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Abstract

Linear Feedback Shift Register (LFSR) is the basic 
hardware of stream cipher, and Feedback with Carry Shift 
Register (FCSR) is the nonlinear analogues of LFSR. FCSR 
is a feedback architecture to generate long pseudorandom 
sequence. In this paper, we study the characteristics of 
FCSRs combined with nonlinear circuits such as Dawson’s 
Summation Generator (DSG), lp-Geffe generator and etc. 
Then we proposed a hybrid FCSR applying DSG and lp-Geffe 
generator as nonlinear combining elements to increase the 
period and the linear complexity of the output sequence. In 
addition, we further investigate the period, linear complexity, 
randomness, and use known attacks to verify the security 
strength of the proposed keystream generator. The pass 
rates of the proposed scheme are 100% for FIPS PUB 140-
1 random tests, and at least 98% for SP800-22 random test, 
respectively.

Keywords: Hybrid FCSR, Hardware security, IoT, Stream 
cipher

1  Introduction

The seurity of Internet of Things (IoT) is an important 
issue. However, under the resource-constrained IoT, a 
complex system becomes a heavy load and leads to a 
reduction in communications efficiency [1-3]. Because the 
communication of the IoT is in real time, a stream cipher with 
the characteristics of simplicity and high speed is suitable to 
the real-time communications of IoT for its efficiency [4-8]. 

The security of a stream cipher depends on the 
pseudorandom sequences of the keystream generator. How 
to generate secure pseudorandom sequences efficiently is a 
hot topic in cryptology. The good pseudorandom sequences 
should have good statistical distributions, large period, high 
linear complexity, and good randomness [9-12].

Klapper and Goresky proposed Feedback with Carry 
Shift Registers (FCSR) [13]. The FCSR is a new feedback 
architecture to generate long pseudorandom sequence 
efficiently [14]. It is very fast and easy to implement in both 
software and hardware and with the property of nonlinear 
[15-16]. There are few papers describe or analyze the 
properties of FCSR application circuits related with their 
period, linear complexity and etc.

In this paper, we study the characteristics of FCSRs 
merged by nonlinear circuits at first. Then we apply FCSRs 

and cascaded nonlinear circuits as a keystream generator. 
To increase the period and linear complexity of sequences, 
we use Dawson’s summation generator (DSG) and lp-Geffe 
generator as nonlinear combining elements to produce 
keystream. From the experimental results, we investigate 
their period, linear complexity, randomness. The proposed 
scheme can resist known attacks. The statistical tests of 
Federal Information Processing Standards Publication 140-
1 (FIPS PUB 140-1) and the Special Publication 800-22 
(SP800-22) are performed on the proposed scheme. The pass 
rates are 100% for FIPS PUB 140-1 random tests, and at 
least 98% for SP800-22 random test, respectively. The main 
contributions of this study can be outlined as follows:

• The proposed stream cipher employs hybrid FCSR is 
suitable to resource-contrained environment of IoT.

• The non-linear selection and output combining 
functions in our proposed scheme ensure that the 
correlation probability is well-balanced, making it 
difficult for attackers to exploit any weaknesses and 
compromise the security of the stream cipher.

• The proposed scheme based on a hybrid FCSR has 
excellent statistical distribution, a long period, high 
linear complexity, and produces highly random 
outputs.

• The proposed scheme is a hardware-based security 
solution that can be easily implemented using 
hardware components.

The organization of this paper is as follows. Section 2 
introduces the FCSR. In section 3, we describe our proposed 
scheme and detail of the design circuit. In section 4, we 
introduce statistical properties and some attacks with respect 
to our design. We present the period and linear complexity 
of the proposed generator with large parameters. Section 5 
describes the experimental results for the proposed stream 
cipher. Finally, we give the conclusions of proposed scheme 
in Section 6.

2  Preliminaries

In this section, we introduce the properties of FCSR, 
two basic FCSRs combiners XOR function and the lp-Geffe 
generator based on FCSRs. Besides we will present the 
properties with their period and linear complexity.

2.1 Feedback with Carry Shift Register (FCSR)
FCSR is similar to the LFSR, such as structure, 

characteristics, and it is a new feedback architecture to 
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efficiently generate long pseudorandom sequence [14, 17]. 
FCSR has a small amount of memory and the analysis of 
FCSR is based on the arithmetic of 2-adic numbers. It is very 
fast and easy to implement in both software and hardware. 
There are two basic structure of FCSR, i.e., Fibonacci 
architecture of FCSR and Galois architecture of FCSR [18-
19].

The Fibonacci architecture of an r-stage FCSR is depicted 
in Figure 1, where sn−1, sn−2, …, sn−r ∈  {0,1} denoted the cell 
contents, mn−1 denoted the current memory contents, and S 
denoted integer addition. The feedback coefficient (q1, q2, …, 
qr) ∈  {0,1} represent the existence or absence of a feedback 
tap [14-15].

sn ̶ 1 sn ̶ 2 ... sn ̶ rsn ̶ r+1

q1 q2 qrqr ̶ 1...

∑

mn ̶ 1 div 2 mod 2

Figure 1.  Fibonacci architecture of FCSR

The register operations are as follows [14-15]:

1. Calculate 1
1

r

n i n i n
i

q s m− −
=

= +∑ as an integer sum.

2. Shift the cell contents to the right, the output bit is 
rightmost bit sn-r.

3. Return sn = σn (mod 2) into the leftmost cell sn-1 of the 
shift register.

4. Substitute mn-1 by mn = ëσn/2û. 

The Galois architecture of FCSR is illustrated in Figure 
2. The feedback coefficient (q1, q2, …, qr) of an r-stage FCSR 
correspond to the binary expansion of q.

1
1 12 2 2 1,r r

r rq q q q−
−= + + + −                       (1)

the c1, c2, …, cr-1 are the memory bits (or carry), and the Σ 
represents a full adder. Where qi ∈  {0, 1}, qr = 1. The integer 
q is the connection integer and it is analog the connection 
polynomial of LFSR [14].

sr-1 ... s1 s0

qr qr-1 q2 q1...

∑ ∑ ∑

cr-1 c2 c1

Figure 2.  Galois architecture of FCSR

At the j-th adder, the following input bits are received:
−	 sj from the preceding cell
−	 s0qj from the feedback line

−	 cj from the memory cell
which are added to form a sum σj (with 1 ≤ j ≤ r − 1). At the 
next clock cycle, this sum σj modulo 2 is passed on to the 
next cell in the register,

sj−1' = σj mod 2,
and the sum σj div 2 is passed on to the memory,

cj' = σj div 2.
The connection integer q determines the period of the 

sequences generated by an FCSR. We usually choose the 
connection integer according to the following criterions [24-
25]:

1.  q is a (negative) prime and the bit length of q is n + 1 
    (n is the size of the main register).
2.  Period T = (|q| − 1)/2 is prime.
3.  d = (1 + |q|)/2.
4.  The carry register c has l cells, and the number of

     nonzero di is l + 1, where 
1

0
2

n
i

i
i

d d
−

=

= ∑ .

To obtain maximum period of FCSR sequence, 
connection integer q should be prime number, and 2 is a 
primitive root modulo q. The FCSR produced sequence with 
maximum-period is called l-sequence [14, 17]. The period of 
l-sequences is q − 1 [20-21], and its linear complexity is (q + 
1)/2 [14].

The properties of FCSR are described as follows [15, 17, 
22-23]:

1. Every binary l-sequence of period 2t, where t is a 
positive integer, has the property that the second 
half of any segment of length 2t is the bit-wise 
complement of the first half. This property is known 
as the symmetrical complementary property. The 
converse is not true. Not every symmetrically 
complementary sequence is an l-sequence. For 
example, when q = 17, the sequence is symmetrically 
complementary, but it is not an l-sequence because 2 
is not primitive modulo 17.

2. Any strictly periodic sequence generated by a 2-adic 
FCSR with connection integer q is symmetrically 
complementary if and only if q divides 2T/2 + 1, 
where T is the period of the sequence.

3. The linear complexity of an l-sequence of period 2t 
is at most t + 1

4. If q is a prime number and 2 is primitive root modulo 
q, then q is 2-prime. If q = 2p + 1, both p and q are 
2-prime, then q is called strong 2-prime.

5. If the connection integer q of an FCSR is 2-prime, 
then the linear span (linear complexity) of the 
FCSR is less than or equals to (q + 1)/2. If q = 2p 
+ 1 is a strong 2-prime, then the linear span (linear 
complexity) is p + 1.

Figure 3 shows the hardware circuit of FCSR Galois 
architecture. A Galois FCSR for q = −347, d = 174 = 
(10101110)2, n = 8 and l = 4 [24-25]. The symbol  
represents addition with carry, as represented in Figure 4, 
where D is the D-type Flip-Flop.
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s7 s3s5s6 s4 s2 s1 s0

c5 c3 c2 c1c(t) 0 0 0 0
s(t)

d 1 0 1 0 1 1 1 0

Figure 3.  Hardware description of FCSR Galois architecture

ci = aib ⊕ci 1

s = a⊕b⊕ci ̶ 1
b
a

a ci ̶1⊕bci ̶ 1̶
i
i

i i i

i i i

D

Figure 4.  Addition with Carry

2.2 Two FCSRs Combiners with XOR Function
The literature [15] proposed two FCSRs combiners 

with bit-wise XOR operation as the combining function. A 
schematic diagram depicting the generator is shown in Figure 
5.

FCSR1

FCSR2

output

Figure 5.  Two FCSRs combiners with XOR function

According to [15], the period T of output is lcm(T1, T2), 
the linear complexity LC of output is (T1 + T2)/2 + 2, where 
the lcm( ) is least common multiple, and the T1, T2 are the 
period of FCSR1, FCSR2, respectively.

2.3 The lp-Geffe Generator Based on FCSRs
The Figure 6 shows the lp-Geffe generator, which is 

composed of FCSR1, FCSR2, FCSR3 and nonlinear function 
f [14]. Table 1 is the correlation probability of lp-Geffe 
generator. From this table, we find the correlation probability 
of both the inputs bits wj, yj and the output bit zj at clock j 
are 3/4. This is the main drawback of this circuit. And the 
correlation probability of input bit xj and output bit zj at clock 
j  is 1/2.

FCSR1

FCSR3

FCSR2

clk

output

 f
wj

xj

yj

Figure 6.  The lp-Geffe generator

According to [14], the period T of output is lcm(T1, T2, 
T3), the linear complexity LUB of output is

min( , )UB UBL L T= .                                 (2)

with

2 3 31 2 ( 1)( 1) ( 1)( 1)( 1)
4 4 2UB

q q qq qL
+ + ++ +

= + + .          (3)

where T1, T2, T3 are the period of FCSR1, FCSR2, and FCSR3, 
and q1, q2, q3 are the connection integer of FCSR1, FCSR2, 
and FCSR3, respectively.

Table 1. Correlation probability of lp-Geffe generator
wj xj yj zj Correlation probability
0 0 0 0

Output - Inputs:
prob(wj = zj) = 3/4
prob(xj = zj) = 1/2
prob(yj = zj) = 3/4

0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2.4 Dawson’s Summation Generator
Dawson’s Summation Generator (DSG) is proposed by 

Dawson [26]. The Dawson’s Summation Generator (DSG) 
is shown in Figure 7, and the symbols are defined as follows 
[27]:

−	 aj: the input bit at clock j,
−	 bj: the input bit at clock j,
−	 cj: the carry bit at clock j with carry initial value c−1 = 

0,
−	 zj: the sum output at clock j, zj = aj ⊕ bj ⊕ cj−1.

cj = bj  ⊕(aj⊕bj)cj−1cj−1

D

zj = aj⊕bj⊕cj−1
aj

jb

Figure 7.  Dawson’s Summation Generator (DSG)
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Table 2 shows the input-output correlation probability 
and the carry-output correlation probability are both 1/2. The 
good features can prevent correlation attack. Therefore, [28] 
concluded that DSG is secure.

Table 2. Correlation probability of DSG
aj bj cj−1 cj zj Correlation probability
0 0 0 0 0

Output - Inputs:
prob(aj = zj) = 1/2
prob(bj = zj) = 1/2
prob(cj−1 = zj) = 1/2
Carry - Output:
prob(cj = zj) = 1/2

0 0 1 0 1
0 1 0 1 1
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3  The Proposed Scheme

In this section, we introduce the proposed FCSR-based 
keystream generator for real-time communications in IoT. 
The basic proposed structure is combined the lp-Geffe 
generator with two level DSG. We use two level DSG to 
increase the linear complexity, and apply good features of 
correlation probability of DSG to prevent attack. By the 
experiment results, we study the properties of the sequences 
in terms of their period, linear complexity and randomness, 
and the characteristics of the proposed keystream generator.

3.1 The Proposed of FCSR Based on DSG
We describe the properties of FCSR based DSG with 

four different inputs, that are divided into: (1) l-sequences 
as inputs, (2) non l-sequences and l-sequences as inputs, 
(3) l-sequences and non l-sequences as inputs, and (4) non 
l-sequences as inputs. And we will study the properties with 
their period and linear complexity.

(1)  l-sequences as inputs
As shown in Figure 8, we use two FCSR l-sequences as 

the inputs of DSG, and we use different five experimental 
l-sequences as DSG inputs. In our experiment, there are 
five combinations of the l-sequences as shown in Table 3. 
From Table 3, we can find period and linear complexity of 
output l-sequences as DSG inputs, where q1, T1, LC1, q2, T2, 
LC2, T and LC are the connection integer, period and linear 
complexity of FCSR1, FCSR2 and output, respectively.

FCSR1 (q1), T1

(q2), T2
DSG output 

FCSR2

D

 

Figure 8. l-sequences as inputs

Table 3 lists the experimental result of l-sequences as 
inputs, where qi, Ti , LCi are the connection integer, period, 
linear complexity of FCSRi, respectively, and i = 1, 2. 
According to the above experimental result of l-sequences as 
inputs, we find the period T of output is

T @ T1*LC2.                                       (4)

And the linear complexity LC of output is

LC 	@ T.                                          (5)

Table 3. The experimental result of l-sequences as inputs
q1 q2 T1 LC1 T2 LC2 T LC
107 131 106 54 130 66 6890 6889
19 131 18 10 130 66 1170 1166
37 83 36 19 82 42 1476 1476
83 149 82 41 148 75 6068 6064
19 83 18 10 82 42 738 734

(2)  Non l-sequences and l-sequences as inputs
We use non l-sequence and l-sequence as the inputs 

of DSG, shown in Figure 9. In our experiment, there are 
five combinations of the non l-sequence and l-sequences 
as shown in Table 4. From Table 4, we can find period and 
linear complexity of output non l-sequences and l-sequences 
as DSG inputs, where q1, T1, LC1, q2, T2, LC2, T and LC are 
the connection integer, period and linear complexity of non 
l-sequence, l-sequence, and output respectively.

non l- sequence
 l - sequence

(q1), T1

(q2), T2
DSG output 

D

Figure 9. Non l-sequence and l-sequence as inputs

Table  4  shows the  exper imenta l  resul t  of  non 
l-sequences and l-sequences as DSG inputs, where qi, Ti , 
LCi are the connection integer, period, linear complexity of 
FCSRi, respectively, and i = 1, 2. According to the above 
experimental result, we find the period T of output is

T = lcm(T1, T2).                                    (6)

and the linear complexity LC of output is

LC 	@ T.                                          (7)

Table 4. The experimental result of non l-sequences and l-sequences 
as the inputs of DSG

q1 q2 T1 LC1 T2 LC2 T LC
15 19 4 4 18 10 36 36
31 19 5 5 18 10 90 89
35 19 12 12 18 10 36 35
39 37 12 9 36 19 36 34
17 37 4 4 36 19 36 34

(3)  l-sequences and non l-sequences as inputs
The DSG inputs are l-sequence and non l-sequence 

shown in Figure 10. We use five experimental comnibations 
of l-sequences and non l-sequences as inputs of DSG shown 
in Table 5. From Table 5, we can find period and linear 
complexity of output l-sequences and non l-sequences as 
DSG inputs, where q1, T1, LC1, q2, T2, LC2, T and LC are 
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the connection integer, period and linear complexity of 
l-sequence, non l-sequence, and output respectively.

non 
l- sequence

 l - sequence
(q1), T1

(q2), T2
DSG output 

D

Figure 10.  l-sequences and non l-sequences as inputs

Table 5 lists the experimental result of l-sequences 
and non l-sequences as DSG inputs, where qi, Ti , LCi 

are the connection integer, period, linear complexity of 
FCSRi, respectively, and i = 1, 2. According to the above 
experimental result, we find the period T of output is

T = lcm(T1, T2).                                    (8)

and the linear complexity LC of output is 

LC @ T.                                          (9)

Table 5. The experimental result of l-sequences and non l-sequences 
as the inputs of DSG

q1 q2 T1 LC1 T2 LC2 T LC
19 15 18 10 4 4 36 35
19 31 18 10 5 5 90 89
19 35 18 10 12 12 36 35
37 39 36 19 12 9 36 34
37 17 36 19 4 4 36 34

(4) Non l-sequences as inputs
As shown in Figure 11, we use two non l-sequences 

are as the inputs of DSG, and we use five experimental 
combinations of non l-sequences as DSG inputs as shown 
in Table 6. From Table 6, we can find period and linear 
complexity of output non l-sequences as DSG inputs, where 
q1, T1, LC1, q2, T2, LC2, T and LC are the connection integer, 
period and linear complexity of non l-sequence 1, non 
l-sequence 2, and output respectively.

l-sequence 1
 

(q1), T1

(q2), T2non 
non DSG output 

l-sequence 2  

D

Figure 11.  Non l-sequences as inputs

Table 6. The experimental result of non l-sequences as the inputs of 
DSG

q1 q2 T1 LC1 T2 LC2 T LC
15 31 4 4 5 5 20 19
15 39 4 4 12 9 12 12
31 39 5 5 12 9 60 54
31 17 5 5 4 4 12 18
17 35 4 4 12 12 12 12

Table 6 shows the experimental result of non l-sequences 
as DSG inputs, where qi, Ti , LCi are the connection integer, 
period, linear complexity of FCSRi, respectively, and i = 1, 
2. According to the above experimental result, we find the 
period T of output is 

T = lcm(T1, T2).                                 (10)

and the linear complexity LC of output is

LC 	@ T.                                        (11)

Finally, we find output of l-sequences as DSG inputs has 
large period than other period of output, and all the linear 
complexity (LC) of output is close to period of output.

3.2 FCSR Based on Two Level DSG
In this section, we describe FCSR based two level DSG. 

As shown in Figure 12, the two level DSG is composed of 
three FCSRs and two DSGs. Table 7 shows the experimental 
result of FCSR based two level DSG, where qi, Ti , LCi are 
the connection integer, period, linear complexity of FCSRi, 
respectively, i = 1, 2, 3 and T and LC are the period and linear 
complexity of output.

According to the above experimental result, we find the 
period T of output is

T = lcm(T1, T2, T3).                               (12)

and the linear complexity LC of output is 

LC 	@ T.                                       (13)

outputDSG1 DSG2
FCSR3

FCSR1

FCSR2

D D

Figure 12.  FCSR based on two level DSG

Table 7.  The experimental result of FCSR based on two level DSG
q1 q2 q3 T1 LC1 T2 LC2 T3 LC3 T LC
19 37 53 18 10 36 19 52 27 468 466
5 11 19 4 3 10 6 18 10 90 88
17 29 53 36 19 28 15 52 27 3276 3026
11 61 29 10 6 60 31 28 15 420 409
53 61 107 52 27 60 31 106 54 41340 41338
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3.3  FCSR Based on Hierarchical DSG
In this section, we describe FCSR based hierarchical 

DSG. As shown in Figure 13, the FCSR based hierarchical 
DSG is composed of four FCSRs and three DSGs. Table 8 
shows the experimental result of FCSR based hierarchical 
DSG of FCSR, where qi, Ti, LCi are the connection integer, 
period, linear complexity of FCSRi, respectively, and i = 1, 
2, 3, 4 and T and LC are the period and linear complexity of 
output.

According to the above experimental result, we find the 
period T of output is

T = lcm(T1, T2, T3, T4).                            (14)

and the linear complexity LC of output is 

LC 	@ T.                                       (15)

DSG2

DSGDSG3

DSG1 output 

FCSR1

FCSR2

FCSR3

FCSR4

D

D

D

Figure 13. FCSR based on hierarchical DSG

Table 8. The experimental result of FCSR based on hierarchical DSG
q1 q2 q3 q4 T1 LC1 T2 LC2 T3 LC3 T4 LC4 T LC
19 37 83 131 18 10 36 19 82 42 130 66 95940 95940
19 37 373 1019 18 10 36 19 372 182 1018 510 568044 568036
11 29 61 227 10 6 28 15 60 31 226 114 47460 47460
19 29 37 53 18 10 28 15 36 19 52 27 3276 3276
5 11 29 53 4 3 10 6 28 114 52 27 1820 1820

3.4 FCSR Based on lp-Geffe Generator Cascading DSG
In this section, we will investigate the properties of FCSR 

based on lp-Geffe generator cascading DSG. FCSR based 
Geffe generator is also known as lp-Geffe generator [14]. 
As shown in Figure 14, the lp-Geffe generator cascading 
DSG is composed of four FCSRs and a DSG. Table 9 shows 
the experimental result of FCSR based lp-Geffe generator 
cascading DSG, where qi, Ti, LCi are the connection integer, 
period, linear complexity of FCSRi, respectively, i = 1, 2, 3, 4 

and T and LC are the period and linear complexity of output.
According to the above experimental result, we find the 

period T of output is 

T = lcm(T1, T2, T3, T4).                             (16)

and the linear complexity LC of output is 

LC 	@ T.                                       (17)

FCSR1

FCSR3

DSGFCSR2

FCSR4
output

D

Figure 14. FCSR based on lp-Geffe generator cascading DSG

Table 9. The experimental result of FCSR based on lp-Geffe generator cascading DSG
q1 q2 q3 q4 T1 LC1 T2 LC2 T3 LC3 T4 LC4 T LC
19 37 107 131 18 10 36 19 106 54 130 66 124020 124017
19 107 131 11 18 10 106 54 130 66 10 6 62010 61994
19 83 131 11 18 10 82 66 130 66 10 6 47970 47970
19 53 107 131 18 10 52 27 106 54 130 66 124017 124017
19 107 173 37 18 10 106 54 172 87 36 19 124017 82044
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3.5  FCSR Based on lp-Geffe Generator and DSG Hybrid 
Keystream Generator 
In this section, we describe the proposed FCSR based lp-

Geffe generator and DSG hybrid keystream generator. The 
circuit architecture is composed of FCSRs, nonlinear function 
f, and DSG. The design of circuit architecture is shown in 
Figure 15.

The FCSR1, FCSR2, FCSR3, combining with nonlinear 
function f are called lp-Geffe generator [14]. The nonlinear 
function f is a Boolean function that can be expressed 
algebraic normal form. The algebraic normal form is a sum of 
products of binary variables, addition and multiplication are 
defined in the binary field GF(2) [15]. The Boolean function 
is

f(x1, x2, x3) = x1x2 + x2x3 + x3.                                        (18)

where x1, x2, and x3 are the outputs of FCSR1, FCSR2, and 
FCSR3, respectively. The inputs of DSG are the output 
sequence of lp-Geffe generator y and output of FCSR4. 
Finally, DSG produces the output bits of keystream z.

Assume clock j from 0, 1, 2, …, and the variables define 
of DSG are described as follows:

- x4 : output bit of FCSR4 at clock j
- y : output bit of lp-Geffe generator at clock j

- w(j) : carry bit of DSG at clock j with initial value w(-1) =
          0
- z : the final output bit at clock j
The module of DSG in our circuit can be defined as 

follows:
DSG:

z = y ⊕ x4 ⊕ w(j−1).                              (19)

w(j) = x4 ⊕ (y ⊕ x4)w(j−1).                           (20)

The input-output correlation probability and the carry-
output correlation probability of DSG are both 1/2 as 
demonstrated in Table10.

Table 10.  Correlation probability of DSG based FCSR
y x4 w(j−1) w(j) z Correlation probability
0 0 0 0 0

Output - Inputs:
prob(y = z) = 1/2
prob(x4 = z) = 1/2
prob(w(j−1) = z) = 1/2
Carry - Output:
prob(w(j) = z) = 1/2

0 0 1 0 1
0 1 0 1 1
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

w(j)FCSR1

FCSR3

DSG

f

clkclk

x1

x2

x3

FCSR2

FCSR4

w(j ̶̶ 1)

y
x4

z

D

Figure 15.  The block diagram of FCSR based on lp-Geffe generator and DSG hybrid keystream generator

Table 11.  The experimental of FCSR based on lp-Geffe generator and DSG hybrid keystream generator
q1 q2 q3 T1 LC1 T2 LC2 T3 LC3 Ty LCy
19 53 107 18 10 52 27 106 54 24804 1647
19 107 131 18 10 106 54 130 66 62010 3890
19 83 131 18 10 82 42 130 66 47970 3026
19 107 173 18 10 106 54 172 87 82044 5044
19 11 11 18 10 10 6 148 75 6660 424

3.6 The Properties of FCSR Based on lp-Geffe Generator 
and DSG Hybrid Keystream Generator
In this section, we describe the properties FCSR based 

lp-Geffe generator and DSG hybrid keystream generator. As 
shown in Figure 15, the y denotes the output sequences of lp-
Geffe generator, the z denotes the output sequences of DSG. 
The period of y and z are expressed as Ty and Tz, respectively. 
The qi, Ti, LCi are the connection integer, period, linear 
complexity of FCSRi, respectively, and i = 1, 2, 3, 4.

Table 11 shows the experimental of lp-Geffe generator. 
According to [14], the output period Ty of lp-Geffe generator 
is

Ty = lcm(T1, T2, T3).                               (21)

the linear complexity LCy of lp-Geffe generator output is

LCy = min (LC, Ty).                               (22)

and

2 3 31 2 ( 1)( 1) ( 1)( 1)( 1)
4 4 2

q q qq qLC
+ + ++ +

= + + .             (23)

where lcm is mean the Least Common Multiple.
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Table 12.  The experimental result of DSG
Q4 T4 LC4 Tz LCz

131 130 124020 124020 124020
11 10 6 62010 61994
11 10 6 47970 47970
37 36 19 82044 82044
53 52 27 86580 86575

Table 12 lists the experimental result of DSG. We use 
output of lp-Geffe generator and output of FCSR4 as the 
inputs of DSG. According to the above experimental result, 
we find the period of z, Tz is:

Tz = lcm(Ty, T4).                                 (24)

and the linear complexity LCz is:

LCz @ Tz.                                       (25)

According to subsection 3.1, because the output sequence 
of lp-Geffe generator is not l-sequences, and the finial overall 
period is the Least Common Multiple (lcm) of the period of 
non l-sequences Ty and the period of l-sequences T4.

3.7  The Connection Integers of FCSRs
For the aim of security, we expand the parameters of 

the circuit proposed in section 3.6. The size of internal 
state of the proposed keystream generator is 416 bits, 
and it composed of FCSR1, FCSR2, FCSR3, and FCSR4, 
respectively. The corresponding maximum length of FCSR1, 
FCSR2, FCSR3, and FCSR4 are 96, 128, 64, 128, and the 
connection integer qi, i = 1, 2, 3, 4, for maximal-period 
FCSRs are described as follows [29]:

FCSR1: q1 = 296 + 258 + 235 + 22 – 1.                 (26)

FCSR2: q2 = 2128 + 25 + 24 + 22 – 1.                  (27)

FCSR3: q3 = 264 + 259 + 28 + 22 – 1.                  (28)

  FCSR4: q4 = 2128 + 221 + 219 + 22 – 1.                (29)

Basicly, the architectures of FCSR are divided into Galois 
architecture and Fibonacci architecture. In the proposed 
keystream generator, we choose Galois architecture of FCSR 
to speed up the operation of initialization.

3.8  Key/IV Setup Procedure
To meet the security strength of Advanced Encryption 

Standard (AES) cipher, the secret key (ki) and initialization 
vector (ivi) both are 128 (0 ≤ i ≤ 127) bits as inputs of 
keystream generator. We introduce Key/IV setup procedure, 
and it can be divided initial filling procedure and key 
initialization procedure. First, we load part bits of the secret 
key into initial state of the FCSRs. Then we load remaining 
bits of secret key and iv into the kystream generator in the 
key initialization procedure. It works as follows:

Initial Filling Procedure:
We denote secret key 128 bits (k = k0, …, k127) and 

initialization vector 128 bits (iv = iv0, …, iv127). The initial 
states of FCSR1, FCSR2, FCSR3, and FCSR4 are expressed as 
ai, bi, ci, di, respectively:

ai, 0 ≤ i ≤ 95.                                    (30)

bi, 0 ≤ i ≤ 127.                                  (31)

ci, 0 ≤ i ≤ 63.                                    (32)

di, 0 ≤ i ≤ 127.                                  (33)

The initial fillings of initial states in FCSRs are described 
as follows:

(a95, a94, …, a1, a0) ¬ (k127, k126, …, k33, k32).           (34)

(b127, b126, …, b1, b0) ¬ (k127, k126, …, k1, k0).           (35)

(c63, c62, …, c1, c0) ¬ (k127, k126, …, k65, k64).            (36)

(d127, d126, …, d1, d0) ¬ (k127, k126, …, k1, k0).           (37)

Notice that, only part bits of the secret key are loaded into 
the initial state of FCSRs.

seedai FCSR1

FCSR3

DSG

f

clk

clk

x1

x2

x3

FCSR2

FCSR4

seedbi

seedci

seeddi

z

D

y

Figure 16.  Key initialization procedure
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Key Initialization Procedure:
We load the remaining of secret key and iv are loaded 

into the keystream generator in key initialization procedure, 
as shown in Figure 16. We use 192 clocks to implement this 
procedure and there is no bit of keystream output during this 
initialization procedure.

We apply parameter seedai, seedbi, seedci, and seeddi 
denoted remaining key, and iv for 0 ≤ t ≤ 191. The parameters 
seedai, seedbi, seedci, and seeddi are given as follows:

(seeda191, …, seeda0) ¬ (0, …, 0, iv127, …, iv0, k31, …, k0). (38)

(seedb191, …, seedb0) ¬ (0, …, 0, iv127, …, iv0).          (39)

(seedc191, …, seedc0) ¬ (iv127, …, iv0, k63, …, k0).       (40)

(seedd191, …, seedd0) ¬ (0, …, 0, iv127, …, iv0).          (41)

4  Security Properties

A good pseudorandom sequence should have good 
statistical properties, large period and high linear complexity. 
In this section, we expand the parameters of the proposed lp-
Geffe generator and DSG hybrid keystream generator, and the 
period, linear complexity and some attacks of the proposed 
circuit will be evaluated.

4.1 Period and Linear Complexity of the Proposed 
Generator with Large Parameters
In this subsection, we describe period of large system. 

As shown in Figure 15, the period of y, and z are expressed 
as Ty, Tz, respectively. The Ti, LCi are the period and linear 
complexity of FCSRi, respectively, and i = 1, 2, 3, 4. The 
periods are described as follows [29]:

FCSR1: T1 = 296 + 258 + 235 + 2.                     (42)

FCSR2: T2 = 2128 + 25 + 24 + 2.                      (43)

FCSR3: T3 = 264 + 259 + 28 + 2.                      (44)

FCSR4: T4 = 2128 + 221 + 219 + 2.                   (45)

According to [14], the Ty can be written as

Ty = lcm(T1, T2, T3).                              (46)

Ty = lcm(296 + 258 + 235 + 2, 2128 + 25 + 24 + 2,
     264 + 259 + 28 + 2).                                   (47)

Ty 	@ 2281.                                       (48)

Finally, the Tz can be written as

Tz = lcm(Ty, T4).                                 (49)

Tz = lcm(2281, 2128 + 221 + 219 + 2).                   (50)

Tz 	@ 2408.                                      (51)

where lcm( ) denotes the function of Least Common 
Multiple.

According to above result, the proposed circuit has large 
period and it is required for security consideration.

The linear complexity is described as follows [29]:

FCSR1: LC1 = 295 + 257 + 234 + 2.                    (52)

FCSR2: LC2 = 2127 + 24 + 23 + 2.                     (53)

FCSR3: LC3 = 263 + 258 + 27 + 2.                     (54)

FCSR4: LC4 = 2127 + 220 + 218 + 2.                   (55)

From [14], the LCy can be written as

LCy = min (LC, Ty),                                                    (56)

and

2 3 31 2 ( 1)( 1) ( 1)( 1)( 1) .
4 4 2

q q qq qLC
+ + ++ +

= + +         (57)

LC @ 2222.                                      (58)

LCy @ 2222.                                     (59)

Finally, the LCz can be written as

LCz @ Tz.                                       (60)

LCz 	@ 2408.                                    (61)

We use large parameters to increase period, linear 
complexity, and security of proposed scheme. When the 
computation cost of a stream cipher is required equal to the 
security strength of AES, and it is approximately equal to 
O(2128). For our scheme, the linear complexity LC of the 
proposed stream cipher is approximately equal to 2408. The 
computation cost of the proposed cipher can be written as 
follows:

2 408 2 816 128( ) ((2 ) ) (2 ) (2 ).O LC O O O= = >             (62)

It can be seen that, the computation cost of our proposed 
cipher satisfied the security strength of AES, even stronger 
than AES.

4.2 Algebraic Attack
In this subsection, algebraic attack will be discussed. The 

basic principle of algebraic attacks goes back to Shannon’s 
work: these techniques consist in expressing the whole cipher 
as a large system of algebraic equations, which can be solved 
to recover the secret key [30].

First, we call L is connection function and assume L 
is public, and only the state is secret. We also assume the 
function f computes the output bit from the state is public and 
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does not depend on the secret of the cipher. The function f is 
called nonlinear filter. Let k0, …, kn-1 is the initial state, then 
the output of the cipher is given by:

0 0 1

1 0 1
2

2 0 1

( ,..., )     
( ( ,..., )) 
( ( ,..., ))

n

n

n

b f k k
b f L k k
b f L k k

−

−

−

=
 =
 =
 

Our problem is to recover the key k = (k0, … , kn−1) 
from some subset of keystream bits bi [31]. The numbers of 
equation are more than variables of equation. It can be easily 
solved by Gaussian elimination [31].

For our scheme, the algebraic equation at clock t for 
FCSRi, i = 1, 2, 3, 4 and output z are expressed as follows.

FCSR1:
clock t Algebraic equation
0 x1(t = 0) = k32

1 x1(t = 1) = k33

2 x1(t = 2) = k34 ⊕ k32

3 x1(t = 3) = k35 ⊕ k33 ⊕ k34k32

4
x1(t = 4) = k36 ⊕ (k34 ⊕ k32)
⊕ {k35k33 ⊕ k33(k34k32) ⊕ k35(k34k32)}

 

FCSR2:
clock t Algebraic equation
0 x2(t = 0) = k0
1 x2(t = 1) = k1

2 x2(t = 2) = k2 ⊕ k0

3 x2(t = 3) = k3 ⊕ k1 ⊕ k2k0

4
x2(t = 4) = (k4 ⊕ k0) ⊕ (k2 ⊕ k0)
⊕ {k3k1 ⊕ k1(k2 ⊕ k0) ⊕ (k2 ⊕ k0)k3}

 

FCSR3:
clock t Algebraic equation
0 x3(t = 0) = k64
1 x3(t = 1) = k65

2 x3(t = 2) = k66 ⊕ k64

3 x3(t = 3) = k67 ⊕ k65 ⊕ k66k64

4
x3(t = 4) = k68 ⊕ (k66 ⊕ k64)
⊕ {k67k65 ⊕ k65(k66 ⊕ k64) ⊕ (k66 ⊕ k64)k67}

 

FCSR4:
clock t Algebraic equation
0 x4(t = 0) = k0
1 x4(t = 1) = k1

2 x4(t = 2) = k2 ⊕ k0

3 x4(t = 3) = k3 ⊕ k1 ⊕ k2k0

4
x4(t = 4) = k4 ⊕ (k2 ⊕ k0)
⊕ {k3k1 ⊕ k1(k2 ⊕ k0) ⊕ (k2 ⊕ k0)k3}

 

FCSR5:
clock t Algebraic equation
0 z (t = 0) = (k32k0 ⊕ k0k64+k64) ⊕ k0

1 z (t = 1) = (k33k1 ⊕ k1k65 ⊕ k65) ⊕ k1 ⊕ k0

2
z (t = 2) = [(k34 + k32)(k2 + k0)+(k2 + k0)
(k66 + k64) + (k66 + k64)]+ (k2 + k0) + (k1 
+ [(k33k1 + k1k65 + k65) + k1] + k0)

3

z (t = 3) = [(k35 + k33 + k34k32)(k3 + k1 
+ k2k0) + (k3 + k1 + k2k0)(k67 + k65 + 
k66k64)+ (k67 + k65 + k66k64)] + (k3 + k1 + 
k2k0) + {[(k34 + k32)(k2 + k0)+(k2 + k0)
(k66 + k64) + (k66 + k64)]+ (k2 + k0)}(k1 + 
[(k33k1 + k1k65 + k65)+ k1]k0)}

4 x4(t = 4) = k4 + (k2 + k0)
+{k3k1 + k1(k2 + k0) + (k2 + k0)k3}

 

The monomials of output z are listed as follows:
z (t = 0): k32k0, k0k64, k64, k0

z (t = 1): k33k1, k1k65, k65, k1, k0

z (t = 2): k34k2, k34k0, k32k2, k32k0, k2k66, k2k64, k0k66, k0k64, k66,          
               k64, k2, k0, k1, k33k1, k1k65, k65

z (t = 3): k35k3, k35k1, k35k2k0, k33k3, k33k1, k33k2k0, k34k32k3,
k34k32k1, k34k32k2k0, k3k67, k3k65, k3k66k64, k1k67, k1k65,
k1k66k64, k2k0k67, k2k0k65, k2k0k66k64, k34k2, k34k0, k32k2,
k32k0, k2k66, k2k64, k0k66, k0k64, k33k1k0, k1k65k0, k65k0,
k1k0



From the above analysis, we find the numbers of variable 
for output z (t) at t = 0, 1, 2, 3, 4… are 4, 5, 16, 30…, 
respectively, and they are much than the algebraic equations 
can be listed. When the clock increase, the variables of 
equation is also gradually increase. However, the numbers of 
variable are more than the numbers of equation. The results 
show that the proposed stream cipher can against algebraic 
attack.

4.3 Time-Memory-Data Tradeoff Attack
In 1980, Hellman introduced a general technique for 

breaking arbitrary block cipher called time-memory tradeoff 
attack. Furthermore, Babbage-Golić and Biryukov-Shamir 
proposed that a different time-memory-data tradeoff attack 
that is applicable to stream ciphers [32].

The time-memory-data tradeoff attack has two phases: 
During the preprocessing phase (which can take a very 
long time) the attacker explores the general structure of the 
cryptosystem, and summarizes his findings in large tables. 
During the realtime phase, the attacker is given actual data 
produced from a particular unknown key, and his goal is to 
use the precomputed tables in order to find the key as quickly 
as possible.

There are five key parameters for time-memory-data 
tradeoff attack [32]:

- N represents the size of the search space.
- P represents the time required by the preprocessing
  phase of the attack.
- M represents the amount of random access memory
  available to the attacker.
- T represents the time required by the realtime phase of
  the attack.
- D represents the amount of realtime data available to the  
  attacker.
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Babbage and Golić suppose internal state of the 
streamcipher has N different states and D different keystreams 
of length logN. The attacker aims to recover one of the 
internal states corresponding to any one of the keystreams. 
We have memory requirement for this attack is M = N/D. It 
suffices to look for table D times and the time complexity is 
T = D. If ignoring some of the data, the time-memory-data 
tradeoff attack is TM = N with P = M for 1 ≤ T ≤ D.

For example, T = M = D = N1/2 constitutes an attack. 
Babbage suggests if a secret key length of k bits, then a state 
size of at least 2k bits, and it is a design principle for stream 
ciphers [33].

Biryukov and Shamir combined the works of Hellman 
and Babbage-Golić to bring a new time-memory-data tradeoff 
attack on stream ciphers. As with the work of Babbage and 
Golić, objective of the attacker is to recover any one of 
the internal states of the stream cipher, given D different 
keystreams. Biryukov and Shamir proposed the (t/D) tables, 
each of size m and taking time t, require a storage space of 
size M = tm/D, and the time complexity T = t2. When 1 ≤ D2 ≤ 
T, then time-memory-data tradeoff attack is TM2D2 = N2 and 
P = N/D. For example, T = M = N1/2 with D = N1/4 constitutes 
an attack. Biryukov and Shamir suggest the internal state of 
a stream cipher should at least twice the number of key bits 
[33].

Under the situation of stream cipher with IV, we only 
consider key and IV, and don’t care the other states of circuit. 
The search space is N = 2k+v, time and memory complexity 

T = M = 
1 ( )
22

k v+ , where k is key bits and v is IV bits. If v < 

k, this complexity is smaller than key exhaustive search 
complexity 2k. That is, if bit-length of IV is shorter than key’s, 
then the stream cipher is vulnerable to time-memory-data 
tradeoff attack [33].

For our scheme, the proposed stream cipher has key 128 
bits and iv 128 bits. In order to avoid the time-memory-data 
tradeoff attacks, the size of the internal state must at least 256 
bits. However, the size of the internal state of the proposed 
cipher is 416 bits, it means that the size of the search space 
N = 2416 > 2256. For the Babbage-Golić proposed attack T = M 
= D = N1/2 = 2208, for the Biryukov-Shamir proposed attack T 
= M = N1/2 = 2208, D = N1/4 = 2104, and under the situation of 
stream cipher with IV, we only consider key and IV, and don’t 
care the other states of circuit the search space is N = 2256, 
time and memory complexity T = M = 2128. 

In the proposed scheme, the length of iv is not small than 
the length of key. So it is not vulnerable to time-memory-data 
tradeoff attack. The results show that the proposed stream 
cipher can resist against these attacks.

4.4 Correlation Immunity Properties
In this section, we describe correlation immunity 

properties of the proposed scheme. In 1983, Siegenthaler 
showed that if the combining function is carelessly chosen 
then cryptosystems can be broken by the correlation attack, 
so the combining function must have good correlation-
immunity [34].

For our scheme, we use lp-Geffe generator and DSG to 
produce the output keystream and x1, x2, x3 are as the inputs 
of lp-Geffe generator, the y, x4, w(j-1) are as the inputs of DSG.

Table 13.  Correlation probabilities for lp-Geffe generator

x1 x2 x3
Output of lp-Geffe 

generator (y)
Correlation 
probability

0 0 0 0
Input Output:
P[x1 = y] = 3/4
P[x2= y] = 1/2
P[x3 = y] = 3/4

0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 14.  Correlation probabilities for output z

y x4 w(j-1) z w(j)
Correlation 
probability

0 0 0 0 0
Input Output:
P[y = z] = 1/2
P[x4 = z] = 1/2
P[w(j-1) = z] = 1/2
Carry Output:
P[w(j) = z] = 1/2

0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 15.  Correlation probabilities for output z

x1 x2 x3 y x4 w(j-1) z
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 1
0 1 0 0 0 1 1
0 1 1 0 0 1 1
1 0 0 0 0 1 1
0 0 0 0 1 0 1
0 1 0 0 1 0 1
0 1 1 0 1 0 1
1 0 0 0 1 0 1
0 0 0 0 1 1 0
0 1 0 0 1 1 0
0 1 1 0 1 1 0
1 0 0 0 1 1 0
0 0 1 1 0 0 1
1 0 1 1 0 0 1
1 1 0 1 0 0 1
1 1 1 1 0 0 1
0 0 1 1 0 1 0
1 0 1 1 0 1 0
1 1 0 1 0 1 0
1 1 1 1 0 1 0
0 0 1 1 1 0 0
1 0 1 1 1 0 0
1 1 0 1 1 0 0
1 1 1 1 1 0 0
0 0 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1
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Table 13 shows the correlation probabilities for lp-Geffe 
generator, the correlation probabilities of lp-Geffe generator 
are

P[x1 = y] = P[x3 = y] = 3/4, P[x2= y] = 1/2.             (63)

Table 14 shows the correlation probabilities for output y, 
the correlation probabilities of output z are

P[y = z] = P[x4 = z] = P[w(j-1) = z] = P[w(j) = z] = 1/2.     (64)

Table 15 shows the correlation probabilities for lp-Geffe 
generator and output z, the correlation probabilities of lp-
Geffe generator and output z are

P[x1 = z] =1/2, P[x2 = z] = 1/2, P[x3 = z] = 1/2.         (65)

5  Experimental Results

In this section, we use Verilog hardware description 
language to design proposed circuit,  and introduce 
randomness simulation result of our design circuit. In the 
simulation, 100 random keys and 100 random ivs are used 
to produce 100 output keystreams, and the randomness tests 
are performed under the FIPS PUB 140-1 [35] and SP800-22 
[36].

5.1 Statistical Random Number Tests
We use 100 random keys and 100 random ivs to produce 

100 output keystream, and we test the randomness properties 
of the keystream by FIPS PUB 140-1 and SP800-22.

We put the output keystream of the proposed circuit under 
FIPS PUB 140-1 to test it randomness. We select 100 random 
keys and 100 random ivs to produce 100 output keystreams. 
Each keystream length is 20,000 bits. Finally, in Table 16, we 
present the FIPS PUB 140-1 randomness testing results in 
percentage. From Table 16, we can find the pass rate of each 
test result is 100.00%.

Table 16.  Random Test Results under FIPS PUB 140-1

FIPS PUB 140-1 Tests Pass rate 
under 20,000 bits/sample

Monobit Test 100 %
Poker Test 100 %
Runs Test 100 %

Long Run Test 100 %

5.2 Random Test Result under SP800-22
We select 100 random keys and 100 random ivs to 

produce 100 different keystreams. Each keystream output 
length is 10,000,000 bits. We list the testing results in Table 
17. From the Table 17, we can find the pass rate of each test 
result is at least about 98%.

Table 17.  Statistical test results of the proposed keystream generator under NIST SP800-22

Statistical tests p-value Pass rate under 106 bits/sample

Frequency 0.564465 99 %
Block frequency 0.824463 99 %

Runs 0.739989 100 %
Longest Runs of Ones 0.521068 99 %

Rank 0.624465 100 %
Discrete fourier transform 0.574463 100 %

Non-overlapping Templates Matching 0.649989 99 %
Overlapping templates matching 0.621068 98 %

Universal statistical 0.788428 98 %
Linear complexity 0.819180 100 %

Serial 0.708286 100 %
Approximate entropy 0.689007 99 %

Cumulative sums 0.645081 100 %
Random excursions 0.744741 98 %

Random excursions variant 0.755939 98 %

6  Conclusion

In this paper, we have studied the characteristics of FCSR 
based nonlinear circuits firstly and proposed FCSR based 
hybrid keystream generator. We apply DSG and lp-Geffe 
generator to increase the period and the linear complexity of 
sequence. We analyze the period and linear complexity and 
use some attacks to verity its security.

The experimental results show that the proposed stream 
cipher has large period, high linear complexity, good 
randomness, and the linear complexity is very close to its 
overall period. The linear complexity for the proposed stream 
cipher satisfies the security strength of AES. In addition, the 
pass rates of the proposed scheme are 100% for FIPS PUB 
140-1 random test, and at least about 98% for NIST SP800-
22 random test. The proposed scheme can resist known 
attack, such as algebraic attack and time-memory-data 
tradeoff attack and etc.
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