
A Knowledge Graph Construction Method for Software Project Based on CAJP 1229

*Corresponding Author: Bangchao Wang; E-mail: wangbc@whu.edu.cn
DOI: 10.53106/160792642023112406006

A Knowledge Graph Construction Method for Software Project
Based on CAJP

Yang Deng1, Bangchao Wang1,2*, Zhongyuan Hua1, Yong Xiao1, Xingfu Li1

1 School of Computer Science and Artificial Intelligence, Wuhan Textile University, China
2 Engineering Research Center of Hubei Province for Clothing Information, Wuhan Textile University, China

dd0028y@163.com, wangbc@whu.edu.cn, 1745224789@qq.com, 634218476@qq.com, lixingfu1999@163.com

Abstract

In recent years, there has been increasing interest in using
knowledge graphs (KGs) to help stakeholders organize and
better understand the connections between various artifacts
during software development. However, extracting entities
and relationships automatically and accurately in open-
source projects is still a challenge. Therefore, an efficient
method called Concise Annotated JavaParser (CAJP) has
been proposed to support these extraction activities, which
are vitally important for KG construction. The experimental
result shows that CAJP improves the accuracy and type of
entity extraction and ensures the accuracy of relationship
exaction. Moreover, an intelligent question-and-answer
(Q&A) system is designed to visualize and verify the quality
of the KGs constructed from six open-source projects.
Overall, the software project-oriented KG provides developers
a valuable and intuitive way to access and understand project
information.

Keywords: Knowledge graph, Open-source software project,
Q&A system, CAJP

1 Introduction

Knowledge graphs (KGs) have gained significant
attention recently as a powerful tool for representing and
analyzing complex data, including open-source software
projects. They provide a visual and intuitive way of
expressing complex relationships between entities, such as
software artifacts, developers, and users [1].

One of the main benefits of using KGs in open-source
software is the ability to understand better the connections
between different artifacts in projects, which include source
codes, user manuals, bug reports, question-and-answer
(Q&A) documents, and more [2]. By providing a holistic
view of these artifacts, KGs can help developers better
understand the functionality of a software project and make
more informed decisions about how to reuse existing code
[3].

Building a KG for open-source software projects is
still challenging due to the large scale, complex structure,
and rich meaning of software artifacts. One of the critical
components of building a KG is the extraction of entities
and relationships, which can be difficult when working with

open-source software projects [4]. However, due to the
special code, these existing methods for extracting entities
and relationships from open-source software projects result
in a significant amount of redundant information in the entity
extraction, reducing the efficiency of developers.

To al leviate these problems, we propose a KG
construction approach and Concise Annotated JavaParser
(CAJP) method for extracting entities and relationships. To
reduce the interference caused by redundancy, the CAJP
divides annotation into Context and DocletTag, improving the
accuracy and type of entity extraction and ensuring accurate
KG construction. The entities and relationship extraction by
CAJP are the basis of KG construction. An intelligent Q&A
system for KG is designed to provide developers with a more
intuitive way to access and understand the information.

The main contributions are as follows:
(1) The extraction method called CAJP is proposed for

open-source code. Six software projects are used to
validate the effectiveness of extracting entities and
entity relationships.

(2) An intelligent Q&A system is designed, which
provides developers with a more intuitive way to
understand the information in the KG.

(3) The KG with 4335 entities and 8267 relationships is
constructed. The rationality of software project KG
construction is verified from entity extraction, entity
relationship extraction, and Q&A system.

The remainder of the paper is organized as follows:
Section 2 introduces the related work. Section 3 details our
approach for software project KG construction. Section 4
experiments to validate the approach proposed. Section 5 is
the result and analysis. Section 6 discusses the threats to the
validity of the proposed method and experiments. Section 7
summarizes our study and provides future works.

2 Related Work

This section summarizes the entity extraction method and
literature quality for software project KG.

2.1 Entity Extraction Method
KG construction in open-source software projects

mainly focuses on organizing and managing knowledge
from software development processes to improve software
reuse and efficiency. There are currently some approaches to

1230 Journal of Internet Technology Vol. 24 No. 6, November 2023

software project entity extraction. Shang et al. [4] constructed
a user behavior KG from the development code and the user
behavior. The Qdox was proposed to extract entity, a small-
footprint, high-speed parser that extracts metadata from Java
source. Thus, the class properties extracted by this method
sometimes need to be corrected about the parent class,
resulting in inaccurate extracted class properties. The other
method is the JavaParser method proposed by Peng et al. [5],
which uses Eclipse JDT’s ASTParser to parse each Java file
into an abstract syntax tree. However, annotation redundancy
exists when extracting block annotations. We follow a similar
underlying idea but propose the CAJP method, which reduces
the interference caused by redundancy and optimizes the
accuracy of entity extraction comparison.

2.2 Literature Quality Assessment
Several studies have proposed different software project

KG construction methods. Lin et al. [6] used software KGs
in the intelligent development environment to provide
intelligent help for software development. Seven data formats
are supported. However, this article does not have experiments
to verify KG construction. Li et al. [2] devised with a
method for building a software project KG for open-source
projects, which aimed to organize and manage the structural
knowledge of software projects. Zou et al. [7] focused on
constructing software KG based on big data. They proposed
a code-centric software knowledge model, a two-layer plugin
framework for KG construction, and software Q&A. Osorio
et al. [8] proposed a framework called DockerPedia aimed to
improve the documentation and understanding of software
images used in KG. According to Table 1, the level of quality

validation of the above studies is at most Level 1.
Therefore, a more intuitive and high-quality verification

level is needed to ensure the robustness and reliability of the
constructed KGs. This paper uses six datasets for the CAJP
and KG construction methods, which are fully validated by
three experiments, and the quality of the literature is at Level
3.

Table 1. The detail of the literature quality assessment [9]
Level Describe Literature
0 No evidence. [4]

1 Evidence obtained from demonstration or
working out with toy examples.

[2, 6-8]

2 Evidence obtained from expert opinions or
observations (e.g., survey or interview).

3 Evidence obtained from academic studies
(e.g., controlled lab experiments).

4 Evidence obtained from industrial studies
(e.g., causal case studies in an industrial
setting).

3 Our Approach

3.1 Overview
Figure 1 shows our proposed four-steps approach to

constructing KG and designing a Q&A system for open-
source software projects: ontology construction, information
exaction, knowledge storage and fusion, and Q&A system
design. The following subsections explain each step in detail.

Source code

User manual

Q & A
document

GitHub

Entity relationship
storage pool

Guide

Summary

Preliminary
software

knowledge
ontology

Other software
knowledge ontologies

Experts in
relevant fields

Advise

Construct Optimize

Final software
knowledge
ontology

1.Ontology construction

Project team

Related literatures

Domain experts

2.Information extraction

4. Q&A system design

UsersWeb

Text processing

……

Input questions

Show

3.Knowledge storage and fusion

Source code knowledge graph

User manual knowledge graph

Q & A document knowledge graph

Software project
knowledge graph

Fuse

Fuse

Fuse

Data
cleaning

Guide

Cypher
sentence

Word segmentation

Named entity recognition

Dependency parsing

User manual entity
relationships

Q & A documentation
entity relationships

Source entity
relationships

Guide

neo4j

Entity storage pool

CAJP

semi-automatic
method

pipeline
method

semi-automatic
method

Entity relationship
storage pool

Support

Figure 1. The KG construction framework for the open-source software project

A Knowledge Graph Construction Method for Software Project Based on CAJP 1231

3.2 KG Construction
3.2.1 Ontology Construction

Figure 2 shows the ontology detail, which guides the
extraction of entities and entity relationships. The “blue”
represents the three artifacts to construct a software project
KG, which includes java source code, user manuals, and
Q&A documents. The “yellow” represents the entities
extracted for each artifact. In addition, the text on the arrows
represents the entity relationships.

Step 1 (on the upper left of Figure 1) shows the Skeletal
method [10], divided into three steps to build our ontology.
To begin, the project team creates a preliminary ontology
from domain projects on GitHub and pieces of literature.
In the second step, we invite domain experts and compare
them with other open-source software project ontologies to
optimize our ontology. Lastly, we randomly obtain datasets
in java open-source software projects. If all datasets have
a corresponding ontology, the ontology build is complete.
Otherwise, go back to the second step.

Defect Report

Mail

Requirements

Design

Specification

……

Software

Document
Ref

Author
Parent Parent/Ref

Extend

Field

Method

Include

Method
parameters/
Return value

Include

TypeInclude

Type

InterfaceExtend

Resolve

Provide

Propose

Solve

Reflect

About

Q&A Doc

Code

User Manual

Problem

Questioner

Answer

Solution

Issue

Package

Class

Programme

Figure 2. The ontology of open-source software project KG

3.2.2 Information Extraction
Step 2 (on the upper right of Figure 1) shows the

information extraction process. These entities and entity
properties are extracted from the three kinds of software
projects. The retrieved entities are then utilized to create
entity relationships. This section will be divided into entity

extraction and entity relationship to introduce the extraction
and the methods used.

1) Entity Extraction
Figure 3 shows the detail of entity extraction from three

types of software projects, which includes entities and entity
attributes extraction.

software project source code entity set = {package, class, interface, field, method}
package's attribute set = {package name, annotation}
class's attribute set = {classname, modifiers, parent class, annotation}
interface's attribute set = {interface name, parent interface, modifiers, annotation}
field attribute set = {field name, type, modifiers, annotation}
method's attribute set = {method name, modifiers, parameter list, return type, annotation}

Q&A document entity set = {issue, solution, questioner, answerer }
issue properties set = {issue id, content, issue label, questioner, date}
solution properties set = {solution id, content, answerer, date, issue id}
questioner properties set = {name, issue id}
answerer properties set = {name, answer id}

user manual entity set = {problem, programme}
programme set = {number, title, content}
solution set = {the solution idea number, the problem solver, the solution method, the solution problem number}

Source Code

Q & A
Document

User Manual

Entity
Extraction

Figure 3. The information on entity extraction from software projects

1232 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 2. Annotation extraction algorithm
Input: Tags List T
Output: AnnotationDecomposer Object
1. Function TagsDecomposer(T)
2. Save the text list of Tags and content C
3. Annotation content storage list Contexts
4. Document Part Storage List Doclets
5. While T≠Ø:
6. Get the Tag in the current tag list
7. If Tag_size>2:
8. Tag_TaxtContext = ExtractContext (Tag); // Extracting
Tag Text
9. C.add (Tag_TaxtContext);
10. End if
11. End while
12. While C≠Ø:
13. Get the current Tag text content
14. If Tag_TaxtContext.isDocletTag():
15. // The current Tag text content is a document part
16. docletTag = docletTagDecomposer (Tag_TaxtContext)//
Creating Part Objects
17. DocletTags.add(docletTag)
18. End if
19. Else:
20. Contexts. add (Tag_TaxtContext)
21. End else
22. End while
23. Return InitAnnotationDecomposer ()

The semi-automatic method [5] extracts entities from
the user manual and Q&A document, which combines text
similarity and expert feedback. CAJP extracts entities from
the source code.

The CAJP method enhances the accuracy of entity
extraction by parsing source code into an abstract syntax tree
(AST) and optimizing block annotation and class property
extraction. Figure 5 (RQ1) shows that CAJP is optimized for
inaccurate parent class properties exaction. In addition, this
method associates block annotations to the corresponding
code element, not associate line annotations. As shown in
Figure 6 (RQ1), the block annotations are divided into each
line, one line as a Tag. Then, the Context, DocletTag of name,
and DocletTag of value are extracted from each Tag. Table 2
shows the pseudo-code for annotation extraction.

Lines 2-4 initialize the relevant variables; lines 5-11
divide the block annotation into line annotations (Tags); lines
12-22 separate the tags into Context, DocletTag of value, and
DocletTag of name; and line 23 returns the data.

2) Entity Relationships Extraction
As depicted in Figure 2, constructing entity relationships

involves establishing connections within and between
resources. A pipeline method is utilized when building
relationships in source codes to achieve high accuracy in
information extraction. Table 4 presents the pseudo-code for
the pipeline method.

As shown in Table 3, line 2 initializes the Java parse tree
node traverser, lines 3-6 traverse the document and build
a java parse tree for each file, and lines 7-15 extract entity
relationships by traversing each node and finally return a
triplet set.

Table 3. The pipeline algorithm of extracting entity relationships
Input: Java Project Documentation Collection DS
Output: RDF triple Collection RS
1. Function CreateRelation (DS)
2. visitor = initVisitor (RS)//Initialize the Java parse tree node

walker
3. While DS≠Ø:
4. Get the current java file D
5. comp = createComplication(D)//Building a Java parse

tree
6. nodes = comp. accept(visitor) //visitor traverses the

parse tree and returns a list of nodes
7. While nodes≠Ø:
8. Get current node N
9. If N. isKey (): //If N is a keyword such as a package,

class, etc., record it
10. Key = N
11. End if
12. If N. hasRelation ():
13. re = createIncludeRelation (key, N)
14. RS.add(re)
15. End if
16. End while
17. End while
18. Return RS

3.3 Knowledge Storage and Fusion
The neo4j [7] is a powerful tool for storing and managing

data, as it utilizes a graph structure to represent information.
It allows for a more intuitive representation of associated
data, as the relationships between different entities can
be easily visualized. Additionally, the traversal algorithm
design of neo4j utilizes the natural extension properties of
graph structures, making it more efficient and user-friendly
than traditional relational databases that require complex
connection operations [6].

Step 3 (on the bottom left of Figure 1) shows the
knowledge fusion and storage process. Firstly, we use pandas
[11] to remove the same entity. Knowledge from different
sources but representing the same entity is merged under the
guidance of our ontology. Secondly, <entity, relation, entity>
triplets are stored in eno4j through py2neo [7]. Figure 4
shows an example of the three types of software KGs after
fusion. The right part is to query and add a node through
neo4j.

3.4 Q&A System Design
The lexicon-grammar-based semantic [12] parsing

method has strong interpretability and a clear structure, which
achieves good results in question-answering in limited areas.
Step 4 (on the bottom right of Figure 1) shows that we use the
Flask framework and charts technology to build a web page to
implement the interaction between software project KGs and
users (Figure 8). The open-source software project KG is used
as the underlying data support of the system. Firstly, obtain
user questions from the web page. Secondly, NLTK and LTP
[5] implement text processing such as word segmentation,
named entity recognition, and dependency syntax analysis to
convert natural language into cypher sentences. Then, extract
the answer by obtaining the data in neo4j with the cypher
sentence. Finally, the answers in the form of json are passed
to the web for display.

A Knowledge Graph Construction Method for Software Project Based on CAJP 1233

4 Experimental

4.1 Research Question
To ensure the quality of the KG construction, this paper

introduces the CAJP method for improved entity extraction.
The effectiveness of this method is evaluated through RQ1.
To assess the method’s effectiveness in extracting entity
relationships, RQ2 is proposed for experimental verification.
Finally, the paper constructs a software project KG based on
six datasets, designs a Q&A system to visualize the KG, and
evaluates the system’s quality through RQ3. Three research
questions are defined as follows:

RQ1: How effective is the CAJP in improving annotation
extraction?

RQ2: How does the CAJP method impact constructing
entity relationships?

RQ3: What is the quality of the KG constructed using the
Q&A system?

4.2 Quality Measure
In this paper, different quality evaluation measures are

adopted for different RQs. The details are shown in Table 4.
Accuracy is a metric defined as the proportion of correct

predictions the model or algorithm makes. All results are
correct when the Accuracy is 100%. The equation for
Accuracy is as follows:

.rel

total

N
Accuracy

N
= (1)

Where Ntotal represents the number of predictions. Nrel
represents the number of correct predictions.

Cohen’s kappa (K) [13] expresses the level of agreement
between two annotators on a classification problem. The
formula for calculating Cohen’s kappa is shown in (2).

1 2

2
.

1
q qKappa

q
−

=
−

 (2)

Where q1 represents the ratio of the sum of the diagonal
elements to the sum of the whole elements. q2 represents the
proportion of the sum of the multiplicate elements.

Table 4. Research questions and corresponding metrics

Research question Quality measure
RQ1: How effective is the CAJP in improving
entity extraction? None

RQ2: How does the CAJP method impact
constructing entity relationships?

Cohen’s kappa,
Accuracy

RQ3: What is the quality of the KG
constructed using the Q&A system?

Cohen’s kappa,
Accuracy

4.3 Datasets
4.3.1 Data Acquisition

This experiment employs six Java open-source software
projects as datasets. The project details are shown in Table 5.
The dataset has three types, which are from GitHub. Table 6
is the composition of the source code.

note

getacad…

setacad…

notimpl…

notimpl…

notimpl…

permissi…

permissi…

permissi…

registerl…

registerl…

getstud…

setstude…

getabse…

setabse…

getdelay

setdelay

report

report

getvotes

addvotes

remove

servletu…

doget

servletu…

servletu…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servlets…

servletr…

servletr…

servletl…

servletl…

servletl…

servletl…

servletl…

servletl…

servletin…

servletin…

servletd…

servletd…

servletd…

servletd…

servletd…

servletd…

servleta…

servleta…

servletal…

servleta…

servleta…

servleta…

dopost

servletu…

servlets…

servleta…

servletc…

servletd…

servletin…

servletin…

servletin…

servletin…

servletin…

servletr…

doget

doget

servletu…

doget

servletin…

init

doget

dopost

doget

teaching

teaching

getname

setname

getid

setid

testregis…

main

user

user

getlogin

setlogin

userlistit…

getname

getfirstn…

setfirstn…

getpass…

setpass…

getlastn…

setlastn…

getid

setid

tostring

getemail

setemail

getcell

setcell

getidpar…

setidpar…

getidsetname

setemail

usertest

main

utility

getmaxv…

date2sql…

isnull

isnull

isnull

clear

string2i…

replace

replace…

execute…

queryop…

boolean…

inttobo…

today

string2d…

date2str…

replaceall

replacea…

remove…

daysbet…

getpdfp…

setpdfp…

getuplo…

setuplo…

getserv…

setserve…

getactiv…

setactiv…

getdrive…

setdriver…

getfullp…

setfullpa…

getmax…

setmaxp…

getpass…

setpass…

getpool…

setpoolt…

getuser…

setusern…

getwaitt…

setwaitti…

getimag…

setimag…

gettextf…

settextf…

getimag…

setimag…

getimag…

setimag…

getneed…

setneed…

getmax…

setmaxd…

getactu…

votes

votes

getid_v…

setid_vo…

getid_us…

setid_us…

getteac…

setteach…

getwritt…

setwritt…

getoral

setoral

getlabor…

setlabor…

getacca…

setacca…

getturn

setturn

smos.be…

absence

serialver…

long

serialver…

serialver…

serialver…

serialver…

serialver…

serialver…setactiv…

inactive… timesta…connecti…

serialver…

serialver…

serialver…

serialver…

turn

int

accade…

laborato…

oral

written

teaching

id_user

id_votes

pooltim…

activeti…

maxpoo…

maxday…

needday…

idparent

id

id_teach…

director

ata

parent

student

teacher

admin

idnote
idabsen…

iduser

academi…

idaddress

idclassr…

connecti…

maxpoo…

waittim…

active_ti…

max_po…

pool_ti…

wait_tim…

iddelay

idjustify

setiduser

setidnote

deletev…

getvote…

getvote…

getteac…

getvote…

getidvot…

getteac…

getteac…

getteac…

getteac…

getteac…

getteac…

getregis…

getdelay…

getabse…

getnote…

getabse…

getjustif…

getdelay…
getabse…

getabse…

setidabs…

setiduser

setacad…

setidad…

setacad…

setidad…

setidcla…

connecti…

connecti…

getpool…

setlogin…

createst…

createst…

prepare…

prepare…

prepare…

prepare…

prepare…

sethold…

settrans…

controlc…

setiddel…

setiduser

setidjust…

setiduser

software project knowledge graph

before

add note

after

Figure 4. An example of the three types of software project knowledge graphs after fusion

1234 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 5. The number of user manuals, Q&A documents, and source codes in the six datasets
Project name User manuals Q&A documents Source codes Relationships
Designpattern-master 0 0 789 1019
GeekQ-Tools-master 0 0 61 117
Memoryoptimization-master 27 0 116 187
Miaosha-master 27 47 1873 5124
Threadandjuc-master 6 12 3113 5049
ZookeeperDesign-master 19 0 164 279

Table 6. The composition of the source code
Project name Package Class Interface Domain Method Class enumerations Domain enumerations
Designpattern-master 180 157 23 79 349 1 0
GeekQ-Tools-master 13 11 2 7 28 0 0
Memoryoptimization-master 19 20 0 28 49 0 0
Miaosha-master 268 228 29 774 1130 27 218
Threadandjuc-master 387 504 15 640 1479 1 0
ZookeeperDesign-master 15 15 1 45 88 0 0

4.3.2 Sampling Method
The experiments in this paper use stratified random

sampling [14], dividing the data into five categories:
packages, classes, interfaces, domains, and methods, and
sampling them respectively. The formula for sample sampling
is as follows:

2

2

(1) .
(1)

P Pn
e P P

Nz

−
=

−
+

 (3)

Where e represents average Accuracy, P represents
sample variation, N represents the total number of samples,

and z represents statistic. The e of the expected average
correct rate in this experiment is between plus and minus
0.05, the survey result is within the 95% confidence range,
the 95% confidence level requires the z statistic to be 1.96,
and the estimated sample variability P is 0.5 [15].

5 Result and Analysis

5.1 RQ1: How Effective is the CAJP in Improving Entity
Extraction?
To assess the performance of the CAJP method for entity

extraction, this study compares it to existing methods and
performs quantitative and qualitative analyses of the three
ways.

……
class Car
{

private String name;
……

}

Car = {Class name=Car, Parent class=Object, ……}

Car = {Class name =Car, ……}

Qdox
Redundancy

CAJP

Figure 5. The class extraction process of CAJP and Qdox

Note content extraction

Annotate original example：

█ Context █ Doclet of name █ Doclet of value

/**
 *
 * Returns the length of this string.
 * Add a new exception class to ClientException.h
 *
 * @param user
 * @param password
 * @return String
*/

Tags list：

 * Returns the length of this string.
 * Add a new exception class to ClientException.h
 * @param user
 * @param password
 * @return String

AnnotationDecomposer Object：

█ Context █ Doclet of name █ Doclet of value
█ Context █ Doclet of name █ Doclet of value

Contexts
Returns the length of this string.

Add a new exception class to
ClientException.h

Doclets

Param User

Password

String

Param

Param

Data preprocessing

Figure 6. The optimization process for annotations in the CAJP method

A Knowledge Graph Construction Method for Software Project Based on CAJP 1235

Table 7. Function extraction comparison of JavaParser, Qdox, and CAJP
Function JavaParser Qdox CAJP
Getting annotations on demand × √ √
Extracting annotation type modifier √ × √
Extracting class attributes correctly √ × √
Extracting the class constructor method √ × √

124

7 19

219

473

15

183

19 14

272

492

12

307

26 33

491

964

27

Designpattern GeekQ Memoryoptimization Miaosha Threadandjuc ZookeeperDesign
0

100

200

300

400

500
N

um
be

r

Datasets

 JavaParser
 Qdox
 CAJP

964

Figure 7. The number of optimizations in entity extraction

The process of class extraction is illustrated in Figure
5. The parent class is not present in the class properties,
resulting in incorrect extraction by Qdox. Figure 6 shows
how CAJP optimizes annotation. The annotations are
divided into Context, Doclet of name, and Doclet of value,
reducing interference caused by redundancy and improving
the Accuracy of annotation extraction. Therefore, as shown
in Table 7, the CAJP method improves the Accuracy of
annotation and class attribute extraction and adds some
functions compared to JavaParser.

As depicted in Figure 7, the number of entities optimized
using the CAJP method is the largest and the most effective,
followed by JavaParser and Qdox. This is because the CAJP
method optimizes the entity extraction by reducing the
annotation redundancy compared to JavaParser and reducing
the annotation redundancy compared and incorrect class
properties compared to Qdox. Thus, CAJP demonstrates
superior optimization in entity extraction compared to the
other methods.

Overall, the results of this experiment indicate that the
CAJP method is an efficient and effective solution for entity
extraction in open-source software projects.

5.2 RQ2: How Does the CAJP Method Impact
Constructing Entity Relationships?
The RQ aims to evaluate the impact of entity relationship

construction when the CAJP has improved the type of
entity extraction. The Accuracy of the entity relationship is
evaluated using JavaParser and Qdox as baselines. The two
experiments are as follows:

(1) Firstly, the entity relationships and their numbers are
constructed using CAJP, JavaParser, and Qdox. Secondly, a

sample of datasets is chosen. Three researchers with expertise
in Java and project experience are tasked with counting the
number of entity relationships in each dataset, which serves
as the “true set.” Finally, the Accuracy is calculated for each
sample dataset.

(2) To evaluate the reliability of the “true set” exacted by
three researchers in (1), the K is used in this experiment as a
statistical indicator of consistency.

As shown in Table 8, Qdox extracted a higher overall
count of entity relationships than CAJP and JavaParser due
to the difference in enumeration type division that affected
the results of the three methods. Table 6 illustrates that the
enumeration types include class enumeration and domain
enumeration, with Qdox extracting class enumeration and
domain enumeration as the domain. At the same time, CAJP
and JavaParser divide enumeration types into different types.
For the true set, this experiment considered class enumeration
as a separate type, leading to a higher count of Qdox than the
other two methods.

As shown in Table 9, the K of all datasets is 1.00.
According to [13], the three researchers in (1) have the
same judgment criteria for whether the entity relationship
extraction is correct. Therefore, the experimental results in
(1) are correct and valid, and the Accuracy of the sampled
results are 1.00 in entity relationship extraction, which is
better than Qdox and has the same performance as JavaParser
for entity relationship extraction.

Overall, the results of this experiment demonstrate that
after CAJP improves the entity extraction, the performance
of the entity relationship extraction does not decrease, thus
ensuring the quality of KG construction. This highlights the
potential of CAJP as a valuable tool in developing KG and
other similar applications.

1236 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 8. The number of extraction entity relationships by using CAJP, JavaParser, and Qdox

JavaParser Qdox CAJP
Project name Overall count Sample size Overall count Sample size Overall count Sample size
Designpattern-master 1019 279 1256 294 1019 279
GeekQ-Tools-master 117 117 111 111 117 117
Memoryoptimization-master 187 187 185 185 187 187
Miaosha-master 5124 357 5472 359 5124 357
Threadandjuc-master 5049 357 5971 361 5049 357
ZookeeperDesign-master 279 279 303 303 279 279

Table 9. Cohen’s kappa and accuracy for entity extraction

JavaParser Qdox CAJP
Project name K Accuracy K Accuracy K Accuracy
Designpattern-master 1.00 1.00 1.00 0.92 1.00 1.00
GeekQ-Tools-master 1.00 1.00 1.00 0.93 1.00 1.00
Memoryoptimization-master 1.00 1.00 1.00 0.90 1.00 1.00
Miaosha-master 1.00 1.00 1.00 0.96 1.00 1.00
Threadandjuc-master 1.00 1.00 1.00 0.93 1.00 1.00
ZookeeperDesign-master 1.00 1.00 1.00 0.95 1.00 1.00

5.3 RQ3: What is the Quality of the KG Constructed
using the Q&A System?
This RQ aims to evaluate the effectiveness of the

software project KG constructed by the CAJP and the Q&A
system designed to visualize it. To achieve this, the RQ
utilizes six datasets (as shown in Table 5) to construct the
software project KG and then invites two researchers with
relevant experimental experience to evaluate its quality.
The researchers are asked to propose and answer sixteen
questions and then judge whether the answers provided by
the Q&A system match their expectations.

Additionally, the experiment employs the K measurement
index to assess the consistency of the two researcher’s
judgments with the answers provided by the Q&A system.
The sixteen questions used in this evaluation are presented in
Table 11. Figure 8 is a diagram of the designed Q&A system.

Table 10 shows that the opinions of the two authors
regarding Q7 are not in agreement. The first author finds
many method nodes called “generate” in the dataset,
including a node with return value types of “C” and
“ValidateCode.” As a result, shown in Table 11, the first
author considers that the Q&A system should give specific
answers like “C” and “ValidateCode” rather than a simple
“yes” or “no.” However, the second author thinks there is a
general method node in the code that returns “ValidateCode,”
and therefore, the answer of the Q&A system is appropriate.

Table 12 shows the K between [0.61-0.8]. According
to [13], the consistency of the two authors in their answers
to sixteen questions is substantial. With an Accuracy of
about 90%, the answer of Accuracy is guaranteed. The KG
construction method performs well in entity and relationship
extraction.

The results demonstrate the effectiveness of CAJP in
constructing high-quality software project KGs that can be
effectively visualized through the designed Q&A system. The
inconsistent judgments of the two authors on Q7 may indicate

room for improvement in the ability of the Q&A system to
provide specific answers. Overall, the results suggest that the
Q&A system is a valuable tool for software developers.

Table 10. The sixteen questions proposed by two researchers
ID Question
1 What questions do lany1721 ask?

2 What package does the CodeController class exist in?

3 Is there a main method in the Optimization Application class?

4 Which class does the domain validateCodeGenerators exist
in?

5 What are the method parameters of the method
getValidateCodeType?

6 Which is the parent class of class ImageCodeProcessor?

7 Which is the return value type of the method
generateValidateCode?

8 How are website visits statistically achieved?

9 In which package is the method findValidateCodeProcessor1
defined?

10 Is the method addCourse defined in the interface
CourseAggregate?

11 How do I start a project with an imported idea?

12 Don’t constants in enumerations need to be final?

13 Is there a getWorkerId method in class IdWorker?

14 What is the type of domain called expireTime?

15 Does the class named MemoryOutOOMController have a
domain named classList?

16 Is there a String type for the method parameter of the method
User?

A Knowledge Graph Construction Method for Software Project Based on CAJP 1237

Figure 8. Open-source software project intelligent Q&A system

Table 11. The results of the two author’s answers to the Q&A
system

Member I Member II
Q1 √ √
Q2 √ √
Q3 √ √
Q4 √ √
Q5 √ √
Q6 √ √
Q7 × √
Q8 √ √
Q9 √ √
Q10 √ √
Q11 √ √
Q12 √ √
Q13 √ √
Q14 × ×
Q15 √ √
Q16 √ √

(The answer of the Q&A system is consistent with the author’s expectations
√, otherwise ×)

Table 12. The Q&A system calculation

K Accuracy
Q&A System 0.6364 0.9063

6 Validity Threats

Some threats may limit the validity of these experiments,
so this section focuses on potential threats and how we can

control or alleviate them. The four validity threats are as
follows:

Conclusion validity: A detailed research design is
designed for this study. Section 4 shows that the research
questions, the choice of quality measures, the dataset
selection, and the sampling method are reasonably designed
to ensure the conclusions are valid.

Construct validity: In this paper, the software project
KG construction method shown is proposed in Figure 1. The
CAJP can effectively support the construction method. In
addition, accuracy metrics and Kappa are used to analyze the
results, which can effectively quantify various situations.

Internal validity: The experimental results show that
the CAJP influences the annotation redundancy and parent
class attribute extraction in the KG construction. The impact
factors need to be selected appropriately.

External validity: The experiment uses six datasets
from GitHub. The datasets are publicly available, commonly
used, and authentic, which reduces the threat of this study
producing different results in different systems or projects.
Therefore, the CAJP has a great opportunity and potential to
be expanded to real software systems and projects.

7 Conclusion and Future Work

To help developers better understand the connections
between different artifacts and mitigate the problem of
redundancy in entity extraction, this paper proposes an
efficient method for KG construction and an entity and
relationship extraction method called CAJP. The method is

1238 Journal of Internet Technology Vol. 24 No. 6, November 2023

applied to six datasets to construct a KG with 4335 entities
and 8267 relationships. The results show that CAJP improves
the quality of entity extraction by reducing redundancy and
ensuring the accuracy of entity relationship extraction. An
intelligent Q&A system is also designed to visualize the KG,
demonstrating the effectiveness of CAJP in constructing
high-quality software project KGs.

The work needs further improvement. The next step is to
expand the data types and improve the automation of the KG
construction process.

Acknowledgment

This work is supported by the National Natural Science
Foundation of China Project (No. 62102291), the Young
Talents Programmer of Scientific Research Program of the
Hubei Education Department (Project No. Q20211711), and
the Opening Foundation of Engineering Research Center of
Hubei Province for Clothing Information (No. 2022HBCI02,
No. 2022HBCI05).

References

[1] K. W. Chen, C. Y. Huang, Automatic Categorization
of Software with Document Clustering Methods
and Voting Mechanism, International Journal of
Performability Engineering, Vol. 18, No. 4, pp. 251-
262, April, 2022.

[2] W. P. Li, J. B. Wang, Z. Q. Lin, J. F. Zhao, Y. Z. Zou, B.
Xie, Software Knowledge Graph Building Method for
Open Source Project, Journal of Frontiers of Computer
Science and Technology, Vol. 11, No. 6, pp. 851-862,
June, 2017.

[3] X. Ke, S. Li, Chinese Organization Name Recognition
based on Co-training Algorithm, 2008 3rd International
Conference on Intelligent System and Knowledge
Engineering, Xiamen, China, 2008, pp. 771-777.

[4] F. H. Shang, Q. Y. Ding, R. S. Du, M. J. Cao, H.
Y. Chen, Construction and Application of the User
Behavior Knowledge Graph in Software Platforms,
Journal of Web Engineering, Vol. 20, No. 2, pp. 387-
412, March, 2021.

[5] S. S. Xing, M. W. Liu, X. Peng, Automatic Code
Semantic Tag Generation Approach based on Software
Knowledge Graph, Journal of Software, Vol. 33, No. 11,
pp. 4027-4045, November, 2022.

[6] Z. Q. Lin, B. Xie, Y. Z. Zou, J. F. Zhao, X. D. Li,
J. Wei, H. L. Sun, G. Yin, Intelligent Development
Environment and Software Knowledge Graph, Journal
of Computer Science and Technology, Vol. 32, No. 2,
pp. 242-249, March, 2017.

[7] Y. Z. Zou, M. Wang, B. Xie, Z. Q. Lin, Software
Knowledge Graph Construction and Q&A Technology
based on Big Data, Big Data Research, Vol. 7, No. 1,
pp. 22-36, January, 2021.

[8] M. Osorio, C. Buil-Aranda, I. Santana-Perez, D. Garijo,
DockerPedia: A Knowledge Graph of Software Images
and Their Metadata, International Journal of Software
Engineering and Knowledge Engineering, Vol. 32, No.

1, pp. 71-89, January, 2022.
[9] B. C. Wang, H. Wang, R. Q. Luo, S. Zhang, Q. Zhu,

A Systematic Mapping Study of Information Retrieval
Approaches Applied to Requirements Trace Recovery,
International Conference on Software Engineering and
Knowledge Engineering, Pittsburgh, Pennsylvania,
USA, 2022, pp. 1-6.

[10] Y. J. Yang, B. Xu, J. W. Hu, M. H. Tong, P. Zhang, L.
Zheng, Accurate and Efficient Method for Constructing
Domain Knowledge Graph, Journal of Software, Vol.
29, No. 10, pp. 2931-2947, October, 2018.

[11] C. Müller, T. Pascher, A. Eriksson, P. Chabera, J. Uhlig,
KiMoPack: A python Package for Kinetic Modeling
of the Chemical Mechanism, The Journal of Physical
Chemistry A, Vol.126, No. 25, pp. 4087-4099, June,
2022.

[12] A. Barreiro, C. Mota, J. Baptista, L. Chacoto, P.
Carvalho, Linguistic resources for paraphrase generation
in portuguese: a lexicon-grammar approach, Language
Resources and Evaluation, Vol. 56, No. 1, pp. 1-35,
March, 2022.

[13] M. Li, C. Zhang, T. F. Yu, Kappa values in testing
the concordance: comments on a recent article about
nasopharyngeal swabs for SARS-CoV-2 detection,
Microbiology Spectrum, Vol. 10, No. 6, Article No.
e0158222, December, 2022.

[14] J. N. K. Rao, W. A. Fuller, Sample Survey Theory and
Methods: Past, Present, and Future Directions, Survey
Methodology, Vol. 43, No. 2, pp. 145-160, December,
2017.

[15] J. A. A. Jothi, A. R. Sulthana, A Review on the
Literature of Fashion Recommender System using
Deep Learning, International Journal of Performability
Engineering, Vol. 17, No. 8, pp. 695-702, August, 2021.

Biographies

Yang Deng was born in Hubei, China. Her
major interests are in the areas of software
engineering, requirements engineering,
machine learning, and natural language
processing.

Bangchao Wang is a Master Supervisor
in the School of Computer Science and
Artificial Intelligence at Wuhan Textile
University, Wuhan, China. He received
the PhD degree in Computer Science
from Wuhan University. His research
interests mainly include but are not limited
to software engineering, requirements

engineering, and knowledge engineering.

A Knowledge Graph Construction Method for Software Project Based on CAJP 1239

Zhongyuan Hua was born in Qianjiang
City, Hubei Province. His main interests
are in the areas of software engineering,
requirements engineering, and knowledge
engineering.

Yong Xiao was born in Xianning City,
Hubei Province. His main interests are
in the area of software requirements
traceability.

Xingfu Li was born in Hubei, China. His
major interests are in the areas of NLP and
Software Engineering.

