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Abstract

In-band Network Telemetry (INT) has profoundly 
promoted the network visibility. However, the existing 
solutions either face Maximum Transmission Unit (MTU) 
limitation or latency issue due to continuous insertion of INT 
metadata along long forwarding paths. In addition, conducting 
telemetry using user packets is prone to result in duplicate 
telemetry and fall short to achieve network-wide telemetry. 
In this work, we propose NetworkSight to comprehensively 
resolve these problems through cluster based path planning 
and source routing based on-demand forwarding. Specifically, 
a cluster based path planning algorithm is designed to 
generate several balanced short forwarding paths that cover 
the entire network. As a consequence, the MTU limitation is 
overcome and the telemetry latency can be reduced. Instead 
of operating on user packets, NetworkSight sends crafted 
probes built on source routing to travel synchronously over 
the generated forwarding paths. With these improvements, 
network-wide telemetry is achieved. Besides, we define a 
suite of telemetry primitives and develop corresponding APIs 
for users to flexibly express their telemetry requirements. 
Extensive experimental results show that NetworkSight can 
generate more balanced forwarding paths. The results show 
that it outperforms state-of-the-art mechanisms, where it 
reduces the telemetry latency by tens of milliseconds.

Keywords: Cluster, Network management, Network 
telemetry, Path planning, Source routing

1  Introduction

With the continuous expansion of network scale and the 
continuous appearance of emerging applications, network 
management has become more complicated [1]. The fusion 
of machine learning (ML) technologies into network 
management has profoundly promoted network intelligence 
and automation [2-3]. To make optimal control decisions 
via ML, the global view of the underlying network and 
more detailed device-internal states are essential. However, 
the conventional network monitoring mechanisms, such as 
SNMP [4] and NetFlow [5], either operate at coarse timescale 
or collect coarse-grained network states, which cannot 
provide real-time and fine-grained network monitoring. 
Other OpenFlow-based network monitoring mechanisms 

are restricted since OpenFlow is protocol-dependent and can 
only continuously increase the matching fields to support 
new protocols [6].

Recent advances in programmable network devices and 
Programming Protocol-Independent Packet Processors (P4) 
have reshaped the landscape of software-defined networking 
(SDN) by enabling the users to specify how devices to 
process packets [7]. As a potential application of P4, In-
band Network Telemetry (INT) allows packets to query the 
switch-internal states along the forwarding path traversed 
[8]. Thanks to this design, INT enables a more fine-grained 
way for network monitoring and facilitates a lot of network 
applications, including load balancing [9-10], congestion 
control [11-12], anomaly detection [13-14], and others.

However, using user packets to piggyback the INT 
metadata (i.e., the network states collected using INT) 
will result in rapid growth in the packet size. As a result, 
the packet size may exceed Maximum Transmission Unit 
(MTU), which further incurs fragmentation or packet loss 
[15]. Besides, inserting INT metadata into user packets as 
header fields may increase the processing latency, which will 
affect the quality-of-service (QoS) of applications, especially 
for delay-sensitive applications. Several studies propose 
sampling based approaches to reduce the insertion of INT 
metadata into packets [16-18]. However, selective insertion 
of INT metadata on partial packets may miss important 
network events. Furthermore, long forwarding paths will also 
introduce high telemetry latency due to long transmission 
delay. Hence, we argue that the length of forwarding paths 
should be limited to avoid the packet size exceeding MTU 
and reduce telemetry latency. 

Besides, the basic INT specification only defines 
telemetry for specific paths or flows using user packets, 
which is unable to achieve network-wide telemetry [19]. 
Specifically, different users may choose the same devices 
to transmit their data or some devices may never handle 
any user packets, which leads to duplication of telemetry or 
coverage incompleteness of the entire network. Recently, 
many works attempt to extend the framework of original INT 
to support network-wide telemetry [20-22]. In these works, 
crafted probes are sent to travel specific paths and collect 
the network states. In particular, heuristic algorithms, such 
as Euler trail-based path planning algorithm, are designed 
to generate several forwarding paths that cover the entire 
network [21]. However, these algorithms are committed 
to achieving full coverage of the network with the fewest 
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number of forwarding paths, which often generate extremely 
long and unbalanced forwarding paths. Obviously, it is 
impossible for the probes to complete telemetry of these the 
unbalanced forwarding paths simultaneously in a short time, 
only leading to a decrease in telemetry performance. Hence, 
we see the benefit that several short balanced forwarding 
paths should be generated to achieve network-wide 
synchronous multipath telemetry.

In this paper, we extend our previous works in [23] and 
propose NetworkSight, a cluster based fast and on-demand 
network-wide telemetry framework, to comprehensively 
address these problems. We observe that a probe can return 
from one cluster head to the same or reach another cluster 
head within 4 hops. With this observation, we divide the 
network into several clusters based on the concept of 
minimum dominating set (MDS). Then, we start from 
a cluster member, check its neighbours, and generate 
corresponding forwarding paths based on different cases. 
Once all the cluster members and cluster heads are visited, 
several short balanced forwarding paths are generated. In 
addition, we leverage source routing to enable the crafted 
probes to traverse the corresponding forwarding paths. In 
summary, this paper makes the following contributions:

• We propose a novel telemetry framework named 
NetworkSight, which sends source routing enabled 
crafted probes to traverse the specific forwarding 
paths, supporting fast and on-demand telemetry.

• We design a cluster based path planning algorithm 
to generate several short balanced forwarding paths, 
which allows querying of any node or link within 4 
hops, leading to significant reduction of telemetry 
latency.

• We show the feasibility of our solution by presenting 
a suite of telemetry primitives and developing 
corresponding APIs to allow the users to flexibly 
express various telemetry requirements.

• We implement a prototype of NetworkSight on 
BMv2 and study the performance of NetworkSight 
through extensive experiments to show the 
performance advantages of NetworkSight over state-
of-the-art mechanisms.

The remainder of this paper is organized as follows. In 
Section 2, we summary the related work of INT. The design 
principles of NetworkSight are presented in Section 3 along 
with the challenges to design a fast and on-demand network-
wide telemetry system and how NetworkSight overcomes 
these challenges. In Section 4, we evaluate the proposed 
mechanism with extensive experiments and discuss the 
experimental results. Finally, we draw conclusions and 
highlight achievements in Section 5.

2  Related Work

In 2015, Kim et al. proposed the seminal work of INT, 
which allows packets to collect switch-internal states as they 
traverse the network [8]. Over the following years, many 
efforts have been devoted to improving the original INT 
framework to achieve higher telemetry accuracy with lower 
overhead. In this paper, we roughly summary them into two 
categories:  Passive INT and Active INT.

Passive INT. Similar to the original INT framework, 
the Passive INT mechanisms also utilize user packets to 
collect network states, which incurs extra network overheads. 
Sampling based solutions are commonly used to tackle the 
issue of relatively high network overhead resulting from per-
packet operation. Specifically, sINT [16] and Sel-INT [17] 
respectively design sampling rate determination scheme to 
adjust the INT header and/or metadata insertion rate to reduce 
the network overhead. Apart from rate based sampling, FS-
INT further proposes an event based sampling mechanism 
[18]. However, selective insertion of INT metadata on partial 
packets may miss important network events.

Beside sampling based approaches, one other approach 
focuses on multilayer telemetry designs [24-26]. Specifically, 
Anand et al. propose POINT to observe IP and optical 
layers simultaneously [24]. Similarly, Niu et al. propose a 
multilayer telemetry system ML-INT, which samples partial 
packets from an IP flow to conduct INT-related operations 
[25]. Pan et al. further take into consideration of privacy and 
security issues and propose a privacy-preserving multilayer 
monitoring system based on INT [26].

In general, most of the Passive INT mechanisms mainly 
rely on TCP/UDP encapsulation to work, which brings 
about a dilemma between the space for INT insertion and 
MTU limitation. Moreover, different users may choose the 
same devices to transmit their data or some devices may 
never handle any user packets, which leads to duplication 
of telemetry or coverage incompleteness of the entire 
network. It is thus necessary to continue the investigation 
of the orchestration problem of INT and make an attempt to 
improve the operation [27].

Active INT. Different from Passive INT mechanisms, 
Active INT mechanisms actively send crafted probes to 
collect network states. For example, to achieve network-wide 
telemetry, HULA uses the ToR switches to flood probes to 
the uplinks [20]. However, HULA introduces high bandwidth 
consumption because multiple probes may traverse the same 
link(s).

Another approach focuses on designing heuristic 
algorithms to generate several forwarding paths that cover 
the entire network. For example, Pan et. al propose INT-
path to utilize Euler-trail to generate forwarding paths for 
each pair of nodes with odd degree [21]. Although INT-path 
generates several non-overlapped forwarding paths, it fails 
to take path length into consideration. In other words, INT-
path may generate several unbalanced forwarding paths, 
which results in the loss of synchronization of multipath 
telemetry. Furthermore, the network-wide telemetry latency 
is closely associated with the arriving time of the last probe. 
Long forwarding paths will only result in the late arrival of 
the probes, decreasing both timeliness and accuracy of the 
telemetry results.

NetView uses switch-level telemetry to estimate link-
level states and converts the goal of covering the entire 
network into covering all the nodes [22]. Different algorithms 
are designed to generate as few probes as possible. However, 
only one server is used to inject probes into and collect 
probes from the network, which will introduce extra delays 
because the probes need to return back to the server after 
completing telemetry.
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In summary, using crafted probes offers two-fold benefits. 
Firstly, Active INT mechanisms provide the possibility of 
overcoming MTU limitation through sending small size 
probes, which remain substantial space for INT insertion. 
Secondly, guiding probes to travel along the pre-planned 
forwarding paths by source routing can easily achieve 
network-wide telemetry. Despite these research efforts 
towards network-wide path planning, little has been done to 
generate balanced paths to achieve synchronous multipath 
telemetry.

3  NetworkSight Design

In this section, we first discuss the requirements to design 
a fast and on-demand network-wide telemetry system. Then, 
the overview of and main components of NetworkSight are 
presented. Finally, we elaborate how these challenges are 
comprehensively resolved via cluster based path planning 
and source routing based on-demand forwarding.

3.1 Telemetry Requirements
The key to designing a fast and on-demand network-

wide telemetry system is optimal path planning and probe 
coordinating. The main design requirements are summarized 
as follows. 

Full coverage. The system should cover all the links to 
provide a complete network visibility. In other words, path 
planning is needed to generate several forwarding paths 
that cover the entire network. In order to generate such 
forwarding paths, the same link may be multiplexed when 
conducting path planning. Since the multiplexed links will 
introduce duplicate telemetry, path overlapping should be 
avoided to minimize the redundancy.

Fast convergence. The convergence time refers to the 
time range between when a probe is sent out and when the 
corresponding INT report arrives at the collector, which 
mainly depends on two aspects. Firstly, long forwarding 
paths in general introduce long transmission delay, which 
incurs non-negligible delay in the arrival of probes. Thus, 
the path length should be limited when conducting path 
planning. Secondly, INT-related operations on the devices 
will introduce extra delay. For this reason, the corresponding 
match-action tables should be concise and efficient to 
process.

Low overhead. To perform telemetry, probes are 
injected into data plane, which consumes link bandwidth. A 
straightforward way to reducing the bandwidth consumption 
of probes is to inject as few probes as possible into the 
network and make each probe carry more INT metadata. 
However, one probe carrying more metadata means it has to 
travel through a long forwarding path, which contradicts fast 
convergence and may incur MTU issue. Hence, a tradeoff 
exists between the number of probes and the length of 
forwarding paths.

Flexible telemetry. It is often that different users demand 
different telemetry requirements, such as telemetry frequency, 
telemetry object and telemetry item. In order to satisfy the 
differentiated telemetry requirements, the system should 
provide either comprehensive tuning capability or open 

APIs to enable flexible control of the underlying telemetry 
operations.

3.2 The Design Overview of NetworkSight
To meet the requirements, our proposed NetworkSight 

builds on two steps: cluster based path planning and 
source routing based on-demand forwarding. Figure 1 
depicts the architecture of NetworkSight, which contains 
five components: Open APIs, Telemetry Synthesizer, Path 
Generator, Probe Manager and Data Analyzer.
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Figure 1. The architecture of NetworkSight

Open APIs. NetworkSight provides Open APIs for 
users to flexibly express their telemetry requirements. To 
accomplish this, we define a suite of telemetry primitives: (1) 
Frequency() donates the telemetry frequency. (2) Node(Node: 
PortNumber) and Link(Source: Destination) are used to 
indicate which nodes or links to telemetry, respectively. In 
particular, Link(ALL: ALL) refers to network-wide telemetry. 
(3) Item() specifies which states to collect. With these 
primitives, NetworkSight enables collecting the desired states 
of nodes or links at a specified frequency.

Telemetry Synthesizer. Once receiving the telemetry 
requirements from the Open APIs, Telemetry Synthesizer 
first queries the database whether there is historical data that 
satisfies the demands. If not, Telemetry Synthesizer merges 
the same telemetry requirements and generates the optimal 
telemetry instructions based on the path planning results 
provided by Path Generator. These instructions are then 
issued to Probe Manager for probe generation. In this way, 
fewer probes are generated and the bandwidth overhead is 
reduced.

Path Generator. For the purpose of full coverage and 
fast convergence, Path Generator adapts a cluster based 
path planning algorithm to generate several short balanced 
forwarding paths. Specifically, we divide a network 
into several clusters based on MDS through treating the 
dominating nodes and the dominated nodes as cluster heads 
and cluster members, respectively. Then, we go through all 
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the cluster members, check the neighbours of each cluster 
member, and generate corresponding forwarding paths based 
on different cases. The path planning results are provided to 
Telemetry Synthesizer to generate optimal telemetry policies.

Probe Manager. In NetworkSight, Probe Manager is 
responsible for generating probes according to the received 
telemetry instructions, injecting probes into and collecting 
probes from the underlying network. The probe can be 
roughly divided into two parts: packet header and INT 
header. Different from the user packets, the packet header 
of the probe only contains the Ethernet field, which further 
reduces the bandwidth consumption.

Data Analyzer. After the probes complete the telemetry 
tasks, Probe Manager collects them from the underlying 
network and submits them to Data Analyzer, which extracts 
important information from the raw data and generates 
corresponding telemetry reports. These reports are finally 
sent to the users through Telemetry Synthesizer, which are 
also used to update the database simultaneously.

In the following subsections, we will comprehensively 
introduce the cluster based path algorithm used by Path 
Generator along with how source routing enables crafted 
probes to travel the forwarding paths on-demand.

3.3 Cluster Based Path Planning
To keep every node and every link under monitoring, 

path planning is essential. As discussed in the previous 
subsections, the path length should be considered to avoid 
long forwarding paths when conducting path planning. We 
observe that a probe can return from one cluster head to 
the same or reach another cluster head within 4 hops. With 
this observation, we propose a cluster based path planning 
algorithm as Algorithm 1.

To classify the nodes in the network into cluster heads 
and cluster members, we first find a minimum dominating 
set for the network. For a graph (i.e., a network topology) G, 
we define the node set as N while the link set as L. If there is 
node set D and any node in N − D has at least one neighbour 
in D, we call D a dominating set of G. Besides, a minimum 
dominating set of G refers to the dominating set which 
contains the least number of nodes. One thing should be noted 
that, one graph may have multiple minimum dominating 
sets. Here, we find a minimum dominating set for a graph 
through a greedy method. Specifically, we initial the cluster 
head set CH as an empty set. Besides, the unvisited node set 
UN and the candidate node set CN are both initialed as N. 
For each node in CN, we select the node with the maximum 
number of neighbours in UN (Line 1-6) and append it to CH 
(Line 14-15). Then, this node is subtracted from UN and CN 
while its neighbours are subtracted from UN (Line 16-18). 
We repeat these steps until UN is empty (Line 13-19). In this 
way, a minimum dominating set (i.e., the cluster head set) for 
the graph is found. The cluster division can be done through 
treating the dominating nodes and the dominated nodes as 
cluster heads and cluster members, respectively.

        Algorithm 1. MDS based clustering algorithm
Input: A graph G(N, L)
Output: The clustering results Cluster
Initialize: CH ← ∅, UN ← N, CN ← N
function Searching_ Head (G, UN, CN)
     for node in CN do
           node.neighbour← neighbours in UN
     end for
     Return node with maximum node.neighbour
end function
function Assigning_ Member (G, UN, CH)
     for node in CH do
          node.neighbour← neighbours in UN
     end for
     Return node with minimum node.neighbour
end function
while UN != ∅ do
      head← Searching _Head (G, UN, CN)
      CH← CH + head
      CN← CN – head
      head.neighbour← neighbours in UN
      UN← UN – head – head.neighbour
end while
UN← N – CH
count← 0
while count < CH.length do
      head← Assigning_Member (G, UN, CH)
      head.neighbour← neighbours  in UN
      Cluster[count]← {head, head.neighbour}
      CH← CH – head
      UN← UN – head.neighbour
      count← count + 1
end while
Return the clustering results Cluster

Since one dominated node may connect with more than 
one dominating node, how to assign cluster members for a 
cluster head remains unsolved. To make the clusters more 
balanced, we adopt the opposite approach to that of searching 
a minimum dominating set. Here, we start from the cluster 
head with minimum number of neighbours in UN (Line 7-12) 
and assign cluster members for it (Line 23-25). Similarly, 
we subtract this cluster head from CH and the corresponding 
cluster members from UN (Line 26-27). Then, we continue to 
assign cluster members for the cluster head in the same way 
until CH is empty (Line 22-29). Finally, the clustering results 
are obtained.

We now conduct path planning based on the clustering 
results. Since each cluster member is directly connected to 
its cluster head, generating forwarding paths for each pair 
of cluster member and the corresponding cluster head can 
cover all the nodes. However, links may exist between two 
cluster members. For example, link L2 between M1 and 
M2 in the same cluster (shown in Figure 2(a)) and link L6 
between M3 and M4 in different clusters (shown in Figure 
2(b)). In addition, one cluster member or one cluster head 
may connect with another cluster head, such as link L5 and 
link L8 depicted in Figure 2(b). In order to achieve network-
wide telemetry, these links should also be covered. Here, we 
conduct path planning for these links into different cases.
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For intra-cluster case, we aggregate L2 with the links L1 
and L3, which connect M1 and M2 to their cluster head H1, 
respectively. Hence, only one forwarding path H1-M1-M2-H1 
is generated for the links L1, L2, and L3. For inter-cluster 
case, NetworkSight starts from a cluster member, such as 
cluster member M3 of cluster head H2, and searches whether 
there is another cluster head connected to it. If the answer 
is “Yes”, such as cluster head H3, NetworkSight further 
checks whether there is a link between H2 and H3. If there 
is, such as link L8, NetworkSight generates a forwarding 
path H2-M3-H3-H2 for the links L4, L5, and L8. Otherwise, 
NetworkSight generates a forwarding path H2-M3-H3 for the 
links L4 and L5. If there are no other cluster heads connected 
to M3, NetworkSight then checks whether there is a cluster 
member of another cluster connected to it. If there is, such 
as M4, NetworkSight generates a forwarding path H2-M3-
M4-H3 for L4, L6, and L7 (L7 is the link between M4 and its 
cluster head H3). If there are neither other cluster heads nor 
cluster members connected to M3, NetworkSight directly 
generates a forwarding path for link L4. Finally, we generate 
forwarding paths for the links between cluster heads that are 
not visited. In this way, all the links are considered and the 
generated forwarding paths are always within 4 hops.

Cluster MemberCluster Head

H1

M1 M2

L2

L3

(a) (b) 

？

L1

M3 M4

H3

L6

L7L5L4

L8

？

？
H2

Figure 2. An example of path aggregating

Based on the above example, we further present the 
complete path planning process in Algorithm 2. We start 
from a cluster head, such as a, and search from each cluster 
member in this cluster, such as b. If b has no neighbours 
expect a, we generate a forwarding path for the link between 
a and b (Line 3-5). If b has other neighbours, we further 
search from each neighbour of b, such as c. If c is another 
cluster head, we further check whether c is a neighbour of 
a. If c is and the link l_ca is not used to formulate another 
forwarding path, we generate a forwarding path p_abca 
for the links l_ab, l_bc and l_ca (Line 8-11). Otherwise, if 
c is not a neighbour of a or the link l_ca is used, we only 
generate a forwarding path p_abc for the links l_ab and l_
bc (Line 12-15). If c is another cluster member of a, we 
generate a forwarding path p_abca for the links l_ab, l_bc 
and l_ca (Line 16-20). If c is neither another cluster head 
nor another cluster member of a, c must be a cluster member 
in another cluster. We donate the cluster head of c as d and 
generate a forwarding path p_abcd for the links l_ab, l_bc 
and l_cd (Line 21-26). Once finishing the searching for every 
cluster head and deleting the visited links from the link set 
L of graph G, the remaining links are the links between two 

cluster heads. We just generate corresponding forwarding 
paths for these links (Line 32-34). It is worth mentioning that 
we always start searching from the cluster heads or cluster 
members with smaller sequence number to avoid generating 
duplicate forwarding paths for the same links (Line 17 and 
line 23).

Algorithm 2. Cluster based path planning algorithm
Input: A graph G(N, L), the clustering results Cluster
Output: The path planning results Path
Initialize: Path ← ∅
1: for a in CH do
2:      for b in a.member do
3:           if b.neighbour – a == ∅ then
4:               Path = Path + p_aba
5:               L = L – l_ab
6:           else
7:                 for c in b.neighbour – a do
8:                      if c is in CH then
9:                            if l_ca is in L then
10:                                  Path = Path + p_abca
11:                                  L = L – l_ab - l_bc - l_ca
12:                            else
13:                                  Path = Path + p_abc
14:                                  L = L – l_ab - l_bc
15:                            end if
16:                     else if c is in a.member then
17:                            if c > b then
18:                                  Path = Path + p_abca
19:                                  L = L – l_ab - l_bc - l_ca
20:                            end if
21:                     else
22:                            d ← the cluster head of c
23:                            if d > a then
24:                                  Path = Path + p_abcd
25:                                  L = L – l_ab - l_bc - l_cd
26:                            end if
27:                     end if
28:                 end for
29:           end if
30:      end for
31: end for
32: for l in L do
33:      Path = Path + l
34: end for
35: Return the path planning results Cluster

With the proposed cluster based path planning algorithm, 
several short balanced forwarding paths are generated. In the 
following, we will introduce how to enable probes to traverse 
these forwarding paths.

3.4 Source Routing based On-demand Forwarding
Generally, the intermediate nodes take the responsibilities 

for routing and addressing while the source node only 
provides a destination address. On the contrary, source 
routing allows the source node to specify the complete 
routing information for packets [28]. Benefit from this ability, 
NetworkSight utilizes source routing to forward probes 
on-demand with the routing information being embedded 
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into the probes. The format of the NetworkSight probes is 
depicted as Figure 3.

Ethernet SR Label Stack INT Header

Port n

...

Port 2

8 bits

n bytes
8 bits

8 bits

...

Pop port

Variable 
length

Instructions 8 bits

Metadata 1

Metadata 2

...

m bits

m bits

...

Insert metadata

Port 1

Figure 3. The format of the NetworkSight probes

To indicate the coming packet is a NetworkSight probe, 
the EtherType field in Ethernet header is set to 0x1234. Above 
the Ethernet header, NetworkSight encapsulates the source 
routing label stack, which contains the complete routing 
information. Specifically, each source routing label occupies 
8 bits, indicating through which port to forward the probe. 
Next, NetworkSight allocates a variable-length INT header, 
which consists of 8-bit telemetry instructions and variable-
number INT metadata. Here, the telemetry instructions are 
used to indicate which states (i.e., the telemetry items) to 
collect. Since the length of each forwarding path is within 4 
hops, the source routing label stack takes up no more than 32 
bits. Besides, the INT header also occupies limited space in a 
probe because the types of telemetry items are limited. In this 
way, the probe size is full under control, which never exceeds 
MTU.

Once receiving a packet, Networksight parses it as 
follows. Firstly, the packet headers are processed to check 
whether the packet is a probe. If the value of EtherType field 
equals to 0x1234, it is a probe and INT-related operations are 
conducted. Otherwise, it is a user packet and NetworkSight 
forwards it directly. For a probe, corresponding INT metadata 
is inserted into it according to the telemetry instructions. 
Then, a source routing label is popped and the probe is sent to 
next hop. Finally, the probe is sent to the collector at the sink 
node.Supported by source routing, NetworkSight enables 
crafted probes to traverse the generated forwarding paths that 
cover the entire network. Besides, the probe always travels a 
short forwarding path, significantly reducing network-wide 
telemetry latency. In this way, fast network-wide telemetry is 
achieved.

4  Evaluation

In this section, we evaluate the performance of 
NetworkSight. We first evaluate the cluster based path 
planning algorithm on a server with 64GB RAM and 
Intel(R) Xeon(R) Silver 4214R 2.40GHz CPU, running 
Ubuntu 18.04. Then, Mininet is used to establish different 
network topologies to compare the telemetry performance 
of NetworkSight with that of state-of-the-art mechanisms in 
terms of telemetry latency, telemetry overhead. Besides, we 
build a testbed to validate that NetworkSight can be deployed 
in practice.

4.1 Evaluation of Path Planning Algorithm
Execution time. We run the programs for 100 times and 

calculate the average execution time of path planning for 
different network topologies, respectively. Each network 
topology is provided with its adjacency matrix. As shown 
in Figure 4, the execution time of path planning increases 
with the expansion of the network size in both NetworkSight 
and NetView while it does not exhibit this trend in INT-
path. This is because the execution time of path planning in 
NetworkSight and NetView is mainly associated with the 
speed of accessing to the adjacency matrix. However, in INT-
path, the execution time of path planning depends on not only 
the speed of accessing to the adjacency matrix but also the 
number of odd nodes. Besides, NetworkSight can complete 
path planning faster than both NetView and INT-path.
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Figure 4. Impact of network size on the execution time of path 
planning

Path length. Here, we present the longest path length 
among all forwarding paths generated for a given network 
topology using different path planning algorithms. As 
depicted in Figure 5, the forwarding paths generated by 
NetworkSight are always within 4 hops regardless of the 
network size. Unlike NetworkSight, the longest path length 
among all forwarding paths generated by INT-path and 
NetView varies with the network size. In particular, the 
longest forwarding path generated by INT-path even reaches 
as high as 84 hops in a 50-node network. The reason is 
that INT-path relies heavily on odd nodes to conduct path 
planning. When there are fewer odd nodes in the network, 
INT-path easily generates an enormously long forwarding 
path. Furthermore, INT-path will generate only one 
forwarding path that cover all the nodes when there are none 
or two odd nodes in the network. On the other hand, NetView 
uses only one server to inject probes into and collect probes 
from the network. Even if shortest path between the server 
and a node to telemetry is used, NetView will also generate 
long forwarding paths when the network diameter is large. 
Different from INT-path and NetView, NetworkSight 
proactively controls the length of forwarding path when 
conducting path planning. Consequently, NetworkSight 
generates much shorter forwarding paths.

Beside the maximum value, the variance of path length 
is calculated to make further comparison. Figure 6 shows 
that NetworkSight generates more balanced forwarding paths 
with much smaller variance of path length. On the contrary, 
the other two mechanisms, INT-path and NetView, fail to 
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eliminate differences in path length. As a result, neither 
INT-path nor NetView can achieve synchronous multipath 
telemetry.
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0 50 100 150 200
The Number of Nodes

0

50

100

150

200

Th
e 

V
ar

ia
nc

e 
of

 th
e 

Pa
th

 L
en

gt
h

NetworkSight

INT-path

NetView

50, 186.47

161, 132.61

Figure 6. The variance of path length

Path number. Figure 7 illustrates the number of the 
forwarding paths generated by different path planning 
algorithms. NetworkSight generates much more forwarding 
paths than INT-path and NetView. This is because 
NetworkSight proactively controls the path length and 
only generates shorter paths (no more than 4 hops) when 
conducting path planning. On the contrary, INT-path and 
NetView prefer to generate fewer forwarding paths and 
fall short to take the path length into account. Besides, the 
number of the forwarding paths generated by NetView is 
often more than that of INT-path. The reason is that NetView 
generates a shortest forwarding path for a fixed source and a 
random destination. Hence, the number of forwarding paths 
generated by NetView depends heavily on the number of 
nodes in the network.
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Figure 7. Impact of network size on the path number

4.2 Evaluation of Telemetry Performance
To further evaluate the telemetry performance of 

NetworkSight, we carry out extensive simulations to compare 
NetworkSight with state-of-the-art mechanisms. Here, we 
use Mininet to establish different network topologies with 
the number of nodes ranging from 18 to 200 [29]. Besides, 
the telemetry latency and telemetry overhead are measured in 
each network topology. In addition, BMv2 switches are used 
to enable NetworkSight to define customized packet headers 
and 22-byte INT metadata per-hop is inserted into the probes.

Telemetry latency. For each network topology, we 
measure the end-to-end telemetry latency of all probes using 
NetworkSight, INT-path and NetView, respectively. Figure 
8 shows that the end-to-end telemetry latency of each probe 
varies even if using the same telemetry mechanism to inject 
the probes into the same network. This is because the probes 
travel different forwarding paths in the network. Clearly, the 
median value of the box of NetworkSight is always smaller 
than that of both INT-path and NetView for the same network 
topology. This reveals that most of the probes injected by 
NetworkSight can complete telemetry in a much shorter time. 
Similarly, the maximum value of the box of NetworkSight 
is also the smallest, which demonstrates that NetworkSight 
achieves a lowest network-wide telemetry latency. For 
different network topologies, this conclusion still holds. As 
mentioned earlier, the telemetry latency is tightly associated 
with path length and long forwarding paths only result in a 
high telemetry latency. The short balanced forwarding paths 
generated by NetworkSight can significantly reduce the end-
to-end telemetry latency for all probes and thus achieve fast 
network-wide telemetry.
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Figure 8. The telemetry latency of different mechanisms

On the contrary, both INT-path and NetView do not 
proactively limit the path length and thus generate more 
unbalanced forwarding paths when conducting path planning. 
As a result, the end-to-end telemetry latency of each probe 
fluctuates more dramatically in INT-path and NetView. For 
example, in a 100-node network, the probe needs 9 ms to 
complete telemetry for a short forwarding path while 53 ms is 
cost for a long forwarding path using INT-path. For NetView, 
the end-to-end telemetry latency ranges from 7 ms to 22 ms. 
Besides, packet loss occurs in the cases of 50-node and 161-
node networks using INT-path. The reason of the packet loss 
is that INT-path generates enormously long forwarding paths 
for these networks, which results in the probe size exceeding 
MTU due to conducting telemetry on these forwarding paths. 
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Consequently, these forwarding paths hinder the probes from 
completing telemetry and reaching the collector. Eventually, 
INT-path fails to achieve network-wide telemetry.

Telemetry overhead. To evaluate the telemetry overhead 
of NetworkSight, we measure the bandwidth consumption 
of NetworkSight and make comparisons with that of INT-
path and NetView. Figure 9 shows that the bandwidth 
consumption of each telemetry mechanism increases with the 
expansion of network size.

Figure 9. The bandwidth consumption of different mechanisms

In general, the bandwidth consumption is proportional to 
the number of the probes injected into the network. Although 
NetworkSight injects more probes into the network than INT-
path and NetView do, the size of each probe in NetworkSight 
is much smaller than that of the other two telemetry 
mechanisms. Specifically, the probes in each telemetry 
mechanism contain Ethernet header, source routing label 
stack and INT header. The source routing label stack and INT 
header of the probes generated by NetworkSight occupy less 
space, which are only h bytes and 22×h bytes, respectively. 
Here, h refers to the hops a probe traversed, which is no more 
than 4. On the other hand, INT-path and NetView reserve 
more space for source routing label stack (64 bytes in INT-
path while 2 bytes for each hop in NetView). Besides, an 
8-byte UDP header and a 20-byte IP header are encapsulated 
in the probes simultaneously, which further increase the 
bandwidth consumption. As shown in Figure 6, the variance 
of path length in INT-path and NetView are relatively bigger, 
making the probe size hard to estimate. As a result, the 
bandwidth consumption of NetworkSight is not much higher 
than that of INT-path and NetView for all network topologies.

In  summary,  NetworkSight  can genera te  more 
balanced forwarding paths and thus achieves fast network-
wide telemetry. Besides, the bandwidth consumption of 
NetworkSight is relatively low, which makes it practical for 
deployment.

4.3 Testbed Testing
To study the feasibility of NetworkSight, we build a 

3-pod Fat-Tree network, which contains 15 switches and 6 
hosts. Besides, every two switches are connected by a 1G/s 
link while each host is connected with the corresponding ToR 
by a 500Mb/s link.

Varying telemetry frequency .  To evaluate the 
performance of NetworkSight under different telemetry 
frequency, fixed telemetry items (1, 5, 10) are collected 

for every switch and the telemetry overhead is measured. 
Besides, each host periodically communicates with a host 
in another pod at the speed of 100 Mbps, generating the 
background traffic. As shown in Figure 10, the bandwidth 
consumption grows with the increase of the telemetry 
frequency regardless the types of telemetry items collected. 
Besides, the bandwidth consumption can be neglected when 
the telemetry frequency is small. However, the bandwidth 
consumed at the telemetry frequency of 1000 Hz is only 
slightly greater than that at the telemetry frequency of 100 
Hz. This is because NetworkSight cannot complete the 
network-wide telemetry task in such a short time (i.e, 1 ms).

Figure 10. The bandwidth consumption under different telemetry 
frequency

Varying background traffic. Now we focus on the 
performance of NetworkSight under different background 
traffic. Similarly, fixed telemetry items (1, 5, 10) are collected 
for every switch and each host periodically communicates 
with a host in another pod. We make the communication 
speed vary from 0 to 500 Mbps to generate different 
background traffic and measure the network-wide telemetry 
latency.  The telemetry frequency is fixed as 10 Hz and the 
average network-wide telemetry latency is calculated. Figure 
11 shows that the network-wide telemetry latency increases 
rapidly when the background traffic is lower than 500 
Mbps. However, when the background traffic is 500 Mbps, 
packet loss occurs and NetworkSight falls short to complete 
network-wide telemetry due to congestion.

Figure 11. The network-wide telemetry latency under different 
background traffic

The above experiments on the testbed confirm that 
NetworkSight can provide fast and on-demand telemetry 
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with a low bandwidth consumption at a high telemetry 
frequency when the background traffic is small. However, it 
will cost more time for NetworkSight to complete network-
wide telemetry when network congestion occurs. For these 
reasons, we suggest using NetworkSight at the telemetry 
frequency no exceeding 100 Hz in the scenario where the 
network traffic load is relatively low.

5  Conclusion

In this paper, the problem of fast and on-demand 
network-wide monitoring was addressed. A novel telemetry 
framework named NeworkSight was proposed. Owing to 
the short balanced forwarding paths generated by the cluster 
based path planning and the crafted probes built on source 
routing, we showed that NetworkSight achieved fast and on-
demand synchronous multipath telemetry in a more efficient 
way. Besides, the telemetry primitives and corresponding 
APIs enabled various applications to express the telemetry 
requirements more flexibly. Extensive experiments revealed 
that NetworkSight outperformed state-of-the-art mechanisms, 
generating more balanced forwarding paths and significantly 
reducing network-wide telemetry latency with acceptable 
telemetry overhead.
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