
Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1273

*Corresponding Author: Shyi-Tsong Wu; E-mail: stwu@niu.edu.tw
DOI: 10.53106/160792642023112406010

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT
Shyi-Tsong Wu*

Department of Electronic Engineering, National Ilan University, Taiwan

stwu@niu.edu.tw

Abstract

Linear Feedback Shift Register (LFSR) is the basic
hardware of stream cipher, and Feedback with Carry Shift
Register (FCSR) is the nonlinear analogues of LFSR. FCSR
is a feedback architecture to generate long pseudorandom
sequence. In this paper, we study the characteristics of
FCSRs combined with nonlinear circuits such as Dawson’s
Summation Generator (DSG), lp-Geffe generator and etc.
Then we proposed a hybrid FCSR applying DSG and lp-Geffe
generator as nonlinear combining elements to increase the
period and the linear complexity of the output sequence. In
addition, we further investigate the period, linear complexity,
randomness, and use known attacks to verify the security
strength of the proposed keystream generator. The pass
rates of the proposed scheme are 100% for FIPS PUB 140-
1 random tests, and at least 98% for SP800-22 random test,
respectively.

Keywords: Hybrid FCSR, Hardware security, IoT, Stream
cipher

1 Introduction

The seurity of Internet of Things (IoT) is an important
issue. However, under the resource-constrained IoT, a
complex system becomes a heavy load and leads to a
reduction in communications efficiency [1-3]. Because the
communication of the IoT is in real time, a stream cipher with
the characteristics of simplicity and high speed is suitable to
the real-time communications of IoT for its efficiency [4-8].

The security of a stream cipher depends on the
pseudorandom sequences of the keystream generator. How
to generate secure pseudorandom sequences efficiently is a
hot topic in cryptology. The good pseudorandom sequences
should have good statistical distributions, large period, high
linear complexity, and good randomness [9-12].

Klapper and Goresky proposed Feedback with Carry
Shift Registers (FCSR) [13]. The FCSR is a new feedback
architecture to generate long pseudorandom sequence
efficiently [14]. It is very fast and easy to implement in both
software and hardware and with the property of nonlinear
[15-16]. There are few papers describe or analyze the
properties of FCSR application circuits related with their
period, linear complexity and etc.

In this paper, we study the characteristics of FCSRs
merged by nonlinear circuits at first. Then we apply FCSRs

and cascaded nonlinear circuits as a keystream generator.
To increase the period and linear complexity of sequences,
we use Dawson’s summation generator (DSG) and lp-Geffe
generator as nonlinear combining elements to produce
keystream. From the experimental results, we investigate
their period, linear complexity, randomness. The proposed
scheme can resist known attacks. The statistical tests of
Federal Information Processing Standards Publication 140-
1 (FIPS PUB 140-1) and the Special Publication 800-22
(SP800-22) are performed on the proposed scheme. The pass
rates are 100% for FIPS PUB 140-1 random tests, and at
least 98% for SP800-22 random test, respectively. The main
contributions of this study can be outlined as follows:

• The proposed stream cipher employs hybrid FCSR is
suitable to resource-contrained environment of IoT.

• The non-linear selection and output combining
functions in our proposed scheme ensure that the
correlation probability is well-balanced, making it
difficult for attackers to exploit any weaknesses and
compromise the security of the stream cipher.

• The proposed scheme based on a hybrid FCSR has
excellent statistical distribution, a long period, high
linear complexity, and produces highly random
outputs.

• The proposed scheme is a hardware-based security
solution that can be easily implemented using
hardware components.

The organization of this paper is as follows. Section 2
introduces the FCSR. In section 3, we describe our proposed
scheme and detail of the design circuit. In section 4, we
introduce statistical properties and some attacks with respect
to our design. We present the period and linear complexity
of the proposed generator with large parameters. Section 5
describes the experimental results for the proposed stream
cipher. Finally, we give the conclusions of proposed scheme
in Section 6.

2 Preliminaries

In this section, we introduce the properties of FCSR,
two basic FCSRs combiners XOR function and the lp-Geffe
generator based on FCSRs. Besides we will present the
properties with their period and linear complexity.

2.1 Feedback with Carry Shift Register (FCSR)
FCSR is similar to the LFSR, such as structure,

characteristics, and it is a new feedback architecture to

1274 Journal of Internet Technology Vol. 24 No. 6, November 2023

efficiently generate long pseudorandom sequence [14, 17].
FCSR has a small amount of memory and the analysis of
FCSR is based on the arithmetic of 2-adic numbers. It is very
fast and easy to implement in both software and hardware.
There are two basic structure of FCSR, i.e., Fibonacci
architecture of FCSR and Galois architecture of FCSR [18-
19].

The Fibonacci architecture of an r-stage FCSR is depicted
in Figure 1, where sn−1, sn−2, …, sn−r ∈ {0,1} denoted the cell
contents, mn−1 denoted the current memory contents, and S
denoted integer addition. The feedback coefficient (q1, q2, …,
qr) ∈ {0,1} represent the existence or absence of a feedback
tap [14-15].

sn ̶ 1 sn ̶ 2 ... sn ̶ rsn ̶ r+1

q1 q2 qrqr ̶ 1...

∑

mn ̶ 1 div 2 mod 2

Figure 1. Fibonacci architecture of FCSR

The register operations are as follows [14-15]:

1. Calculate 1
1

r

n i n i n
i

q s m− −
=

= +∑ as an integer sum.

2. Shift the cell contents to the right, the output bit is
rightmost bit sn-r.

3. Return sn = σn (mod 2) into the leftmost cell sn-1 of the
shift register.

4. Substitute mn-1 by mn = ëσn/2û.

The Galois architecture of FCSR is illustrated in Figure
2. The feedback coefficient (q1, q2, …, qr) of an r-stage FCSR
correspond to the binary expansion of q.

1
1 12 2 2 1,r r

r rq q q q−
−= + + + − (1)

the c1, c2, …, cr-1 are the memory bits (or carry), and the Σ
represents a full adder. Where qi ∈ {0, 1}, qr = 1. The integer
q is the connection integer and it is analog the connection
polynomial of LFSR [14].

sr-1 ... s1 s0

qr qr-1 q2 q1...

∑ ∑ ∑

cr-1 c2 c1

Figure 2. Galois architecture of FCSR

At the j-th adder, the following input bits are received:
−	 sj from the preceding cell
−	 s0qj from the feedback line

−	 cj from the memory cell
which are added to form a sum σj (with 1 ≤ j ≤ r − 1). At the
next clock cycle, this sum σj modulo 2 is passed on to the
next cell in the register,

sj−1' = σj mod 2,
and the sum σj div 2 is passed on to the memory,

cj' = σj div 2.
The connection integer q determines the period of the

sequences generated by an FCSR. We usually choose the
connection integer according to the following criterions [24-
25]:

1. q is a (negative) prime and the bit length of q is n + 1
 (n is the size of the main register).
2. Period T = (|q| − 1)/2 is prime.
3. d = (1 + |q|)/2.
4. The carry register c has l cells, and the number of

 nonzero di is l + 1, where
1

0
2

n
i

i
i

d d
−

=

= ∑ .

To obtain maximum period of FCSR sequence,
connection integer q should be prime number, and 2 is a
primitive root modulo q. The FCSR produced sequence with
maximum-period is called l-sequence [14, 17]. The period of
l-sequences is q − 1 [20-21], and its linear complexity is (q +
1)/2 [14].

The properties of FCSR are described as follows [15, 17,
22-23]:

1. Every binary l-sequence of period 2t, where t is a
positive integer, has the property that the second
half of any segment of length 2t is the bit-wise
complement of the first half. This property is known
as the symmetrical complementary property. The
converse is not true. Not every symmetrically
complementary sequence is an l-sequence. For
example, when q = 17, the sequence is symmetrically
complementary, but it is not an l-sequence because 2
is not primitive modulo 17.

2. Any strictly periodic sequence generated by a 2-adic
FCSR with connection integer q is symmetrically
complementary if and only if q divides 2T/2 + 1,
where T is the period of the sequence.

3. The linear complexity of an l-sequence of period 2t
is at most t + 1

4. If q is a prime number and 2 is primitive root modulo
q, then q is 2-prime. If q = 2p + 1, both p and q are
2-prime, then q is called strong 2-prime.

5. If the connection integer q of an FCSR is 2-prime,
then the linear span (linear complexity) of the
FCSR is less than or equals to (q + 1)/2. If q = 2p
+ 1 is a strong 2-prime, then the linear span (linear
complexity) is p + 1.

Figure 3 shows the hardware circuit of FCSR Galois
architecture. A Galois FCSR for q = −347, d = 174 =
(10101110)2, n = 8 and l = 4 [24-25]. The symbol
represents addition with carry, as represented in Figure 4,
where D is the D-type Flip-Flop.

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1275

s7 s3s5s6 s4 s2 s1 s0

c5 c3 c2 c1c(t) 0 0 0 0
s(t)

d 1 0 1 0 1 1 1 0

Figure 3. Hardware description of FCSR Galois architecture

ci = aib ⊕ci 1

s = a⊕b⊕ci ̶ 1
b
a

a ci ̶1⊕bci ̶ 1̶
i
i

i i i

i i i

D

Figure 4. Addition with Carry

2.2 Two FCSRs Combiners with XOR Function
The literature [15] proposed two FCSRs combiners

with bit-wise XOR operation as the combining function. A
schematic diagram depicting the generator is shown in Figure
5.

FCSR1

FCSR2

output

Figure 5. Two FCSRs combiners with XOR function

According to [15], the period T of output is lcm(T1, T2),
the linear complexity LC of output is (T1 + T2)/2 + 2, where
the lcm() is least common multiple, and the T1, T2 are the
period of FCSR1, FCSR2, respectively.

2.3 The lp-Geffe Generator Based on FCSRs
The Figure 6 shows the lp-Geffe generator, which is

composed of FCSR1, FCSR2, FCSR3 and nonlinear function
f [14]. Table 1 is the correlation probability of lp-Geffe
generator. From this table, we find the correlation probability
of both the inputs bits wj, yj and the output bit zj at clock j
are 3/4. This is the main drawback of this circuit. And the
correlation probability of input bit xj and output bit zj at clock
j is 1/2.

FCSR1

FCSR3

FCSR2

clk

output

 f
wj

xj

yj

Figure 6. The lp-Geffe generator

According to [14], the period T of output is lcm(T1, T2,
T3), the linear complexity LUB of output is

min(,)UB UBL L T= . (2)

with

2 3 31 2 (1)(1) (1)(1)(1)
4 4 2UB

q q qq qL
+ + ++ +

= + + . (3)

where T1, T2, T3 are the period of FCSR1, FCSR2, and FCSR3,
and q1, q2, q3 are the connection integer of FCSR1, FCSR2,
and FCSR3, respectively.

Table 1. Correlation probability of lp-Geffe generator
wj xj yj zj Correlation probability
0 0 0 0

Output - Inputs:
prob(wj = zj) = 3/4
prob(xj = zj) = 1/2
prob(yj = zj) = 3/4

0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2.4 Dawson’s Summation Generator
Dawson’s Summation Generator (DSG) is proposed by

Dawson [26]. The Dawson’s Summation Generator (DSG)
is shown in Figure 7, and the symbols are defined as follows
[27]:

−	 aj: the input bit at clock j,
−	 bj: the input bit at clock j,
−	 cj: the carry bit at clock j with carry initial value c−1 =

0,
−	 zj: the sum output at clock j, zj = aj ⊕ bj ⊕ cj−1.

cj = bj ⊕(aj⊕bj)cj−1cj−1

D

zj = aj⊕bj⊕cj−1
aj

jb

Figure 7. Dawson’s Summation Generator (DSG)

1276 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 2 shows the input-output correlation probability
and the carry-output correlation probability are both 1/2. The
good features can prevent correlation attack. Therefore, [28]
concluded that DSG is secure.

Table 2. Correlation probability of DSG
aj bj cj−1 cj zj Correlation probability
0 0 0 0 0

Output - Inputs:
prob(aj = zj) = 1/2
prob(bj = zj) = 1/2
prob(cj−1 = zj) = 1/2
Carry - Output:
prob(cj = zj) = 1/2

0 0 1 0 1
0 1 0 1 1
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3 The Proposed Scheme

In this section, we introduce the proposed FCSR-based
keystream generator for real-time communications in IoT.
The basic proposed structure is combined the lp-Geffe
generator with two level DSG. We use two level DSG to
increase the linear complexity, and apply good features of
correlation probability of DSG to prevent attack. By the
experiment results, we study the properties of the sequences
in terms of their period, linear complexity and randomness,
and the characteristics of the proposed keystream generator.

3.1 The Proposed of FCSR Based on DSG
We describe the properties of FCSR based DSG with

four different inputs, that are divided into: (1) l-sequences
as inputs, (2) non l-sequences and l-sequences as inputs,
(3) l-sequences and non l-sequences as inputs, and (4) non
l-sequences as inputs. And we will study the properties with
their period and linear complexity.

(1) l-sequences as inputs
As shown in Figure 8, we use two FCSR l-sequences as

the inputs of DSG, and we use different five experimental
l-sequences as DSG inputs. In our experiment, there are
five combinations of the l-sequences as shown in Table 3.
From Table 3, we can find period and linear complexity of
output l-sequences as DSG inputs, where q1, T1, LC1, q2, T2,
LC2, T and LC are the connection integer, period and linear
complexity of FCSR1, FCSR2 and output, respectively.

FCSR1 (q1), T1

(q2), T2
DSG output

FCSR2

D

Figure 8. l-sequences as inputs

Table 3 lists the experimental result of l-sequences as
inputs, where qi, Ti , LCi are the connection integer, period,
linear complexity of FCSRi, respectively, and i = 1, 2.
According to the above experimental result of l-sequences as
inputs, we find the period T of output is

T @ T1*LC2. (4)

And the linear complexity LC of output is

LC 	@ T. (5)

Table 3. The experimental result of l-sequences as inputs
q1 q2 T1 LC1 T2 LC2 T LC
107 131 106 54 130 66 6890 6889
19 131 18 10 130 66 1170 1166
37 83 36 19 82 42 1476 1476
83 149 82 41 148 75 6068 6064
19 83 18 10 82 42 738 734

(2) Non l-sequences and l-sequences as inputs
We use non l-sequence and l-sequence as the inputs

of DSG, shown in Figure 9. In our experiment, there are
five combinations of the non l-sequence and l-sequences
as shown in Table 4. From Table 4, we can find period and
linear complexity of output non l-sequences and l-sequences
as DSG inputs, where q1, T1, LC1, q2, T2, LC2, T and LC are
the connection integer, period and linear complexity of non
l-sequence, l-sequence, and output respectively.

non l- sequence
 l - sequence

(q1), T1

(q2), T2
DSG output

D

Figure 9. Non l-sequence and l-sequence as inputs

Table 4 shows the exper imenta l resul t of non
l-sequences and l-sequences as DSG inputs, where qi, Ti ,
LCi are the connection integer, period, linear complexity of
FCSRi, respectively, and i = 1, 2. According to the above
experimental result, we find the period T of output is

T = lcm(T1, T2). (6)

and the linear complexity LC of output is

LC 	@ T. (7)

Table 4. The experimental result of non l-sequences and l-sequences
as the inputs of DSG

q1 q2 T1 LC1 T2 LC2 T LC
15 19 4 4 18 10 36 36
31 19 5 5 18 10 90 89
35 19 12 12 18 10 36 35
39 37 12 9 36 19 36 34
17 37 4 4 36 19 36 34

(3) l-sequences and non l-sequences as inputs
The DSG inputs are l-sequence and non l-sequence

shown in Figure 10. We use five experimental comnibations
of l-sequences and non l-sequences as inputs of DSG shown
in Table 5. From Table 5, we can find period and linear
complexity of output l-sequences and non l-sequences as
DSG inputs, where q1, T1, LC1, q2, T2, LC2, T and LC are

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1277

the connection integer, period and linear complexity of
l-sequence, non l-sequence, and output respectively.

non
l- sequence

 l - sequence
(q1), T1

(q2), T2
DSG output

D

Figure 10. l-sequences and non l-sequences as inputs

Table 5 lists the experimental result of l-sequences
and non l-sequences as DSG inputs, where qi, Ti , LCi

are the connection integer, period, linear complexity of
FCSRi, respectively, and i = 1, 2. According to the above
experimental result, we find the period T of output is

T = lcm(T1, T2). (8)

and the linear complexity LC of output is

LC @ T. (9)

Table 5. The experimental result of l-sequences and non l-sequences
as the inputs of DSG

q1 q2 T1 LC1 T2 LC2 T LC
19 15 18 10 4 4 36 35
19 31 18 10 5 5 90 89
19 35 18 10 12 12 36 35
37 39 36 19 12 9 36 34
37 17 36 19 4 4 36 34

(4) Non l-sequences as inputs
As shown in Figure 11, we use two non l-sequences

are as the inputs of DSG, and we use five experimental
combinations of non l-sequences as DSG inputs as shown
in Table 6. From Table 6, we can find period and linear
complexity of output non l-sequences as DSG inputs, where
q1, T1, LC1, q2, T2, LC2, T and LC are the connection integer,
period and linear complexity of non l-sequence 1, non
l-sequence 2, and output respectively.

l-sequence 1

(q1), T1

(q2), T2non
non DSG output

l-sequence 2

D

Figure 11. Non l-sequences as inputs

Table 6. The experimental result of non l-sequences as the inputs of
DSG

q1 q2 T1 LC1 T2 LC2 T LC
15 31 4 4 5 5 20 19
15 39 4 4 12 9 12 12
31 39 5 5 12 9 60 54
31 17 5 5 4 4 12 18
17 35 4 4 12 12 12 12

Table 6 shows the experimental result of non l-sequences
as DSG inputs, where qi, Ti , LCi are the connection integer,
period, linear complexity of FCSRi, respectively, and i = 1,
2. According to the above experimental result, we find the
period T of output is

T = lcm(T1, T2). (10)

and the linear complexity LC of output is

LC 	@ T. (11)

Finally, we find output of l-sequences as DSG inputs has
large period than other period of output, and all the linear
complexity (LC) of output is close to period of output.

3.2 FCSR Based on Two Level DSG
In this section, we describe FCSR based two level DSG.

As shown in Figure 12, the two level DSG is composed of
three FCSRs and two DSGs. Table 7 shows the experimental
result of FCSR based two level DSG, where qi, Ti , LCi are
the connection integer, period, linear complexity of FCSRi,
respectively, i = 1, 2, 3 and T and LC are the period and linear
complexity of output.

According to the above experimental result, we find the
period T of output is

T = lcm(T1, T2, T3). (12)

and the linear complexity LC of output is

LC 	@ T. (13)

outputDSG1 DSG2
FCSR3

FCSR1

FCSR2

D D

Figure 12. FCSR based on two level DSG

Table 7. The experimental result of FCSR based on two level DSG
q1 q2 q3 T1 LC1 T2 LC2 T3 LC3 T LC
19 37 53 18 10 36 19 52 27 468 466
5 11 19 4 3 10 6 18 10 90 88
17 29 53 36 19 28 15 52 27 3276 3026
11 61 29 10 6 60 31 28 15 420 409
53 61 107 52 27 60 31 106 54 41340 41338

1278 Journal of Internet Technology Vol. 24 No. 6, November 2023

3.3 FCSR Based on Hierarchical DSG
In this section, we describe FCSR based hierarchical

DSG. As shown in Figure 13, the FCSR based hierarchical
DSG is composed of four FCSRs and three DSGs. Table 8
shows the experimental result of FCSR based hierarchical
DSG of FCSR, where qi, Ti, LCi are the connection integer,
period, linear complexity of FCSRi, respectively, and i = 1,
2, 3, 4 and T and LC are the period and linear complexity of
output.

According to the above experimental result, we find the
period T of output is

T = lcm(T1, T2, T3, T4). (14)

and the linear complexity LC of output is

LC 	@ T. (15)

DSG2

DSGDSG3

DSG1 output

FCSR1

FCSR2

FCSR3

FCSR4

D

D

D

Figure 13. FCSR based on hierarchical DSG

Table 8. The experimental result of FCSR based on hierarchical DSG
q1 q2 q3 q4 T1 LC1 T2 LC2 T3 LC3 T4 LC4 T LC
19 37 83 131 18 10 36 19 82 42 130 66 95940 95940
19 37 373 1019 18 10 36 19 372 182 1018 510 568044 568036
11 29 61 227 10 6 28 15 60 31 226 114 47460 47460
19 29 37 53 18 10 28 15 36 19 52 27 3276 3276
5 11 29 53 4 3 10 6 28 114 52 27 1820 1820

3.4 FCSR Based on lp-Geffe Generator Cascading DSG
In this section, we will investigate the properties of FCSR

based on lp-Geffe generator cascading DSG. FCSR based
Geffe generator is also known as lp-Geffe generator [14].
As shown in Figure 14, the lp-Geffe generator cascading
DSG is composed of four FCSRs and a DSG. Table 9 shows
the experimental result of FCSR based lp-Geffe generator
cascading DSG, where qi, Ti, LCi are the connection integer,
period, linear complexity of FCSRi, respectively, i = 1, 2, 3, 4

and T and LC are the period and linear complexity of output.
According to the above experimental result, we find the

period T of output is

T = lcm(T1, T2, T3, T4). (16)

and the linear complexity LC of output is

LC 	@ T. (17)

FCSR1

FCSR3

DSGFCSR2

FCSR4
output

D

Figure 14. FCSR based on lp-Geffe generator cascading DSG

Table 9. The experimental result of FCSR based on lp-Geffe generator cascading DSG
q1 q2 q3 q4 T1 LC1 T2 LC2 T3 LC3 T4 LC4 T LC
19 37 107 131 18 10 36 19 106 54 130 66 124020 124017
19 107 131 11 18 10 106 54 130 66 10 6 62010 61994
19 83 131 11 18 10 82 66 130 66 10 6 47970 47970
19 53 107 131 18 10 52 27 106 54 130 66 124017 124017
19 107 173 37 18 10 106 54 172 87 36 19 124017 82044

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1279

3.5 FCSR Based on lp-Geffe Generator and DSG Hybrid
Keystream Generator
In this section, we describe the proposed FCSR based lp-

Geffe generator and DSG hybrid keystream generator. The
circuit architecture is composed of FCSRs, nonlinear function
f, and DSG. The design of circuit architecture is shown in
Figure 15.

The FCSR1, FCSR2, FCSR3, combining with nonlinear
function f are called lp-Geffe generator [14]. The nonlinear
function f is a Boolean function that can be expressed
algebraic normal form. The algebraic normal form is a sum of
products of binary variables, addition and multiplication are
defined in the binary field GF(2) [15]. The Boolean function
is

f(x1, x2, x3) = x1x2 + x2x3 + x3. (18)

where x1, x2, and x3 are the outputs of FCSR1, FCSR2, and
FCSR3, respectively. The inputs of DSG are the output
sequence of lp-Geffe generator y and output of FCSR4.
Finally, DSG produces the output bits of keystream z.

Assume clock j from 0, 1, 2, …, and the variables define
of DSG are described as follows:

- x4 : output bit of FCSR4 at clock j
- y : output bit of lp-Geffe generator at clock j

- w(j) : carry bit of DSG at clock j with initial value w(-1) =
 0
- z : the final output bit at clock j
The module of DSG in our circuit can be defined as

follows:
DSG:

z = y ⊕ x4 ⊕ w(j−1). (19)

w(j) = x4 ⊕ (y ⊕ x4)w(j−1). (20)

The input-output correlation probability and the carry-
output correlation probability of DSG are both 1/2 as
demonstrated in Table10.

Table 10. Correlation probability of DSG based FCSR
y x4 w(j−1) w(j) z Correlation probability
0 0 0 0 0

Output - Inputs:
prob(y = z) = 1/2
prob(x4 = z) = 1/2
prob(w(j−1) = z) = 1/2
Carry - Output:
prob(w(j) = z) = 1/2

0 0 1 0 1
0 1 0 1 1
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

w(j)FCSR1

FCSR3

DSG

f

clkclk

x1

x2

x3

FCSR2

FCSR4

w(j ̶̶ 1)

y
x4

z

D

Figure 15. The block diagram of FCSR based on lp-Geffe generator and DSG hybrid keystream generator

Table 11. The experimental of FCSR based on lp-Geffe generator and DSG hybrid keystream generator
q1 q2 q3 T1 LC1 T2 LC2 T3 LC3 Ty LCy
19 53 107 18 10 52 27 106 54 24804 1647
19 107 131 18 10 106 54 130 66 62010 3890
19 83 131 18 10 82 42 130 66 47970 3026
19 107 173 18 10 106 54 172 87 82044 5044
19 11 11 18 10 10 6 148 75 6660 424

3.6 The Properties of FCSR Based on lp-Geffe Generator
and DSG Hybrid Keystream Generator
In this section, we describe the properties FCSR based

lp-Geffe generator and DSG hybrid keystream generator. As
shown in Figure 15, the y denotes the output sequences of lp-
Geffe generator, the z denotes the output sequences of DSG.
The period of y and z are expressed as Ty and Tz, respectively.
The qi, Ti, LCi are the connection integer, period, linear
complexity of FCSRi, respectively, and i = 1, 2, 3, 4.

Table 11 shows the experimental of lp-Geffe generator.
According to [14], the output period Ty of lp-Geffe generator
is

Ty = lcm(T1, T2, T3). (21)

the linear complexity LCy of lp-Geffe generator output is

LCy = min (LC, Ty). (22)

and

2 3 31 2 (1)(1) (1)(1)(1)
4 4 2

q q qq qLC
+ + ++ +

= + + . (23)

where lcm is mean the Least Common Multiple.

1280 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 12. The experimental result of DSG
Q4 T4 LC4 Tz LCz

131 130 124020 124020 124020
11 10 6 62010 61994
11 10 6 47970 47970
37 36 19 82044 82044
53 52 27 86580 86575

Table 12 lists the experimental result of DSG. We use
output of lp-Geffe generator and output of FCSR4 as the
inputs of DSG. According to the above experimental result,
we find the period of z, Tz is:

Tz = lcm(Ty, T4). (24)

and the linear complexity LCz is:

LCz @ Tz. (25)

According to subsection 3.1, because the output sequence
of lp-Geffe generator is not l-sequences, and the finial overall
period is the Least Common Multiple (lcm) of the period of
non l-sequences Ty and the period of l-sequences T4.

3.7 The Connection Integers of FCSRs
For the aim of security, we expand the parameters of

the circuit proposed in section 3.6. The size of internal
state of the proposed keystream generator is 416 bits,
and it composed of FCSR1, FCSR2, FCSR3, and FCSR4,
respectively. The corresponding maximum length of FCSR1,
FCSR2, FCSR3, and FCSR4 are 96, 128, 64, 128, and the
connection integer qi, i = 1, 2, 3, 4, for maximal-period
FCSRs are described as follows [29]:

FCSR1: q1 = 296 + 258 + 235 + 22 – 1. (26)

FCSR2: q2 = 2128 + 25 + 24 + 22 – 1. (27)

FCSR3: q3 = 264 + 259 + 28 + 22 – 1. (28)

 FCSR4: q4 = 2128 + 221 + 219 + 22 – 1. (29)

Basicly, the architectures of FCSR are divided into Galois
architecture and Fibonacci architecture. In the proposed
keystream generator, we choose Galois architecture of FCSR
to speed up the operation of initialization.

3.8 Key/IV Setup Procedure
To meet the security strength of Advanced Encryption

Standard (AES) cipher, the secret key (ki) and initialization
vector (ivi) both are 128 (0 ≤ i ≤ 127) bits as inputs of
keystream generator. We introduce Key/IV setup procedure,
and it can be divided initial filling procedure and key
initialization procedure. First, we load part bits of the secret
key into initial state of the FCSRs. Then we load remaining
bits of secret key and iv into the kystream generator in the
key initialization procedure. It works as follows:

Initial Filling Procedure:
We denote secret key 128 bits (k = k0, …, k127) and

initialization vector 128 bits (iv = iv0, …, iv127). The initial
states of FCSR1, FCSR2, FCSR3, and FCSR4 are expressed as
ai, bi, ci, di, respectively:

ai, 0 ≤ i ≤ 95. (30)

bi, 0 ≤ i ≤ 127. (31)

ci, 0 ≤ i ≤ 63. (32)

di, 0 ≤ i ≤ 127. (33)

The initial fillings of initial states in FCSRs are described
as follows:

(a95, a94, …, a1, a0) ¬ (k127, k126, …, k33, k32). (34)

(b127, b126, …, b1, b0) ¬ (k127, k126, …, k1, k0). (35)

(c63, c62, …, c1, c0) ¬ (k127, k126, …, k65, k64). (36)

(d127, d126, …, d1, d0) ¬ (k127, k126, …, k1, k0). (37)

Notice that, only part bits of the secret key are loaded into
the initial state of FCSRs.

seedai FCSR1

FCSR3

DSG

f

clk

clk

x1

x2

x3

FCSR2

FCSR4

seedbi

seedci

seeddi

z

D

y

Figure 16. Key initialization procedure

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1281

Key Initialization Procedure:
We load the remaining of secret key and iv are loaded

into the keystream generator in key initialization procedure,
as shown in Figure 16. We use 192 clocks to implement this
procedure and there is no bit of keystream output during this
initialization procedure.

We apply parameter seedai, seedbi, seedci, and seeddi
denoted remaining key, and iv for 0 ≤ t ≤ 191. The parameters
seedai, seedbi, seedci, and seeddi are given as follows:

(seeda191, …, seeda0) ¬ (0, …, 0, iv127, …, iv0, k31, …, k0). (38)

(seedb191, …, seedb0) ¬ (0, …, 0, iv127, …, iv0). (39)

(seedc191, …, seedc0) ¬ (iv127, …, iv0, k63, …, k0). (40)

(seedd191, …, seedd0) ¬ (0, …, 0, iv127, …, iv0). (41)

4 Security Properties

A good pseudorandom sequence should have good
statistical properties, large period and high linear complexity.
In this section, we expand the parameters of the proposed lp-
Geffe generator and DSG hybrid keystream generator, and the
period, linear complexity and some attacks of the proposed
circuit will be evaluated.

4.1 Period and Linear Complexity of the Proposed
Generator with Large Parameters
In this subsection, we describe period of large system.

As shown in Figure 15, the period of y, and z are expressed
as Ty, Tz, respectively. The Ti, LCi are the period and linear
complexity of FCSRi, respectively, and i = 1, 2, 3, 4. The
periods are described as follows [29]:

FCSR1: T1 = 296 + 258 + 235 + 2. (42)

FCSR2: T2 = 2128 + 25 + 24 + 2. (43)

FCSR3: T3 = 264 + 259 + 28 + 2. (44)

FCSR4: T4 = 2128 + 221 + 219 + 2. (45)

According to [14], the Ty can be written as

Ty = lcm(T1, T2, T3). (46)

Ty = lcm(296 + 258 + 235 + 2, 2128 + 25 + 24 + 2,
 264 + 259 + 28 + 2). (47)

Ty 	@ 2281. (48)

Finally, the Tz can be written as

Tz = lcm(Ty, T4). (49)

Tz = lcm(2281, 2128 + 221 + 219 + 2). (50)

Tz 	@ 2408. (51)

where lcm() denotes the function of Least Common
Multiple.

According to above result, the proposed circuit has large
period and it is required for security consideration.

The linear complexity is described as follows [29]:

FCSR1: LC1 = 295 + 257 + 234 + 2. (52)

FCSR2: LC2 = 2127 + 24 + 23 + 2. (53)

FCSR3: LC3 = 263 + 258 + 27 + 2. (54)

FCSR4: LC4 = 2127 + 220 + 218 + 2. (55)

From [14], the LCy can be written as

LCy = min (LC, Ty), (56)

and

2 3 31 2 (1)(1) (1)(1)(1) .
4 4 2

q q qq qLC
+ + ++ +

= + + (57)

LC @ 2222. (58)

LCy @ 2222. (59)

Finally, the LCz can be written as

LCz @ Tz. (60)

LCz 	@ 2408. (61)

We use large parameters to increase period, linear
complexity, and security of proposed scheme. When the
computation cost of a stream cipher is required equal to the
security strength of AES, and it is approximately equal to
O(2128). For our scheme, the linear complexity LC of the
proposed stream cipher is approximately equal to 2408. The
computation cost of the proposed cipher can be written as
follows:

2 408 2 816 128() ((2)) (2) (2).O LC O O O= = > (62)

It can be seen that, the computation cost of our proposed
cipher satisfied the security strength of AES, even stronger
than AES.

4.2 Algebraic Attack
In this subsection, algebraic attack will be discussed. The

basic principle of algebraic attacks goes back to Shannon’s
work: these techniques consist in expressing the whole cipher
as a large system of algebraic equations, which can be solved
to recover the secret key [30].

First, we call L is connection function and assume L
is public, and only the state is secret. We also assume the
function f computes the output bit from the state is public and

1282 Journal of Internet Technology Vol. 24 No. 6, November 2023

does not depend on the secret of the cipher. The function f is
called nonlinear filter. Let k0, …, kn-1 is the initial state, then
the output of the cipher is given by:

0 0 1

1 0 1
2

2 0 1

(,...,)
((,...,))
((,...,))

n

n

n

b f k k
b f L k k
b f L k k

−

−

−

=
 =
 =
 

Our problem is to recover the key k = (k0, … , kn−1)
from some subset of keystream bits bi [31]. The numbers of
equation are more than variables of equation. It can be easily
solved by Gaussian elimination [31].

For our scheme, the algebraic equation at clock t for
FCSRi, i = 1, 2, 3, 4 and output z are expressed as follows.

FCSR1:
clock t Algebraic equation
0 x1(t = 0) = k32

1 x1(t = 1) = k33

2 x1(t = 2) = k34 ⊕ k32

3 x1(t = 3) = k35 ⊕ k33 ⊕ k34k32

4
x1(t = 4) = k36 ⊕ (k34 ⊕ k32)
⊕ {k35k33 ⊕ k33(k34k32) ⊕ k35(k34k32)}

 

FCSR2:
clock t Algebraic equation
0 x2(t = 0) = k0
1 x2(t = 1) = k1

2 x2(t = 2) = k2 ⊕ k0

3 x2(t = 3) = k3 ⊕ k1 ⊕ k2k0

4
x2(t = 4) = (k4 ⊕ k0) ⊕ (k2 ⊕ k0)
⊕ {k3k1 ⊕ k1(k2 ⊕ k0) ⊕ (k2 ⊕ k0)k3}

 

FCSR3:
clock t Algebraic equation
0 x3(t = 0) = k64
1 x3(t = 1) = k65

2 x3(t = 2) = k66 ⊕ k64

3 x3(t = 3) = k67 ⊕ k65 ⊕ k66k64

4
x3(t = 4) = k68 ⊕ (k66 ⊕ k64)
⊕ {k67k65 ⊕ k65(k66 ⊕ k64) ⊕ (k66 ⊕ k64)k67}

 

FCSR4:
clock t Algebraic equation
0 x4(t = 0) = k0
1 x4(t = 1) = k1

2 x4(t = 2) = k2 ⊕ k0

3 x4(t = 3) = k3 ⊕ k1 ⊕ k2k0

4
x4(t = 4) = k4 ⊕ (k2 ⊕ k0)
⊕ {k3k1 ⊕ k1(k2 ⊕ k0) ⊕ (k2 ⊕ k0)k3}

 

FCSR5:
clock t Algebraic equation
0 z (t = 0) = (k32k0 ⊕ k0k64+k64) ⊕ k0

1 z (t = 1) = (k33k1 ⊕ k1k65 ⊕ k65) ⊕ k1 ⊕ k0

2
z (t = 2) = [(k34 + k32)(k2 + k0)+(k2 + k0)
(k66 + k64) + (k66 + k64)]+ (k2 + k0) + (k1
+ [(k33k1 + k1k65 + k65) + k1] + k0)

3

z (t = 3) = [(k35 + k33 + k34k32)(k3 + k1
+ k2k0) + (k3 + k1 + k2k0)(k67 + k65 +
k66k64)+ (k67 + k65 + k66k64)] + (k3 + k1 +
k2k0) + {[(k34 + k32)(k2 + k0)+(k2 + k0)
(k66 + k64) + (k66 + k64)]+ (k2 + k0)}(k1 +
[(k33k1 + k1k65 + k65)+ k1]k0)}

4 x4(t = 4) = k4 + (k2 + k0)
+{k3k1 + k1(k2 + k0) + (k2 + k0)k3}

 

The monomials of output z are listed as follows:
z (t = 0): k32k0, k0k64, k64, k0

z (t = 1): k33k1, k1k65, k65, k1, k0

z (t = 2): k34k2, k34k0, k32k2, k32k0, k2k66, k2k64, k0k66, k0k64, k66,
 k64, k2, k0, k1, k33k1, k1k65, k65

z (t = 3): k35k3, k35k1, k35k2k0, k33k3, k33k1, k33k2k0, k34k32k3,
k34k32k1, k34k32k2k0, k3k67, k3k65, k3k66k64, k1k67, k1k65,
k1k66k64, k2k0k67, k2k0k65, k2k0k66k64, k34k2, k34k0, k32k2,
k32k0, k2k66, k2k64, k0k66, k0k64, k33k1k0, k1k65k0, k65k0,
k1k0



From the above analysis, we find the numbers of variable
for output z (t) at t = 0, 1, 2, 3, 4… are 4, 5, 16, 30…,
respectively, and they are much than the algebraic equations
can be listed. When the clock increase, the variables of
equation is also gradually increase. However, the numbers of
variable are more than the numbers of equation. The results
show that the proposed stream cipher can against algebraic
attack.

4.3 Time-Memory-Data Tradeoff Attack
In 1980, Hellman introduced a general technique for

breaking arbitrary block cipher called time-memory tradeoff
attack. Furthermore, Babbage-Golić and Biryukov-Shamir
proposed that a different time-memory-data tradeoff attack
that is applicable to stream ciphers [32].

The time-memory-data tradeoff attack has two phases:
During the preprocessing phase (which can take a very
long time) the attacker explores the general structure of the
cryptosystem, and summarizes his findings in large tables.
During the realtime phase, the attacker is given actual data
produced from a particular unknown key, and his goal is to
use the precomputed tables in order to find the key as quickly
as possible.

There are five key parameters for time-memory-data
tradeoff attack [32]:

- N represents the size of the search space.
- P represents the time required by the preprocessing
 phase of the attack.
- M represents the amount of random access memory
 available to the attacker.
- T represents the time required by the realtime phase of
 the attack.
- D represents the amount of realtime data available to the
 attacker.

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1283

Babbage and Golić suppose internal state of the
streamcipher has N different states and D different keystreams
of length logN. The attacker aims to recover one of the
internal states corresponding to any one of the keystreams.
We have memory requirement for this attack is M = N/D. It
suffices to look for table D times and the time complexity is
T = D. If ignoring some of the data, the time-memory-data
tradeoff attack is TM = N with P = M for 1 ≤ T ≤ D.

For example, T = M = D = N1/2 constitutes an attack.
Babbage suggests if a secret key length of k bits, then a state
size of at least 2k bits, and it is a design principle for stream
ciphers [33].

Biryukov and Shamir combined the works of Hellman
and Babbage-Golić to bring a new time-memory-data tradeoff
attack on stream ciphers. As with the work of Babbage and
Golić, objective of the attacker is to recover any one of
the internal states of the stream cipher, given D different
keystreams. Biryukov and Shamir proposed the (t/D) tables,
each of size m and taking time t, require a storage space of
size M = tm/D, and the time complexity T = t2. When 1 ≤ D2 ≤
T, then time-memory-data tradeoff attack is TM2D2 = N2 and
P = N/D. For example, T = M = N1/2 with D = N1/4 constitutes
an attack. Biryukov and Shamir suggest the internal state of
a stream cipher should at least twice the number of key bits
[33].

Under the situation of stream cipher with IV, we only
consider key and IV, and don’t care the other states of circuit.
The search space is N = 2k+v, time and memory complexity

T = M =
1 ()
22

k v+ , where k is key bits and v is IV bits. If v <

k, this complexity is smaller than key exhaustive search
complexity 2k. That is, if bit-length of IV is shorter than key’s,
then the stream cipher is vulnerable to time-memory-data
tradeoff attack [33].

For our scheme, the proposed stream cipher has key 128
bits and iv 128 bits. In order to avoid the time-memory-data
tradeoff attacks, the size of the internal state must at least 256
bits. However, the size of the internal state of the proposed
cipher is 416 bits, it means that the size of the search space
N = 2416 > 2256. For the Babbage-Golić proposed attack T = M
= D = N1/2 = 2208, for the Biryukov-Shamir proposed attack T
= M = N1/2 = 2208, D = N1/4 = 2104, and under the situation of
stream cipher with IV, we only consider key and IV, and don’t
care the other states of circuit the search space is N = 2256,
time and memory complexity T = M = 2128.

In the proposed scheme, the length of iv is not small than
the length of key. So it is not vulnerable to time-memory-data
tradeoff attack. The results show that the proposed stream
cipher can resist against these attacks.

4.4 Correlation Immunity Properties
In this section, we describe correlation immunity

properties of the proposed scheme. In 1983, Siegenthaler
showed that if the combining function is carelessly chosen
then cryptosystems can be broken by the correlation attack,
so the combining function must have good correlation-
immunity [34].

For our scheme, we use lp-Geffe generator and DSG to
produce the output keystream and x1, x2, x3 are as the inputs
of lp-Geffe generator, the y, x4, w(j-1) are as the inputs of DSG.

Table 13. Correlation probabilities for lp-Geffe generator

x1 x2 x3
Output of lp-Geffe

generator (y)
Correlation
probability

0 0 0 0
Input Output:
P[x1 = y] = 3/4
P[x2= y] = 1/2
P[x3 = y] = 3/4

0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 14. Correlation probabilities for output z

y x4 w(j-1) z w(j)
Correlation
probability

0 0 0 0 0
Input Output:
P[y = z] = 1/2
P[x4 = z] = 1/2
P[w(j-1) = z] = 1/2
Carry Output:
P[w(j) = z] = 1/2

0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 15. Correlation probabilities for output z

x1 x2 x3 y x4 w(j-1) z
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 1
0 1 0 0 0 1 1
0 1 1 0 0 1 1
1 0 0 0 0 1 1
0 0 0 0 1 0 1
0 1 0 0 1 0 1
0 1 1 0 1 0 1
1 0 0 0 1 0 1
0 0 0 0 1 1 0
0 1 0 0 1 1 0
0 1 1 0 1 1 0
1 0 0 0 1 1 0
0 0 1 1 0 0 1
1 0 1 1 0 0 1
1 1 0 1 0 0 1
1 1 1 1 0 0 1
0 0 1 1 0 1 0
1 0 1 1 0 1 0
1 1 0 1 0 1 0
1 1 1 1 0 1 0
0 0 1 1 1 0 0
1 0 1 1 1 0 0
1 1 0 1 1 0 0
1 1 1 1 1 0 0
0 0 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

1284 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 13 shows the correlation probabilities for lp-Geffe
generator, the correlation probabilities of lp-Geffe generator
are

P[x1 = y] = P[x3 = y] = 3/4, P[x2= y] = 1/2. (63)

Table 14 shows the correlation probabilities for output y,
the correlation probabilities of output z are

P[y = z] = P[x4 = z] = P[w(j-1) = z] = P[w(j) = z] = 1/2. (64)

Table 15 shows the correlation probabilities for lp-Geffe
generator and output z, the correlation probabilities of lp-
Geffe generator and output z are

P[x1 = z] =1/2, P[x2 = z] = 1/2, P[x3 = z] = 1/2. (65)

5 Experimental Results

In this section, we use Verilog hardware description
language to design proposed circuit, and introduce
randomness simulation result of our design circuit. In the
simulation, 100 random keys and 100 random ivs are used
to produce 100 output keystreams, and the randomness tests
are performed under the FIPS PUB 140-1 [35] and SP800-22
[36].

5.1 Statistical Random Number Tests
We use 100 random keys and 100 random ivs to produce

100 output keystream, and we test the randomness properties
of the keystream by FIPS PUB 140-1 and SP800-22.

We put the output keystream of the proposed circuit under
FIPS PUB 140-1 to test it randomness. We select 100 random
keys and 100 random ivs to produce 100 output keystreams.
Each keystream length is 20,000 bits. Finally, in Table 16, we
present the FIPS PUB 140-1 randomness testing results in
percentage. From Table 16, we can find the pass rate of each
test result is 100.00%.

Table 16. Random Test Results under FIPS PUB 140-1

FIPS PUB 140-1 Tests Pass rate
under 20,000 bits/sample

Monobit Test 100 %
Poker Test 100 %
Runs Test 100 %

Long Run Test 100 %

5.2 Random Test Result under SP800-22
We select 100 random keys and 100 random ivs to

produce 100 different keystreams. Each keystream output
length is 10,000,000 bits. We list the testing results in Table
17. From the Table 17, we can find the pass rate of each test
result is at least about 98%.

Table 17. Statistical test results of the proposed keystream generator under NIST SP800-22

Statistical tests p-value Pass rate under 106 bits/sample

Frequency 0.564465 99 %
Block frequency 0.824463 99 %

Runs 0.739989 100 %
Longest Runs of Ones 0.521068 99 %

Rank 0.624465 100 %
Discrete fourier transform 0.574463 100 %

Non-overlapping Templates Matching 0.649989 99 %
Overlapping templates matching 0.621068 98 %

Universal statistical 0.788428 98 %
Linear complexity 0.819180 100 %

Serial 0.708286 100 %
Approximate entropy 0.689007 99 %

Cumulative sums 0.645081 100 %
Random excursions 0.744741 98 %

Random excursions variant 0.755939 98 %

6 Conclusion

In this paper, we have studied the characteristics of FCSR
based nonlinear circuits firstly and proposed FCSR based
hybrid keystream generator. We apply DSG and lp-Geffe
generator to increase the period and the linear complexity of
sequence. We analyze the period and linear complexity and
use some attacks to verity its security.

The experimental results show that the proposed stream
cipher has large period, high linear complexity, good
randomness, and the linear complexity is very close to its
overall period. The linear complexity for the proposed stream
cipher satisfies the security strength of AES. In addition, the
pass rates of the proposed scheme are 100% for FIPS PUB
140-1 random test, and at least about 98% for NIST SP800-
22 random test. The proposed scheme can resist known
attack, such as algebraic attack and time-memory-data
tradeoff attack and etc.

Hybrid FCSR Based Stream Cipher for Secure Communications in IoT 1285

Acknowledgments

The author would like to express gratitude to Ms. Yu-
Jing Du for her valuable assistance and to the anonymous
referees whose insightful comments have greatly improved
the quality of this paper.

References

[1] D. Ma, Y. Shi, A Lightweight Encryption Algorithm for
Edge Networks in Software-Defined Industrial Internet
of Things, 2019 IEEE 5th International Conference
on Computer and Communications (ICCC), Chengdu,
China, 2019, pp. 1489-1493.

[2] S. Roy, U. Rawat, J. Karjee, A Lightweight Cellular
Automata Based Encryption Technique for IoT
Applications, IEEE Access, Vol. 7, pp. 39782-39793,
March, 2019.

[3] S.-H. Lee, P.-H. Shih, An Improved Gated System that
Combines the Techniques of the Internet of Things for
Community Security, Journal of Internet Technology,
Vol. 23, No. 2, pp. 345-362, March, 2022.

[4] S.-T. Wu, A Secure Real-Time IoT Data Stream based
on Improved Compound Coupled Map Lattices, Applied
Sciences, Vol. 12, No. 17, Article No. 8489, pp. 1-19,
September, 2022.

[5] M. Rana , Q . Mamun, R . I s l am, L igh tweigh t
cryptography in IoT networks: A survey, Future
Generation Computer Systems, Vol. 129, pp. 77-89,
April, 2022.

[6] S. A. Jassim, A. K. Farhan, A Survey on Stream Ciphers
for Constrained Environments, 2021 1st Babylon
International Conference on Information Technology
and Science (BICITS), Babil, Iraq, 2021, pp. 309-312.

[7] S. Y. Moon, J. H. Park, J. H. Park, Authentications for
Internet of Things Security: Threats, Challenges and
Studies, Journal of Internet Technology, Vol. 19, No. 2,
pp. 349-358, March, 2018.

[8] H. Park, J. Kim, S. Lee, D. G. Duguma, I. You,
lwEPSep: A Lightweight End-to-end Privacy-preserving
Security Protocol for CTI Sharing in IoT Environments,
Journal of Internet Technology, Vol. 22, No. 5, pp.
1069-1081, September, 2021.

[9] K. Zeng, C.-H. Yang, D.-Y. Wei, T. R. N. Rao,
Pseudorandom Bit Generators in Stream-Cipher
Cryptography, Computer, Vol. 24, No. 2, pp. 8-17,
February, 1991.

[10] R. P. Prajapat, R. Bhadada, G. Sharma, Implementation
of Enhanced A5/1 Stream Cipher and its Randomness
Analysis by NIST Test Suite, 2021 IEEE International
Symposium on Smart Electronic Systems (iSES), Jaipur,
India, 2021, pp. 426-431.

[11] N. A. Mohandas, A. Swathi, A. R., A. Nazar, G.
Sharath, A4: A Lightweight Stream Cipher, 2020 5th
International Conference on Communication and
Electronics Systems (ICCES), Coimbatore, India, 2020,
pp. 573-577.

[12] S.-T. Wu, An Application of Keystream Using Cellular

Automata for Image Encryption in IoT, Journal of
Internet Technology, Vol. 24, No. 1, pp. 149-162,
January, 2023.

[13] A. Klapper, M. Goresky, 2-Adic shift registers, in: R. A.
Anderson (Eds.), Fast Software Encryption, Cambridge
SecurityWorkshop. Lecture Notes in Computer Science,
Vol. 809, Springer, New York, 1993, pp. 174-178.

[14] M. Mittelbach, A. Finger, Investigation of FCSR-
based Pseudorandom Sequence Generators for Stream
Ciphers, pp. 1-7, 2004. https://www.researchgate.net/
publication/228853356_Investigation_of_FCSR-based_
pseudorandom_sequence_generators_for_stream_
ciphers

[15] S. Anand, G. V. Ramanan, Periodicity, Complementarity
and Complexity of 2-adic FCSR Combiner Generators,
ASIACCS ’06: Proceedings of the 2006 ACM Symposium
on Information, computer and communications security,
Taipei, Taiwan, 2006, pp. 275-282.

[16] L. Zhang, C. Wang, T. Pei, Y. Zeng, Another Analysis of
a Synchronizing Stream Cipher Combining LFSR and
FCSR, 2019 International Conference on Networking
and Network Applications (NaNA), Daegu, Korea, 2019,
pp. 309-312.

[17] Y. Zheng, X. Tang, D. He, L. Xu, Investigation
on Pseudorandom Properties of FCSR Sequence,
Proceedings. 2005 International Conference on
Communications, Circuits and Systems, Hong Kong,
China, 2005, pp. 66-70.

[18] M. Hell, T. Johansson, Breaking the F-FCSR-H Stream
Cipher in Real Time, in: J. Pieprzyk (Ed.), ASIACRYPT
2008, LNCS 5350, Springer, Berlin, Heidelberg, 2008,
pp. 557-569.

[19] M. Goresky, A. Klapper, Fibonacci and Galois
Representations of Feedback-with-Carry Shift Registers,
IEEE Transactions on Information Theory, Vol. 48, No.
11, pp. 2826-2836, November, 2002.

[20] F. Arnault, T. P. Berger, M. Minier, Some Results on
FCSR Automata with Applications to the Security
of FCSR-Based Pseudorandom Generators, IEEE
Transactions on Information Theory, Vol. 54, No. 2, pp.
836-840, February, 2008.

[21] V. P. Shyrochin, I. V. Vasyltsov, B. Z. Karpinskij,
Investigations of the Basic Component of FCSR-
Generator, IEEE International Workshop on Intelligent
DATA Acquisition and Advanced Computing Systems:
Technology and Applications, Lviv, Ukraine, 2003, pp.
132-135.

[22] S.-L. Su, K.-M. Chiu, L.-C. Wuu, The Cryptanalysis of
LFSR/FCSR Based Alternating Step Generator, 2006
International Conference on Computer Engineering and
Systems, Cairo, Egypt, 2006, pp. 228-231.

[23] T. Tian, W.-F. Qi, Linearity properties of binary FCSR
sequences, Designs, Codes and Cryptography, Vol. 52,
No. 3, pp. 249-262, September, 2009.

[24] F. Arnault, T. P. Berger, M. Minier, On the security
of FCSR-based pseudorandom generators, ECRYPT
Network of Excellence – SASC Workshop, 2007,
Bochum, Germany, pp. 1-12.

[25] F. Arnault, T. P. Berger, C. Lauradoux, F-FCSR Stream
ciphers, in: M. Robshaw, O. Billet (Eds.), New Stream

1286 Journal of Internet Technology Vol. 24 No. 6, November 2023

cipher Designs, Lecture Notes in Computer Science,
Vol. 4986, Springer, Berlin, Heidelberg, 2008, pp. 170-
178.

[26] E. Dawson, Cryptanalysis of Summation Generator, in:
J. Seberry, Y. Zheng (Eds.), Advances in Cryptology-
AUSCRYPT’92, Lecture Notes in Computer Science,
Springer, Berlin, 1993, pp. 209-215.

[27] M.-H. Lim, B.-M. Goi, S. Lee, H. Lee, Hierarchical
Dawson’s Summation Generator, International
Conference on Convergence Information Technology,
Gwangju, Korea, 2007, pp. 1395-1401.

[28] W. Meier, O. Staffelbach, Correlation Properties of
Combiners with Memory in Stream Ciphers, (Extended
Abstract), Advances in Cryptology – EUROCRYPT 90,
Aarhus, Denmark, 1990, pp. 204-213.

[29] B. Schneier, Applied Cryptography, John Wiley and
Sons, Inc., 1995, pp. 402-413.

[30] A. Canteaut, Open problems related to algebraic attacks
on stream ciphers, International Workshop on Coding
and Cryptography, WCC2005, Bergen, Norway, 2005,
pp. 120-134.

[31] N. T. Courtois, W. Meier, Algebraic Attacks on Stream
Ciphers with Linear Feedback, in: E. Biham (Eds.),
Advances in Cryptology-EUROCRYPT 2003. Lecture
Notes in Computer Science, Vol. 2656, Springer, Berlin,
Heidelberg, 2003, pp. 345-359.

[32] A. Biryukov, A. Shamir, Cryptanalytic Time/Memory/
Data Tradeoffs for Stream Ciphers, in: T. Okamoto
(Ed.): Advances in Cryptology-ASIACRYPT 2000,
Lecture Notes in Computer Science, Vol. 1976, Springer,
Berlin, Heidelberg, 2000, pp. 1-13.

[33] J. Hong, P. Sarkar, Rediscovery of Time Memory
Tradeoffs, International Association for Cryptologic
Research Eprint archive, 2005. http://eprint.iacr.
org/2005/090

[34] Y. X. Yang, Correlation-Immunity of boolean Functions,
Electronics Letters, Vol. 23 No. 25, pp. 1335-1336,
December, 1987.

[35] National Institute of Standards and Technology, Security
Requirements for Cryptographic Modules, Federal
Information Processing Standards Publication 140-1,
January, 1994.

[36] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S.
Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert,
J. Dray, S. Vo, A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic
Applications, National Institute of Standards and
Technology, Special Publication 800-22 Revision 1,
August, 2008.

Biography

Shyi-Tsong Wu was born in Jiaoxi, Yilan,
Taiwan. He received his Ph.D. in Electronic
Engineer ing f rom Nat ional Taiwan
University of Science and Technology,
Taipei, Taiwan, in 2005. He is now a
Professor at the Department of Electronic
Engineering, National Ilan University, Yilan
City, Taiwan. His research interests include

IoT security and applications, cryptography, and electronic
circuits.

