5268
22 0.5736 0.6546 0.5183 0.6643 0.6519 0.5976
23 0.4132 0.7148 0.5211 0.6752 0.5939 0.6637
24 0.4821 0.5966 0.6501 0.6153 0.5460 0.5734
25 0.3447 0.8538 0.6329 0.7288 0.5874 0.5978
26 0.2178 0.6648 0.7407 0.5429 0.5179 0.4995
27 0.6192 0.6265 0.4335 0.4585 0.5897 0.5648
28 0.7428 0.6717 0.7048 0.612 0.6698 0.6085
29 0.3027 0.6894 0.7418 0.4185 0.6580 0.6228
30 0.7368 0.7771 0.7935 0.7272 0.6981 0.6576
Max 1.0000 1.0000 1.0000 1.0000 0.9819 0.9107
Min 0.2178 0.4096 0.4335 0.2273 0.5179 0.4995
Avg 0.5789 0.7205 0.7300 0.6184 0.6476 0.6342
Std 0.2029 0.1383 0.1472 0.1921 0.1112 0.1008

Figure 4 shows the distribution of overall efficiencies of 
business in IoT supply chains. From Table 7 and Figure 4, the 
overall efficiencies of IoT supply chains reveal multimodal. 
The modes of overall efficiencies shifted from [0.7, 0.8999] 

to [0.5, 0.6999] in 2019-2020. Among the business, 
DMU 6 and 7 reveal the full efficiencies in overall and all 
departments in 2015-2018. From 2019-2020, the efficiencies 
diminished due to the recession of IoT demands (as in Table 
3).

Table 4. R&D efficiency of IoT DMU

2015 2016 2017 2018 2019 2020
1 0.1713 0.7168 0.5434 0.6079 0.3548 0.6582 
2 0.3867 0.2902 0.3849 0.2574 0.0712 0.1452 
3 0.7966 0.9880 0.8189 0.6114 0.9869 0.9926 
4 1.0000 0.4571 0.6824 0.9157 0.4248 0.4610 
5 0.5814 1.0000 1.0000 1.0000 1.0000 0.9021 
6 1.0000 1.0000 1.0000 1.0000 0.0597 0.0783 
7 1.0000 1.0000 1.0000 1.0000 0.0173 0.0306 
8 0.1917 0.8890 0.1635 0.2950 0.0246 0.0396 
9 0.4512 0.1472 0.2845 0.9498 0.0058 0.0050 
10 0.2993 0.4194 0.2020 0.5144 0.1554 0.2314 
11 0.2044 0.2450 0.3398 0.2770 0.0387 0.0565 
12 0.1820 0.6285 1.0000 0.3370 0.0856 0.1523 
13 0.8989 0.7284 0.1949 0.2363 0.0797 0.1039 
14 0.1880 0.3369 0.9921 0.1958 0.0326 0.0529 
15 0.2624 0.9992 0.8685 1.0000 0.0337 0.0583 
16 0.1969 0.1781 0.2544 0.3219 0.0249 0.0390 
17 0.2201 0.5311 0.4226 0.3458 0.0135 0.0310 
18 0.5214 0.7453 0.2994 0.1130 0.0444 0.0602 
19 0.8698 0.3294 0.5711 0.3449 0.1381 0.1718 
20 0.4095 0.8588 0.9915 0.5714 1.0000 1.0000 
21 0.4649 0.4562 0.5677 0.6956 0.0323 0.0586 
22 0.1211 0.2486 0.5459 0.3045 0.1282 0.1634 
23 0.6292 0.8714 0.1786 0.4039 0.1036 0.4629 
24 0.1443 0.1921 0.4760 0.2111 0.0218 0.0353 
25 0.2414 0.9044 0.2194 0.5085 0.0348 0.0753 
26 0.3535 0.5052 0.7916 0.1118 0.0143 0.0292 
27 0.7323 0.1118 0.1056 0.1454 0.0143 0.0215 
28 0.5492 0.3477 0.1144 0.7752 0.0094 0.0278 
29 0.1866 0.1534 0.2253 0.2184 0.1400 0.2130 
30 0.3706 0.3923 0.4963 0.2563 0.1147 0.1503 
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Min 0.1211 0.1118 0.1056 0.1118 0.0058 0.0050 
Avg 0.4542 0.5557 0.5245 0.4842 0.1735 0.2169 
Std 0.2880 0.3090 0.3154 0.3009 0.2944 0.2946 

Looking into the departmental efficiencies, the R&D 
reached the high in 2016-2017 and gradually descended 
in 2018-2020 (as in Table 4). However, the efficiencies of 
manufacturing have maintained at [0.8, 0.95] from 2016 
to 2020 (as in Table 5). As for the sales and finance, the 
efficiencies are sub efficient as [0.7, 0.83] except in 2015 and 
2018 (as in Table 6). 
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Table 5. Manufacturing  efficiency of IoT DMU

2015 2016 2017 2018 2019 2020
1 0.6495 0.8338 0.9333 1.0000 0.9536 0.6808 
2 0.9800 0.9295 0.9738 0.9659 0.9924 0.8821 
3 0.7859 0.9880 0.8189 0.6114 0.9869 0.9397 
4 1.0000 0.9122 0.9884 0.8750 0.9678 0.9553 
5 0.8980 0.9593 0.9061 1.0000 0.7991 0.9150 
6 1.0000 1.0000 1.0000 1.0000 0.9750 0.9839 
7 1.0000 1.0000 1.0000 1.0000 0.9828 0.9636 
8 0.8051 0.9473 0.9639 0.9693 0.8719 0.9006 
9 0.6813 0.1000 1.0000 0.1000 1.0000 1.0000 
10 0.8347 0.9477 0.9284 0.1000 0.9559 0.9262 
11 0.9104 0.9343 0.9182 0.5897 0.9565 0.8899 
12 0.9876 0.9545 0.9721 0.9453 0.9967 0.9400 
13 0.9790 0.9939 0.9165 0.8998 0.9504 0.9869 
14 0.9523 0.9741 0.9982 0.9426 1.0000 0.8824 
15 0.8627 0.8396 0.8037 0.9049 0.9342 0.8739 
16 0.5704 0.9651 0.9974 0.3903 0.9723 0.8904 
17 0.7622 0.7359 0.9247 0.9171 0.9949 0.9003 
18 0.9409 0.9509 0.9580 1.0000 0.9150 0.8848 
19 0.5946 0.9543 1.0000 0.1489 0.8913 0.8611 
20 0.1044 0.9402 0.8938 0.9179 0.9457 0.9005 
21 0.2879 1.0000 0.8346 0.9514 0.8723 0.9260 
22 0.8353 0.9714 0.8676 0.9134 0.9888 0.8529 
23 0.1148 0.5734 0.8885 0.9798 0.9316 0.7939 
24 0.7808 1.0000 0.9297 0.9825 0.9582 1.0000 
25 0.1881 0.9794 0.9357 0.9023 0.9820 1.0000 
26 0.1424 0.9247 0.9271 0.9990 0.9339 0.8912 
27 0.8096 0.8961 0.9564 1.0000 0.8488 0.9237 
28 1.0000 0.6927 1.0000 0.9610 1.0000 0.8499 
29 0.6215 0.9149 1.0000 0.1895 0.9311 0.8551 
30 0.8399 0.9389 0.8841 0.9253 0.9795 0.8404 
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Min 0.1044 0.1000 0.8037 0.1000 0.7991 0.6808 
Avg 0.7306 0.8917 0.9373 0.8027 0.9490 0.9030
Std 0.2862 0.1784 0.0570 0.2999 0.0498 0.0669 

Comparing the departmenal efficiencies in IoT supply 
chains in Table 4 to Table 6, the manufacturing is most 
efficient, finance and sales is the second, and R&D is least 
efficient. Notably the average score of R&D grew from 2015 
(0.4542) to 2016 (0.5557) and then ran down significantly in 
2018 (0.4842)  to 2019 (0.1735), and slightly grew in 2020 
(0.2169).

Comparing the overall efficiencies of various sections 
in IoT supply chains in Table 8, AB shows the efficiencies 
during the recent 3 years, especially in 2019-2020; A  and 
ABC show sub efficient. From Table 8, DMUs in AB 
revealed higher efficiencies in R&D and satisfactory scores 
in manufacturing; A and A BC showed advantages in sales & 
finance and manufacturing, respectively. All sections show 
satisfactory scores in manufacturing.

Table 6. Sales & finance efficiency of IoT DMU

2015 2016 2017 2018 2019 2020
1 0.7350 0.7696 0.4266 0.5777 0.7335 0.8085 
2 0.7362 0.5681 0.9995 0.6016 0.6561 0.7103 
3 0.5756 0.6471 0.8189 0.3711 0.6938 0.7123 
4 1.0000 0.5569 0.1000 0.6966 0.6037 0.5787 
5 0.6277 0.6201 1.0000 1.0000 0.9983 0.9150 
6 1.0000 1.0000 1.0000 1.0000 0.9814 1.0000 
7 1.0000 1.0000 1.0000 1.0000 0.9828 0.9636 
8 0.3307 0.6408 0.9225 0.1383 0.8536 0.8420 
9 0.8939 0.9817 1.0000 0.1000 1.0000 1.0000 
10 0.4607 0.5591 0.4388 0.5751 0.5865 0.5700 
11 0.4955 0.7404 0.9628 0.4814 0.8349 0.8822 
12 0.3771 0.6994 0.7472 0.8214 0.8344 0.8613 
13 0.6734 0.6994 0.8336 0.8601 1.0000 0.9869 
14 0.4347 0.6556 0.5784 0.2067 0.6681 0.6608 
15 0.1343 0.6535 0.3643 0.5954 0.6630 0.6103 
16 0.1157 0.7663 0.8115 0.7228 0.8697 0.7244 
17 0.4600 0.4092 0.5015 0.5849 0.5937 0.5939 
18 0.1831 0.1298 0.9967 0.2489 0.9655 0.8971 
19 0.1000 1.0000 1.0000 0.1880 1.0000 1.0000 
20 0.8040 0.8611 1.0000 0.1000 1.0000 0.6005 
21 0.7835 0.1000 0.6725 0.6390 0.6834 0.5959 
22 0.7643 0.7437 0.1414 0.7749 0.8388 0.7765 
23 0.4955 0.6996 0.4964 0.6420 0.7465 0.7344 
24 0.5213 0.5976 0.5445 0.6523 0.6581 0.6849 
25 0.6046 0.6775 0.7434 0.7756 0.7454 0.7181 
26 0.1574 0.5646 0.5035 0.5179 0.6056 0.5781 
27 0.3156 0.8717 0.2384 0.2300 0.9061 0.7491 
28 0.6792 0.9749 1.0000 0.1000 1.0000 0.9479 
29 0.1000 1.0000 1.0000 0.8475 0.9031 0.8003 
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.9822 
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Min 0.1000 0.1000 0.1000 0.1000 0.5865 0.5700 
Avg 0.5520 0.7063 0.7281 0.5683 0.8202 0.7828 
Std 0.2893 0.2309 0.2895 0.2397 0.1521 0.1488 

Table 7. Distribution of overall efficiency in IoT supply chains

2015 2016 2017 2018 2019 2020

1 3 2 5 3 0 0

0.9~0.9999 1 7 3 2 2 1

0.8~0.8999 5 5 8 5 1 2

0.7~0.7999 2 10 9 7 0 1

0.6~0.6999 9 4 4 3 15 13

0.5~0.5999 6 1 1 7 12 12

0.4~0.4999 2 0 0 2 0 1

0.3~0.3999 2 0 0 1 0 0
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 Table 8. Average efficiencies over recent years

A AB ABC
Overall 0.6586 0.7027 0.6110

2018 0.6408 0.5978 0.6276
2019 0.6883 0.77057 0.6041
2020 0.6467 0.7396 0.6013
R&D 0.3162 0.5312 0.2337
2018 0.4445 0.4580 0.5417
2019 0.2187 0.5576 0.0684
2020 0.2855 0.5780 0.0909

Manufact. 0.8940 0.8822 0.8948
2018 0.8561 0.7624 0.8017
2019 0.9514 0.9879 0.9448
2020 0.8745 0.8963 0.9379

Sales & fin. 0.7447 0.6945 0.6977
2018 0.6217 0.5730 0.5393
2019 0.8322 0.7662 0.7789
2020 0.7802 0.7444 0.7749

Figure 4. The distribution of overall efficiency of business in IoT 
supply chains

4  Conclusion

This study develops the NDEA-MOP model to evaluate 
the business in IoT supply chains in Taiwan. The results show 
that manufacturing is the niche in IoT industry. However, 
R&D exposed the shortcoming of IoT industry in Taiwan. 
The efficiencies of DMUs investing in the upstream as well 
as the middlestream outperforms in the IoT supply chains in 
Taiwan show best overall efficiencies. The case study verifies 
the usefulness of the proposed methods.
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