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Abstract

A novel semi-supervised software defect prediction 
model FFeSSTri (Filtered Feature Selecting, Sample and 
Tri-training) is proposed to address the problem that class 
imbalance and too many irrelevant or redundant features 
in labelled samples lower the accuracy of semi-supervised 
software defect prediction. Its innovation lies in that the 
construction of FFeSSTri integrates an oversampling 
technique, a new feature selection method, and a Tri-training 
algorithm, thus it can effectively improve the accuracy. 
Firstly, the oversampling technique is applied to expand the 
class of inadequate samples, thus it solves the unbalanced 
classification of the labelled samples. Secondly, a new filtered 
feature selection method based on relevance and redundancy 
is proposed, which can exclude those irrelevant or redundant 
features from labelled samples. Finally, the Tri-training 
algorithm is used to learn the labelled training samples to 
build the defect prediction model FFeSSTri. The experiments 
conducted on the NASA software defect prediction dataset 
show that FFeSSTri outperforms the existing four supervised 
learning methods and one semi-supervised learning method 
in terms of F-Measure values and AUC values. 

Keywords: Software defect prediction, Semi-supervised 
learning, Feature selection, Unbalanced classification, 
Oversampling techniques

1  Introduction

Software defects are generated by programmers 
during the coding process due to improper management, 
inadequately understanding of software requirements or 
lack of development experience [1]. Defective software may 
produce unexpected results or behaviours after deployment, 
which can seriously cause substantial economic losses to 
the company and even threaten people’s lives. In addition, 
the later in the development lifecycle of a software project 
a defect is detected, the more expensive it is to fix it [2], 
and the cost of detection and fixing increases significantly, 
especially after the software is released. As a result, software 
developers use software quality assurance tools such as 
software testing or a code review to identify as many defects 
as possible in software before deployment, but focusing on 
all program modules would be labour-intensive, so the head 
of the software quality assurance department wants to be able 

to identify potentially defective program modules in advance 
and subsequently allocate sufficient testing resources to them 
[3].

Software defect prediction techniques can be used to 
predict whether a software module contains defects based on 
historical data information about the software, using methods 
such as machine learning so that sufficient testing resources 
can be devoted to modules that may contain defects [4]. 
Currently, many researchers have built up many software 
defect prediction models with superior performance through 
supervised machine learning. However, due to various 
practical reasons, it is often not possible to obtain sufficient 
marked template information. In such cases where there are 
limited marked modules and sufficient unmarked modules, 
software defect prediction models built using supervised 
machine learning often fail to achieve good prediction results 
[5].

Academics have started experimenting with semi-
supervised methods to predict software defects to address 
these problems. Some researchers have used semi-supervised 
machine learning to build software defect prediction models 
to alleviate the problem of the lack of labelled samples. 
However, few studies have considered the impact of class 
imbalance and feature redundancy and irrelevance problems 
on semi-supervised software models. In software testing, 
80% of defects are found in 20% of the code, meaning that 
the majority of software defects are concentrated in a small 
number of software modules. As a result, software defect 
history data is characterised by significant “class imbalance” 
[5], which can lead to poor learning and inaccurate 
predictions. In addition, as modern software systems grow 
in size and complexity, the number of features (software 
metrics) extracted from software modules becomes much 
larger than before, and these features may be redundant 
or irrelevant. This paper, therefore, presents a novel semi-
supervised software defect prediction model, FFeSSTri. In 
this paper, the FFeSSTri algorithm is validated on the NASA 
dataset, and with a smaller number of marker modules, 
FFeSSTri can achieve better prediction results than the 
classical machine learning algorithm and the semi-supervised 
software defect model Tri_SSDPM.

The rest of the paper is organized as follows: Section 2 
reviews related work; Section 3 describes an integrated semi-
supervised software defect model, including the general 
framework, data pre-processing, filtered feature selection 
based on relevance and redundancy and the Tri-training 
algorithm; Section 4 tests the validity of the model by 
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describing the experimental procedure; Section 5 summarizes 
the work of the paper and describes the focus of the next 
steps.

2  Related Work

The number of labelled samples in software defect 
prediction is minimal compared to the number of unlabelled 
samples. Typical supervised learning methods are challenging 
to build effective prediction models, and it is costly to obtain 
many labelled samples.

Several researchers have built software defect prediction 
models using semi-supervised machine learning in recent 
years. Liao et al. [6] proposed the sampling-based semi-
supervised support vector machine prediction model S4VM+. 
The model uses a semi-supervised support vector machine 
method to construct a prediction model based on a small 
amount of labelled sample data using information from 
unlabelled data, solving the problem of difficult access to 
labelled data in defect prediction studies. Jiang et al. [7] 
proposed a semi-supervised software defect prediction 
method ROCUS, which uses semi-supervised learning to 
solve the problem of a small number of labelled samples and 
under-sampling methods to solve the data imbalance problem, 
and was empirically demonstrated on eight NASA data. He et 
al. [8] proposed a semi-supervised random forest algorithm 
extRF based on self-training, which employs information 
transformation to improve the accuracy of software defect 
prediction and can be applied to historical datasets with 
less defect information and validated on Eclipse. Lu et al. 
[9] proposed a semi-supervised dimensionality reduction 
learning method for software defect prediction, which is a 
self-training variation of the algorithm FTcF, which predicts 
unlabelled samples in each iteration by repeatedly training 
using labelled samples, and embeds a preprocessing strategy 
in the dimensional complexity approach for reducing 
software metrics. Experimental results show that the 
prediction effect of semi-supervised learning is significantly 
better than the random forest algorithm after dimensionality 
reduction. Ma et al. [10] improved the Tri-training algorithm. 
Meng et al. [11] proposed a semi-supervised software defect 
prediction model Tri_SSDPM, which solves the problems of 
low marker samples and class imbalance in the early stage 
of software development by using oversampling techniques 
and semi-supervised learning methods. The problem of 
low marker samples and class imbalance at the early stage 
of software development was solved using oversampling 
techniques and semi-supervised learning. It can be found that 
the semi-supervised software defect model can make full use 
of unlabeled samples to improve the performance of classifier 
prediction in the case of limited labelled samples. However, 
the impact of feature redundancy and irrelevance on semi-
supervised software defect prediction has been seldom 
considered in the above studies.

Feature selection can eliminate redundant features and 
irrelevant features to obtain a good subset of features to 
achieve the effect of dimensionality reduction, making the 

model more generalizable and effectively improving the 
classification effect of the classification model [12-14]. The 
prediction performance of a few feature selection methods 
was better than that of all feature selection methods. Liu 
et al. [15] proposed a feature selection method based on 
cluster analysis based on a filtering approach. In a defect 
prediction framework, Song et al. [16] considered using 
wraparound feature selection methods. The results showed 
that the performance of software defect prediction was 
better than using all features. Ni et al. [17] proposed the 
MOFES method, which uses a multi-objective Pareto-based 
algorithm for feature selection. Gao et al. [18] conducted an 
experimental comparison of multiple filtered feature selection 
methods on different subset evaluation strategies.

From the above research, it can be found that the feature 
selection methods commonly used in software defect 
prediction are mainly based on the correlation between 
features and label columns, with little consideration of the 
similarity between features, resulting in a subset of selected 
features that are prone to redundancy problems. Therefore, 
this paper proposes a filtered feature selection method 
based on relevance and redundancy. The feature selection 
algorithm considers both the relevance of features and label 
columns as well as the similarity between features, which is 
more general than wrapped and embedded feature selection 
methods, eliminates the training step of classifiers, has 
low algorithm complexity, and is thus suitable for large-
scale data sets and can quickly remove a large number of 
irrelevant and redundant features. It can quickly remove a 
large number of irrelevant and redundant features. Finally, 
a novel semi-supervised software defect prediction model, 
FFeSSTri, is proposed by applying the feature selection 
method to a semi-supervised software defect model, which 
is innovative in that it integrates an oversampling technique, 
a new feature selection method and a Tri-training algorithm, 
and is therefore effective in improving the accuracy of defect 
prediction.

3  Construction of FFeSSTri

3.1 Overall Framework
The overall architecture of the FFeSSTri model is divided 

into two main phases: the feature selection phase and the 
model construction phase, and the overall framework is 
shown in Figure 1. In the feature selection phase, the original 
labelled feature data is first feature normalised, then the 
labelled dataset is expanded and sampled using the SOMTE 
oversampling method to generate a new training dataset, and 
finally a filtered feature selection method based on relevance 
and redundancy is proposed to feature select the labelled 
sample set to obtain the optimal feature subset. In the model 
building stage, the pre-processed test dataset is feature 
selected according to the obtained optimal feature subset, a 
software defect prediction model is constructed using the Tri-
training algorithm, and the test module after feature selection 
is fed into the trained classifier to predict whether the module 
has defects.
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Figure 1. The general architecture of the FFeSSTri model

3. 2 Data Preprocessing
3.2.1 Feature Normalization

Each piece of data in the dataset used in this paper is a 
set of 21 metric attributes and a label value extracted from 
a software module. The attributes include the McCabe [19] 
attribute, the Halstead [20] attribute, the number of lines 
of code, etc. These attributes objectively characterise the 
quality features associated with the quality of the software, 
and the label value indicates whether the module is defective. 
Table 1 shows the 21 metric attributes used in this paper. 
These 21 feature measures are used as independent variables 
in this experiment, and the dependent variable is a binary 
variable (0 or 1) to indicate whether the code is defective or 
non-defective. As some feature values are too large or too 
small, they can affect the classification results of the final 
model. The data with a relatively large skewness can first 
be transformed using the log1p  function to compress the 
feature data to a certain interval to make it more obedient to 
the Gaussian distribution, which may lead to a good result for 
our subsequent classification results.
3.2.2 SOMTE Oversampling

In practice, there are usually fewer defective instances 
than non-defective ones, known as the class imbalance 
problem in software defect prediction [21]. If a random 
division of the dataset or an under-sampling preprocessing 

approach is used directly, the training dataset will likely 
contain very little or even no defective data, and it is not easy 
to train a better prediction model using such data the training 
set. The basic idea is to generate more samples with fewer 
labels according to the pattern of samples with fewer labels, 
thus making the data more balanced and solving insufficient 
initial samples. A typical oversampling type is the SMOTE 
(Synthetic Minority Oversampling Technique) algorithm 
proposed by Chawla [22]. The steps of this algorithm are as 
follows.

(1) For each sample x in the minority class, calculate its 
Euclidean distance to all samples in the minority class sample 
set Ssin, to obtain its k-nearest neighbours.

(2) Set a sampling ratio according to the sample 
imbalance ratio to determine the sampling multiplier N . For 
each minority class sample x, select some samples at random 
from its k nearest neighbours, assuming the selected nearest 
neighbours are xn.

(3) For each randomly selected nearest neighbor nx , 
construct a new sample with the original sample respectively 
according to the following formula.

rand(0,1)*new nx x x x= + − .                         (1)
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Table 1. Feature metrics
Feature Description
McCabe’s line count of code It counts the lines of code in module.
McCabe “cyclomatic complexity” It indicates complexity of the module on basis of number of linearly independent 

paths.
McCabe “essential complexity” It indicates the extent to which a flowgraph can be reduced.
McCabe “design complexity” It indicates cyclomatic complexity of its reduced flowgraph.
Halstead total operators +operands It gives the count of operators and operands used 

in the module.
Halstead “volume” It measures the product of length and log of vocabulary on base.
Halstead “program length” It indicates the length of the program.
Halstead “difficulty” It is related to the difficulty of the program to write or understand. Also 

computed as reciprocal of length.
Halstead “intelligence” It determines amount of intelligence presented in the module.
Halstead “effort” It translates into actual coding time.
Halstead It is a base Halstead measure.
Halstead’s time estimator It evaluates the testing time of C/C++codes.
Halstead’s line count It indicates the numbers of lines in the code.
Halstead’s count of lines of comments It indicates the number of lines of comments.
Halstead’s count of blank It indicates the number of lines of comments.
IOCodeAndComment It gives the lines of code and comment in the module.
Unique operators It counts the total number of distinct operators in the module.
Unique operands It counts the total number of operators in the module.
Total operators It counts the total number of operands in the module.
Branch count of the flow graph It gives the count of branches in the flow graph.

3.3 Filtered Feature Selection based on Relevance and 
Redundancy

3.3.1 Feature Correlation Analysis
The main objective of feature relevance analysis is to 

calculate the correlation between features and categories 
and select a subset of features with a high correlation with 
the categories. Typical feature selection methods include 
information gain rate, mutual information, and chi-square 
value. The performance of different feature selection 
methods varies and can even be said to vary greatly, which 
stems from their different methodological principles and the 
different sequences of feature rankings obtained. A typical 
subset of features from the three commonly used feature 
selection methods can be selected to enable better prediction 
of defects. Experiments have shown [23] that the feature 
subset selected after combining the three methods for feature 
selection is more accurate and avoids the low performance 
of the prediction model brought about by one or several 
feature selection methods incorrectly selecting the feature 
subset. Therefore, at this stage, three commonly used feature 
selection methods for calculating relevance are mainly 
selected for feature ranking.

(1) Information gain rate
The information gain rate method performs feature 

selection based on how much information a feature brings to 
the classification, and the more information a feature brings, 
the more critical it is. Its calculation formula is shown in 
equation (2). 

Gain( )GainRatio( )
Split ( )

AA
E A

= .                         (2)

Where Gain(A) is the information gain of feature  after 

dividing the dataset S, SplitE(A) represents the splitting 
information of the feature. It can be considered that the 
feature with the most significant information gain rate is the 
feature that is most relevant to the category attributes.

The information gain rate introduces splitting information 
compared to the information gain, and the more points the 
feature takes, the larger the splitting information value is, 
which counteracts the effect of the number of points the 
feature takes on the number of information the feature brings 
to the classification system.

(2) Mutual information
Mutual information [24] is knowledge belonging to the 

information theory and represents the relationship between 
information quantities. It measures the correlation between 
two variables using the understanding of information entropy 
theory. Assuming that X and Y are two random variables, 
the formula for calculating the value of mutual information 
between X and Y is shown in equation (3).

      ( , ) ( ) ( | )MI X Y H X H X Y= − ,                       (3)

where H(X) and H(X|Y) denote the information entropy 
and conditional entropy, respectively, and a larger mutual 
information value MI(f, C) between the feature variable f and 
the class label C indicates that the feature is more relevant to 
the class and has better differentiation ability.

(3) Chi-square value
A chi-square value is a non-parametric statistical value. 

The chi-square test is a widely used hypothesis test that is 
non-parametric and is used to verify whether the category 
distribution is correlated with the feature taking values. The 
null hypothesis of this test is that the category distribution 
is assumed to be uncorrelated with the feature values. The 
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method calculates the difference between the theoretical 
inferred value and the actual observed value when the null 
hypothesis holds, i.e., the chi-square value. Its calculation 
formula is shown in equation (4).

( )2

, ,2

1 1 ,

m n
i j i j

i j i j

o E
E

χ
= =

−
= ∑∑ .                            (4)

Where m is the number of different feature values, and 
n is the number of categories. oi,j is the actual number of 
samples with feature value i in the sample with category j, 
and Ei,j is the theoretical number of samples with feature 
value i in the sample with category j. The larger the 
cardinality value, the more significant the difference between 
the actual and theoretical values, and the less likely the null 
hypothesis will hold, i.e., the more significant the correlation 
between the feature values and the categories.
3.3.2 Feature Redundancy Analysis

In the filtered feature selection method based on relevance 
and redundancy, the main goal of feature redundancy analysis 
is to calculate the correlation between features and features. 
A feature is considered redundant if it is more correlated 
with another feature. For a non-linear variable like feature 
metric in software defect prediction, symmetric uncertainty is 
chosen at this stage to measure feature-to-feature correlation.

Symmetric uncertainty is based on the theory of 
information entropy. It measures the correlation between two 
features by measuring the difference in distribution between 
two features X and Y, making the amount of information 
shared by two features comparable. Its calculation formula is 
shown in equation (5).

( , )( , ) 2
( ) ( )
IG X YSU X Y

H X H Y
= ×

+
.                       (5)

Where H(X) denotes the information entropy of feature 
X, H(Y) denotes the information entropy of feature Y, and 
IG(X,Y) means the information gain. The value of SU(X,Y) 
is in the range of [0,1], and the more significant this value is, 
the larger the correlation between feature X and feature Y is.
3.3.3 Algorithm Description

In order to improve the classification performance of 
software defect prediction models, this paper proposes 
a filtered feature selection method based on relevance 
and redundancy, which is more general than wrapped 
and embedded feature selection methods, eliminates the 
training step of classifiers, has low algorithm complexity, 
and is thus suitable for large-scale datasets and can quickly 
remove a large number of irrelevant features. The feature 
selection method selects the final optimal subset of features 
after ranking the relevance of features to class labels and 
removing redundancy between features. The algorithm flow 
is shown in Algorithm 1. In the feature relevance analysis 
stage, three different methods, Information Gain Rate (IGR), 
Mutual Information (MI) and chi-square (CS), are first used 
to calculate the relevance magnitude between features and 
classes to obtain three sets of feature sub ghted according to 
the ranked order. Then each feature will get three weighted 

values. The sum of the three weighted values for each feature 
is called the weighted sum. Finally, the features are re-ranked 
according to the weighted sum of the features, and the top N1 
features are retained to obtain the feature subset S optimized 
by relevance in this phase. In the feature redundancy analysis 
phase, the feature subset obtained from the previous phase 
of relevance analysis is used as the original feature set in 
this phase. Then, the correlation between two features is 
calculated using the symmetric uncertainty (SU) method, 
and the features with a high correlation are clustered into 
one class. Finally, based on the feature relevance ranking 
results, the features in each class with high feature-category 
relevance are selected for retention, the remaining features 
in the same class are considered redundant features for 
removal and the top N2 features are retained to obtain the 
optimal feature subset S2. Studies have shown [25] that the 
proportion of features retained in the final feature selection 
should preferably be between 20% and 40%. Therefore, 
the number of features N2 = Total number of datasets * 40. 
In the previous stage, N1= 2*N2  features are retained. The 
innovation of this algorithm is that it combines the feature 
ranking sequences obtained by the three methods in the 
correlation analysis stage and assigns a weight to each 
feature, which can effectively improve the generalization 
ability of the prediction model and effectively avoid the 
instability of a single feature selection method. At the same 
time, the similarity between features is considered, which can 
effectively eliminate redundant features.

Algorithm 1. Filtered feature selection algorithm based on 
relevance and redundancy

Input: Defective dataset S = {f1, f2, ..., fm, C} is the category label

Output: Optimal feature subset S2 

1. Sample the dataset S to generate k sets of data.

2.   for k re-cross-test:

3.         find feature correlations using three algorithms,
            IGR, MI and CS.

4.         sort the features in descending order according
            to the correlation size to obtain three feature
            subsets SIGR, SMI, SCS.

5.        weight the features proportionally according to the
           order size, and the three weights of feature fi = (i = 1,
           2, ..., m) are IGR

fiW , I
fi
MW , S

fi
CW ;

6.        calculate the weighted sum of each feature in the
           three subsets IGR

fi fi fi
I

fi
M CSsum W W W+= + .

7.        sort the features in descending order according
           to sumfi and keep the first N1 features to get the
           feature subset S1.

8.       calculate the correlation between features in S1

          among the features with high correlation, remove
          the ones with low correlation and keep N2 
          features to get the optimal feature subset S2.
9.  end for
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Algorithm 2. Pseudo code of simplified Tri-training

Input: Training set 1 1{ , { }} ,l u
i I i i iL x y U x= == =  

Three classifiers {h1, h2, h3} 

Output: Ensemble h using majority vote;

1.    for i = 1, 2, 3 do

2.        Train hi on L;

3.    end for

4.    while any of {h1, h2, h3} changes do

5.        for i = 1, 2, 3 do

6.            Li = Ø;

7.            for x U∈  do

8.                if ( ) ( )( , )j kh x h x j k i= ≠  then

9.                    ( )( , )i i jL L x h x= ∪ ;

10.               end if

11.           end for

12.       end for

13.       for i = 1, 2, 3 do

14.           Train hi on L∪ Li;

15.       end for

16.   end while

3.4 Tri-training
Tri-training is a compelling semi-supervised integrated 

learning method that uses a small amount of labelled data 
to build a good classifier, which is an excellent solution to 
the problem of insufficient labelled sample data. Prediction 
is then performed on the unlabelled samples. Suppose two 
classifiers predict an unlabelled sample as defect-free, and 
a third classifier predicts a defective sample. In that case, 
the third classifier should learn this sample as a defect-free 
sample, and the labelling confidence estimation problem is 
easily handled by the three classifiers informing each other. 
The three classifiers are trained for several iterations until 
the results stabilize, and finally, the three classifiers are 
integrated for learning using the maximum vote method. 
However, in some cases, the prediction of the majority-vote 
classifier may be wrong, which then introduces noise to the 
minority-vote classifier, but Zhou et al. [26] have shown that 
under certain conditions, the increase in classification noise 
rate can be compensated by the number of newly labelled 

samples. Algorithm 2 shows a simplified pseudo-code of the 
Tri-training method, more details of which can be found in 
the literature [26].

4  Experiment and Analysis

In order to verify whether the model in this paper can 
improve the defect prediction accuracy, this paper analyzes 
the NASA MDP dataset. It selects three classical machine 
learning algorithms, NaiveBayes, Decision Tree and 
RandomForest, an Adaboost integrated learning algorithm, 
and the semi-supervised method Tri_SSDPM proposed in 
the literature [11] compared with the FFeSSTri proposed 
in this paper to calculate the prediction, recall, accuracy, 
comprehensive evaluation index F-value and AUC-value, 
respectively. Decision Tree, NaiveBayes, RandomForest and 
Adaboost learning algorithms were run with the parameter’s 
default values in sklearn.

This experiment was set up as follows, setting the 
labelling rate R of the experimental dataset to 0.3, that is, 
30% of the dataset was randomly selected as the training set 
of labelled samples, and the remaining 70% of unlabelled 
samples were used as the auxiliary dataset and test set. 
With reference to the literature [25], the number of features 
selected was set to 40% of the original number of features. In 
order to eliminate chance from the experimental results, the 
experiment was repeated 20 times for a specific tagging rate 
R for the method in this paper and the chosen comparison 
method, and the average of the 20 times was taken as the 
final result of the experiment.

4.1 Experimental Data
In this paper,  the NASA MDP defect dataset in 

PROMISE library [27] is selected for experiment, including 
CM1, JM1, KC1 and KC2. Because the defect data in NASA 
have a vital authenticity that enhances the credibility of the 
defect datasets, these datasets are widely used in the field 
of software defect prediction. The properties in the dataset 
are all software code metrics, including the McCabe [19] 
loop complexity metric and the Halstead [20] scientific 
metric. The McCabe Loop Complexity Metric analyses the 
complexity of the internal structure of a program, assuming 
that the more loops and selections there are, the more 
complex the program and the more likely it is to be defective; 
the Halstead Scientific Metric measures the propensity of 
software modules to be defective based on operators and 
operands. The basic information on the dataset is shown in 
Table 2.

Table 2. Basic information of NASA MDP datasets
Project Module number Non- Defects Defects Defects rate /%
CM1 498 449 49 9.8
JM1 7782 6020 1762 22.6
KC1 2109 1783 326 15.5
KC2 522 415 107 20.5
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4.2 Experimental Evaluation Index
Software defect prediction is a binary problem and for 

each sample there are two markers, one for the true class 
of the sample and the other for the predicted class, so we 
can use the data in the confusion matrix [28] to evaluate the 
performance of the prediction algorithm. As shown in Figure 
2, the possible results are as follows: samples whose true 
marker is positive are also predicted to be positive, denoted as 
TP (true positive); samples whose true marker is positive but 
are predicted to be negative, denoted as FN (false negative); 
samples whose true marker is negative but are predicted to be 
positive, denoted as FP (false positive); samples whose the 
true marker is negative and is also predicted to be negative, 
denoted as TN (true negative).

Predicted results
Defective

Predicted results
Clean

TP
True Positive

FP
False Positive

FN
False Negative

TN
True Negative

T
ru

e 
va

lu
e

D
ef

ec
tiv

e
T

ru
e 

va
lu

e
C

le
an

Figure 2. Confusion matrix
 
In order to effectively evaluate the performance of the 

classifier, the experimental results were analysed using five 
evaluation metrics: accuracy, precision, recall, F-measure 
value and AUC value, which is an intuitive way to evaluate 
the performance of the classifier and is a measure of how 
good the defect prediction model is. The evaluation metrics 
can be expressed as follows.

Accuracy rate is the proportion of the total modules 
that the model predicts correctly and the accuracy rate is 
calculated as follows.

TP TNAccuracy
TP FN FP TN

+
=

+ + +
.                     (6)

Precision rate is the proportion of instances where the true 
category is defective out of all instances that are predicted to 
be defective. The formula for calculating this is as follows.

            TPPrecision
TP FP

=
+

.                            (7)

Recall is the proportion of instances correctly predicted 
to be defective out of all instances whose true category is 
defective. A good prediction model should have a high recall 
rate, finding as many defective modules as possible. The 
recall rate is calculated as follows.

     
TPRecall

TP FN
=

+
.                               (8)

F-measure is a weighted summed average of the 
accuracy and recall rates, combining the results of the 
recall and accuracy rates, and is used to evaluate the overall 
performance of the model.

2 Precision RecallF
Precision Recall

×
= ×

+
.                       (9)

The horizontal coordinate of the ROC curve is the FPR 
(false positive rate), i.e., the proportion of samples that were 
actually in the negative category that were misclassified as 
positive to the total number of samples that were actually 
in the negative category. The vertical coordinate is the TPR 
(true positive rate), the proportion of correctly classified 
positive class samples to the total number of positive class 
samples.

4.3 Analysis of Results
In this paper, experimental analysis is performed on four 

sub-datasets CM1, JM1, KC1 and KC2 of the NASA MDP 
dataset, and the experimental results are as follows:

On the CM1 dataset, As can be seen in Table 3, the 
FFeSSTri method obtained optimal values for all five 
indicators compared to the other five methods.

On the KC1 dataset, As can be seen in Table 4, FFeSSTri 
could not always get the best value compared to the other 
five methods. But FFeSSTri obtains the best values of 
Recall, Precision, F-Measure and AUC on the KC1 dataset. 
Therefore, overall, the prediction accuracy of FFeSSTri is 
higher than that of the other methods.

On the KC2 dataset, As can be seen in Table 5, the 
FFeSSTri method could not always obtain optimal values 
on Precision, but its F-Measure and AUC values were 
higher than those of the comparison methods. Therefore, the 
FFeSSTri method still outperforms the other five methods in 
terms of prediction performance.

On the JM1 dataset, As can be seen in Table 6, the 
FFeSSTri method obtained optimal values for all five 
indicators compared to the other five methods. 
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Table 3. Values of each indicator for each method in dataset CM1
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.582 0.207 0.693 0.268 0.578

RandomForest 0.181 0.285 0.867 0.222 0.610

DecisionTree 0.182 0.286 0.836 0.222 0.604

Adaboost 0.250 0.214 0.838 0.231 0.579

Tri_SSDPM 0.892 0.803 0.86 0.843 0.839

FFeSSTri 0.916 0.82 0.884 0.865 0.855

Table 4. Values of each indicator for each method in dataset KC1
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.659 0.331 0.745 0.439 0.632

RandomForest 0.194 0.541 0.856 0.285 0.717

DecisionTree 0.344 0.365 0.806 0.351 0.725

Adaboost 0.247 0.476 0.832 0.325 0.675

Tri_SSDPM 0.842 0.814 0.826 0.828 0.820

FFeSSTri 0.866 0.821 0.846 0.843 0.831

Table 5. Values of each indicator for each method in dataset KC2
Classifier Precision Recall Accuracy F-Measure AUC

NaïveBayes 0.786 0.476 0.784 0.590 0.711

RandomForest 0.500 0.608 0.823 0.549 0.738

DecisionTree 0.391 0.529 0.792 0.45 0.702

Adaboost 0.625 0.701 0.801 0.661 0.761

Tri_SSDPM 0.866 0.808 0.843 0.835 0.823

FFeSSTri 0.865 0.833 0.855 0.849 0.846

Table 6. Values of each indicator for each method in dataset JM1
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.253 0.473 0.796 0.330 0.654

RandomForest 0.203 0.502 0.808 0.289 0.668

DecisionTree 0.065 0.614 0.808 0.118 0.713

Adaboost 0.218 0.535 0.810 0.310 0.682

Tri_SSDPM 0.83 0.801 0.811 0.816 0.810

FFeSSTri 0.838 0.817 0.823 0.827 0.823

Table 7. Average of each classifier over the four data sets
Classifier Precision Recall Accuracy F-Measure AUC

NaiveBayes 0.57 0.371 0.754 0.406 0.643

RandomForest 0.269 0.484 0.838 0.336 0.683

DecisionTree 0.245 0.448 0.771 0.285 0.686

Adaboost 0.335 0.482 0.820 0.382 0.674

Tri_SSDPM 0.857 0.806 0.835 0.83 0.823

FFeSSTri 0.871 0.823 0.852 0.846 0.834
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The results of each classifier under the four datasets 
were averaged as shown in Table 7. In order to visualize the 
classification effect of each classification model, the average 
value of each metric for each classification model on the 
four datasets is represented as a bar chart. As can be seen 
from Figure 3, the FFeSSTri method is higher than the other 

methods in all evaluation metrics, and combined with Table 
7, it can be concluded that the F-Measure and AUC averages 
are at least 0.44 (0.846-0.406) and 0.148 (0.834-0.686) higher 
than the classical machine learning algorithms, respectively, 
and are the same as the F-Measure and AUC averages in this 
research area. The proposed Tri_SSDPM improved by at least 
0.016 (0.846-0.83) and 0.011 (0.834-0.823), respectively.

Figure 3. Average of each classifier over the four datasets

The FFeSSTri model achieves higher accuracy than 
other methods because the DecisionTree, NaiveBayes, and 
RandomForest algorithms do not consider under-labelled 
samples, classification imbalance and feature redundancy 
and irrelevance. The integrated learning method Adaboost, 
which builds and combines multiple classifiers for training 
and classification, usually outperforms the performance of 
a single classifier in generalisation. However, it does not 
fully use the potential information in unlabelled samples and 
does not address the problems of classification imbalance 
and feature irrelevance and redundancy, resulting in poor 
classification results. The Tri_SSDPM model effectively 
mitigates the problem of insufficient marker samples and 
class imbalance by combining the SMOTE oversampling 
technique with the Tri-training algorithm, but does not take 
into account the impact of feature redundancy and irrelevance 
issues on the semi-supervised software defect model. 
However, the FFeSSTri model proposed in this paper solves 
the problems of insufficient labeling of training samples, class 
imbalance, as well as feature redundancy and irrelevance 
in features, so it achieves higher prediction accuracy in the 
experimental results.

In summary, a combination of oversampling techniques, 
filtered feature selection based on correlation and redundancy, 

and the use of unlabelled samples can improve the prediction 
accuracy of the model to some extent. FFeSSTri is an 
effective semi-supervised software defect prediction model 
and has better prediction accuracy than several other 
methods.

5  Conclusion

Semi-supervised software defect prediction overcomes 
the problem of lacking labelled samples but still suffers 
from class imbalance and excessive irrelevant or redundant 
features. To this end, this paper proposes an integrated semi-
supervised software defect model FFeSSTri. Its innovation 
lies in that the construction of FFeSSTri integrates an 
oversampling technique, a new feature selection method, 
and a Tri-training algorithm, thus it can effectively improve 
the accuracy. Firstly, the oversampling technique is applied 
to expand the class of inadequate samples, thus it solves the 
unbalanced classification of the labelled samples. Secondly, a 
new filtered feature selection method based on relevance and 
redundancy is proposed, which can exclude those irrelevant 
or redundant features from labelled samples. Finally, the 
Tri-training algorithm is used to learn the labelled training 
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samples to build the defect prediction model FFeSSTri. 
The experimental results show that the model obtains better 
prediction results on NASA datasets.

Considering that the number of features selected affects 
the prediction results of the software defect prediction 
model. Therefore, the following work focuses on exploring 
the effect of the number of features selected on the software 
defect prediction model and selecting the optimal number of 
features to improve the software defect prediction.
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