
Public Integrity Verification for Cloud Storage with Efficient Key-update 1263

*Corresponding Author: Hao Yan; E-mail: pxy_hao@jit.edu.cn
DOI: 10.53106/160792642023112406009

Public Integrity Verification for Cloud Storage with Efficient Key-update
Hao Yan1,2,3*, Yanan Liu1, Dandan Huang1, Shuo Qiu1, Zheng Zhang1

1 School of Network Security, Jinling Institute of Technology, China

2 Xi’an Innovation College of Yan’an University, China
3 Fujian Provincial Key Laboratory of Network Security and Cryptology, Fujian Normal University, China

pxy_hao@jit.edu.cn, yanan.liu@jit.edu.cn, huangdd@jit.edu.cn, shuoqiu@jit.edu.cn, zhangzheng@jit.edu.cn

Abstract

To improve the security of the data on cloud storage,
numbers of data integrity auditing schemes have been
proposed in the past several years. However, there only
a few schemes considered the security challenge that the
user’s key is exposed unknowingly which is very likely to
happen in real-life. To cope with the problem, we propose
a public data integrity auditing scheme for cloud storage
with efficient key updating. In our scheme, the user’s key
is updated periodically to resist the risk of key exposure.
Meanwhile, the authentication tags of blocks are updated
simultaneously with the key updating so as to guarantee the
data integrity can be verified normally. The algorithm of
key updating in our scheme is very efficient which only
needs a hash operation while previous schemes need two or
three exponentiation operations. Moreover, the workload of
tag updating is undertaken by cloud servers with a re-tag-
key which reduces the burden of users and improves the
efficiency of the scheme. The communication cost of the
scheme is also reduced greatly, for instance, the information
size in ‘re-key’ step is decreased from two group members to
one. Furthermore, we give the formal security model of our
scheme and prove the security under the CDH assumption.
The experimental results show that our proposal is efficient
and feasible.

Keywords: Cloud storage, Data integrity checking, Key
update

1 Introduction

With the increasing requirement for data storage,
cloud storage service has attracted extensive interest and
attention from all the fields of industry because of its
flexibility, reliability and scalability features [1]. With cloud
storage, clients no need to bear expensive cost of building
infrastructure and employing staffs, they can easily enjoy
the service of storing and maintaining great amount of data
with lower investment. Moreover, the ubiquitous Internet
makes client to access the data in cloud very conveniently.
As a result, more and more clients including enterprises
or personal choose to outsource data in cloud server [2-3].
However, because the client loses the physical control of the
data and at the same time the cloud service provider (CSP) is

untrusted either, the concern about the integrity of the data is
increasing that client worries about whether the data is kept
intact by CSP [4-5]. Thus, to verify the security of the data on
CSP becomes an important and urgent demand for the client
[6].

To address this problem, many provable data possession
(PDP) schemes have been proposed [6-30]. In these schemes,
the whole data is split to many small blocks and each block is
signed by client. Then all the blocks and its authenticator tag
are uploaded to CSP. Since the block tag is computed based
on its block, client can verify the rightness of the data block
by auditing the validity of its tag. Obviously, if the block tag
cannot pass the audition, it means the block is not correct.
To reduce the cost of communication and computation,
PDP utilizes the probability checking idea that by auditing
the integrity of a set of blocks randomly selected to get the
integrity of the whole data. It is proved that PDP model
achieves high error detection probability of the data with
very low cost. Many researchers have done a lot of work for
designing PDP schemes for different application scenario,
for instance, some schemes focus on data dynamic, some
schemes consider the integrity checking for group shared data
and so on. However, there is an important secure problem in
data integrity checking has not been given enough attention,
that is, if the client’s key is exposed, how to ensure the
soundness of the check result for data integrity. In fact, the
problem of key exposures seems to be unavoidable in the real
work due to the complex network environment and social
environment. Therefore, the data integrity scheme should
take into account the great threat of key-exposure to improve
the security and practicability.

1.1 Problem Statement
Resisting the key-exposure is an import security

requirement for PDP schemes, because if the key is exposed,
the data on cloud storage can be forged, modified even
deleted by the untrusted cloud server and other adversaries
while the data auditor can not know these bad accidents at
all. To realize the key-exposure resistance, the main idea is
to update the key periodically that each key is used only for a
fix time period after which a new key is generated to replace
the old one to continue the next work. Therefore, the threaten
of key-exposure is reduced greatly. For a PDP scheme with
key-exposure resistant, the key and the block tag should be
updated simultaneously, otherwise, the scheme is invalid.

1264 Journal of Internet Technology Vol. 24 No. 6, November 2023

1.2 Contributions
To address the key-exposure problem, the paper presents

a public data integrity checking scheme with efficient key-
update. In our scheme, client’s private key is updated
periodically and the tags of data blocks are also re-generated
with the new key. Therefore, even if the adversary gains the
exposed key of the client, our scheme still keeps secure and
effective. The contributions of the paper are summarized as
follows:

(1) We present a public data integrity verification scheme
for cloud data which can efficiently audit the data integrity
remotely. Moreover, out scheme updates client’s private key
periodically to resist the key-exposure attack while the block
tags are re-generated by CSP to maintain the data integrity
checking regardless the times of key updating.

(2) We formalize the system model of the data integrity
auditing scheme with key-update. We define the security
model of the scheme through a security game and prove that
the scheme is able to resist the key exposure attack under the
random oracle model.

(3) We give the performance analysis of our scheme,
and the experiment results demonstrate that our scheme can
efficiently audit the integrity of data on cloud server with
lower communication and computation cost.

2 Related Work

While more and more data are outsourced to CSP, the
data integrity checking has become a necessary technique for
secure cloud storage. Over the past decade, two main types
of data integrity checking model are proposed. The first is the
proof of retrievability (PoR) model [7], which supports the
integrity verification for outsourced data and the retrievability
of data by error-correcting codes. The second is the PDP
model proposed in [8], which supports efficient verification
for the data integrity on cloud servers with sampling
inspection. Since PDP is considered to be much more flexible
and efficient [9], many public PDP schemes have been
successively proposed in many literatures to address the data
integrity checking problems with various features like data
dynamic [10], multi replicas [11-12], privacy preserving [13-
14] and so on.

Updating the data in cloud server is a common
requirement for data owners especially when data is shared
publicly. Therefore, many data integrity checking schemes
consider to support the data dynamic feature. For example,
Ateniese et al. [15] proposed a limited dynamic scheme
based on symmetric cryptography. Erway et al. [16] designed
a ranked authenticated skip list by which they gave a
fully dynamic data integrity checking scheme. Wang et al.
[17] utilized the structure of Merkle Hash Tree to achieve
integrity auditing for data dynamic. Tian et al. [18] presented
a dynamic scheme relied on a two-dimensional structure
called dynamic hash table. Yan et al. [19] employed a hybrid
data structure to realize a dynamic PDP scheme for cloud
storage. Gudeme et al. [20] based on the certificateless crypto
proposed a secure data integrity checking scheme in which
an extended double linked list is designed to realize data
dynamic operations.

To improve the availability and the security of data in
CSP, many clients store the data with multiple replicas, which
raise the requirement of the integrity checking for multiple
replicas. Curtmola et al. [21] first gave a MR-PDP scheme
for integrity verification of multiple replicas in cloud storage.
To improve the efficiency, Barsoum et al. [22] presented
a multi-copy PDP scheme which supports the public
verification and data dynamic. Li et al. [23] proposed an
efficient scheme of multi replicas on multiple cloud servers.
Peng et al. [24] presented a dynamic data integrity audition
scheme for multi-replica which supports batch checking. Yu
et al. [25] employed an indexed merkle hash tree to design
a dynamic auditing scheme for multi-replica on cloud with
geographic location. Zhou et al. [26] constructed a structure
named multicopy merkle hash tree, by which they proposed a
dynamic multiple replicas data integrity checking scheme.

Data privacy preserving is another security requirement
in data integrity checking especially for user’s valuable and
sensitive data. To protect the data’s privacy, Wang et al.
[27] designed a public data integrity checking scheme with
zero knowledge leakage of the data. To avoid the certificate
management, Yu et al. [28] presented an identity-based
integrity checking scheme with perfect privacy-preserving of
data. Li et al. [29] designed a novel mechanism to hide the
data of integrity proof, by which they give a concrete data
integrity verification scheme with data privacy-preserving.
Tian et al. [30] presented a new scheme with data privacy
preserving based on a zero-knowledge proof mechanism.
Zhao et al. [31] presented a user stateless data auditing
scheme, which protected data’s privacy and also realized
dynamical operations based on ranked authenticated skip list.

Yu et al. [32] firstly considered key-exposure attack on
data integrity checking scheme, they used a binary tree to
update client’s key with different time periods and offered
a practical scheme. However, this scheme is inefficient that
the user has to undertake heavy computation cost. Later,
Li et al. [33] presented a public integrity auditing scheme
with key update and data privacy preserving. Zhang et al.
[34] proposed an identity-based public auditing scheme
with key-exposure resilient based on lattice assumption,
which only achieves the forward security. Xu et al. [35] also
presented a key-exposure resilience PDP scheme which
realized the backward and forward security of the private
key simultaneously. However, this scheme is not a real
public scheme and not efficient, because the third party
auditor (TPA) should generate private keys to take part in
user’s key updating, audition authenticator updating and
integrity verification. Therefore, it is still an open problem of
designing data integrity auditing scheme with the feature of
key-exposure resilient.

3 Scheme Definition

3.1 Preliminaries
(1) Bilinear Map: G1 and G2 are two multiplicative cyclic

groups with order p. g is a generator of G1. 1 1 2:e G G G× →
is a bilinear pairing if the following three conditions hold:

Public Integrity Verification for Cloud Storage with Efficient Key-update 1265

(a) Bilinearity: 1,x y G∀ ∈ and *, pa b Z∀ ∈ , it has

(,) (,)a b abe x y e x y= .

(b) Computability: 1,x y G∀ ∈ , the value of e(x, y) can
be computed efficiently.

(c) Non-degeneracy: e(g, g) ≠ 1.
(2) Computational Diffie-Hellman (CDH) Assumption:

g is a generator of group G with prime order p, and ga,
gb are two random elements of G. CDH assumption
means that for any adversary A, it is hard to compute gab
within probabilistic polynomial time, in which a, b are
unknown. The advantage for solving the CDH problem
by the adversary A is negligible, which can be defined
as: [(, ,)]CDH ab a b

AAdv Pr g A g g g ε= ← ≤ .

3.2 System Model
Figure 1 illustrates the system model of the proposed

public checking scheme for cloud data with key update,
which has the following three entities:

Figure 1. System model

(1) Client, who outsources massive data to cloud server
and delegates the integrity checking work to TPA.

(2) CSP, who supplies data storage and management
service to clients and responds the integrity checking request
from TPA.

(3) TPA, who is trustful and authorized to audit the data
integrity on behalf of client, and dedicated to output reliable
checking results.

The client prepares all the data which is split to many
data blocks. For efficient data checking, client binds an
authentication tag for each block. Then client pays for the
service of CSP and outsources all the blocks and tags to CSP
to decrease the cost of data storage. TPA is a trusted data
auditor who is authorized by client to audit the correctness
of the data on CSP. CSP is assumed to be semi-honest, that
it can provide high-quality services of data storage and
maintenance, but may hide data broken incidents to keep his
own benefits.

3.3 Outline of the Proposed Scheme
A public cloud data integrity checking scheme with key

updating consists of nine algorithms:

(1) Setup: before offering the data storage services,
CSP executes this algorithm to initialize the global security
parameters of the system. The input k is the security value,
and params is the public parameters.

(2) KeyGen: client generates two key pairs by this
algorithm, the first one (sk, pk) is used for computing the
authentication tags of data blocks. The second one (ssk, spk)
is used for generating ‘data-tag’.

(3) TagGen: client performs this algorithm to generate the
authentication tags of blocks. It inputs the data F and client’s
private keys, outputs a set of block tags and a ‘data-tag’.

(4) KeyUpt: this algorithm is performed by client to
update the private key periodically. It outputs the new private
key for client based on the old private key and the current
time.

(5) ReKey: when client’s private key is updated, all the
old block tags should be updated too. Client executes this
algorithm to generate a re-tag-key which is sent to CSP to
update all block tags.

(6) ReTagGen: this algorithm is performed by the CSP to
update block tags with the tag re-tag-key. By this algorithm
all block tags are updated from time period t-1 to time period
t.

(7) Challenge: TPA generates a verification challenge
which is sent to CSP as a data integrity checking demand.

(8) ProofGen: after getting the challenge from TPA,
CSP outputs a data integrity proof for this challenge by the
algorithm.

(9) Verify: in this algorithm, the TPA checks the integrity
of the cloud data by checking the proof returned from the
CSP.

3.4 Security Definition
Completeness is the basic security requirement of the

public data integrity checking scheme with key update.
Completeness means that when both CSP and TPA performs
the scheme honestly, the cloud data should be audited
correctly. Specifically, if the CSP stores user’s original
data well and generates the proof rightly by ProofGen, the
algorithm Verify should output ‘true’.

Generally, CSP is thought to be semi-trust, it attempts to
conceal the fact of data corruption by launching three attacks:
forge attack, replay attack and reply attack. Therefore, the
proposed data integrity checking scheme with key update
should satisfy the soundness feature which means if the
data is broken, CSP cannot generate a forged proof to pass
the integrity challenge of TPA. We use a security game to
cover the soundness security requirement of the public cloud
data integrity checking scheme with key update. The game
contains the following phases which involve a challenger C
and an adversary A.

(1) Setup: C sets up the system and outputs the public
parameters by Setup, then generates the key pairs by KeyGen.
Both the public keys and public parameters are returned to A.

(2) Query: C updates the private key with the period ∆t
by the KeyUpt, and responds the following queries performed
by A.

(a) Hash query: A askes for the values of hash functions
appeared in the scheme, C returns the values to A.

1266 Journal of Internet Technology Vol. 24 No. 6, November 2023

(b) Secret key query: A adaptively queries the re-tag-key
at any time period t, C generates the re-tag-key with the time
period t and returns it to A.

(c) Tag query: A randomly selects any blocks in {m1, m2,
m3, ..., mn} and sends the blocks to C. C generates the tags for
the blocks at time period t and then returns the tags to A.

(3) Challenge: C adaptively chooses a time period t'
and the chal = (c, k1, k2). C sends all the information to the
adversary A and asks A to reply the integrity proof according
to the challenge.

(4) Forge: when receiving the challenge, A computes the
proof P at time period t' and sends P to C. If P passes the
checking by Verify, A wins the game.

It is noted that in the game the adversary A should
not query the secret keys and the tags of time period t' of
the challenged blocks, and the challenged blocks are not
necessary to be known by A.

4 Construction of New Scheme

In this section, we give the detailed construction of our
new scheme, which consists of the following algorithms.

Setup: CSP sets the security parameter k and chooses G1
and G2 of the prime order p. Randomly select a generator
g of G1 and a bilinear map e: G1 × G1 → G2. Select three
hashes: h1{0,1}* → G1, h2{0,1}* → G1, h3{0,1}* → Zp. Choose
a pseudo-random function: ϕ: Zp × Zp → Zp and a pseudo-
random permutation φ: Zp ×{1...n}→{1...n}. The public
parameters are params = (p, e, g, G1, G2, h1, h2, h3, ϕ, φ).

KeyGen: The client selects a random a0∈Zp as the initial
private key sk0 = a0, and computes the public key pk = ga0.
Further, client chooses a sign key pair (ssk, spk).

TagGen: The client splits the data F to n blocks, as F =
(m1, ..., mn) with each mj∈Zp(j∈ [1,n]). Set the time interval
∆t and computes U = h2(UID||∆t) where UID is the unique
identity of the client. Then, randomly selects a value λ∈Zp,
computes W = gλ.

For each block mj, an authentication tag is computed by
the following equation (1):

0 0
1((||) .)jm a t

j h j n g Uλθ = ⋅ ⋅ (1)

With the equation (1), the client computes the tag sets
θ(θ1, ..., θn). Then client selects a secure signature scheme
SIG to compute the ‘data-tag’ with the key ssk: FTag =
SIG(FID|| W || ∆t || t0) in which FID is the identity of the data
F. Client uploads (F, θ) to CSP, and sends (FID, W, ∆t, t0,
FTag) to TPA. TPA first checks the validity of FTag by the
public key spk. If the FTag is valid, TPA stores the (FID, W,
∆t, t0, FTag) privately, otherwise TPA asks the client to re-
sent these values.

KeyUpt: To resist the key leakage attack, the client
updates his private key periodically after generating the
initial private key a0 at time t0. Assume the time interval of
key update is ∆t, the current time is ti which ti = t0 + i*∆t.
Then the new private key ski = h3(ti)*sk0 = h3(t0 + i*∆t)*a0.

ReKey: When client’s key is updated in each time period,
the block tag should be updated too. To decrease the cost of

client, this work is outsourced to CSP. Client computes the

re-tag-key:
1 ()

t

t

sk t

t sk t t

Ursk
U −

⋅

⋅ −∆= , by the secret key skt, skt−1 and

the time t, ∆t. Then, client sends the tag-update-key rskt to
CSP.

ReTagGen : A f t e r r e ce iv ing t he r sk t f r om the
client, CSP generates the new tag for each block by

, , 1 1((||))j tm a t
j t j t trsk h j n g Uλθ θ −= ⋅ = ⋅ ⋅ . Therefore , CSP

updates the tags θt−1 to θt.
Challenge: At time t(t > t0), TPA sends an auditing

challenge for client’s file F to CSP. TPA sets the number c of
the challenged blocks and selects random values of k1, k2∈Zp.
Then, TPA sends the integrity challenge chal = (c, k1, k2) to
TPA.

ProofGen: Once receiving the chal, TPA obtains the index
set of challenged blocks as 1{ (,) | [1,]}iV v i k i cϕ= = ∈ , and

the random parameters set 2{ (,) | [1,]}iS s i k i cφ= = ∈ . TPA

computes the proof as:
1 1

, i

i i

cc
s

i v v
i i

M s m θ
= =

= ⋅ Γ =∑ ∏ . Finally,

CSP sends the proof P = (M, Γ) to TPA.
Verify: When TPA receives the proof P from CSP,

TPA f i rs t computes the number of t ime in tervals
0 0() / , *l t t t t l t t= − ∆ = ∆ + by t he s t a r t t ime t 0, t ime

interval ∆ t and the current t ime t . Then computes
1{ (,) | [1,]}iV v i k i cϕ= = ∈ , and 2{ (,) | [1,]}iS s i k i cφ= = ∈ .

To verify the data integrity, TPA executes the equation (2).

3 0
11

()

1
1

(,) ((||) ,) (,).

l c

i
iji

h t j t t sc
s M

i
i

e g e h v n g W e U pk==

+ ⋅∆ ⋅ ⋅

=

∑∏
Γ = ⋅ ⋅∏ (2)

If the equation holds, TPA returns “true” to the client.
Otherwise, TPA returns “false”.

5 Security Analysis

5.1 Completeness Proof
It is easy to see if the Equation (2) is correct, our scheme

can verify the cloud data integrity rightly. Based on the
properties of bilinear maps, we can prove the rightness of
Equation (2) as follows:

1
1

(,) ((((||)))) ,)vi t i

c
m a t s

i
i

e g e h v n g U gλ

=

Γ = ⋅ ⋅∏

1
1 1

((((||))) ,) (,)vi i t i

c c
m s a ts

i
i i

e h v n g g e U gλ

= =

= ⋅ ⋅∏ ∏

1 1
1

1

(((||) ,) (,) (,)

c c

v i t ii
i i i

c m s a t s
s

i
i

e h v n g e g g e U gλ λ= =

=

∑ ∑
= ⋅ ⋅∏

3 0 0
111

()

1
1

(((||) ,) (,) (,)

l cc

iv ii
iji i

h t j t a t sc m s
s

i
i

e h v n W e g W e U g===

+ ⋅∆

=

∑∏∑
= ⋅ ⋅∏

3 0
11

()

1
1

(((||) ,) (,).

l c

i
iji

h t j t t sc
s M

i
i

e h v n g W e U pk==

+ ⋅∆

=

∑∏
= ⋅ ⋅∏

Public Integrity Verification for Cloud Storage with Efficient Key-update 1267

5.2 Soundness Proof
Proof: We make use of a series of games to prove our

scheme satisfying the soundness property. Let (g, ga, gb) be
one CDH instance, if the adversary A wins the game, the
simulator B can computes gab with following steps.

Game 0: This game is executed as the definition in
section 3.3.

Game 1: Different from game0, in this game, the
adversary A stores all the replies return from the challenge B.
The detailed processes of this game are as follows.

Setup phase: B chooses all the public parameters, sets ga
to be the public key, and sends all these values to A. Then B
selects the start time period t, the time interval ∆t, a random
value λ and computes the value W = gλ.

Query phase: A can execute the following three type of
queries: hash query, re-key query and tag query.

(1) Hash query: A adaptively sends (j, n) to B for h1 query.
B randomly selects a value h1∈G1 and sends h1 to A. Then B
adds an element (j, n, h1) to the list L1. Note that if the (j, n) is
already in L1, B directly gets the corresponding h1 and returns
it to A.

A adaptively sends (Uid, ∆t) to B for h2 query. B first
tosses a coin τ∈{0,1}. If τ = 0, B random selects r∈Zp and
returns h2 = gr to A, otherwise, B returns h2 = (gb)r to A. Then
B adds the element (Uid, ∆t, h2, r, τ) to L2. Note that if the
(Uid, ∆t) is already in L2, B directly gets the corresponding h2
and returns it to A.

A adaptively sends ti to B for h3 query. B randomly selects
a value h3∈Zp and sends h3 to A. B adds the element (ti, h3)
to L3. Note that if the ti is already in L3, B directly gets the
corresponding h3 and returns it to A.

(2) Rekey query: A adaptively sends (Uid, ∆t, t) to B
for querying the re-key for updating the tags. B searches
the value (r, r') from L2 according to (Uid, ∆t, t). If τ = 1, B
aborts and quit the game. Otherwise, B gets the re-tag-key

()

ar

ar t t

g t
g ′ −∆ .

(3) Tag query: A adaptively sends (mj, j, n, Uid, ∆t, t) to
B and asks for the tag of mj at time t under the conditions
of ∆t and Uid. B finds all the values h1, h2, h3 from the lists
of L1, L2, L3. If the corresponding τ = 1, B aborts and quit.
Otherwise, B outputs the tag of mj: (h1 · g

mj)λ· grah3t = (h1 · g
mj)λ·

(ga)rh3t.
Forge phase: A adaptively sends a block mj' and the

forged tag θj' with the (j, n, Uid, ∆t, t) to C. If the forged tag
can pass the verification, A wins the game. It is noted that A
has not queried the tag of mj' under such conditions before,
and not queried the tag of the last time period and the re-tag-
key of the last time period simultaneously.

Analysis: From the equation (1), it is easy to get that
each valid tag can be verified by: e(θj, g) = e(h1(j||n)·gmj, W)·
e(Ut0, pk)).

Therefore, if the (mj', θj') is valid, they should satisfy
the above equation too. B searches all the values of (h1,
h2, h3) from the lists L1, L2, L3 respectively. If τ = 0, B
aborts and return fail. Otherwise, B can get : e(θj', g) =
e(h1· g

mj, gλ)· e(Ut0, ga) = e((h1· g
mj')λ, g)· e(grbt0, ga) = e((h1·

gmj')λ· gbrt0a, g). So, the value of gab can be computed by:

01/

1()j

rt
jab
mg

h g λ

θ
′

′ 
=   
 

.

Assume the probability of τ = 0 is γ, so the probability of
τ = 1 is 1 − γ. Assume A wins the game with probability δ,
after executing ζ1, ζ2 times of Re-Key query and Tag query
respectively, we can get the probability for B to get the value
of gab is no less than : δ·(1 − γ)·(γ)ζ1ζ2. As a result, if the
adversary A forges a valid tag with probability of δ, B solves
the CDH problem with the probability of δ·(1 − γ)·(γ)ζ1ζ2
at least. Therefore, it is computationally impractical for the
adversary A to generate a forgery tag in our scheme.

Game 2: Different from Game1, the adversary A submits
a complete forged proof P' = (M', Γ') of chal = (c, k1, k2) to
B. We prove that the probability of P' = (M', Γ') passing the
verification is negligible.

Proof: Assume P' = (M', Γ') passes the integrity checking,
it easy to get the equation of:

3 0
11

()

1
1

(,) ((||) ,) (,)

l c

i
iji

h t j t t sc
s M

i
i

e g e h v n g W e U pk==

+ ⋅∆ ⋅ ⋅
′

=

∑∏
′Γ = ⋅ ⋅∏
Let the p roof P = (M , Γ) i s genera ted by the

truthful prover for the challenge chal = (c , k1, k2).
So the proof P makes the following equation hold:

3 0
11

()

1
1

(,) ((||) ,) (,)

l c

i
iji

h t j t t sc
s M

i
i

e g e h v n g W e U pk==

+ ⋅∆ ⋅ ⋅

=

∑∏
Γ = ⋅ ⋅∏

Observing the two equations, if Γ = Γ', we can get gM =

gM', i.e.
1 1

i i

c c

i v i v
i i

s m s m
= =

′=∑ ∑ , which means each mvi
 = m'vi

. In

this case, the forged proof P' is equal to the truth proof P,
which is contrast to the assumption above. If Γ ≠ Γ', there
should be gM ≠ gM'. In this case, we can forge a tag for ∆M
= (M − M') with c = 1, which contrasts to the conclusion of
Game1. Therefore, the adversary A forges a valid proof P' =
(M', Γ') only with negligible probability.

6 Performance Analysis

6.1 Numerical Analysis
First, we show the theoretical analysis of the computation

cost of our scheme. Let EG1
, EG2

 denote one exponentiation
cost on G1 and G2 respectively, use P to represent one
pairing cost of G1. The cost of other operations like hash,
multiplication and addition is omitted because of their
negligible overhead.

To generate a block tag, the client should run the
algorithm of TagGen which costs 3EG1

. To resist key-
exposure, the client updates his secret key periodically by the
KeyUpt, which needs one hash and one multiplication cost.
After updating the secret key, the client should update all the
block tags stored in CSP. The client first generates a re-tag-
key by ReKey which costs 2EG1

. With the re-tag-key, CSP
updates all the tags by ReTagGen which needs only negligible
cost. For generating the integrity proof, CSP executes the
algorithm ProofGen, which costs cEG1

. When TPA receives
the proof from CSP, it runs Verify to audit the integrity of

1268 Journal of Internet Technology Vol. 24 No. 6, November 2023

data which costs (c + 2)EG1
+ 3P. Table 1 demonstrates the

comparison of our scheme with two recent schemes [33, 35]
in terms of computation overhead, where s is the counter of
sectors in one block and l is the times of key updating till the
challenge performed.

Table 1. Computation cost comparison
Steps Li’s scheme Xu’s scheme Our scheme
Tag-gen (1 + s) EG1

3EG1
3EG1

Key-update 2EG1
EG1

-

Tag-update 2EG1
2EG1

2EG1

Proof-gen (c + 1) EG1
+

(s + 1) EG1
+ 2EG2

cEG1
+ EG2

cEG1

Verify (c + 3 + s) EG1
+

(l − 2) · 2P + 5P
(c + 4) EG1

+
3P

(c + 2) EG1
+

3P

Secondly, we evaluate the communication cost of our
scheme where we omit the negligible cost like the size of
integer. The re-tag-key for updating tags is sent to CSP by the
client, which has the size of |G1|. In the challenge phase, the
communication cost for sending the challenge is 2|Zp|, and the
proof size is |G1| + |Zp|. Moreover, we show the comparison
in terms of communication cost with [28, 30] in the Table 2.

Table 2. Communication cost comparison
Steps Li’s scheme Xu’s scheme Our scheme
Key-update —— |Zp| + |G1| ——

Re-key 2|G1| |G1| |G1|

Challenge (c + 2) |Zp|
+3 |G1|

c|Zp| 2|Zp|

Proof (l + s) |Zp|
+ l |G1|

|Zp| + |G1|
+|G2|

|G1|+ |Zp|

6.2 Experimental Results
We execute several experiments to test the performance

of the proposed scheme. We implement our scheme by C
programming language based on PBC library which supplies
powerful functions for crypto operations. To make accurately
comparisons, the schemes of [33, 35] have been implemented
too. All experiments are conducted in ubuntukylin-15.10
operating system with Core i5 CPU and 8G Ram. The elliptic
curve of type-A in PBC is used in our experiments with the
security parameters of 160 bits. In our experiment, we set n =
100000 data blocks and block size is 2KB. The time interval
of key updating is ∆t = 10 seconds, the sector number of one
block is s = 1 and the times of key updating is l = 10.

Figure 2 shows the cost of the phase of tag generation.
In this experiment, we change the counter of blocks from
100 to 1000 so as to observe the cost under each situation.
From Figure 2, it is easy to see that all the time cost of tag
generation of these three schemes is linearly increasing with
the increasing of block number. Xu’s scheme has roughly the
same cost as ours which needs about 11 seconds to compute
1000 tags. And Li’s scheme is more efficient than that of two,
which only needs about 7.3 seconds to generate 1000 tags.

The experiment results keep consistent with the theoretical
analysis above and the truth time for tag generation is very
practical. Furthermore, tag generation brings little impact on
the performance of data integrity verification because it is
done only once.

Figure 2. Cost of tag generation

Then we consider the performance of key update which
is illuminated in Figure 3. From Figure 3, we can see that
the key update cost of all three schemes almost keeps instant
no matter how many times the key update. Moreover, our
scheme is more efficient than that of other two in this step,
that’s because in our scheme client’s public key is no need
to re-generate, there only needs to update the client’s secret
key which incurs only one hash operation and one multiple
operation. Therefore, our scheme consumes only negligible
cost.

Figure 3. Cost of key update

TPA runs the algorithm of Verify to check the integrity of
data with the proof returned from CSP. Figure 4 shows the
experimental result of proof verification phase of the three
schemes. From the Figure 4, we can see that all the three
schemes have the linear computation cost with the number of
challenged blocks. Li’s scheme costs a little more expensive
than that of others. Note that here we set the times of key
updating to 10, if this value increases, Li’s scheme will need
more expensive cost because its cost is positive correlation
with the times of key updating. However, the verification
costs of our scheme and Xu’s scheme only depend on the
counter of challenged blocks with no relation with the key
updating times.

Public Integrity Verification for Cloud Storage with Efficient Key-update 1269

Figure 4. Cost of verification

7 Conclusion

The paper proposes a public data integrity checking
scheme for secure cloud storage with efficient key update
which achieves the security feature of key exposure resilient.
In our scheme, client’s key is updated at a fix time period to
prevent the key exposure threat, at the same time the block
authentication tags are updated too with the client’s new
key to ensure the data integrity can be verified normally.
Moreover, both the key updating and authenticator tag
updating of our scheme are very efficient. We give the formal
security model of our scheme and prove the security through
a serial of security games. Numeric analysis and experimental
results demonstrate that our scheme is efficient and practical
in comparison with two recent schemes with key update.

Acknowledgments

This work was supported by Program for Scientific
Research Foundation for Talented Scholars of Jinling
Institute of Technology (JIT-FHXM-202110), the Opening
Foundation of Fujian Provincial Key Laboratory of Network
Security and Cryptology Research Fund, Fujian Normal
University (NSCL-KF2021-02), the National Natural Science
Foundation of China (61902163), the Jiangsu Province High
Level “333” Program (0401206044).

References

[1] A. A. Abbasi, A. Abbasi, S. Shamshirband, A. T.
Chronopoulos, V. Persico, A. Pescapè, Software-defined
Cloud Computing: A Systematic Review on Latest
Trends and Developments, IEEE Access, Vol. 7, pp.
93294-93314, July, 2019.

[2] X. Yan, L. Sun, Z. Sun, J. Zhou, A. Song, Improved
Hop-based Localization Algorithm for Irregular
Networks, IET Communications, Vol. 13, No. 5, pp.
520-527, March, 2019.

[3] X. Yan, J. Cao, L. Sun, J. Zhou, S. Wang, A. Song,
Accurate Analytical-Based Multi-Hop Localization
With Low Energy Consumption for Irregular Networks,
IEEE Transactions on Vehicular Technology, Vol. 69,
No. 2, pp. 2021-2033, February, 2020.

[4] L. Chen, J. Li, Y. Lu, Y. Zhang, Adaptively Secure

Certificate-based Broadcast Encryption and Its
Application to Cloud Storage Service, Information
Sciences, Vol. 538, pp. 273-289, October, 2020.

[5] L. Chen, J. Li, Y. Zhang, Anonymous Certificate-based
Broadcast Encryption with Personalized Messages,
IEEE Transactions on Broadcasting, Vol. 66, No. 4, pp.
867-881, December, 2020.

[6] W. Song, Y. Wu, Y. Cui, Q. Liu, Y. Shen, Z. Qiu, J. Yao,
Z. Peng, Public Integrity Verification for Data Sharing
in Cloud with Asynchronous Revocation, Digital
Communications and Networks, Vol. 8, No. 1, pp. 33-
43, February, 2022.

[7] A. Jue ls , B . S . Kal i sk i J r. , PORs: Proofs o f
Retrievability for Large Files, 2007, 14th ACM
Conference on Computer and Communications Security
(CCS), Alexandria, Virginia, USA, 2007, pp. 584-597.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, D. Song, Provable Data Possession
at Untrusted Stores, 2007, 14th ACM Conference
on Computer and Communications Security (CCS),
Alexandria, Virginia, USA, 2007, pp. 598-609.

[9] A. Li, Y. Chen, Z. Yan, X. Zhou, S. Shimizu, A
Survey on Integrity Auditing for Data Storage in the
Cloud: From Single Copy to Multiple Replicas, IEEE
Transactions on Big Data, Vol. 8, No. 5, pp. 1428-1442,
October, 2022.

[10] L. Caruccio, S. Cirillo, V. Deufemia, G. Polese,
Efficient Validation of Functional Dependencies during
Incremental Discovery, 2021, 29th Italian Symposium
on Advanced Database Systems (SEBD), Pizzo Calabro,
Italy, 2021, pp. 1-12.

[11] L. Li, T. Casalini, P. Arosio, M. Salvalaglio, Modeling
the Structure and Interactions of Intrinsically Disordered
Peptides with Multiple Replica, Metadynamics-Based
Sampling Methods and Force-Field Combinations,
Journal of chemical theory and computation, Vol. 18,
No. 3, pp. 1915-1928, February, 2022.

[12] T. Li, J. Chu, L. Hu, CIA: A Collaborative Integrity
Auditing Scheme for Cloud Data with Multi-Replica on
Multi-Cloud Storage Providers, IEEE Transactions on
Parallel & Distributed Systems, Vol. 34, No. 1, pp. 154-
162, January, 2023.

[13] F. Cerruto, S. Cirillo, D. Desiato, S. M. Gambardella,
G. Polese, Social Network Data Analysis to Highlight
Privacy Threats in Sharing Data, Journal of Big Data,
Vol. 9, No. 1, pp. 1-26, February, 2022.

[14] J. Song, Z. Han, W. Wang, J. Chen, Y. Liu, A New
Secure Arrangement for Privacy-preserving Data
Collection, Computer Standards & Interfaces, Vol. 80,
Article No. 103582, March, 2022.

[15] G. Ateniese, R. D. Pietro, L. V. Mancini, G. Tsudik,
Scalable and Efficient Provable Data Possession, 2008,
4th International Conference on Security and Privacy
in Communication Networks (SecureComm), Istanbul,
Turkey, 2008, pp. 1-10.

[16] C. Erway, A. Küpçü, C. Papamanthou, R. Tamassia,
Dynamic provable data possession, 2009, 16th ACM
Conference on Computer and Communications Security
(CCS), Chicago, Illinois, USA, 2009, pp. 213-222.

[17] Q. Wang, C. Wang, K. Ren, W. Lou, J. Li, Enabling

1270 Journal of Internet Technology Vol. 24 No. 6, November 2023

Public Auditability and Data Dynamics for Storage
Security in Cloud Computing, IEEE Transactions on
Parallel and Distributed Systems, Vol. 22, No. 5, pp.
847-859, May, 2011.

[18] H. Tian, Y. Chen, C. Chang, H. Jiang, Y. Huang,
Y. Chen, J. Liu, Dynamic-hash-table Based Public
Auditing for Secure Cloud Storage, IEEE Transactions
on Services Computing, Vol. 10, No. 5, pp. 701-714,
September-October, 2017.

[19] H. Yan, J. Li, J. Han, Y. Zhang, A Novel Efficient
Remote Data Possession Checking Protocol in Cloud
Storage, IEEE Transactions on Information Forensics
and Security, Vol. 12, No. 1, pp. 78-88, January, 2017.

[20] J . R . Gudeme, S . Pasupule t i , R . Kandukur i ,
Certificateless Privacy Preserving Public Auditing for
Dynamic Shared Data with Group User Revocation
in Cloud Storage, Journal of Parallel and Distributed
Computing, Vol. 156, pp. 163-175, October, 2021.

[21] R. Curtmola, O. Khan, R. Burns, G. Ateniese, MR-PDP:
Multiple-replica Provable Data Possession, 2008, 28th
International Conference on Distributed Computing
Systems (ICDCS), Beijing, China, 2008, pp. 411-420.

[22] F. Barsoum, M. A. Hasan, Provable Multicopy Dynamic
Data Possession in Cloud Computing Systems, IEEE
Transactions on Information Forensics and Security,
Vol. 10, No. 3, pp. 485-497, March, 2015.

[23] J. Li, H. Yan, Y. Zhang, Efficient Identity-Based
Provable Multi-Copy Data Possession in Multi-Cloud
Storage, IEEE Transactions on Cloud Computing, Vol.
10, No. 1, pp. 356-365, January-March, 2022.

[24] S. Peng, F. Zhou, J. Li, Q. Wang, Z. Xu, Efficient,
Dynamic and Identity-based Remote Data Integrity
Checking for Multiple Replicas, Journal of Network
and Computer Applications, Vol. 134, pp. 72-88, May,
2019.

[25] H. Yu, Z. Yang, M. Waqas, S. Tu, Z. Han, Z. Halim,
R. O. Sinnott, U. Parampalli, Efficient Dynamic
Multi-replica Auditing for the Cloud with Geographic
Location, Future Generation Computer Systems, Vol.
125, pp. 285-298, December, 2021.

[26] L. Zhou, A. Fu, Y. Mu, H. Wang, S. Yu, Y. Sun,
Mult icopy Provable Data Possess ion Scheme
Supporting Data Dynamics for Cloud-based Electronic
Medical Record System, Information Sciences, Vol.
545, pp. 254-276, February, 2021.

[27] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, W. Lou,
Privacy-Preserving Public Auditing for Secure Cloud
Storage, IEEE Transactions on Computers, Vol. 62, No.
2, pp. 362-375, February, 2013.

[28] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo,
Y. Dai, G. Min, Identity-Based Remote Data Integrity
Checking with Perfect Data Privacy Preserving for
Cloud Storage, IEEE Transactions on Information
Forensics and Security, Vol. 12, No. 4, pp. 767-778,
April, 2017.

[29] J. Li, H. Yan, Y. Zhang, Identity-Based Privacy
Preserving Remote Data Integrity Checking for Cloud
Storage, IEEE Systems Journal, Vol. 15, No. 1, pp. 577-
585, March, 2021.

[30] H. Tian, F. Nan, C. Chang, Y. Huang, J. Lu, Y. Du,

Privacy-preserving Public Auditing for Secure Data
Storage in Fog-to-cloud Computing, Journal of Network
and Computer Applications, Vol. 127, pp. 59-69,
February, 2019.

[31] H. Zhao, X. Yao, X. Zheng, T. Qiu, H. Ning, User
Stateless Privacy-preserving TPA Auditing Scheme
for Cloud Storage, Journal of Network and Computer
Applications, Vol. 129, pp. 62-70, March, 2019.

[32] J. Yu, K. Ren, C. Wang, V. Varadharajan, Enabling
Cloud Storage Auditing with Key-exposure Resistance,
IEEE Transactions on Information Forensics and
Security, Vol. 10, No. 6, pp. 1167-1179, June, 2015.

[33] Y. Li, Y. Yu, B. Yang, G. Min, H. Wu, Privacy
Preserving Cloud Data Auditing with Efficient Key
Update, Future Generation Computer Systems, Vol. 78,
pp. 789-798, January, 2018.

[34] X. Zhang, H. Wang, C. Xu, Identity-based Key-
exposure Resilient Cloud Storage Public Auditing
Scheme from Lattices, Information Sciences, Vol. 472,
pp. 223-234, January, 2019.

[35] Y. Xu, S. Sun, J. Cui, H. Zhong, Intrusion-resilient
Public Cloud Auditing Scheme with Authenticator
Update, Information Sciences, Vol. 512, pp. 616-628,
February, 2020.

Biographies

Hao Yan, Ph.D., he is currently an assistant
professor with the School of Network
Security, Jinling Institute of Technology,
Nanjing, China. His research interests
include cryptography and information
security, cloud computing, network security
and trusted computing etc.

Yanan Liu, Ph.D., she is currently an
assistant professor with the School of
Network Security, Jinling Institute of
Technology, Nanjing, China. Her research
interests include Information security
and Applied Cryptography, especially
includes Key Management in WSNs,
Secure Communication in IoT, PUF-based

authentication, etc. authentication, etc.

Dandan Huang is an associate professor
with the School of Network Security
at Jinling Institute of Technology. She
received her Ph.D. degree in Applied
Mathematics from University of Chinese
Academy of Sciences. Her research
interests include Information Security and
Cryptography etc.

Public Integrity Verification for Cloud Storage with Efficient Key-update 1271

Shuo Qiu is a lecturer in the School of
Network Security at Jinling Institute of
Technology. She received her Ph.D. degree
in the School of Computer and Information
Technology at Beijing Jiaotong University
in 2017. Her research interests are in
cryptographic protocols, big data security
and privacy preserving.

Zheng Zhang received a B.S. degree in
applied mathematics from the Shanghai Jiao
Tong University. He is currently a Research
Fellow with the School of Network
Security, Jinling Institute of Technology,
Nanjing, China, and a Ph.D. student of
Southeast University. His research interests
include cryptography, secure protocol,

network security, etc.

