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Abstract

Harsh or hostile environments may lead to node failure 
and connectivity degradation of a UAV swarm system. In 
order to maintain or restore the connectivity of a network 
in case of node failure, this paper proposes a mechanism 
to adjust the network topology to resist the impact caused 
by node failure. Firstly, a network model of a UAV 
swarm network based on k-hop constrained reachability 
is proposed. Secondly, a k-hop constrained reachability 
based proactive connectivity maintaining mechanism of 
UAV swarm network is presented. In this mechanism, 
each node identifies the network abnormality distributed 
according to k-hop reachability, and reports the observed 
abnormality to the master node; then, a virtual edge-based 
topology reconstruction algorithm is put forward for the 
master node to derive a topology reconstruction solution 
in a centralized way; afterwards, the solution is delivered 
to the slave nodes to reconfigure the network topology in 
parallel. Thirdly, a quantitative method is introduced to 
optimize the total travel distance of nodes, and a spanning 
tree-based method is designed to maintain the connectivity 
during the topology transformation process. Both theoretical 
analysis and simulation results have shown that: on the one 
hand, the proposed mechanism are effective in maintaining 
a UAV swarm’s connectivity in case of node failure; on the 
other hand, the proposed mechanism outperforms existing 
mechanisms in terms of fault tolerance, connectivity, and 
total travel distance, and it’s less affected by the failure rate.

Keywords: UAV swarm network, Network reconstruction, 
Connectivity maintaining, Algebraic connectivity

1  Introduction

Unmanned Aerial Vehicle (UAV) swarms composed of 
miniaturized UAV nodes have gained significant attention 
in recent years due to their unique advantages, including 
cost efficiency, strong scalability, and high survivability. 
These advantages stem from the collaborative efforts of 
UAVs, which rely on their underlying UAV swarm network 
(USNET). However, maintaining connectivity in USNETs 
can be challenging, especially in unattended or hostile 

environments where UAV swarms are typically deployed. In 
such harsh conditions, swarm nodes may get damaged, and 
wireless links among them may fail due to limited power 
supply, malicious damage, and other factors. When multiple 
nodes fail in a UAV swarm, the structure of the swarm may 
become compromised, leading to reduced survivability [1]. 
Therefore, it is critical to develop mechanisms to maintain 
USNET connectivity in the event of node failures.

Existing connectivity maintenance strategies under 
node failure could be divided into two categories: reactive 
and proactive [2]. A reactive mechanism aims to restore 
connectivity after detecting network segmentation. Typical 
reactive proposals include repositioning nodes [3-5], 
Data Mule [6-7], and cooperative communication [8]. 
In contrast, a proactive mechanism strives to provision 
resources both at setup and during normal operation to 
prevent network segmentation when node failure happens. 
Specifically, existing connectivity maintenance methods 
can be categorized into four groups: node deployment 
optimization [9-10], backup node designation [11], dynamic 
communication range adjustment [12], and controllable node 
mobility [13-16]. However, existing proactive proposals 
could not fully solve the connectivity concerns of USNET 
in two aspects: on the one hand, existing solutions cannot 
well adapt to the characteristics of USNET, such as time-
varying topology, limited payload, controllable movement 
in 3-D space, and high unit price; on the other hand, there is 
no easy-to-calculate metric that can quantify local network 
connectivity.

In this backdrop, to solve the above-mentioned two 
problems, this paper puts forward a k-hop constrained 
reachability based proactive connectivity maintaining 
mechanism (PCM) for maintaining a USNET’s connectivity. 
At first, a novel metric is defined, named k-hop constrained 
local algebraic connectivity, to characterize the connectivity 
of a USNET to facilitate failure detection. A failure event 
will be reported to the master node of the swarm once a 
node’s k-hop constrained local algebraic connectivity is 
lower than a threshold. Secondly, the master node of the 
swarm will initiate the topology reconstruction process, in 
which a reconstructed topology will be calculated through 
establishing several virtual links between isolated or weak-
connected parts caused by failure. Thirdly, to minimize 
all nodes’ total travel distance, an optimization problem is 
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formulated and a travel distance optimization method based 
on geometric is proposed. The main contributions of this 
paper are as follows:

a) A distributed abnormal identification algorithm based 
on k-hop reachability is proposed. For this purpose, 
a novel metric, named k-hop constrained local alge-
braic connectivity, is defined that could better profile 
the connectivity status of a USNET than traditional 
global algebraic connectivity.

b) A virtual edge-based topology reconstruction algo-
rithm is put forward, in which the nodes connected 
by virtual edges will move towards each other due 
to the attractive force on the edge, to refine the lower 
bound of minimum local algebraic connectivity. The 
traditional potential-field based connectivity main-
taining algorithm improve connectivity by shortening 
the distance between the nodes connected by phys-
ical link, it may fall into local optimum due to the 
minimum inter-node distance constraint. The method 
of constructing virtual edges can make the nodes that 
originally exceed the communication range approach 
each other, thereby solving the local optimum prob-
lem.

c) An optimization method based on geometric is intro-
duced to shorten the total travel distance during net-
work transformation; and a spanning tree-based con-
nectivity maintaining method is designed to maintain 
the network connectivity during the transformation 
process.

The remaining of this paper is organized as follows. 
Section 2 summarizes related work. Section 3 formulates 
the connectivity maintenance problem. Section 4 details the 
proposed PCM mechanism and related algorithms. In Section 
5, extensive simulation experiments are presented to verify 
the proposed PCM mechanism and evaluate its performance. 
Finally, Section 6 presents the conclusion.

2  Problem Formulation

This section firstly introduces the USNET model 
and defines three running statuses of a USNET, then the 
connectivity maintenance problem is formulated. 

2.1 USNET Model
A USNET at a particular time t could be described as a 

time-varying undirected graph G(t) = U(t), E(t), where U(t) 
= {ui | i = 1, 2, ..., n} denotes n UAV nodes, E(t) = {eij | ui 

∈ U(t), uj ∈ U(t)} refers to the bidirectional wireless links 
between nodes ui and uj in the network. Each node could 
perceive the connection status of all its wireless links with its 
neighboring nodes, and get its own location through GPS. A 
node is appointed as the master node, denoted as umaster, and 
the remaining nodes are slave nodes. The master node could 
perceive the state of the network, including network topology 
and connectivity.

Let qi(t) ∈ 3 and vi(t) ∈ 3 denote the position and 
velocity of node ui at time t, respectively. Let dij(t) = ||qi(t) 
− qj(t)|| denote the Eulerian distance between ui and uj. 

Assumed that all nodes have the same transmission range R; 
therefore, an edge eij∈E(t) exists if and only if dij(t) ≤ R.

Definition 1. (k-hop neighboring set):  Let Nk
i (t) be the 

set of k-hop neighboring nodes of node ui at time t. That is,
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Let N+
i (t) ={ui}ÈN1

i (t) denote the set of 1-hop neighboring 
nodes of node ui that contain itself.

Let AG(t) denote the weighted adjacency matrix of the 
time-varying undirected graph G(t). That is, 
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where f (dij(t)) > 0 is a sigmoid function about the distance 
dij(t). Let LG(t) denote the weighted Laplacian matrix of the 
time-varying undirected graph G(t). That is,
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LG(t) is a symmetric positive semi-definite matrix. Let 
0 = λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of LG(t), the second 
smallest eigenvalue λ2 is referred to as algebraic connectivity. 
Let λG(t) denote the algebraic connectivity of the graph G(t), 
λG(t) = 0 indicates that the network is disconnected at time 
t, i.e., the network is partitioned into at least two disjoint 
subnets.

Algebraic connectivity could profile the global 
connectivity of a USNET, and is suitable for centralized 
computing.  However,  the calculat ion of  algebraic 
connectivity needs to obtain global topology information, 
which leads to high communication overhead. Besides, 
algebraic connectivity is strongly related to the number of 
nodes. For instance, the algebraic connectivity of a ring 
topology decreases with the number of nodes, that is, a 
uniform algebraic connectivity value cannot be used to 
describe networks of different scales with the same topology. 
We propose a new metric, named k-hop local algebraic 
connectivity, which is suitable for distributed computing 
and could provide a relatively uniform metric that is weakly 
related to the number of nodes.

Let ci,j(t) be a Boolean variable representing whether or 
not ui and uj are neighbors. That is,
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Definition 2. (path between ui and uj except ul): For ∀
ui, uj∈U(t)\{ul}, let pl

ij be the path between ui and uj except ul, 
that is, ∃ up_1, up_2, ..., up_k−1∈U(t)\{ul}, such that,
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where up_0 denotes ui, and up_k denotes uj, ||p
l
ij|| denote the 

length of the path pl
ij .

Let Θl
ij  = {pl

ij} denote the set of all paths between ui and uj 
except ul, and ηl

ij = min||pl
ij|| denote the length of the shortest 

path in Θl
ij .

Definition 3. (k-hop constrained reachability between ui 
and uj except ul): For ∀ ui, uj∈U(t)\{ul}, i ≠ j, let éγl

ijùk denote 
the k-hop constrained reachability between ui and uj except ul. 
That is,
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Let SGl denote the subgraph corresponding to the nodes 
set N+

l (t), the definition of the k-hop constrained weighted 
adjacency matrix Ak

SGl 
(t) corresponding to SGl is:
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Let Lk
SGl 

(t) denote k-hop constrained Laplacian matrix 
of ul, which corresponds to the k-hop constrained weighted 
adjacent matrix Ak

SGl 
(t), the method for calculating the value 

of its elements is the same as (3).
Definition 4. (k-hop constrained local algebraic 

connectivity): Let λk
i (t) denote k-hop constrained local 

algebraic connectivity of ui, it is defined as the second 
smallest eigenvalue of Lk

SGl 
(t).

This paper uses k-hop constrained local algebraic 
connectivity to characterize the local connectivity of nodes. 
Based on this metric, we could classify a USNET’s running 
state into three types: normal, abnormal, and outage, which 
are defined as follows.

Definition 5. (Normal state): A USNET is said to be in 
normal state at time t if it satisfies the following conditions:

a) Any node ui∈U(t) in the network can reach all other 
nodes uj∈U(t), i.e., λG(t) > 0;

b) k-hop constrained local algebraic connectivity of 
∀ ui∈ U(t) is greater than a specific threshold ζ, i.e., 

min∀ ui∈U(t) λ
k
i (t) ≥ ζ.

Definition 6. (Abnormal state): A USNET is said to be in 
abnormal state at time t if it satisfies the following conditions:

a) Any node ui∈U(t) in the network can reach all other 
nodes  uj∈U(t), i.e., λG(t) > 0;

b) k-hop constrained local algebraic connectivity of 
∀ ui ∈ U(t) is less than a specific threshold ζ, i.e., 
min∀ ui∈U(t) λ

k
i (t) < ζ.

The nodes with a k-hop constraint local algebraic 
connectivity lower than the threshold are labeled as abnormal 
nodes.

Definition 7. (Outage state): A USNET is said to be in 
outage state at time t if there exists any surviving node ui∈
U(t) cannot reach any other surviving nodes uj∈ U(t), i.e., 
λG(t) = 0.

Figure 1 shows the state transition diagram of a USNET.

Figure 1. The state transition diagram of a USNET

Assuming that the failure events of a USNET are discrete, 
independent, and mutually exclusive; and the number of 
failure events constitutes a Poisson process. In other words, 
the probability of node failure events occurring k times 
within time [t, t + τ] is:

( ) ( )( ) ( ) , 0,1, .
!

keP N t N t k k
k
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According to the characteristics of the Poisson process, 
the arrival time interval of node failure events is an 
independent and identically distributed exponential random 
variable with the mean value 1/λ, which will be referred to 
as the failure rate of the nodes rfail in the following analysis. 
The occurrence of a node failure event means that one of the 
surviving nodes fails with equal probability.

A USNET is in the normal state when it is initialized. 
When a node fail event happens, if the network is still 
connected and there is at least one node’s k-hop constrained 
local algebraic connectivity is less than a certain threshold ζ, 
i.e., λG(t) > 0 && min∀ ui∈U(t) λ

k
i (t) < ζ, then the USNET enters 

the abnormal state. If the network is disconnected, i.e., λG(t) 
= 0, the USNET enters the outage state. A self-reconstruction 
process is called in abnormal state, and the USNET will 
switch back to the normal state after the reconstruction is 
completed. If a node fails during the reconstruction process, 
the process will be aborted. Whether to restart the self-
reconstruction process depends on the network’s connectivity 
status. The reconstruction problem at the outage state can 
refer to [17]. This paper focuses on the self-reconstruction 
process in the abnormal state.

2.2 Problem Formulation
Figure 2 shows an example of a USNET’s different states. 

For convenience, the value of k is set to 2 in this paper, 

sigmoid function f(dij(t)) =1/
( )20 ( ) 90

10
1+

ijd t

Re
−

− 
 
 
 

, R = 200m, ζ = 1. 

At time t0, λG(t) = 0.83 > 0, min∀ ui∈U(t) λ
2
i (t) = 1.51 ≥ ζ, thus 
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the USNET shown in Figure 2(a) is in normal state. Node 
2 fails when t = t1, λG(t) = 0.58 > 0, but min ∀ ui∈ U(t) λ

2
i (t) = 

0.97 < ζ, the USNET shown in Figure 2(b) switches to the 
abnormal state. In this case, Node 4 is an abnormal node, 
whose 2-hop constrained local algebraic connectivity is 0.97, 
which is less than the threshold. Node 4 is also a cut-vertex 
of the network. Then node 4 fails when t = t2, which results 
in the USNET to be partitioned into two disjoint subnets 
(λG(t) = 0), then it enters the outage state, as shown in Figure 
2(c).

(a) t = t0, normal state (b) t = t1, abnormal state (c) t = t2, outage state

Figure 2. An example of a USNET’s different states

In order to restore the USNET’s state from abnormal 
to the normal state, it is necessary to use the node’s 
maneuverability to move the surrounding relevant nodes 
(such as node 1 or 3) to the appropriate positions (such as the 
position of node 2). This could greatly reduce the probability 
of the USNET entering the outage state.

The kinematic model of the node ui, i∈{1, 2, ..., n}is as 
follows:

.

max

( ) ( ) ,
0 ( )

i i

i

q t v t
v t V

 =


≤ ≤
                                 (9)

where vi(t) is the moving speed of the UAVs at time t, and  
Vmax∈ denote the maximum flight speed of a UAV.

The three main metrics to measure the goodness 
of a topology reconstruction method include: topology 
reconstruction time Treconstruct, algebraic connectivity λG(t), and 
total travel distance of nodes TD. Treconstruct refers to the time 
from the occurrence of a node failure event to the completion 
of topology reconstruction. The algebraic connectivity λG(t) 
is used to measure the robustness of the network before and 
after reconstruction; and the total travel distance is used to 
reflect the energy efficiency of the node movement process. 
Let Q'(t) = {q'

i(t) | ui∈U(t)} denote the set of target locations 
of all nodes ui∈ U(t) at time t, where q'

i(t)∈3 denote the 
target location of node ui, then TD = Σui∈ U(t) ||q

'
i(t) − qi(t)||. The 

longer the travel distance, the greater the energy consumption 
and thus the lower the energy efficiency.

Then, the reconstruction of a USNET’s topology could 
be modeled as an optimization problem that minimizes all 
nodes’ total travel distance while restoring the network’s 
connectivity, as shown in (10):

( ) '
( ) ( )

arg min ( )) (
i

Q t i iu U t
q tQ t q t′ ∈

′ = −∑   (10)

    i

( )

m n

min ( )

( ), ( ), ( )
( ) 0

. .

 
i

k
u U t i

i j ij

G

t

u U t u U t d t R
t while reconstruct the to

s
pol gy

t
o

λ ζ

λ

∀ ∈




≥

∀ ∈ ∈ ≥
>      

(11)
(12)
(13)

Exp.  (11)  descr ibes  minimum local  algebraic 
connectivity constraint, which requires that the k-hop 
constrained local algebraic connectivity of all nodes in 
the target topology is greater than ζ . Exp. (12) describes 
minimum inter-node distance constraint, which requires 
that the distance between any two neighboring nodes in the 
target topology is no less than Rmin∈ (0, R), so as to avoid 
potential collision or interference. Exp. (13) describes keep-
connected constraint, which requires the USNET keep 
connected during the reconstruction process.

3  k-hop Constrained Reachability based 
Proactive Connectivity Maintaining 
Mechanism

This section details the k-hop constrained reachability 
based proactive connectivity maintaining (PCM) mechanism.

3.1 Basic Idea
When a node failure event happens, PCM mechanism 

autonomously adjusts the network topology to maintain the 
connectivity of the network utilizing each node’s (i.e., a 
UAV’s) decision-making ability and maneuverability. To be 
specific, the following three steps will be conducted:

a) Distributed abnormal state identification: each node 
periodically perceives information of k-hop neigh-
boring nodes and identify abnormalities in time.

b) Centralized topology reconstruction: the identified 
network abnormalities are reported to the master 
node, which calculates the network topology recon-
struction plan that satisfies the connectivity require-
ments.

c) Parallel topology transformation: transform the ab-
normal topology into the new topology according to 
the network reconstruction plan.

Next, we will detail each step in the following sections.

3.2 Distributed Abnormal-state Identification
Each node detects network abnormalities through 

calculating whether its k-hop constrained local algebraic 
connectivity is less than a certain threshold. Specifically, a 
node ul∈U(t) periodically detects whether the link between 
itself and its neighboring node ui∈N1

l (t) is broken; if the link 
is disconnected, ul will start the following process:

a) Exchange information with its 1-hop neighboring 
nodes to obtain their respectively IDs, locations, 
neighboring nodes of its 2-hop neighboring nodes; 

b) Calculate its 2-hop constrained local algebraic con-
nectivity λ2

l (t);
c) If λ2

l (t) < ζ, ul judges that the network is in abnormal 
state, and reports its decision to the master node    
umaster for network reconstruction.
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This process is formally illustrated in Algorithm 1, named 
distributed abnormal identification (DAI) algorithm.

Algorithm 1. Distributed abnormal identification (DAI) algorithm

Input: ζ
Output: Whether the network is abnormal or not
1: if ∃ ui∈N1

l (t), eli is disconnected then
2:    communicate with uj∈N1

l (t) twice to get the information of
   N 2

l (t)

3:    for uj∈N1
l (t)  do

4:        for uk∈N1
l (t)  do

5:            if j=k then
6:               [A2

SGl 
(t)]jk ← 0

7:            else if j ≠ l and k ≠ l then
8:                if ∃ ejk∈E(t) then
9:      éγl

jkù2 ← 1

10:                else if { }1 1( ) ( ) \j k lN t N t u ≠ ∅  then

11:                     éγl
jkù2 ← 1/2

12:                else
13:      éγl

jkù2 ← 0
14:                     end if
15:                [A2

SGl 
(t)]jk ← éγl

jkù2 ∙ f (djk(t))
16:            else
17:                [A2

SGl 
(t)]jk ← f (djk(t))

18:            end if
19:            [L2

SGl 
(t)]jj ← [L2

SGl 
(t)]jj +[A2

SGl 
(t)]jk

20:         end for
21:     end for
22:     L2

SGl 
(t) ← [L2

SGl 
(t) − A2

SGl 
(t)

23:     λ2
l (t) ← second smallest eigenvalue of L2

SGl 
(t)

24:     if λ2
l (t) < ζ then

25:        inform umaster that current system is in an abnormal state
26:     end if
27: end if

3.3 Centralized Topology Reconstruction
After receiving one or more abnormal reports from slave 

nodes, the master node umaster will immediately poll all nodes 
to get the global topology information, and then calculates 
the network topology reconstruction plan.
3.3.1 Topology Reconstruction Problem

The key to solving the topology reconstruction problem 
is to calculate the target position of all nodes to make 
the 2-hop constrained local algebraic connectivity of the 
abnormal nodes reach the threshold. We solve the problem 
through improving the global algebraic connectivity of the 
network, since increasing the global algebraic connectivity 
can improve the lower bound of the 2-hop constrained 
local algebraic connectivity. The maximization of algebraic 
connectivity is an NP hard problem [18]. There are two 
methods to improve the algebraic connectivity of the 
network: increasing the edges in the network, and shortening 
the distance between nodes.

PFM mechanism, which is designed by Zavlanos et al., 
has good performance in maintaining connectivity [14]. 
However, in the USNET environment, the shrinking process 
of the network will be restricted by the Minimum inter-node 
distance constraint. This may make PFM be trapped in the 
local optimum when the abnormal nodes (such as cut-vertex) 
still exist in the network. If there are cut-vertexes in the 
network, the failure of the cut-vertex will cause the network 
to be partitioned into multiple disjoint subnets, which makes 
the network unable to work normally.

This may cause it to trap in local optimum when the 
abnormal nodes (such as cut-vertex) still exist in the network. 
If there are cut-vertexes in the network, the failure of the cut-
vertex will cause the network to be partitioned into multiple 
disjoint subnets, which makes the network unable to work 
normally. Figure 3 illustrates two cases of this problem. In 
Figure 3, after the initial topology is transformed by the 
PFM mechanism, there still exist cut-vertexes in the target 
topology or the target topology cannot satisfy the specific 
connectivity requirements. The initial topology in Figure 
3(a) is a regular hexagon composed of six nodes, when the 
distance between nodes is reduced to the minimum inter node 
distance, the nodes cannot get closer to each other. However, 
the topology is still a regular hexagon, and the connectivity of 
the target topology may not satisfy the specific connectivity 
requirements. In the initial topology in Figure 3(b), all nodes 
are located on a straight line. When the distance between 
nodes is reduced to the minimum inter-node distance, all 
nodes with degree 2 (such as node 2 and node 3) are cut-
vertex.

(a) Regular hexagon topology (b) Linear topology

Figure 3. Problems of PFM mechanism

To solve this problem, we propose an algorithm to 
improve the algebraic connectivity of the network, which 
combines the methods of increasing the edges in the network 
and shortening the distance between nodes.
3.3.2 Topology Reconstruction Mechanism

In our topology reconstruction mechanism, our solution 
for the aforementioned problems contains two parts:

On the one hand, several virtual edges are introduced into 
the network to solve the problem illustrated in Figure 3(a). 
A virtual edge is added between two adjacent nodes beyond 
each other’s communication range, so that they can attract 
each other until their distance is less than the communication 
range, i.e., R, so as to increase their algebraic connectivity. 
As shown in Figure 4(a).

On the other hand, as for the problem illustrated in Figure 
3(b), a 3-dimensional plane is constructed which contains 
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the straight line and has the smallest angle with xOy plane. If 
the number of nodes is greater than 3, we construct an axis 
with the same direction as the normal vector of the plane at 
the 1-hop neighboring node of the node with degree 1, then 
rotate the node with degree 1 around the axis by 120 degrees. 
As shown in Figure 4(b). If the number of nodes is 3, only 
one of the nodes with degree 1 is selected to perform the 
aforementioned rotation operation.

(a) Add virtual edge (b) Rotate node

Figure 4. Solutions for the problems of PFM mechanism

After adding these two emendations, the refined topology 
reconstruction process is conducted as follows. 

Firstly, PFM mechanism is applied for improving the 
algebraic connectivity of the network. When ui∈U(t) moves 
according to the control law shown in (14), the network will 
shrink toward the center, and the algebraic connectivity will 
be improved.

( )

1( ) ( )
( )

( ) ,
( ( ) )

ii
c a

da tr M t M t
dq t

v t
det M t

− 
⋅  

 =
                  (14)

where a is a positive constant. M(t) = PTLG(t)P, P = [p1p2...pn],  
is an n×(n−1) matrix. pT

i pj = 0 for all i, j = 1,..., n, and pT
i 1 = 0  

for all i = 1, ..., n, where 1 is an n-dimensional vector with all 
entries equal to 1.

When the distance between nodes is less than the 
minimum inter-node distance, the repulsion force will be 
generated between nodes, which is described by the potential 
function ϕ(t) defined in (15).

( ) ( ) ( ) ( ),

1 .
2 i j

iju U t u U t i j
t tφ φ

∈ ∈ ≠
= ∑ ∑                    (15)

The potential function ϕij(t) describes the repulsive force 
between nodes ui and uj:

m
2

in( ) ,  (0, )
( ) .

0,
min ij ij

ij
R d if d R

t
otherwise

φ
 − ∈

= 


             (16)

The control law of the repulsive force on ui∈U(t) is:

( ),
1( ) ( ).
2 ( )j

i
a iju U t i j

i

dv t t
dq t

φ
∈ ≠

= − ∑                  (17)

The above method may be trapped in a local optimum 
when the algebraic connectivity doesn’t reach the threshold. 
The proposed PCM mechanism overcomes this by adding 
a virtual edge between nodes beyond the communication 
range to escape local optimum. Let the candidate virtual edge 
set be VE = {veij | ui∈U(t), uj∈U(t)}, when ui and uj satisfy 
the following three conditions, veij is added to the candidate 
virtual edge set VE:

(a)  ui and uj are not adjacent, i.e., uj∈U(t)\N +
i(t); 

(b) No other nodes are included on the line segment   
connecting ui and uj, i.e., ∀ uk∈U(t)\{ui,uj}, dij(t) ≠ 
dik(t) + dkj(t);

(c) The line segment connecting ui and uj does not inter-
sect with any other edge in the graph G(t), i.e., for   
∀ eab∈E(t), the following equation is satisfied.

[( ( ) ( )) ( ( ) ( ))]
[( ( ) ( )) ( ( ) ( ))] 0

[( ( ) ( )) ( ( ) ( ))]
 [( ( ) ( )) ( ( ) ( ))] 0

[( ( ) ( )) ( ( ) ( ))]
 [( ( ) ( )) ( ( ) ( ))] 0.

a i b j

a j b i

a i b j

b i j i

i a b a

j a b a

q t q t q t q t
q t q t q t q t

q t q t q t q t
q t q t q t q t

q t q t q t q t
q t q t q t q t

− × −


× − × − =
 − × −
 ⋅ − × − <
 − × −
⋅ − × − <

                (18)

If the candidate virtual edge set VE ≠ ∅ , let deg(ui) 
denote ui’s degree, VE' ⊆ VE denote the candidate virtual 
edge set of nodes with degree 1, i.e., VE' = {veij | veij∈VE and 
(deg(ui) = 0 or deg(uj) = 0)}. When selecting the added virtual 
edges, the edges in the set VE' have the higher priority. If VE' 
≠ ∅ , the shortest edge in VE' is chosen as the virtual edge; 
otherwise, the shortest edge in VE is selected as the virtual 
edge. Let veij denote the selected virtual edge to be added, veij 

= (VE' ≠ ∅ ? arg minveab∈ VE' dab: arg minveab∈ VE dab). Then, set 
the distance dij corresponding to veij be the latest transmission 
range, and update the elements of the weighted adjacency 
matrix. In addition to the existing links, we set the value of 
the adjacency matrix element corresponding to the virtual 
edge veij to f(dij(t)); then, update the value of the weighted 
Laplacian matrix, and recalculate the velocity of each node 
according to (14). Since the distance of the virtual edge veij is 
relatively long, the attractive force between ui and uj is small, 
an amplification coefficient ρ is introduced to increase the 
attractive force generated by the virtual edge veij and speeds 
up the convergence. ρ > 1 is a constant, and the attractive 
forces vi

c(t) and v jc(t) are multiplied by ρ.
If the candidate virtual edge set VE ≠ ∅ , then we judge 

whether all nodes in the network locate on a straight line. If 
all the nodes in the network are located on a straight line, i.e., 
for ∀ ui, uj, uk∈U(t), i ≠ j ≠ k, [qk(t) − qi(t)] × [qj(t) − qi(t)] = 
0, we construct a plane which contains the straight line and 
has the smallest angle with the xOy plane. Let ui∈U(t), uj∈
U(t) denote the nodes with degree 1, (xi, yi, zi) and (xj, yj, zj) 
denote the 3-dimensional coordinate ( , , )x y zn n n



s of nodes ui 
and uj respectively, then the constructed plane equation is as 
follows:
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     )( ) ( ) ( )(j i i j j i i jy y x x x z z y y y zκ κ − + − + − + − 
( ) 0,j i i j j i i jx y x y y z y zκ+ − + − =                                 (19)

where the value of  is shown:

2 2( ) ( )
.

( )( )
j i i j

j i j i

y y x x
x x z z

κ
− + −

=
− −

                         (20)

Let ( , , )x y zn n n


 denote the unit normal vector of the plane 
represented by (19), let ua∈ U(t) denote the neighboring 
nodes of ui∈U(t) with degree 1, we construct an axis with 
the same direction as the normal vector at the coordinates of 
the node ua, and rotate ui’s coordinate by 120 degrees around 
the axis. Let q'i(t) denote ui’s new coordinate after rotation, it 
will be:

[ ]' ( ) ( ) ( ) ( ),i i a aq t q t q t q t= − +N                      (21)

where the matrix N∈3×3 is defined as: 

2

2

2

3 1 3 3 3 3
2 2 2 2 2 2

3 3 3 1 3 3 .
2 2 2 2 2 2
3 3 3 3 3 1
2 2 2 2 2 2

x x y z x z y

x y z y y z x

x z y y z x z

n n n n n n n

n n n n n n n

n n n n n n n

 
− + − 

 
 

= − − + 
 
 

+ − − 
  

N (22)

When the number of nodes is 3, let ui, uj∈U(t) denote the 
nodes with degree 1, select a node with the smaller ID from 
ui and uj to perform the above rotation operation.

When the iterative process is trapped in the local 
optimum, the algebraic connectivity can be improved by 
adding virtual edges or rotating nodes until 2-hop constrained 
local algebraic connectivity of ∀ ui∈ U(t) is greater than 
a specific threshold, i.e., min ∀ ui∈ U(t) λ

2
i (t) ≥ ζ. When the 

algorithm is trapped in local optimum, if the candidate virtual 
edge set VE ≠ ∅  and all nodes are not located on the same 
straight line, the algorithm fails.
3.3.3 Virtual Edge-based Topology Reconstruction 

Algorithm
The virtual edge-based topology reconfiguration (VET) 

algorithm is illustrated in Algorithm 2.

Algorithm 2. Virtual edge-based topology reconstruction (VET) 
algorithm
Input: U(t), qi (t), ζ, LG (t), R, Rmin) 
Output: Q' (t)

1: detM ← −1; for ∀ ui∈U(t), q'
i (t) ← qi (t)

2: while true do

3:      flag ← false

4:      for ui∈U(t) do

5:          if λ2
i (t) < ζ then

6:              flag ← false, break

7:          end if

8:      end for

9:      if ! flag then

10:          reconstruction finished, break

11:      end if 

12:      M(t) ← PTLG(T)P, lastDetM ← detM

13:      detM ← determinant of M(t)

14:      if detM ≤ lastDetM then

15:          VE ← virtual edges satisfy the requirements

16:          if VE ≠ ∅  then

17:
             '

' ?arg min
ab

ij ab
ve VE

ve VE d
∈

← ≠ ∅

             : arg min
ab

ab
ve VE

d
∈

18:              update LG(t) and M(t) based on dij

19:          else if all nodes are collinear then

20:              rotate node with degree 1 according to (21)

21:              continue

22:          else

23:              algorithm failed, break

24:          end if

25:      end if

26:      for ui∈U(t) do

27:           
( )

1
'( ) ( )
( )

( )
( ( ))

ii
c a

da tr M t M t
dq t

v
det

t
M t

− 
⋅  

 ←

28:
          if ui is one of the vertices of the chosen virtual edge
          then

29:              vi
c(t) ← ρ*vi

c(t)

30:           end if

31:           '( ),

1( ) ( )
2 ( )j

i
a iju U t i j

i

dv t t
dq t

φ
∈ ≠

← − ∑

32:           q'
i (t) ← q'

i (t) + vi
c(t) + vi

a(t)

33:      end for

34:    end while

3.4 Parallel Topology Transformation
After obtaining the target topology, the master node 

delivers the reconstruction solution to the slave nodes, and 
all nodes move to their respective destination positions 
accordingly. To optimize this transformation process, two 
aspects need consideration:

a) Optimization of the total travel distance. The shape 
of the target topology is determined in the process of 
topology reconstruction. The location and orientation 
of the target topology are optimized to minimize the 
total travel distance of nodes during the transforma-
tion from the initial topology to the target topology, 
thereby reducing energy consumption in the process.

b) Connectivity maintenance. Each node’s moving 
speed is calculated to ensure the connectivity of the 
network during the reconstruction process.
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3.4.1 Optimization of the Travel Distance
To minimize energy consumption during topology 

reconstruction, optimizing each node’s moving trajectory 
is essential. Figure 5 demonstrates an example of travel 
distance optimization. Figure 5(a) depicts the initial and 
target topology shapes. The optimization approach is as 
follows: Firstly, align the target topology with the initial 
topology’s geometric center, and use it as the coordinate 
origin, as shown in Figure 5(b). Secondly, the target topology 
is rotated around the geometric center with an angel of α∈
[0, 2π], and the problem is reduced to the calculation of 
the optimal α to minimize the travel distance of topology 
reconstruction. Since the UAV node will be limited by the 
flight altitude when rotating, we restrict the rotation could 
only be conducted around the z-axis, so that the altitude of 
each node remains unchanged, as shown in Figure 5(c).

      

      (a) Initial and target topology     (b) Coordinate conversion

(c) Coordinate rotation

Figure 5. Coordinate conversion and rotation

Let (xi, yi, zi) and (x'
i, y'

i, z'
i) denote ui’s initial and 

the target coordinates respectively, ui ∈ U(t). Then, the 
coordinates of the initial topology’s and the target topology’s 

geometric centers will be oic = ( ( )

( )
i

iu U t
x

U T
∈∑ , ( )

( )
i

iu U t
y

U T
∈∑ , ( )

( )
i

iu U t
z

U T
∈∑ ) 

and otc = (
'

( )

( )
i

iu U t
x

U T
∈∑ , 

'
( )

( )
i

iu U t
y

U T
∈∑ , 

'
( )

( )
i

iu U t
z

U T
∈∑ ) respectively. We 

treat the oic and otc to be coordinate origin, let   ( , , )l l lx y z  and 
  ' ' '( , , )

l l l
x y z  denote the coordinates of the initial position and 

target position of the node ui∈ U(t) in the new coordinate 
system respectively, then we can get   ( , , )l l lx y z = qi(t) − oic, 
  ' ' '( , , )

l l l
x y z = q'

i(t) − otc.
The coordinates q''

i(t) obtained by rotating the target 
position of the node ui∈U(t) around the z-axis are shown as 
follows.

( )'' '

cos sin 0
( ) ( ) sin cos 0 .

0 0 1
i i tcq t q t o

α α
α α

 
 = − − 
  

              (23)

The value of the total travel distance TD is: 

( ) ( ) ( )( )''

i
i i icu U t

TD q t q t o
∈

= − −∑  

( )
 



' ' 2)cos( sin
i

l l iu U t
x y xα α

∈
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 







1
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



2 2 22 2 2' ' '
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∑






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 
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1
2' ' ' ' .2 cos sinl l l l l l l lx x y y x y x yα α − + + − 

   (24)

The calculation of the minimum value of the angle α in 
(24) is to solve a single-variable bounded nonlinear function 
minimization problem. The angle α can be obtained by the 
method of combining golden section search and successive 
parabolic interpolation [19]. Let the coordinates of the 
optimized target position of the node ui be qd

i(t), then qd
i(t) 

= q''
i(t) + oic = ((x'

i −
'

( )

( )
i

iu U t
x

U t
∈∑ )cosα − (y'

i −
'

( )

( )
i

iu U t
y

U t
∈∑ )sinα + 

( )

( )
i

iu U t
x

U t
∈∑ , (x'

i −
'

( )

( )
i

iu U t
x

U t
∈∑ )sinα + (y'

i −
'

( )

( )
i

iu U t
y

U t
∈∑ )cosα + ( )

( )
i

iu U t
y

U t
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, z'
i −

'
( )

( )
i

iu U t
z

U t
∈∑ + ( )

( )
i

iu U t
z

U t
∈∑ )

 
. Now the shape, position, and 

orientation of the target topology have been determined. 
Next, we will discuss how to transform from the initial 
topology to the target topology.
3.4.2 Connectivity Maintenance

In the process of topology reconstruction, the master node 
needs to determine the flight speed of each slave node, so 
that the node will not exceed the maximum flight speed, and 
satisfy the keep connected constraint in the transformation 
process.

After determining the initial and target positions for a 
node, its longest moving distance (dmax) during the topology 
reconstruction process can be calculated by:

max ( )max ( ) ( ) .
i

d
u U t i id q t q t∈= −                     (25)

The fastest topology reconstruction time Treconstruct = dmax/
Vmax, where Vmax is the maximum flight speed of the UAV.

Theorem 1. If there is at least one identical spanning 
tree between the initial and the target network topologies 
and all nodes arrive at their target locations with the same 
movement time ttravel, the links in the same spanning tree will 
not disconnect during the movement, i.e., the keep connected 
constraint is satisfied.

Proof: To facilitate the calculation, we could select any 
one of the same edges in the identical spanning tree, and set 
the initial coordinates of the nodes u1 and u2, i.e., two ends of 
the selected link, be (0, 0, 0) and (a, 0, 0), respectively, a∈ (0, 
R). In the target network topology, the coordinates of u1 and 
u2 are (x1, y1, z1), (x2, y2, z2), as shown in Figure 6.
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Figure 6. Link connectivity during topology transformation

If u1 and u2 take the same time ttravel to reach their 

respective target position, their velocities will be ( 1

travel

x
t , 

1

travel

y
t , 1

travel

z
t ) and ( 2

travel

x a
t

−
, 2

travel

y
t , 2

travel

z
t ), respectively. During 

the moving process, after u1 and u2 move for a time period t, 

t∈ [0, ttravel], their respective positions are ( 1

travel

x t
t , 1

travel

y t
t , 1

travel

z t
t ) 

and (a + 2( )

travel

x a t
t

−
, 2

travel

y t
t , 2

travel

z t
t ). The distance d12 between u1 

and u2 is:

( ) 2
2 1

12 2 2
2 1 2 1

( )
( ) ( )
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d

y y z z
δ δ

δ δ δ δ
+ − −

=
+ − + −

   

( )2 2 2 2
2 1 2 1 2 1(( ) ( ) )x x y y z zδ= − + − + −

( ) ( )
1

2 2 2
2 1(1 ) 2 ,1a a x xδ δ δ + − + − −                (26)

where δ = t / ttravel . It’s easy to know that (x2 − x1)
2 + (y2 − 

y1)
2 + (z2 − z1)

2 ≤ R2 and a(x2 − x1)
 ≤ R2. Substituting these 

inequalities into (26), we have:

( )2 2 2 2 2
12 (1 ) 2 1 .d R R R Rδ δ δ δ≤ + − + − =           (27)

Therefore, if all nodes move to their target positions with 
the same movement time, the distance between the nodes 
of any link in the identical spanning tree will not exceed the 
transmission range R during the movement; in other words, 
the link will not be disconnected. This completes the proof.

In order to satisfy keep connected constraint, VET 
algorithm needs to be modified. The basic idea of the 
modification is to calculate the minimum spanning tree MST 
of the initial topology before planning the target topology. 
Let Bi

j(t) denote the set of node ui and all its descendants in 
the MST rooted at node ui. In generating the target topology, 
if the repositioning of ui will lead to the disconnection of and 
edge eij∈MST connecting ui and uj, all the nodes in Bi

j(t) are 
moved in cascade, and their displacement is consistent with 
the displacement of ui, so that the edge eij in the MST will 
not be broken, and at least one identical spanning tree exists 
in the initial topology and the target topology. According 
to Theorem 1, as long as the node moves from the initial 

position to the target position with the same movement 
time, the keep connected constraint can be satisfied. The 
modified virtual edge-based topology reconstruction (MVET) 
algorithm is shown in Algorithm 3.

Algorithm 3. Modified virtual edge-based topology reconstruction 
(MVET) algorithm
Input: G(t), U(t), qi (t), ζ, LG (t), R, Rmin 
Output: Q' (t)
1: detM ← −1; for ∀ ui∈U(t), q'

i (t) ← qi (t)
2: MST ← minimum spanning tree of G(t)
3: while true do
4:      same as the Step 3-25 in VET algorithm
5:      for ui∈U(t) do

6:           
( )

1
'( ) ( )
( )

( )
( ( ))

ii
c a

da tr M t M t
dq t

v
det

t
M t

− 
⋅  

 ←

7:              '( ),

1( ) ( )
2 ( )j

i
a iju U t i j

i

dv t t
dq t

φ
∈ ≠

← − ∑

8:            q ← vi
c(t) + vi

a(t)
9:            q'

i (t) ← q'
i (t) + q

10:            for eij∈MST do
11:                if ||q'

i (t) ← q'
j (t)|| > R then

12:                Bi
j(t) ← { uj and all its descendants in ui-rooted

               MST}
13:                for uk∈Bi

j(t) do
14:                    q'

k (t) ← q'
k (t) + q

15:                end for
16:                break
17:            end if
18:        end for
19:    end for
20: end while

4  Simulation and Results Analysis

The proposed PCM was compared with PFM [14] in 
algebraic connectivity, total moving distance, and fault-
tolerance. All simulations are conducted on MATLAB. 
Table 1 summarized the simulation parameters used in the 
simulations.

Table 1. Simulation parameters
Parameter Value
Transmission range (R) 200 m
Maximum flight speed Vmax 20 m/s
Node density (D) 35 nodes/km2

Minimum inter-node distance Rmin 150 m
Threshold of 2-hop constrained 
local algebraic connectivity (ζ) 1.0

Altitude 200 m

Sigmoid function f (dij(t)) 1/
( )20 ( ) 90

10
1+

ijd t

Re
−

− 
 
 
 

Amplification factor (ρ) 20
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Firstly, the validity of DAI algorithm and the relationship 
between local algebraic connectivity and global algebraic 
connectivity are tested. According to the uniform distribution, 
four test topologies are randomly generated in a square area 
with a side length of 1000 m at a specific node density D 
(case 1-4 in Figure 7). The generated topology needs to be 
connected and the minimum distance between nodes is not 
less than Rmin. Node failure event starts at 40 seconds, and 
one node is randomly selected every 5 seconds as the failed 
one. When it is decided that the network enters the abnormal 
state, the test is terminated, and the test result is shown in 
Figure 7. 

Figure 7. The validity of DAI algorithm and the relationship 
between λ2

min(t) and λG(t)

Let λ2
min(t) min ∀ ui∈ U(t) λ

2
i (t) denote the smallest 2-hop 

constrained local algebraic connectivity among all nodes. 
As can be seen from Figure 7, the minimum local algebraic 
connectivity of the initial topology λ2

min(t) < ζ, and DAI 
algorithm can detect that the current USNET is in abnormal 
state, triggering the reconstruction process, which takes 
approximately 10 seconds to complete. In the process of 
topological transformation, the distance between some 
nodes may be less than Rmin, so the minimum local algebraic 
connectivity λ2

min(t) and global algebraic connectivity λG(t) 
will fluctuate, but the overall trend is increasing. When the 
time t ≥ 40s, the minimum local algebraic connectivity λ2

min(t) 
and the global algebraic connectivity λG(t) decrease with the 
occurrence of node failure events. When 1-3 node failure 
events occur, DAI algorithm identifies that the USNET enters 
abnormal state. In general, the minimum local algebraic 
connectivity λ2

min(t) and the global algebraic connectivity 
λG(t) have the same trend. DAI algorithm can quickly identify 
network abnormalities, which verifies its validity.

      

(a) PFM, regular hexagon topology   (b) PFM, linear topology

      

(c) PCM, regular hexagon topology  (d) PCM, linear topology

Figure 8. Comparison of the PFM and PCM mechanisms in terms 
of topology reconstruction

Next, we test whether PCM mechanism could solve the 
problems faces PFM mechanism as shown in Figure 3. Figure 
8(a) and Figure 8(c) show the process of reconstructing 
regular hexagon topology by PFM and PCM mechanism, 
respectively. The topology structure reconstructed by PFM 
mechanism is still a regular hexagon and does not reach 
the connectivity threshold; in contrast, PCM mechanism 
completes the reconstruction in about 7 seconds. Figure 8(b) 
and Figure 8(d) show the process of reconstructing linear 
topology. The results show that PFM mechanism is trapped 
in the local optimum in less than 1 second, and the network 
topology is still a straight line. On the contrary, PCM 
mechanism stops at about 28 seconds, and there is no cut-
vertex in the transformed topology. 

Figure 9 illustrates the changes of λ2
min(t) and λG(t) in 

the topology reconstruction process using PFM and PCM 
mechanisms. It shows that λ2

min(t) and λG(t) are increasing in 
general. PFM mechanism stops iteration when λ2

min(t) does 
not reach the threshold ζ, and fails to restore the network 
to normal state. PCM mechanism solves the local optimum 
problem of the PFM mechanism, it stops when λ2

min(t) reaches 
the threshold ζ. Figure 9 also shows that PCM is better than 
PFM mechanism in global algebraic connectivity λG(t).

      

      (a) Regular hexagon topology           (b) Linear topology

Figure 9. Comparison of the PFM and PCM mechanisms in terms 
of λ2

min(t) and λG(t)

The third experiment tests the validity of MVET 
algorithm. For the convenience of presentation, a linear 
topology with 10 nodes is utilized, so there is only one 
spanning tree in the initial topology. Both VET and MVET 
algorithms are employed to generate the target topology. 
The changes in the spanning tree during the topology 
transformation are plotted to verify if the MVET algorithm 
can maintain the spanning tree without disconnection. Figure 
10(a) shows the process of reconstructing linear topology 
using VET algorithm. Compared with the initial topology, the 
edges (1, 2) and (3, 4) in the spanning tree are disconnected. 
Therefore, the condition in Theorem 1 that there is at least 
one identical spanning tree between the initial network 
topology and the target network topology is not satisfied. 
It can be seen from the topology transformation process 
that the network is partitioned into two subnets during the 
period of 21 s to 26 s (as shown in the blue circle). Thus, the 
correctness of Theorem 1 is verified. Figure 10(b) illustrates 
the changes of λ2

min(t) and λG(t) in the topology reconstruction 
process using VET algorithm and MVET algorithm. It can be 
seen that VET algorithm can also generate the target topology 
satisfying the specific connectivity requirements, but it cannot 
guarantee to satisfy the keep connected constraint during the 
topology transformation process. Figure 10(b) tells us that 
λG(t) = 0 during the period of 21 s to 26 s; in other words, the 
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network is disconnected during this period. MVET algorithm 
can ensure that λG(t) > 0 during the topology transformation 
process, and the network remains connected and satisfies the 
keep connected constraint. Therefore, the validity of MVET 
algorithm is verified.

     

(a) Process of reconstructing linear 
topology using VET algorithm

(b) Changes of λ2
min(t) and λG(t) 

using VET and MVET algorithm

Figure 10. Comparison of the reconstruction process using VET 
and MVET algorithm

The fourth experiment compares the fault-tolerant ability 
of PFM and PCM mechanisms. We randomly generate 
multiple test topologies in a square area with a specific node 
density, and the number of failure events constitutes a Poisson 
process (as described in section 2.1, rfail denotes the mean 
value of the arrival time interval of node failure events). Let 
tconnected denote the time from the network start-up to network 
outage, i.e., the time that the network remains connected. 
Let pconnected denote the probability that the network remains 
connected. Figure 11 compares the values of tconnected and 
pconnected for PFM and PCM mechanisms under varying failure 
rate rfail∈{1/60, 1/50, 1/40, 1/30, 1/20}. Figure 11(a) shows 
that as the failure rate increases, the time that the network 
remains connected reduces. Compared with PFM mechanism, 
PCM mechanism can prolong the time that the network 
remains connected by roughly 1.23 times. Figure 11(b) shows 
that with the increase of the failure rate, the probability that 
the network remains connected decreases. When the failure 
rate rfail  ≥ 1/30, the proposed PCM mechanism can make 
the probability that the network remains connected exceeds 
95%, while the PFM mechanism can only reach 56%. When 
the failure rate rfail = 1/20, the probability pconnected of PCM 
mechanism is reduced to about 85%. This is because the 
topology transformation process needs time. The shorter the 
time interval between node failure events, the more likely 
the node failure event will occur when the network topology 
transformation is not completed, which will increase the 
probability of the network entering the outage state. In 
summary, the proposed PCM mechanism outperforms the 
PFM mechanism in fault tolerance.

(a) tconnected (b) pconnected

Figure 11. Comparison of fault-tolerance between PCM and PFM 
mechanisms

Node movement is an energy-intensive operation, so 
the total travel distance of nodes is an important metric 
to measure the performance of connectivity maintaining 
mechanism. Figure 12 shows the average total travel distance 
of reconstructing network with PFM and PCM mechanisms 
with different failure rate rfail. It can be seen from Figure 12 
that the average total travel distance of PCM mechanism is 
relatively stable, because PCM mechanism is less affected by 
node failure events and has good fault-tolerant ability. The 
average total travel distance of PFM mechanism decreases 
with the increase of the failure rate. This is because the 
network is easy to enter the outage state with the increase 
of failure rate, which leads to the decrease of total travel 
distance of nodes. When rfail  ≤ 1/40, the total travel distance 
of PCM mechanism is significantly smaller than that of PFM 
mechanism. Compared with PFM mechanism, the total travel 
distance of PCM mechanism is reduced by 28% on average, 
and PCM mechanism is less affected by the failure rate.

Figure 12. Comparison of total travel distance between PCM and 
PFM mechanisms

5  Conclusion

Harsh deploy environment or malicious damage make 
UAV network vulnerable to damage or failure. This paper 
proposes a k-hop constrained reachability based proactive 
mechanism to restore the network in case of node failure. 
This paper first formulates the connectivity maintaining 
problem and node failure model of the USNET. To the 
author’s best knowledge, the concept of local algebraic 
connectivity is proposed and utilized for the first time to 
profile the local connectivity status of a USNET. Secondly, 
a distributed network abnormality identification algorithm is 
proposed, which identifies network abnormalities according 
to the local topology information of neighboring nodes. 
Thirdly, the concept of virtual edge is put forward to solve the 
local optimum problem of the existing potential field method 
in improving algebraic connectivity; and a novel virtual 
edge-based topology reconstruction algorithm is designed 
to generate the target topology. Fourthly, a quantitative 
method is introduced to optimize the travel distance of the 
topology transformation process; and a spanning tree-based 
method is proposed to maintain the connectivity during the 
topology transformation process. A series of simulations are 
conducted to evaluate the proposed algorithms. Simulation 
results show that the proposed mechanism solves the local 
optimum problem in the existing potential field method, 
and outperforms the existing mechanisms in terms of fault 
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tolerance, connectivity, and total travel distance. In the 
future work, our focus will shift towards the real-world 
validation of the proposed mechanism, thereby ensuring 
its practical effectiveness. Furthermore, we intend to delve 
into the application of multi-agent reinforcement learning 
techniques, aiming to amplify the algorithm’s adaptability 
and performance.
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