
An Integrated Semi-supervised Software Defect Prediction Model 1307

*Corresponding Author: Wenying Cheng; E-mail: 2202000697@neepu.edu.cn
DOI: 10.53106/160792642023112406013

An Integrated Semi-supervised Software Defect Prediction Model
Fanqi Meng1, 2, Wenying Cheng1*, Jingdong Wang1

1 School of Computer Science, Northeast Electric Power University, China
2 School of Computer Science, Guangdong Atv Academy For Performing Arts, China

mengfanqi@neepu.edu.cn, 2202000697@neepu.edu.cn, wangjingdong@neepu.edu.cn

Abstract

A novel semi-supervised software defect prediction
model FFeSSTri (Filtered Feature Selecting, Sample and
Tri-training) is proposed to address the problem that class
imbalance and too many irrelevant or redundant features
in labelled samples lower the accuracy of semi-supervised
software defect prediction. Its innovation lies in that the
construction of FFeSSTri integrates an oversampling
technique, a new feature selection method, and a Tri-training
algorithm, thus it can effectively improve the accuracy.
Firstly, the oversampling technique is applied to expand the
class of inadequate samples, thus it solves the unbalanced
classification of the labelled samples. Secondly, a new filtered
feature selection method based on relevance and redundancy
is proposed, which can exclude those irrelevant or redundant
features from labelled samples. Finally, the Tri-training
algorithm is used to learn the labelled training samples to
build the defect prediction model FFeSSTri. The experiments
conducted on the NASA software defect prediction dataset
show that FFeSSTri outperforms the existing four supervised
learning methods and one semi-supervised learning method
in terms of F-Measure values and AUC values.

Keywords: Software defect prediction, Semi-supervised
learning, Feature selection, Unbalanced classification,
Oversampling techniques

1 Introduction

Software defects are generated by programmers
during the coding process due to improper management,
inadequately understanding of software requirements or
lack of development experience [1]. Defective software may
produce unexpected results or behaviours after deployment,
which can seriously cause substantial economic losses to
the company and even threaten people’s lives. In addition,
the later in the development lifecycle of a software project
a defect is detected, the more expensive it is to fix it [2],
and the cost of detection and fixing increases significantly,
especially after the software is released. As a result, software
developers use software quality assurance tools such as
software testing or a code review to identify as many defects
as possible in software before deployment, but focusing on
all program modules would be labour-intensive, so the head
of the software quality assurance department wants to be able

to identify potentially defective program modules in advance
and subsequently allocate sufficient testing resources to them
[3].

Software defect prediction techniques can be used to
predict whether a software module contains defects based on
historical data information about the software, using methods
such as machine learning so that sufficient testing resources
can be devoted to modules that may contain defects [4].
Currently, many researchers have built up many software
defect prediction models with superior performance through
supervised machine learning. However, due to various
practical reasons, it is often not possible to obtain sufficient
marked template information. In such cases where there are
limited marked modules and sufficient unmarked modules,
software defect prediction models built using supervised
machine learning often fail to achieve good prediction results
[5].

Academics have started experimenting with semi-
supervised methods to predict software defects to address
these problems. Some researchers have used semi-supervised
machine learning to build software defect prediction models
to alleviate the problem of the lack of labelled samples.
However, few studies have considered the impact of class
imbalance and feature redundancy and irrelevance problems
on semi-supervised software models. In software testing,
80% of defects are found in 20% of the code, meaning that
the majority of software defects are concentrated in a small
number of software modules. As a result, software defect
history data is characterised by significant “class imbalance”
[5], which can lead to poor learning and inaccurate
predictions. In addition, as modern software systems grow
in size and complexity, the number of features (software
metrics) extracted from software modules becomes much
larger than before, and these features may be redundant
or irrelevant. This paper, therefore, presents a novel semi-
supervised software defect prediction model, FFeSSTri. In
this paper, the FFeSSTri algorithm is validated on the NASA
dataset, and with a smaller number of marker modules,
FFeSSTri can achieve better prediction results than the
classical machine learning algorithm and the semi-supervised
software defect model Tri_SSDPM.

The rest of the paper is organized as follows: Section 2
reviews related work; Section 3 describes an integrated semi-
supervised software defect model, including the general
framework, data pre-processing, filtered feature selection
based on relevance and redundancy and the Tri-training
algorithm; Section 4 tests the validity of the model by

1308 Journal of Internet Technology Vol. 24 No. 6, November 2023

describing the experimental procedure; Section 5 summarizes
the work of the paper and describes the focus of the next
steps.

2 Related Work

The number of labelled samples in software defect
prediction is minimal compared to the number of unlabelled
samples. Typical supervised learning methods are challenging
to build effective prediction models, and it is costly to obtain
many labelled samples.

Several researchers have built software defect prediction
models using semi-supervised machine learning in recent
years. Liao et al. [6] proposed the sampling-based semi-
supervised support vector machine prediction model S4VM+.
The model uses a semi-supervised support vector machine
method to construct a prediction model based on a small
amount of labelled sample data using information from
unlabelled data, solving the problem of difficult access to
labelled data in defect prediction studies. Jiang et al. [7]
proposed a semi-supervised software defect prediction
method ROCUS, which uses semi-supervised learning to
solve the problem of a small number of labelled samples and
under-sampling methods to solve the data imbalance problem,
and was empirically demonstrated on eight NASA data. He et
al. [8] proposed a semi-supervised random forest algorithm
extRF based on self-training, which employs information
transformation to improve the accuracy of software defect
prediction and can be applied to historical datasets with
less defect information and validated on Eclipse. Lu et al.
[9] proposed a semi-supervised dimensionality reduction
learning method for software defect prediction, which is a
self-training variation of the algorithm FTcF, which predicts
unlabelled samples in each iteration by repeatedly training
using labelled samples, and embeds a preprocessing strategy
in the dimensional complexity approach for reducing
software metrics. Experimental results show that the
prediction effect of semi-supervised learning is significantly
better than the random forest algorithm after dimensionality
reduction. Ma et al. [10] improved the Tri-training algorithm.
Meng et al. [11] proposed a semi-supervised software defect
prediction model Tri_SSDPM, which solves the problems of
low marker samples and class imbalance in the early stage
of software development by using oversampling techniques
and semi-supervised learning methods. The problem of
low marker samples and class imbalance at the early stage
of software development was solved using oversampling
techniques and semi-supervised learning. It can be found that
the semi-supervised software defect model can make full use
of unlabeled samples to improve the performance of classifier
prediction in the case of limited labelled samples. However,
the impact of feature redundancy and irrelevance on semi-
supervised software defect prediction has been seldom
considered in the above studies.

Feature selection can eliminate redundant features and
irrelevant features to obtain a good subset of features to
achieve the effect of dimensionality reduction, making the

model more generalizable and effectively improving the
classification effect of the classification model [12-14]. The
prediction performance of a few feature selection methods
was better than that of all feature selection methods. Liu
et al. [15] proposed a feature selection method based on
cluster analysis based on a filtering approach. In a defect
prediction framework, Song et al. [16] considered using
wraparound feature selection methods. The results showed
that the performance of software defect prediction was
better than using all features. Ni et al. [17] proposed the
MOFES method, which uses a multi-objective Pareto-based
algorithm for feature selection. Gao et al. [18] conducted an
experimental comparison of multiple filtered feature selection
methods on different subset evaluation strategies.

From the above research, it can be found that the feature
selection methods commonly used in software defect
prediction are mainly based on the correlation between
features and label columns, with little consideration of the
similarity between features, resulting in a subset of selected
features that are prone to redundancy problems. Therefore,
this paper proposes a filtered feature selection method
based on relevance and redundancy. The feature selection
algorithm considers both the relevance of features and label
columns as well as the similarity between features, which is
more general than wrapped and embedded feature selection
methods, eliminates the training step of classifiers, has
low algorithm complexity, and is thus suitable for large-
scale data sets and can quickly remove a large number of
irrelevant and redundant features. It can quickly remove a
large number of irrelevant and redundant features. Finally,
a novel semi-supervised software defect prediction model,
FFeSSTri, is proposed by applying the feature selection
method to a semi-supervised software defect model, which
is innovative in that it integrates an oversampling technique,
a new feature selection method and a Tri-training algorithm,
and is therefore effective in improving the accuracy of defect
prediction.

3 Construction of FFeSSTri

3.1 Overall Framework
The overall architecture of the FFeSSTri model is divided

into two main phases: the feature selection phase and the
model construction phase, and the overall framework is
shown in Figure 1. In the feature selection phase, the original
labelled feature data is first feature normalised, then the
labelled dataset is expanded and sampled using the SOMTE
oversampling method to generate a new training dataset, and
finally a filtered feature selection method based on relevance
and redundancy is proposed to feature select the labelled
sample set to obtain the optimal feature subset. In the model
building stage, the pre-processed test dataset is feature
selected according to the obtained optimal feature subset, a
software defect prediction model is constructed using the Tri-
training algorithm, and the test module after feature selection
is fed into the trained classifier to predict whether the module
has defects.

An Integrated Semi-supervised Software Defect Prediction Model 1309

labeled training dataset Data preprocessing

Preprocessed labeled datasets

Unlabeled training dataset

Feature selection

New training dataset

Testing dataset

Tri-training
 classification model

Defective module

Clean module

Feature selection stage

Model construction stage

Feature sorted subset

Feature redundancy calculation

Feature correlation calculation

Filtering feature selection based on
correlation and redundancy

Feature normalization

SOMTE oversampling

Optimal feature subset

New labeled training
dataset

Figure 1. The general architecture of the FFeSSTri model

3. 2 Data Preprocessing
3.2.1 Feature Normalization

Each piece of data in the dataset used in this paper is a
set of 21 metric attributes and a label value extracted from
a software module. The attributes include the McCabe [19]
attribute, the Halstead [20] attribute, the number of lines
of code, etc. These attributes objectively characterise the
quality features associated with the quality of the software,
and the label value indicates whether the module is defective.
Table 1 shows the 21 metric attributes used in this paper.
These 21 feature measures are used as independent variables
in this experiment, and the dependent variable is a binary
variable (0 or 1) to indicate whether the code is defective or
non-defective. As some feature values are too large or too
small, they can affect the classification results of the final
model. The data with a relatively large skewness can first
be transformed using the log1p function to compress the
feature data to a certain interval to make it more obedient to
the Gaussian distribution, which may lead to a good result for
our subsequent classification results.
3.2.2 SOMTE Oversampling

In practice, there are usually fewer defective instances
than non-defective ones, known as the class imbalance
problem in software defect prediction [21]. If a random
division of the dataset or an under-sampling preprocessing

approach is used directly, the training dataset will likely
contain very little or even no defective data, and it is not easy
to train a better prediction model using such data the training
set. The basic idea is to generate more samples with fewer
labels according to the pattern of samples with fewer labels,
thus making the data more balanced and solving insufficient
initial samples. A typical oversampling type is the SMOTE
(Synthetic Minority Oversampling Technique) algorithm
proposed by Chawla [22]. The steps of this algorithm are as
follows.

(1) For each sample x in the minority class, calculate its
Euclidean distance to all samples in the minority class sample
set Ssin, to obtain its k-nearest neighbours.

(2) Set a sampling ratio according to the sample
imbalance ratio to determine the sampling multiplier N . For
each minority class sample x, select some samples at random
from its k nearest neighbours, assuming the selected nearest
neighbours are xn.

(3) For each randomly selected nearest neighbor nx ,
construct a new sample with the original sample respectively
according to the following formula.

rand(0,1)*new nx x x x= + − . (1)

1310 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 1. Feature metrics
Feature Description
McCabe’s line count of code It counts the lines of code in module.
McCabe “cyclomatic complexity” It indicates complexity of the module on basis of number of linearly independent

paths.
McCabe “essential complexity” It indicates the extent to which a flowgraph can be reduced.
McCabe “design complexity” It indicates cyclomatic complexity of its reduced flowgraph.
Halstead total operators +operands It gives the count of operators and operands used

in the module.
Halstead “volume” It measures the product of length and log of vocabulary on base.
Halstead “program length” It indicates the length of the program.
Halstead “difficulty” It is related to the difficulty of the program to write or understand. Also

computed as reciprocal of length.
Halstead “intelligence” It determines amount of intelligence presented in the module.
Halstead “effort” It translates into actual coding time.
Halstead It is a base Halstead measure.
Halstead’s time estimator It evaluates the testing time of C/C++codes.
Halstead’s line count It indicates the numbers of lines in the code.
Halstead’s count of lines of comments It indicates the number of lines of comments.
Halstead’s count of blank It indicates the number of lines of comments.
IOCodeAndComment It gives the lines of code and comment in the module.
Unique operators It counts the total number of distinct operators in the module.
Unique operands It counts the total number of operators in the module.
Total operators It counts the total number of operands in the module.
Branch count of the flow graph It gives the count of branches in the flow graph.

3.3 Filtered Feature Selection based on Relevance and
Redundancy

3.3.1 Feature Correlation Analysis
The main objective of feature relevance analysis is to

calculate the correlation between features and categories
and select a subset of features with a high correlation with
the categories. Typical feature selection methods include
information gain rate, mutual information, and chi-square
value. The performance of different feature selection
methods varies and can even be said to vary greatly, which
stems from their different methodological principles and the
different sequences of feature rankings obtained. A typical
subset of features from the three commonly used feature
selection methods can be selected to enable better prediction
of defects. Experiments have shown [23] that the feature
subset selected after combining the three methods for feature
selection is more accurate and avoids the low performance
of the prediction model brought about by one or several
feature selection methods incorrectly selecting the feature
subset. Therefore, at this stage, three commonly used feature
selection methods for calculating relevance are mainly
selected for feature ranking.

(1) Information gain rate
The information gain rate method performs feature

selection based on how much information a feature brings to
the classification, and the more information a feature brings,
the more critical it is. Its calculation formula is shown in
equation (2).

Gain()GainRatio()
Split ()

AA
E A

= . (2)

Where Gain(A) is the information gain of feature after

dividing the dataset S, SplitE(A) represents the splitting
information of the feature. It can be considered that the
feature with the most significant information gain rate is the
feature that is most relevant to the category attributes.

The information gain rate introduces splitting information
compared to the information gain, and the more points the
feature takes, the larger the splitting information value is,
which counteracts the effect of the number of points the
feature takes on the number of information the feature brings
to the classification system.

(2) Mutual information
Mutual information [24] is knowledge belonging to the

information theory and represents the relationship between
information quantities. It measures the correlation between
two variables using the understanding of information entropy
theory. Assuming that X and Y are two random variables,
the formula for calculating the value of mutual information
between X and Y is shown in equation (3).

 (,) () (|)MI X Y H X H X Y= − , (3)

where H(X) and H(X|Y) denote the information entropy
and conditional entropy, respectively, and a larger mutual
information value MI(f, C) between the feature variable f and
the class label C indicates that the feature is more relevant to
the class and has better differentiation ability.

(3) Chi-square value
A chi-square value is a non-parametric statistical value.

The chi-square test is a widely used hypothesis test that is
non-parametric and is used to verify whether the category
distribution is correlated with the feature taking values. The
null hypothesis of this test is that the category distribution
is assumed to be uncorrelated with the feature values. The

An Integrated Semi-supervised Software Defect Prediction Model 1311

method calculates the difference between the theoretical
inferred value and the actual observed value when the null
hypothesis holds, i.e., the chi-square value. Its calculation
formula is shown in equation (4).

()2

, ,2

1 1 ,

m n
i j i j

i j i j

o E
E

χ
= =

−
= ∑∑ . (4)

Where m is the number of different feature values, and
n is the number of categories. oi,j is the actual number of
samples with feature value i in the sample with category j,
and Ei,j is the theoretical number of samples with feature
value i in the sample with category j. The larger the
cardinality value, the more significant the difference between
the actual and theoretical values, and the less likely the null
hypothesis will hold, i.e., the more significant the correlation
between the feature values and the categories.
3.3.2 Feature Redundancy Analysis

In the filtered feature selection method based on relevance
and redundancy, the main goal of feature redundancy analysis
is to calculate the correlation between features and features.
A feature is considered redundant if it is more correlated
with another feature. For a non-linear variable like feature
metric in software defect prediction, symmetric uncertainty is
chosen at this stage to measure feature-to-feature correlation.

Symmetric uncertainty is based on the theory of
information entropy. It measures the correlation between two
features by measuring the difference in distribution between
two features X and Y, making the amount of information
shared by two features comparable. Its calculation formula is
shown in equation (5).

(,)(,) 2
() ()
IG X YSU X Y

H X H Y
= ×

+
. (5)

Where H(X) denotes the information entropy of feature
X, H(Y) denotes the information entropy of feature Y, and
IG(X,Y) means the information gain. The value of SU(X,Y)
is in the range of [0,1], and the more significant this value is,
the larger the correlation between feature X and feature Y is.
3.3.3 Algorithm Description

In order to improve the classification performance of
software defect prediction models, this paper proposes
a filtered feature selection method based on relevance
and redundancy, which is more general than wrapped
and embedded feature selection methods, eliminates the
training step of classifiers, has low algorithm complexity,
and is thus suitable for large-scale datasets and can quickly
remove a large number of irrelevant features. The feature
selection method selects the final optimal subset of features
after ranking the relevance of features to class labels and
removing redundancy between features. The algorithm flow
is shown in Algorithm 1. In the feature relevance analysis
stage, three different methods, Information Gain Rate (IGR),
Mutual Information (MI) and chi-square (CS), are first used
to calculate the relevance magnitude between features and
classes to obtain three sets of feature sub ghted according to
the ranked order. Then each feature will get three weighted

values. The sum of the three weighted values for each feature
is called the weighted sum. Finally, the features are re-ranked
according to the weighted sum of the features, and the top N1
features are retained to obtain the feature subset S optimized
by relevance in this phase. In the feature redundancy analysis
phase, the feature subset obtained from the previous phase
of relevance analysis is used as the original feature set in
this phase. Then, the correlation between two features is
calculated using the symmetric uncertainty (SU) method,
and the features with a high correlation are clustered into
one class. Finally, based on the feature relevance ranking
results, the features in each class with high feature-category
relevance are selected for retention, the remaining features
in the same class are considered redundant features for
removal and the top N2 features are retained to obtain the
optimal feature subset S2. Studies have shown [25] that the
proportion of features retained in the final feature selection
should preferably be between 20% and 40%. Therefore,
the number of features N2 = Total number of datasets * 40.
In the previous stage, N1= 2*N2 features are retained. The
innovation of this algorithm is that it combines the feature
ranking sequences obtained by the three methods in the
correlation analysis stage and assigns a weight to each
feature, which can effectively improve the generalization
ability of the prediction model and effectively avoid the
instability of a single feature selection method. At the same
time, the similarity between features is considered, which can
effectively eliminate redundant features.

Algorithm 1. Filtered feature selection algorithm based on
relevance and redundancy

Input: Defective dataset S = {f1, f2, ..., fm, C} is the category label

Output: Optimal feature subset S2

1. Sample the dataset S to generate k sets of data.

2. for k re-cross-test:

3. find feature correlations using three algorithms,
 IGR, MI and CS.

4. sort the features in descending order according
 to the correlation size to obtain three feature
 subsets SIGR, SMI, SCS.

5. weight the features proportionally according to the
 order size, and the three weights of feature fi = (i = 1,
 2, ..., m) are IGR

fiW , I
fi
MW , S

fi
CW ;

6. calculate the weighted sum of each feature in the
 three subsets IGR

fi fi fi
I

fi
M CSsum W W W+= + .

7. sort the features in descending order according
 to sumfi and keep the first N1 features to get the
 feature subset S1.

8. calculate the correlation between features in S1

 among the features with high correlation, remove
 the ones with low correlation and keep N2
 features to get the optimal feature subset S2.
9. end for

1312 Journal of Internet Technology Vol. 24 No. 6, November 2023

Algorithm 2. Pseudo code of simplified Tri-training

Input: Training set 1 1{ , { }} ,l u
i I i i iL x y U x= == =

Three classifiers {h1, h2, h3}

Output: Ensemble h using majority vote;

1. for i = 1, 2, 3 do

2. Train hi on L;

3. end for

4. while any of {h1, h2, h3} changes do

5. for i = 1, 2, 3 do

6. Li = Ø;

7. for x U∈ do

8. if () ()(,)j kh x h x j k i= ≠ then

9. ()(,)i i jL L x h x= ∪ ;

10. end if

11. end for

12. end for

13. for i = 1, 2, 3 do

14. Train hi on L∪ Li;

15. end for

16. end while

3.4 Tri-training
Tri-training is a compelling semi-supervised integrated

learning method that uses a small amount of labelled data
to build a good classifier, which is an excellent solution to
the problem of insufficient labelled sample data. Prediction
is then performed on the unlabelled samples. Suppose two
classifiers predict an unlabelled sample as defect-free, and
a third classifier predicts a defective sample. In that case,
the third classifier should learn this sample as a defect-free
sample, and the labelling confidence estimation problem is
easily handled by the three classifiers informing each other.
The three classifiers are trained for several iterations until
the results stabilize, and finally, the three classifiers are
integrated for learning using the maximum vote method.
However, in some cases, the prediction of the majority-vote
classifier may be wrong, which then introduces noise to the
minority-vote classifier, but Zhou et al. [26] have shown that
under certain conditions, the increase in classification noise
rate can be compensated by the number of newly labelled

samples. Algorithm 2 shows a simplified pseudo-code of the
Tri-training method, more details of which can be found in
the literature [26].

4 Experiment and Analysis

In order to verify whether the model in this paper can
improve the defect prediction accuracy, this paper analyzes
the NASA MDP dataset. It selects three classical machine
learning algorithms, NaiveBayes, Decision Tree and
RandomForest, an Adaboost integrated learning algorithm,
and the semi-supervised method Tri_SSDPM proposed in
the literature [11] compared with the FFeSSTri proposed
in this paper to calculate the prediction, recall, accuracy,
comprehensive evaluation index F-value and AUC-value,
respectively. Decision Tree, NaiveBayes, RandomForest and
Adaboost learning algorithms were run with the parameter’s
default values in sklearn.

This experiment was set up as follows, setting the
labelling rate R of the experimental dataset to 0.3, that is,
30% of the dataset was randomly selected as the training set
of labelled samples, and the remaining 70% of unlabelled
samples were used as the auxiliary dataset and test set.
With reference to the literature [25], the number of features
selected was set to 40% of the original number of features. In
order to eliminate chance from the experimental results, the
experiment was repeated 20 times for a specific tagging rate
R for the method in this paper and the chosen comparison
method, and the average of the 20 times was taken as the
final result of the experiment.

4.1 Experimental Data
In this paper, the NASA MDP defect dataset in

PROMISE library [27] is selected for experiment, including
CM1, JM1, KC1 and KC2. Because the defect data in NASA
have a vital authenticity that enhances the credibility of the
defect datasets, these datasets are widely used in the field
of software defect prediction. The properties in the dataset
are all software code metrics, including the McCabe [19]
loop complexity metric and the Halstead [20] scientific
metric. The McCabe Loop Complexity Metric analyses the
complexity of the internal structure of a program, assuming
that the more loops and selections there are, the more
complex the program and the more likely it is to be defective;
the Halstead Scientific Metric measures the propensity of
software modules to be defective based on operators and
operands. The basic information on the dataset is shown in
Table 2.

Table 2. Basic information of NASA MDP datasets
Project Module number Non- Defects Defects Defects rate /%
CM1 498 449 49 9.8
JM1 7782 6020 1762 22.6
KC1 2109 1783 326 15.5
KC2 522 415 107 20.5

An Integrated Semi-supervised Software Defect Prediction Model 1313

4.2 Experimental Evaluation Index
Software defect prediction is a binary problem and for

each sample there are two markers, one for the true class
of the sample and the other for the predicted class, so we
can use the data in the confusion matrix [28] to evaluate the
performance of the prediction algorithm. As shown in Figure
2, the possible results are as follows: samples whose true
marker is positive are also predicted to be positive, denoted as
TP (true positive); samples whose true marker is positive but
are predicted to be negative, denoted as FN (false negative);
samples whose true marker is negative but are predicted to be
positive, denoted as FP (false positive); samples whose the
true marker is negative and is also predicted to be negative,
denoted as TN (true negative).

Predicted results
Defective

Predicted results
Clean

TP
True Positive

FP
False Positive

FN
False Negative

TN
True Negative

T
ru

e
va

lu
e

D
ef

ec
tiv

e
T

ru
e

va
lu

e
C

le
an

Figure 2. Confusion matrix

In order to effectively evaluate the performance of the

classifier, the experimental results were analysed using five
evaluation metrics: accuracy, precision, recall, F-measure
value and AUC value, which is an intuitive way to evaluate
the performance of the classifier and is a measure of how
good the defect prediction model is. The evaluation metrics
can be expressed as follows.

Accuracy rate is the proportion of the total modules
that the model predicts correctly and the accuracy rate is
calculated as follows.

TP TNAccuracy
TP FN FP TN

+
=

+ + +
. (6)

Precision rate is the proportion of instances where the true
category is defective out of all instances that are predicted to
be defective. The formula for calculating this is as follows.

 TPPrecision
TP FP

=
+

. (7)

Recall is the proportion of instances correctly predicted
to be defective out of all instances whose true category is
defective. A good prediction model should have a high recall
rate, finding as many defective modules as possible. The
recall rate is calculated as follows.

TPRecall

TP FN
=

+
. (8)

F-measure is a weighted summed average of the
accuracy and recall rates, combining the results of the
recall and accuracy rates, and is used to evaluate the overall
performance of the model.

2 Precision RecallF
Precision Recall

×
= ×

+
. (9)

The horizontal coordinate of the ROC curve is the FPR
(false positive rate), i.e., the proportion of samples that were
actually in the negative category that were misclassified as
positive to the total number of samples that were actually
in the negative category. The vertical coordinate is the TPR
(true positive rate), the proportion of correctly classified
positive class samples to the total number of positive class
samples.

4.3 Analysis of Results
In this paper, experimental analysis is performed on four

sub-datasets CM1, JM1, KC1 and KC2 of the NASA MDP
dataset, and the experimental results are as follows:

On the CM1 dataset, As can be seen in Table 3, the
FFeSSTri method obtained optimal values for all five
indicators compared to the other five methods.

On the KC1 dataset, As can be seen in Table 4, FFeSSTri
could not always get the best value compared to the other
five methods. But FFeSSTri obtains the best values of
Recall, Precision, F-Measure and AUC on the KC1 dataset.
Therefore, overall, the prediction accuracy of FFeSSTri is
higher than that of the other methods.

On the KC2 dataset, As can be seen in Table 5, the
FFeSSTri method could not always obtain optimal values
on Precision, but its F-Measure and AUC values were
higher than those of the comparison methods. Therefore, the
FFeSSTri method still outperforms the other five methods in
terms of prediction performance.

On the JM1 dataset, As can be seen in Table 6, the
FFeSSTri method obtained optimal values for all five
indicators compared to the other five methods.

1314 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 3. Values of each indicator for each method in dataset CM1
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.582 0.207 0.693 0.268 0.578

RandomForest 0.181 0.285 0.867 0.222 0.610

DecisionTree 0.182 0.286 0.836 0.222 0.604

Adaboost 0.250 0.214 0.838 0.231 0.579

Tri_SSDPM 0.892 0.803 0.86 0.843 0.839

FFeSSTri 0.916 0.82 0.884 0.865 0.855

Table 4. Values of each indicator for each method in dataset KC1
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.659 0.331 0.745 0.439 0.632

RandomForest 0.194 0.541 0.856 0.285 0.717

DecisionTree 0.344 0.365 0.806 0.351 0.725

Adaboost 0.247 0.476 0.832 0.325 0.675

Tri_SSDPM 0.842 0.814 0.826 0.828 0.820

FFeSSTri 0.866 0.821 0.846 0.843 0.831

Table 5. Values of each indicator for each method in dataset KC2
Classifier Precision Recall Accuracy F-Measure AUC

NaïveBayes 0.786 0.476 0.784 0.590 0.711

RandomForest 0.500 0.608 0.823 0.549 0.738

DecisionTree 0.391 0.529 0.792 0.45 0.702

Adaboost 0.625 0.701 0.801 0.661 0.761

Tri_SSDPM 0.866 0.808 0.843 0.835 0.823

FFeSSTri 0.865 0.833 0.855 0.849 0.846

Table 6. Values of each indicator for each method in dataset JM1
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.253 0.473 0.796 0.330 0.654

RandomForest 0.203 0.502 0.808 0.289 0.668

DecisionTree 0.065 0.614 0.808 0.118 0.713

Adaboost 0.218 0.535 0.810 0.310 0.682

Tri_SSDPM 0.83 0.801 0.811 0.816 0.810

FFeSSTri 0.838 0.817 0.823 0.827 0.823

Table 7. Average of each classifier over the four data sets
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.57 0.371 0.754 0.406 0.643

RandomForest 0.269 0.484 0.838 0.336 0.683

DecisionTree 0.245 0.448 0.771 0.285 0.686

Adaboost 0.335 0.482 0.820 0.382 0.674

Tri_SSDPM 0.857 0.806 0.835 0.83 0.823

FFeSSTri 0.871 0.823 0.852 0.846 0.834

An Integrated Semi-supervised Software Defect Prediction Model 1315

The results of each classifier under the four datasets
were averaged as shown in Table 7. In order to visualize the
classification effect of each classification model, the average
value of each metric for each classification model on the
four datasets is represented as a bar chart. As can be seen
from Figure 3, the FFeSSTri method is higher than the other

methods in all evaluation metrics, and combined with Table
7, it can be concluded that the F-Measure and AUC averages
are at least 0.44 (0.846-0.406) and 0.148 (0.834-0.686) higher
than the classical machine learning algorithms, respectively,
and are the same as the F-Measure and AUC averages in this
research area. The proposed Tri_SSDPM improved by at least
0.016 (0.846-0.83) and 0.011 (0.834-0.823), respectively.

Figure 3. Average of each classifier over the four datasets

The FFeSSTri model achieves higher accuracy than
other methods because the DecisionTree, NaiveBayes, and
RandomForest algorithms do not consider under-labelled
samples, classification imbalance and feature redundancy
and irrelevance. The integrated learning method Adaboost,
which builds and combines multiple classifiers for training
and classification, usually outperforms the performance of
a single classifier in generalisation. However, it does not
fully use the potential information in unlabelled samples and
does not address the problems of classification imbalance
and feature irrelevance and redundancy, resulting in poor
classification results. The Tri_SSDPM model effectively
mitigates the problem of insufficient marker samples and
class imbalance by combining the SMOTE oversampling
technique with the Tri-training algorithm, but does not take
into account the impact of feature redundancy and irrelevance
issues on the semi-supervised software defect model.
However, the FFeSSTri model proposed in this paper solves
the problems of insufficient labeling of training samples, class
imbalance, as well as feature redundancy and irrelevance
in features, so it achieves higher prediction accuracy in the
experimental results.

In summary, a combination of oversampling techniques,
filtered feature selection based on correlation and redundancy,

and the use of unlabelled samples can improve the prediction
accuracy of the model to some extent. FFeSSTri is an
effective semi-supervised software defect prediction model
and has better prediction accuracy than several other
methods.

5 Conclusion

Semi-supervised software defect prediction overcomes
the problem of lacking labelled samples but still suffers
from class imbalance and excessive irrelevant or redundant
features. To this end, this paper proposes an integrated semi-
supervised software defect model FFeSSTri. Its innovation
lies in that the construction of FFeSSTri integrates an
oversampling technique, a new feature selection method,
and a Tri-training algorithm, thus it can effectively improve
the accuracy. Firstly, the oversampling technique is applied
to expand the class of inadequate samples, thus it solves the
unbalanced classification of the labelled samples. Secondly, a
new filtered feature selection method based on relevance and
redundancy is proposed, which can exclude those irrelevant
or redundant features from labelled samples. Finally, the
Tri-training algorithm is used to learn the labelled training

1316 Journal of Internet Technology Vol. 24 No. 6, November 2023

samples to build the defect prediction model FFeSSTri.
The experimental results show that the model obtains better
prediction results on NASA datasets.

Considering that the number of features selected affects
the prediction results of the software defect prediction
model. Therefore, the following work focuses on exploring
the effect of the number of features selected on the software
defect prediction model and selecting the optimal number of
features to improve the software defect prediction.

Acknowledgement

This article is supported by the Science and Technology
Development Plan Project of Jilin Province, China (No.
20230101242JC), and the Science and Technology Research
Project of the Jilin Provincial Department of Education
(JJKH20230133KJ).

References

[1] X. Chen, Q. Gu, W. S. Liu, S. L. Liu, C, Ni, Survey of
static software defect prediction, Ruan Jian Xue Bao/
Journal of Software, Vol. 27, No. 1, pp. 1-25, January,
2016.

[2] Q. Wang, S.-J. Wu, M.-S. Li, Software defect prediction,
Ruan Jian Xue Bao/Journal of Software, Vol. 19, No. 7,
pp. 1565-1580, July, 2008.

[3] Z. Chen, X. Ju, H. Wang, X. Chen, Hybrid Multiple
Deep Learning Models to Boost Blocking Bug
Prediction, Journal of Internet Technology, Vol. 23, No.
5, pp. 1099-1107, September, 2022.

[4] A. Alsaeedi, M. Z. Khan, Software Defect Prediction
Using Supervised Machine Learning and Ensemble
Techniques: A Comparative Study, Ruan Jian Xue Bao/
Journal of Software Engineering and Applications, Vol.
12, No. 5, pp. 85-100, May, 2019.

[5] X. Zhang, L. M. Wang, Semi-supervised Ensemble
Learning Approach for Software Defect Prediction,
Journal of Chinese Computer Systems, Vol. 39, No. 10,
pp. 2138-2145, October, 2018.

[6] S. P. Liao, L. Xu, M. Yan, Software defect prediction
using semi-supervised support vector machine with
sampling, Computer Engineering and Applications, Vol.
53, No. 14, pp. 161-166, July, 2017.

[7] Y. Jiang, M. Li, Z. Zhou, Software defect detection with
ROCUS, Journal of Computer Science & Technology,
Vol. 26, No. 2, pp. 328-342, March, 2011.

[8] Q. He, B. Shen, Y. Chen, Software Defect Prediction
Using Semi-Supervised Learning with Change Burst
Information, 2016 IEEE 40th Annual Computer
Software and Applications Conference, Atlanta, GA,
USA, 2016, pp. 113-122.

[9] H. H. Lu, B. Cukic, M. Culp, Software defect prediction
using semi-supervised learning with dimension
reduction, Proc. of the Automated Software Engineering,
Essen, Germany, 2012, pp. 314-317.

[10] Y. Ma, W. Pan, S. Zhu, H. Yin, J. Luo, An Improved
Semi-supervised Learning Method for Software Defect
Prediction, Journal of Intelligent & Fuzzy Systems, Vol.

27, No. 5, pp. 2473-2480, 2014.
[11] F. Meng, W. Cheng, J. Wang, Semi-supervised Software

Defect Prediction Model Based on Tri-training, KSII
Transactions on Internet and Information Systems, Vol.
15, No. 11, pp. 4028-4042, November, 2021.

[12] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, D. Chen,
FECAR: A Feature Selection Framework for Software
Defect Prediction, 2014 IEEE 38th Annual Computer
Software and Applications Conference, Vasteras,
Sweden, 2014, pp. 426-435.

[13] H. D. Tran, L. T. M. Hanh, N. T. Binh, Combining
feature selection, feature learning and ensemble learning
for software fault prediction, 2019 11th International
Conference on Knowledge and Systems Engineering
(KSE), Da Nang, Vietnam, 2019, pp. 1-8.

[14] S. Ghosh, A. Rana, V. Kansal, A Nonlinear Manifold
Detection based Model for Software Defect Prediction,
Procedia Computer Science, Vol. 132, pp. 581-594,
2018.

[15] W. S. Liu, X. Chen, Q. Gu, S. Liu, D. Chen, A cluster-
analysis-based feature-selection method for software
defect prediction, SCIENTIA SINICA Informationis,
Vol. 46, No. 9, pp. 1298-1320, September, 2016.

[16] Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, A General
Software Defect-Proneness Prediction Framework,
IEEE Transactions on Software Engineering, Vol. 37,
No. 3, pp. 356-370, May-June, 2011.

[17] C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empirical
study on pareto based multi-objective feature selection
for software defect prediction, Journal of Systems and
Software, Vol. 152, pp. 215-238, June, 2019.

[18] K. Gao, T. M. Khoshgoftaar, H. Wang, N. Seliya,
Choosing software metrics for defect prediction: an
investigation on feature selection techniques, Software:
Practice and Experience, Vol. 41, No. 5, pp. 579-606,
April, 2011.

[19] T. J . Mccabe , A Complex i ty Measure , IEEE
Transactions on Software Engineering, Vol. SE-2, No.
4, pp. 308-320, December, 1976.

[20] R. Bohrer, Review Work: Elements of Software Science.
Operating and Programming Systems Series by Maurice
H. Halstead, American Scientist, Vol. 66, No. 1, p. 100,
January-February, 1978.

[21] S. Feng, J. Keung, X. Yu, Y. Xiao, M. Zhang,
Investigation on the stability of SMOTE-based
oversampling techniques in software defect prediction,
Information and Software Technology, Vol. 139, Article
No. 106662, November, 2021.

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P.
Kegelmeyer, SMOTE: Synthetic Minority Over-
sampling Technique, Journal of artificial intelligence
research, Vol. 16, pp. 321-357, June, 2002.

[23] L. Jiang, S. J. Jiang, Q. Yu, Feature selection method
based on sorting integration in software defect
prediction, Journal of Chinese Computer Systems, Vol.
39, No. 7, pp. 1410-1414, July, 2018.

[24] T. M. Cover, J. A, Thomas, Elements of information
theory, John Wiley & Sons, Inc., 2006.

[25] H. L. Lei, X. F. Gao, H. Liu, Mixed feature selection
method based on machine learning, Electronic

An Integrated Semi-supervised Software Defect Prediction Model 1317

measurement technology, Vol. 41, No. 16, pp. 42-46,
December, 2018.

[26] Z. H. Zhou, M. Li, Tri-training: exploiting unlabeled
data using three classifiers, IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, No. 11, pp.
1529-1541, November, 2005.

[27] T. Menzies, R. Krishna, D, Pryor, The promise
repository of empirical software engineering data, North
Carolina State University, Department of Computer
Science, 2016.

[28] L. N. Gong, S. J. Jiang, L. Jiang, Research progress of
software defect prediction, Ruan Jian Xue Bao/Journal
of Software, Vol. 30, No. 10, pp. 3090-3114, October,
2019.

Biographies

Fanqi Meng received the B.E. degree
in computer science and technology
from Northwest Agriculture and Forest
University, Yangling, in 2003 and the M.E.
degree in computer application technology
from Northeast Electric Power University,
Jilin, in 2010 and the Ph.D. degree in
computer application technology from

Harbin Institute of Technology, Harbin, in 2018.He has been
working at the Northeast Electric Power University since
2003. He is currently an Associate Professor in the School of
Computer Science. His research interests include software
safety, natural language processing, fault diagnosis of
electric power equipment and other aspects, involve software
engineering, artificial intelligence, data mining and other
fields.

Wenying Cheng received the B.S. degree
from Binzhou Medical College in 2020.
He is currently pursuing a master’s degree
in the School of Computer Science,
Northeastern Electric Power University. His
main research interests are software defect
prediction and software defect localization.

Jingdong Wang received the B.E. degree
and M.E. degree in computer science and
technology from Northeast Electric Power
University, Jilin and the Ph.D. degree in
information science from University of
Science and technology of China, in 2017.
He has been working at the Northeast
Electric Power University since 2008.

From 2008 to 2011, he was a Teaching Assistant. From
2011 to 2016, he was a Lecturer. Since 2017, he has been an
Associate Professor with the School of Computer Science.
His research interests include public security, natural
language processing, text mining, knowledge graph and other
aspects, involve software engineering, artificial intelligence,
emotional analysis and other fields.

