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Abstract

To improve the security of the data on cloud storage, 
numbers of data integrity auditing schemes have been 
proposed in the past several years. However, there only 
a few schemes considered the security challenge that the 
user’s key is exposed unknowingly which is very likely to 
happen in real-life. To cope with the problem, we propose 
a public data integrity auditing scheme for cloud storage 
with efficient key updating. In our scheme, the user’s key 
is updated periodically to resist the risk of key exposure. 
Meanwhile, the authentication tags of blocks are updated 
simultaneously with the key updating so as to guarantee the 
data integrity can be verified normally. The algorithm of 
key updating in our scheme is very efficient which only 
needs a hash operation while previous schemes need two or 
three exponentiation operations. Moreover, the workload of 
tag updating is undertaken by cloud servers with a re-tag-
key which reduces the burden of users and improves the 
efficiency of the scheme. The communication cost of the 
scheme is also reduced greatly, for instance, the information 
size in ‘re-key’ step is decreased from two group members to 
one. Furthermore, we give the formal security model of our 
scheme and prove the security under the CDH assumption. 
The experimental results show that our proposal is efficient 
and feasible.

Keywords: Cloud storage, Data integrity checking, Key 
update

1  Introduction

With the increasing requirement for data storage, 
cloud storage service has attracted extensive interest and 
attention from all the fields of industry because of its 
flexibility, reliability and scalability features [1]. With cloud 
storage, clients no need to bear expensive cost of building 
infrastructure and employing staffs, they can easily enjoy 
the service of storing and maintaining great amount of data 
with lower investment. Moreover, the ubiquitous Internet 
makes client to access the data in cloud very conveniently. 
As a result, more and more clients including enterprises 
or personal choose to outsource data in cloud server [2-3]. 
However, because the client loses the physical control of the 
data and at the same time the cloud service provider (CSP) is 

untrusted either, the concern about the integrity of the data is 
increasing that client worries about whether the data is kept 
intact by CSP [4-5]. Thus, to verify the security of the data on 
CSP becomes an important and urgent demand for the client 
[6]. 

To address this problem, many provable data possession 
(PDP) schemes have been proposed [6-30]. In these schemes, 
the whole data is split to many small blocks and each block is 
signed by client. Then all the blocks and its authenticator tag 
are uploaded to CSP. Since the block tag is computed based 
on its block, client can verify the rightness of the data block 
by auditing the validity of its tag. Obviously, if the block tag 
cannot pass the audition, it means the block is not correct. 
To reduce the cost of communication and computation, 
PDP utilizes the probability checking idea that by auditing 
the integrity of a set of blocks randomly selected to get the 
integrity of the whole data. It is proved that PDP model 
achieves high error detection probability of the data with 
very low cost. Many researchers have done a lot of work for 
designing PDP schemes for different application scenario, 
for instance, some schemes focus on data dynamic, some 
schemes consider the integrity checking for group shared data 
and so on. However, there is an important secure problem in 
data integrity checking has not been given enough attention, 
that is, if the client’s key is exposed, how to ensure the 
soundness of the check result for data integrity. In fact, the 
problem of key exposures seems to be unavoidable in the real 
work due to the complex network environment and social 
environment. Therefore, the data integrity scheme should 
take into account the great threat of key-exposure to improve 
the security and practicability. 

1.1 Problem Statement
Resisting the key-exposure is an import security 

requirement for PDP schemes, because if the key is exposed, 
the data on cloud storage can be forged, modified even 
deleted by the untrusted cloud server and other adversaries 
while the data auditor can not know these bad accidents at 
all. To realize the key-exposure resistance, the main idea is 
to update the key periodically that each key is used only for a 
fix time period after which a new key is generated to replace 
the old one to continue the next work. Therefore, the threaten 
of key-exposure is reduced greatly. For a PDP scheme with 
key-exposure resistant, the key and the block tag should be 
updated simultaneously, otherwise, the scheme is invalid. 
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1.2 Contributions
To address the key-exposure problem, the paper presents 

a public data integrity checking scheme with efficient key-
update. In our scheme, client’s private key is updated 
periodically and the tags of data blocks are also re-generated 
with the new key. Therefore, even if the adversary gains the 
exposed key of the client, our scheme still keeps secure and 
effective. The contributions of the paper are summarized as 
follows:

(1) We present a public data integrity verification scheme 
for cloud data which can efficiently audit the data integrity 
remotely. Moreover, out scheme updates client’s private key 
periodically to resist the key-exposure attack while the block 
tags are re-generated by CSP to maintain the data integrity 
checking regardless the times of key updating.

(2) We formalize the system model of the data integrity 
auditing scheme with key-update. We define the security 
model of the scheme through a security game and prove that 
the scheme is able to resist the key exposure attack under the 
random oracle model.

(3) We give the performance analysis of our scheme, 
and the experiment results demonstrate that our scheme can 
efficiently audit the integrity of data on cloud server with 
lower communication and computation cost. 

2  Related Work

While more and more data are outsourced to CSP, the 
data integrity checking has become a necessary technique for 
secure cloud storage. Over the past decade, two main types 
of data integrity checking model are proposed. The first is the 
proof of retrievability (PoR) model [7], which supports the 
integrity verification for outsourced data and the retrievability 
of data by error-correcting codes. The second is the PDP 
model proposed in [8], which supports efficient verification 
for the data integrity on cloud servers with sampling 
inspection. Since PDP is considered to be much more flexible 
and efficient [9], many public PDP schemes have been 
successively proposed in many literatures to address the data 
integrity checking problems with various features like data 
dynamic [10], multi replicas [11-12], privacy preserving [13-
14] and so on.  

Updating the data in cloud server is a common 
requirement for data owners especially when data is shared 
publicly. Therefore, many data integrity checking schemes 
consider to support the data dynamic feature. For example, 
Ateniese et al. [15] proposed a limited dynamic scheme 
based on symmetric cryptography. Erway et al. [16] designed 
a ranked authenticated skip list by which they gave a 
fully dynamic data integrity checking scheme. Wang et al. 
[17] utilized the structure of Merkle Hash Tree to achieve 
integrity auditing for data dynamic. Tian et al. [18] presented 
a dynamic scheme relied on a two-dimensional structure 
called dynamic hash table. Yan et al. [19] employed a hybrid 
data structure to realize a dynamic PDP scheme for cloud 
storage. Gudeme et al. [20] based on the certificateless crypto 
proposed a secure data integrity checking scheme in which 
an extended double linked list is designed to realize data 
dynamic operations. 

To improve the availability and the security of data in 
CSP, many clients store the data with multiple replicas, which 
raise the requirement of the integrity checking for multiple 
replicas. Curtmola et al. [21] first gave a MR-PDP scheme 
for integrity verification of multiple replicas in cloud storage. 
To improve the efficiency, Barsoum et al. [22] presented 
a multi-copy PDP scheme which supports the public 
verification and data dynamic. Li et al. [23] proposed an 
efficient scheme of multi replicas on multiple cloud servers. 
Peng et al. [24] presented a dynamic data integrity audition 
scheme for multi-replica which supports batch checking. Yu 
et al. [25] employed an indexed merkle hash tree to design 
a dynamic auditing scheme for multi-replica on cloud with 
geographic location. Zhou et al. [26] constructed a structure 
named multicopy merkle hash tree, by which they proposed a 
dynamic multiple replicas data integrity checking scheme. 

Data privacy preserving is another security requirement 
in data integrity checking especially for user’s valuable and 
sensitive data. To protect the data’s privacy, Wang et al. 
[27] designed a public data integrity checking scheme with 
zero knowledge leakage of the data. To avoid the certificate 
management, Yu et al. [28] presented an identity-based 
integrity checking scheme with perfect privacy-preserving of 
data. Li et al. [29] designed a novel mechanism to hide the 
data of integrity proof, by which they give a concrete data 
integrity verification scheme with data privacy-preserving. 
Tian et al. [30] presented a new scheme with data privacy 
preserving based on a zero-knowledge proof mechanism. 
Zhao et al. [31] presented a user stateless data auditing 
scheme, which protected data’s privacy and also realized 
dynamical operations based on ranked authenticated skip list.

Yu et al. [32] firstly considered key-exposure attack on 
data integrity checking scheme, they used a binary tree to 
update client’s key with different time periods and offered 
a practical scheme. However, this scheme is inefficient that 
the user has to undertake heavy computation cost. Later, 
Li et al. [33] presented a public integrity auditing scheme 
with key update and data privacy preserving. Zhang et al. 
[34] proposed an identity-based public auditing scheme 
with key-exposure resilient based on lattice assumption, 
which only achieves the forward security. Xu et al. [35] also 
presented a key-exposure resilience PDP scheme which 
realized the backward and forward security of the private 
key simultaneously. However, this scheme is not a real 
public scheme and not efficient, because the third party 
auditor (TPA) should generate private keys to take part in 
user’s key updating, audition authenticator updating and 
integrity verification. Therefore, it is still an open problem of 
designing data integrity auditing scheme with the feature of 
key-exposure resilient.

3  Scheme Definition

3.1 Preliminaries
(1) Bilinear Map: G1 and G2 are two multiplicative cyclic 

groups with order p. g is a generator of G1. 1 1 2:e G G G× →  
is a bilinear pairing if the following three conditions hold:
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(a) Bilinearity: 1,x y G∀ ∈  and *, pa b Z∀ ∈  , it has 

( , ) ( , )a b abe x y e x y= .

(b) Computability: 1,x y G∀ ∈ , the value of e(x, y) can 
be computed efficiently.

(c) Non-degeneracy: e(g, g) ≠ 1.
(2) Computational Diffie-Hellman (CDH) Assumption: 

g is a generator of group G with prime order p, and ga, 
gb are two random elements of G. CDH assumption 
means that for any adversary A, it is hard to compute gab 
within probabilistic polynomial time, in which a, b are 
unknown. The advantage for solving the CDH problem 
by the adversary A is negligible, which can be defined 
as: [ ( , , )]CDH ab a b

AAdv Pr g A g g g ε= ← ≤ .

3.2 System Model
Figure 1 illustrates the system model of the proposed 

public checking scheme for cloud data with key update, 
which has the following three entities:

Figure 1. System model

(1) Client, who outsources massive data to cloud server 
and delegates the integrity checking work to TPA.

(2) CSP, who supplies data storage and management 
service to clients and responds the integrity checking request 
from TPA.

(3) TPA, who is trustful and authorized to audit the data 
integrity on behalf of client, and dedicated to output reliable 
checking results.

The client prepares all the data which is split to many 
data blocks. For efficient data checking, client binds an 
authentication tag for each block. Then client pays for the 
service of CSP and outsources all the blocks and tags to CSP 
to decrease the cost of data storage. TPA is a trusted data 
auditor who is authorized by client to audit the correctness 
of the data on CSP. CSP is assumed to be semi-honest, that 
it can provide high-quality services of data storage and 
maintenance, but may hide data broken incidents to keep his 
own benefits.

3.3 Outline of the Proposed Scheme
A public cloud data integrity checking scheme with key 

updating consists of nine algorithms: 

(1) Setup: before offering the data storage services, 
CSP executes this algorithm to initialize the global security 
parameters of the system. The input k is the security value, 
and params is the public parameters.

(2) KeyGen: client generates two key pairs by this 
algorithm, the first one (sk, pk) is used for computing the 
authentication tags of data blocks. The second one (ssk, spk)
is used for generating ‘data-tag’.

(3) TagGen: client performs this algorithm to generate the 
authentication tags of blocks. It inputs the data F and client’s 
private keys, outputs a set of block tags and a ‘data-tag’.

(4) KeyUpt: this algorithm is performed by client to 
update the private key periodically. It outputs the new private 
key for client based on the old private key and the current 
time.

(5) ReKey: when client’s private key is updated, all the 
old block tags should be updated too. Client executes this 
algorithm to generate a re-tag-key which is sent to CSP to 
update all block tags.

(6) ReTagGen: this algorithm is performed by the CSP to 
update block tags with the tag re-tag-key. By this algorithm 
all block tags are updated from time period t-1 to time period 
t.

(7) Challenge: TPA generates a verification challenge 
which is sent to CSP as a data integrity checking demand.

(8) ProofGen: after getting the challenge from TPA, 
CSP outputs a data integrity proof for this challenge by the 
algorithm.

(9) Verify: in this algorithm, the TPA checks the integrity 
of the cloud data by checking the proof returned from the 
CSP.

3.4 Security Definition
Completeness is the basic security requirement of the 

public data integrity checking scheme with key update. 
Completeness means that when both CSP and TPA performs 
the scheme honestly, the cloud data should be audited 
correctly. Specifically, if the CSP stores user’s original 
data well and generates the proof rightly by ProofGen, the 
algorithm Verify should output ‘true’.

Generally, CSP is thought to be semi-trust, it attempts to 
conceal the fact of data corruption by launching three attacks: 
forge attack, replay attack and reply attack. Therefore, the 
proposed data integrity checking scheme with key update 
should satisfy the soundness feature which means if the 
data is broken, CSP cannot generate a forged proof to pass 
the integrity challenge of TPA. We use a security game to 
cover the soundness security requirement of the public cloud 
data integrity checking scheme with key update. The game 
contains the following phases which involve a challenger C 
and an adversary A. 

(1) Setup: C sets up the system and outputs the public 
parameters by Setup, then generates the key pairs by KeyGen. 
Both the public keys and public parameters are returned to A.

(2) Query: C updates the private key with the period ∆t 
by the KeyUpt, and responds the following queries performed 
by A.

(a) Hash query: A askes for the values of hash functions 
appeared in the scheme, C returns the values to A.
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(b) Secret key query: A adaptively queries the re-tag-key 
at any time period t, C generates the re-tag-key with the time 
period t and returns it to A. 

(c) Tag query: A randomly selects any blocks in {m1, m2, 
m3, ..., mn} and sends the blocks to C. C generates the tags for 
the blocks at time period t and then returns the tags to A.

(3) Challenge: C adaptively chooses a time period t' 
and the chal = (c, k1, k2). C sends all the information to the 
adversary A and asks A to reply the integrity proof according 
to the challenge.

(4) Forge: when receiving the challenge, A computes the 
proof P at time period t' and sends P to C. If P passes the 
checking by Verify, A wins the game. 

It is noted that in the game the adversary A should 
not query the secret keys and the tags of time period t' of 
the challenged blocks, and the challenged blocks are not 
necessary to be known by A.

4  Construction of New Scheme

In this section, we give the detailed construction of our 
new scheme, which consists of the following algorithms.

Setup: CSP sets the security parameter k and chooses G1 
and G2 of the prime order p. Randomly select a generator 
g of G1 and a bilinear map e: G1 × G1 → G2. Select three 
hashes: h1{0,1}* → G1, h2{0,1}* → G1, h3{0,1}* → Zp. Choose 
a pseudo-random function: ϕ: Zp × Zp → Zp and a pseudo-
random permutation φ: Zp ×{1...n}→{1...n}. The public 
parameters are params = (p, e, g, G1, G2, h1, h2, h3, ϕ, φ).

KeyGen: The client selects a random a0∈Zp as the initial 
private key sk0 = a0, and computes the public key pk = ga0. 
Further, client chooses a sign key pair (ssk, spk). 

TagGen: The client splits the data F to n blocks, as F = 
(m1, ..., mn) with each mj∈Zp( j∈ [1,n]). Set the time interval 
∆t and computes U = h2(UID||∆t) where UID is the unique 
identity of the client. Then, randomly selects a value λ∈Zp, 
computes W = gλ.

For each block mj, an authentication tag is computed by 
the following equation (1):

0 0
1( ( || ) .)jm a t

j h j n g Uλθ = ⋅ ⋅                          (1)

With the equation (1), the client computes the tag sets 
θ(θ1, ..., θn). Then client selects a secure signature scheme  
SIG to compute the ‘data-tag’ with the key ssk: FTag = 
SIG(FID|| W || ∆t || t0) in which FID is the identity of the data 
F. Client uploads (F, θ) to CSP, and sends (FID, W, ∆t, t0, 
FTag) to TPA. TPA first checks the validity of FTag by the 
public key spk. If the FTag is valid, TPA stores the (FID, W, 
∆t, t0, FTag)  privately, otherwise TPA asks the client to re-
sent these values.

KeyUpt: To resist the key leakage attack, the client 
updates his private key periodically after generating the 
initial private key a0 at time t0. Assume the time interval of 
key update is ∆t, the current time is ti which ti = t0 + i*∆t. 
Then the new private key ski = h3(ti)*sk0 = h3(t0 + i*∆t)*a0.

ReKey: When client’s key is updated in each time period, 
the block tag should be updated too. To decrease the cost of 

client, this work is outsourced to CSP. Client computes the 

re-tag-key: 
1 ( )

t

t

sk t

t sk t t

Ursk
U −

⋅

⋅ −∆= , by the secret key skt, skt−1 and 

the time t, ∆t. Then, client sends the tag-update-key rskt to 
CSP.

ReTagGen :  A f t e r  r e ce iv ing  t he  r sk t f r om the 
client, CSP generates the new tag for each block by 

, , 1 1( ( || ) )j tm a t
j t j t trsk h j n g Uλθ θ −= ⋅ = ⋅ ⋅ .  Therefore ,  CSP 

updates the tags θt−1 to θt.
Challenge: At time t(t > t0), TPA sends an auditing 

challenge for client’s file F to CSP. TPA sets the number c of 
the challenged blocks and selects random values of k1, k2∈Zp. 
Then, TPA sends the integrity challenge chal = (c, k1, k2) to 
TPA.

ProofGen: Once receiving the chal, TPA obtains the index 
set of challenged blocks as 1{ ( , ) | [1, ]}iV v i k i cϕ= = ∈ , and 

the random parameters set 2{ ( , ) | [1, ]}iS s i k i cφ= = ∈ . TPA 

computes the proof as:
1 1

, i

i i

cc
s

i v v
i i

M s m θ
= =

= ⋅ Γ =∑ ∏ . Finally, 

CSP sends the proof P = (M, Γ) to TPA.
Verify: When TPA receives the proof P from CSP, 

TPA f i rs t  computes  the  number  of  t ime in tervals 
0 0( ) / , *l t t t t l t t= − ∆ = ∆ +  by  t he  s t a r t  t ime  t 0,  t ime 

interval ∆ t  and the current t ime t .  Then computes 
1{ ( , ) | [1, ]}iV v i k i cϕ= = ∈ , and 2{ ( , ) | [1, ]}iS s i k i cφ= = ∈ . 

To verify the data integrity, TPA executes the equation (2).

3 0
11

( )

1
1

( , ) ( ( || ) , ) ( , ).

l c

i
iji

h t j t t sc
s M

i
i

e g e h v n g W e U pk==

+ ⋅∆ ⋅ ⋅

=

∑∏
Γ = ⋅ ⋅∏   (2)

If the equation holds, TPA returns “true” to the client. 
Otherwise, TPA returns “false”.

5  Security Analysis

5.1 Completeness Proof
It is easy to see if the Equation (2) is correct, our scheme 

can verify the cloud data integrity rightly. Based on the 
properties of bilinear maps, we can prove the rightness of 
Equation (2) as follows:

1
1

( , ) ( (( ( || ) )) ) , )vi t i

c
m a t s

i
i

e g e h v n g U gλ

=

Γ = ⋅ ⋅∏

1
1 1

( (( ( || ) )) , ) ( , )vi i t i

c c
m s a ts

i
i i

e h v n g g e U gλ

= =

= ⋅ ⋅∏ ∏

1 1
1

1

( ( ( || ) , ) ( , ) ( , )

c c

v i t ii
i i i

c m s a t s
s

i
i

e h v n g e g g e U gλ λ= =

=

∑ ∑
= ⋅ ⋅∏

3 0 0
111

( )

1
1

( ( ( || ) , ) ( , ) ( , )

l cc

iv ii
iji i

h t j t a t sc m s
s

i
i

e h v n W e g W e U g===

+ ⋅∆

=

∑∏∑
= ⋅ ⋅∏

3 0
11

( )

1
1

( ( ( || ) , ) ( , ).

l c

i
iji

h t j t t sc
s M

i
i

e h v n g W e U pk==

+ ⋅∆

=

∑∏
= ⋅ ⋅∏
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5.2 Soundness Proof
Proof: We make use of a series of games to prove our 

scheme satisfying the soundness property. Let (g, ga, gb) be 
one CDH instance, if the adversary A wins the game, the 
simulator B can computes gab with following steps.

Game 0: This game is executed as the definition in 
section 3.3.

Game 1: Different from game0, in this game, the 
adversary A stores all the replies return from the challenge B. 
The detailed processes of this game are as follows.

Setup phase: B chooses all the public parameters, sets ga 
to be the public key, and sends all these values to A. Then B 
selects the start time period t, the time interval ∆t, a random 
value λ and computes the value W = gλ.

Query phase: A can execute the following three type of 
queries: hash query, re-key query and tag query.

(1) Hash query: A adaptively sends (j, n) to B for h1 query. 
B randomly selects a value h1∈G1 and sends h1 to A. Then B 
adds an element (j, n, h1) to the list L1. Note that if the (j, n) is 
already in L1, B directly gets the corresponding h1 and returns 
it to A.

A adaptively sends (Uid, ∆t) to B for h2 query. B first 
tosses a coin τ∈{0,1}. If τ = 0, B random selects r∈Zp and 
returns h2 = gr to A, otherwise, B returns h2 = (gb)r to A. Then 
B adds the element (Uid, ∆t, h2, r, τ) to L2. Note that if the 
(Uid, ∆t) is already in L2, B directly gets the corresponding h2 
and returns it to A.

A adaptively sends ti to B for h3 query. B randomly selects 
a value h3∈Zp and sends h3 to A. B adds the element (ti, h3) 
to L3. Note that if the ti is already in L3, B directly gets the 
corresponding h3 and returns it to A.

(2) Rekey query: A adaptively sends (Uid, ∆t, t) to B 
for querying the re-key for updating the tags. B searches 
the value (r, r') from L2 according to (Uid, ∆t, t). If τ = 1, B 
aborts and quit the game. Otherwise, B gets the re-tag-key 

( )

ar

ar t t

g t
g ′ −∆ .

(3) Tag query: A adaptively sends (mj, j, n, Uid, ∆t, t) to 
B and asks for the tag of mj at time t under the conditions 
of ∆t and Uid. B finds all the values h1, h2, h3 from the lists 
of L1, L2, L3. If the corresponding τ = 1, B aborts and quit. 
Otherwise, B outputs the tag of mj: (h1 · g

mj)λ· grah3t = (h1 · g
mj)λ· 

(ga)rh3t.
Forge phase: A adaptively sends a block mj' and the 

forged tag θj' with the (j, n, Uid, ∆t, t) to C. If the forged tag 
can pass the verification, A wins the game. It is noted that A 
has not queried the tag of mj' under such conditions before, 
and not queried the tag of the last time period and the re-tag-
key of the last time period simultaneously.

Analysis: From the equation (1), it is easy to get that 
each valid tag can be verified by: e(θj, g) = e(h1(j||n)·gmj, W)· 
e(Ut0, pk)).

Therefore, if the (mj', θj') is valid, they should satisfy 
the above equation too. B searches all the values of (h1, 
h2, h3) from the lists L1, L2, L3 respectively. If τ = 0, B 
aborts and return fail. Otherwise, B can get : e(θj', g) = 
e(h1· g

mj, gλ)· e(Ut0, ga) = e((h1· g
mj')λ, g)· e(grbt0, ga) = e((h1· 

gmj')λ· gbrt0a, g). So, the value of gab can be computed by: 

01/

1( )j

rt
jab
mg

h g λ

θ
′

′ 
=   
 

.

Assume the probability of τ = 0 is γ, so the probability of 
τ = 1 is 1 − γ. Assume A wins the game with probability δ, 
after executing ζ1, ζ2 times of Re-Key query and Tag query 
respectively, we can get the probability for B to get the value 
of gab is no less than : δ·(1 − γ)·(γ)ζ1ζ2. As a result, if the 
adversary A forges a valid tag with probability of δ, B solves 
the CDH problem with the probability of  δ·(1 − γ)·(γ)ζ1ζ2 
at least. Therefore, it is computationally impractical for the 
adversary A to generate a forgery tag in our scheme.

Game 2: Different from Game1, the adversary A submits 
a complete forged proof P' = (M', Γ') of chal = (c, k1, k2) to 
B. We prove that the probability of P' = (M', Γ') passing the 
verification is negligible.

Proof: Assume P' = (M', Γ') passes the integrity checking, 
it easy to get the equation of:

3 0
11

( )

1
1

( , ) ( ( || ) , ) ( , )

l c

i
iji

h t j t t sc
s M

i
i

e g e h v n g W e U pk==

+ ⋅∆ ⋅ ⋅
′

=

∑∏
′Γ = ⋅ ⋅∏
Let  the  p roof  P = (M ,  Γ )  i s  genera ted  by  the 

truthful prover for the challenge chal = (c ,  k1,  k2). 
So the proof P  makes the following equation hold: 
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Observing the two equations, if Γ = Γ', we can get gM = 

gM', i.e. 
1 1

i i

c c

i v i v
i i

s m s m
= =

′=∑ ∑ , which means each mvi
 = m'vi

. In 

this case, the forged proof P' is equal to the truth proof P, 
which is contrast to the assumption above. If  Γ ≠ Γ', there 
should be gM ≠ gM'. In this case, we can forge a tag for ∆M 
= (M − M') with c = 1, which contrasts to the conclusion of 
Game1. Therefore, the adversary A forges a valid proof P' = 
(M', Γ') only with negligible probability.

6  Performance Analysis

6.1 Numerical Analysis
First, we show the theoretical analysis of the computation 

cost of our scheme. Let EG1
, EG2

 denote one exponentiation 
cost on G1 and G2 respectively, use P to represent one 
pairing cost of G1. The cost of other operations like hash, 
multiplication and addition is omitted because of their 
negligible overhead. 

To generate a block tag, the client should run the 
algorithm of TagGen which costs 3EG1

. To resist key-
exposure, the client updates his secret key periodically by the 
KeyUpt, which needs one hash and one multiplication cost. 
After updating the secret key, the client should update all the 
block tags stored in CSP. The client first generates a re-tag-
key by ReKey which costs 2EG1

. With the re-tag-key, CSP 
updates all the tags by ReTagGen which needs only negligible 
cost. For generating the integrity proof, CSP executes the 
algorithm ProofGen, which costs cEG1

. When TPA receives 
the proof from CSP, it runs Verify to audit the integrity of 
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data which costs (c + 2)EG1 
+ 3P. Table 1 demonstrates the 

comparison of our scheme with two recent schemes [33, 35] 
in terms of computation overhead, where s is the counter of 
sectors in one block and l is the times of key updating till the 
challenge performed.

Table 1. Computation cost comparison
Steps Li’s scheme Xu’s scheme Our scheme
Tag-gen (1 + s) EG1

3EG1
3EG1

Key-update 2EG1
EG1

-

Tag-update 2EG1
2EG1

2EG1

Proof-gen (c + 1) EG1
+ 

(s + 1) EG1
+ 2EG2

cEG1
+ EG2

cEG1

Verify (c + 3 + s) EG1
+ 

(l − 2) · 2P + 5P
(c + 4) EG1

+ 
3P 

(c + 2) EG1
+ 

3P

Secondly, we evaluate the communication cost of our 
scheme where we omit the negligible cost like the size of 
integer. The re-tag-key for updating tags is sent to CSP by the 
client, which has the size of |G1|. In the challenge phase, the 
communication cost for sending the challenge is 2|Zp|, and the 
proof size is |G1| + |Zp|. Moreover, we show the comparison 
in terms of communication cost with [28, 30] in the Table 2.

Table 2. Communication cost comparison
Steps Li’s scheme Xu’s scheme Our scheme
Key-update —— |Zp| + |G1| ——

Re-key 2|G1| |G1| |G1|

Challenge (c + 2) |Zp|
+3 |G1|

c|Zp| 2|Zp|

Proof (l + s) |Zp|
+ l |G1|

|Zp| + |G1|
+|G2|

|G1|+ |Zp|

6.2 Experimental Results
We execute several experiments to test the performance 

of the proposed scheme. We implement our scheme by C 
programming language based on PBC library which supplies 
powerful functions for crypto operations. To make accurately 
comparisons, the schemes of [33, 35] have been implemented 
too. All experiments are conducted in ubuntukylin-15.10 
operating system with Core i5 CPU and 8G Ram. The elliptic 
curve of type-A in PBC is used in our experiments with the 
security parameters of 160 bits. In our experiment, we set n = 
100000 data blocks and block size is 2KB. The time interval 
of key updating is ∆t = 10 seconds, the sector number of one 
block is s = 1 and the times of key updating is l = 10.

Figure 2 shows the cost of the phase of tag generation. 
In this experiment, we change the counter of blocks from 
100 to 1000 so as to observe the cost under each situation. 
From Figure 2, it is easy to see that all the time cost of tag 
generation of these three schemes is linearly increasing with 
the increasing of block number. Xu’s scheme has roughly the 
same cost as ours which needs about 11 seconds to compute 
1000 tags. And Li’s scheme is more efficient than that of two, 
which only needs about 7.3 seconds to generate 1000 tags. 

The experiment results keep consistent with the theoretical 
analysis above and the truth time for tag generation is very 
practical. Furthermore, tag generation brings little impact on 
the performance of data integrity verification because it is 
done only once.

Figure 2. Cost of tag generation

Then we consider the performance of key update which 
is illuminated in Figure 3. From Figure 3, we can see that 
the key update cost of all three schemes almost keeps instant 
no matter how many times the key update. Moreover, our 
scheme is more efficient than that of other two in this step, 
that’s because in our scheme client’s public key is no need 
to re-generate, there only needs to update the client’s secret 
key which incurs only one hash operation and one multiple 
operation. Therefore, our scheme consumes only negligible 
cost.

Figure 3. Cost of key update

TPA runs the algorithm of Verify to check the integrity of 
data with the proof returned from CSP. Figure 4 shows the 
experimental result of proof verification phase of the three 
schemes. From the Figure 4, we can see that all the three 
schemes have the linear computation cost with the number of 
challenged blocks. Li’s scheme costs a little more expensive 
than that of others. Note that here we set the times of key 
updating to 10, if this value increases, Li’s scheme will need 
more expensive cost because its cost is positive correlation 
with the times of key updating. However, the verification 
costs of our scheme and Xu’s scheme only depend on the 
counter of challenged blocks with no relation with the key 
updating times.
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Figure 4. Cost of verification

7  Conclusion

The paper proposes a public data integrity checking 
scheme for secure cloud storage with efficient key update 
which achieves the security feature of key exposure resilient. 
In our scheme, client’s key is updated at a fix time period to 
prevent the key exposure threat, at the same time the block 
authentication tags are updated too with the client’s new 
key to ensure the data integrity can be verified normally. 
Moreover, both the key updating and authenticator tag 
updating of our scheme are very efficient. We give the formal 
security model of our scheme and prove the security through 
a serial of security games. Numeric analysis and experimental 
results demonstrate that our scheme is efficient and practical 
in comparison with two recent schemes with key update.
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