
Optimize the Performance of the Neural Network by Using a Mini Dataset Processing Method   1221

*Corresponding Author: Bin Li; E-mail: mountjac@foxmail.com
DOI: 10.53106/160792642023112406005

Optimize the Performance of the Neural Network by 
Using a Mini Dataset Processing Method
Jingliang Chen1, Chenchen Wu1, Shuisheng Chen1, Yi Zhu2, Bin Li3*

1 School of Computer Science, Hubei University of Technology, China
2 School of Transportation & Information, Hubei Communications Technical College, China

3 China Railway Fifth Survey and Design Institute Group Co., Ltd, China
chen@hbut.edu.cn, wuhbut@foxmail.com,

chenshuisheng@hbut.edu.com, zhuyi22250@163.com, mountjac@foxmail.com

Abstract

In the case of traditional methods such as network models 
and algorithms are highly open source and highly bound to 
hardware, data processing has become an important method 
to optimize the performance of neural networks. In this paper, 
we combine traditional data processing methods and propose 
a method based on the mini dataset which is strictly randomly 
divided within the training process; and takes the calculation 
results of the cross-entropy loss function as the measurement 
standard, by comparing the mini dataset, screening, and 
processing to optimize the deep neural network. Using 
this method, each iteration training can obtain a relatively 
optimal result, and the optimization effects of each time are 
integrated to optimize the results of each epoch. Finally, in 
order to verify the effectiveness and applicability of this data 
processing method, experiments are carried out on MNIST, 
HAGRID, and CIFAR-10 datasets to compare the effects of 
using this method and not using this method under different 
hyper-parameters, and finally, the effectiveness of this data 
processing method is verified. Finally, we summarize the 
advantages and limitations of this method and look forward 
to the future improvement direction of this method.

Keywords: Neural networks, Data processing, Mini dataset, 
Cross-entropy loss function

1  Introduction

In simple terms, deep learning is the imitation of neurons 
in the form of a layer to get the data characteristics and store 
features in an artificial neural network, and the difference is 
that the network is a black box [1], just like the human brain. 
Deep learning models are mainly divided into two neural 
networks: CNN and RNN. CNN involves convolutional 
computation and is usually used to process data with grid-
like topology like images. On the other hand, the RNN model 
processes and makes decisions based on the information 
calculated [2].

Generally, we can improve the performance of the 
deep neural network from four aspects. The first: improve 
performance through data. Such as acquiring more data, 
which is the most direct and efficient way. In addition, we 

can scale the existing data: transform, feature selection, 
noise processing, reframe, and so on. The second approach 
is to improve the structure of the model. Such as improving 
performance through nested models that combine multiple 
“good enough” models to achieve excellent predictive 
power, or replacing simple neuron units with complex 
LSTM neurons, for example, using LSTM models to exploit 
the advantages of grammar analysis [3-4]. The third is by 
adjusting the parameters of performance improvement, such 
as the initialization [5] of an improved model, to ensure 
that the early gradient has a large number of sparse, or take 
advantage of the principle of linear algebra [6], to initialize 
the learning rate, the size of batch size, regularization 
coefficient, dropout coefficient. The final method is to choose 
a more robust learning algorithm, such as a way of updating 
the logarithm gradient [7] or dividing the previous gradient 
L2 norm to update all parameters, using a Nonlinear time-
delay system [8], or even choosing a second-order algorithm 
[9] with high computational cost.

However, the neural network will be in the process of 
learning because of various reasons: noise data [10], data 
initialization [11], and other problems, the final training 
results and the predicted results are far from the results, and 
the loss is too significant. Therefore, we need to optimize 
the model constantly. For example, combining automatic 
regression integration [12], and stabilizing fuzzy relations 
[13]. One common way to optimize is to use optimizers, a 
common form of optimizing the optimizer. During most of 
the same training time, the process of training and learning, 
especially small mill are often unable to get a large amount of 
data and also does not have a powerful machine, so we need 
to under the condition of the same data set, further pursue 
the convergence rate, namely under the same time, relatively 
higher precision and lower loss.

So far, the existing data processing [14] techniques related 
to this paper, such as data augmentation, normalization, 
regularization, whitening, etc., are all the integral operations 
performed on the data set before the data is put into the 
training, such as data inversion, [0.1] value range scaling, 
variance normalization, so this paper proposes a new method: 
Limit Comparison Training in Literation (LCT), which is 
rooted in the first method of the above four categories of 
performance improvement methods. On the basis of different 
optimizers, the attention of optimization is focused on the 
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results of each round inside each batch and each time. The 
quality of each result is measured through the loss function, 
and the bad effects are traced to the training process that 
brought the result. The main contributions are as follows:

• This paper proposes a framework for optimizing the 
training performance of deep neural networks.

• In this framework, the LCT method is proposed to 
select the relatively optimal mini data set in each 
epoch.

• The loss is selected as the standard to measure 
the quality of the model, and the loss function is 
determined as the cross-entropy function of multi-
classification.

• The effectiveness of the LCT method for optimizing 
deep neural networks is verified for three different 
datasets.

The remainder of this paper is as follows: In section 2, 
we discuss the related work of this paper. In Section 3, the 
background of the proposed LCT method and the principle 
and framework of the LCT method are described in detail. 
The fourth part describes the experimental verification of the 
LCT method, the experimental process, parameter settings, 
and data results. Finally, in Section V, we discuss and 
summarize the LCT method and give some prospects.

2  Related Work

This work mainly involves three aspects: (1) The role 
of gradient optimizer in neural network training; (2) Cross-
entropy loss function.

2.1 Deep Learning Optimization
1) SGD
SGD is also called mini-batch Gradient Descent [15]. 

Generally, under different systems of current deep learning, 
the random Gradient Descent method is named the mini-
batch Gradient Descent method by failure. Mini-batch 
Gradient Descent means the training dataset is segmented 
with sizes such as 32, 64, 128. At each literation, a part of the 
segmented dataset is selected for the Gradient Descent of the 
model, the update rule is:
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In the current development process of deep learning, 
Hinton [16], Xie [17], and Horvath [18], all verified the 
effectiveness of Mini-batch Gradient Descent in their papers.

2) Adaptive Moment Estimation (Adam)
Chen proposed the Adaptive Moment Estimation 

algorithm for nonstationary temperature problem [19], which 
is a combination of the Moment algorithm and RMSProp 
algorithm [20].
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These are then used to update the parameters, resulting in 
Adam’s update rule:
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In 2017, Richard Socher [21] found that even though 
Adam has gotten better over countless training runs, 
researchers found that after testing on the CIFAR-10 dataset. 
The convergence speed of Adam is faster than that of SGD 
(Mini-batch GD), but the final convergence result is not as 
good as SGD, which also leads to the fact that at present, the 
frequency of neural network models with high requirements 
for absolute accuracy is higher than that of Adam compared 
with SGD.

2.2 Cross-entropy Loss Function
The difference between the predicted value of a machine 

learning model and the actual value for a single sample is 
called the loss. The smaller the loss, the better the model. 

In machine learning, we want the predicted value to be 
infinitely close to the actual value, so we need to minimize 
the difference, and in this process, we need to introduce a loss 
function. In specific projects, some loss functions decrease 
the gradient of the difference calculated by the gradient fast, 
while some decrease slowly. Currently, the commonly used 
loss functions in neural networks include 0-1 loss, Logistics 
loss, Hinge loss [22], exponential loss, and cross-entropy loss 
[23]. 

Cross-entropy loss functions are divided into binary 
cross-entropy loss functions based on sigmoid and multi-
class cross-entropy loss functions based on Softmax. In the 
case of binary classification, there are only two cases that the 
model needs to predict. For each class, the probability of our 
prediction is ρ and 1-ρ. Our function expression is:

1 [ log( ) (1 ) log(1 ).i i i i
i

L y y
N

ρ ρ= − + − −∑              (5)

In this expression, yi is the label, and ρi is the predicted 
value.

In the case of multi-class classification, the function 
expression is:

1 1 log( ).m
i ic ici i C

L L y
N N

ρ= = −∑ ∑ ∑                 (6)

In this expression, M denotes the number of categories,  
yic denotes the label of category C, and ρic is the predicted 
value of category C.

3  Methodology

This section describes the research problem, principle, 
and implementation framework of the LCT method in detail.
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3.1 Problem Model
Take the ANN neural network for solving multi-

classification problems as an example in Figure 1:

pix-1

pix-2

pix-3

cat?

dog?

Black-box

Figure 1. ANN neural network

As we can see from the model graph, we cannot optimize 
the middle part of the training very well. In the blue wire 
frame data processing, input, and so on, the function of 
the black box is actually a portion of the cross. We can see 
that this part of the analysis ignores the incomprehensible 
calculation process, starting with the final results.

3.2 Principle Frame

(x1,y1)
(x2,y2)
(x3,y3)
....

(xn,yn)

(x3,y3)
(xn,yn)
(x9,y9)
....

(x5,y5)

mini 
batch

A
forward

forward

forward

forward

cross-
entropy

cross-
entropy

cross-
entropy

cross-
entropy

loss_A

loss_B

loss_D

loss_C

+

+

+

C=B

random shuffle and group

mini 
batch

B

mini 
batch

C

mini 
batch

D

container

D=C

B=Abatch size

Figure 2. Frame of LCT

As mentioned above in Figure 2, the core idea of the LCT 
method is: we will focus our attention on dataset optimization 
on the training data of each literation, actively focus our 
attention on this “micro-field,” and then add a data processing 
layer to it. The main work of this data processing layer is to 
train the data of each literation during the training process. 
The MINI dataset with relatively minor noise is selected, and 
finally, the selected data is used to retrain and learn.

From the perspective of the internal training process, it 
is not only feasible, but also does not conflict with previous 
data processing techniques. Theoretically, it can be applied to 
any dataset with different optimization algorithms.

To reach this end, we solve the following two problems: 
1. How to conduct data processing and select the relatively 
optimal MINI data set; 2. How to train and learn after the 
MINI data is processed.

1. How to conduct data processing and select the 
relatively optimal MINI data set:

The main difficulty lies in getting rid of the process 
constraints of the framework and finding the MINI dataset 
and the calculation result of the cross-entropy function 
originally encapsulated in each literation training process 
inside the package.

The above model diagram shows that the LCT method’s 
main functional modules are divided into two parts: the 

random shuffling grouping module and the MINI dataset 
processing module.

In the random shuffling grouping module, we add random 
seeds in the processing part of the macro data set and then 
shuffle our dataset. Informally, an epoch is a process of 
training all training examples through the model once. The 
primary purpose of setting epochs is to divide the whole 
training process of the model into several segments so that 
we can better observe and adjust the model training.

When the number of samples (i.e., all training samples) 
for an epoch may be too large (for a computer), we need to 
split it into smaller chunks, i.e., batches, for training. Each 
round of network parameter optimization needs to use a 
batch. Compared with a single sample, a batch of data can 
better simulate the distribution of the data set. The larger 
the batch is, the better the simulation of the input data 
distribution, which is reflected in the network training. It can 
make the direction of network training “more correct”.

.seed epoch=                                      (7)

    .
 

training dataset sizenum of batches
batch size

=                (8)

The MINI dataset processing module is the core module 
of our LCT method. In this module, we first input the MINI 
data set into the network and select the cross-entropy loss 
function to calculate the loss corresponding to each literation. 
Record the obtained loss with weight parameters and other 
hyper-parameters. Secondly, the loss value obtained from 
MINI dataset A is compared with the loss value obtained 
from Mini dataset B. When the loss value obtained from 
MINI dataset A is greater than the loss obtained from MINI 
dataset B, this means that MINI dataset B is better than 
MINI dataset A. Replace the contents of MINI dataset A 
with the contents of MINI dataset B. Finally, this operation 
is repeated until the end of the epoch of this round, when all 
literation MINI datasets of this round have been processed 
and transformed. The formula is as follows:

{
? : }.

pre

pre

minibatch l

l minibatch minibatch

= <
                         (9)

Limit comparison training
Require: Global learning rate r, momentum coefficient α
Require: The exponential decay rates of moment estimation, ρ1, ρ2, 
Require: Mini batch size and epoch size. The mini-batch size is 
usually 32, 64, 128, ... , default values: 64, 10000
Initialize the weight parameters and optimizer
Initialize time step t = 0
If not, proceed to the next step
Step 1: Take samples from mini training set (x1, x2, x3, x4…, xn) 
and the corresponding tags (y1, y2, y3, y4…, yn), 
Step 2: forward propagation and obtain correct loss and accuracy of 
this time, 
Step 3: Compare the loss of this time with the pre-loss of last time.
Step 4: If the current loss is not decreased compared with the 
previous loss, replace the current data set with the previous data set 
and jump to step 2: batch pre-batch
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Step 5: Record the current loss and accuracy and store them in the 
array
The end

2. How to instruct and master after the procedure:
Returning to the data information pace of the neural 

network, the procedure MINI data is re-input into the 
network, and the previous record nodules are called on at the 
same time. All the weight and hyper-parameters such as W, 
B, L, Grads, etc. are restored to the pre-training state. Then, 
the current network is re-trained.

4  Experiments

4.1 Dataset 
This paper uses three open source datasets, which are the 

MNIST dataset, HaGRID dataset and CIFAR-10 dataset.
1) MNIST Dataset
The MNIST dataset was initiated by NIST. In 1998, Yan 

LeCun used the MNIST dataset, as shown in Figure 3, which 
has 60,000 images and labels in the training set and 10,000 in 
the test set.

Figure 3. MNIST

2) CIFAR-10 Dataset
CIFAR-10 is a small dataset for identifying pervasive 

objects curated by Hinton’s students Alex Krizhevsky and 
Ilya Sutskever as shown in Figure 4. There are 50,000 
training images and 10,000 test images. Compared with the 
above two datasets, CIFAR-10 contains natural objects in the 
real world, which are not only noisy but also have different 
proportions and features, leading to great difficulties in 
recognition.

Figure 4. CIFAR-10

3) HaGRID Dataset
The hand Gesture Recognition Image Dataset (HaGRID) 

dataset size is 716GB and contains 552,992 Full HD (1920 
× 1080) RGB images, divided into 18 categories of gestures. 
The data is split into 92% training set and 8% test set, where 
509,323 images are used for training and 43,669 images for 
testing.

4.2 Performance Comparison
1) LCT + MNIST Dataset
Batch size1=32, batch size2=64, batch size3=100, 

learning rate: η =7 * 10−4 as shown in Figure 5 to Figure 10.

  

  Figure 5. Loss of SGD (size=32)   Figure 6. Loss of SGD (size=32)

  

Figure 7. Loss of SGD (size=64)   Figure 8. Loss of Adam (size=64)

 

Figure 9. Loss of SGD (size=100)  Figure 10. Loss of Adam(size=100)

2) LCT + CIFAR-10 Dataset
Batch size1=32, batch size2=64, batch size3=100, 

learning rate: η=7 * 10−4 as shown in Figure 11 to Figure 16.

  
Figure 11. Loss of SGD (size=32)     Figure 12. Loss of SGD (size=32)
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 Figure 13. Loss of SGD (size=64)    Figure 14. Loss of Adam (size=64)

  

Figure 15. Loss of SGD (size=100)  Figure 16. Loss of Adam (size=100)

3) LCT + HaGRID Dataset
The HaGRID dataset has more samples and richer classes 

than other datasets. In this section, the deep learning model is 
finally trained and validated using the HaGRID dataset, while 
using more training batches and strictly controlling variables. 
In this case, the feasibility of the LCT method in HaGRID is 
verified, and the credibility of relevant experiments is finally 
verified.

Figure 17. Loss of SGD (size=32)

Figure 18. Loss of Adam (size=32)

Figure 19. Loss of SGD (size=100)

Figure 20. Loss of Adam (size=100)

Under two different optimization algorithms, the SGD 
optimization algorithm and the Adam optimization algorithm, 
it can be found that the training effect of the neural network 
model under the HaGRID dataset is common as shown in 
Figure 17. The results of using only the normalization method 
and using the LCT method from the beginning are basically 
the same. At the same time, when the batch size=32, it can 
be found that the data fluctuation of the model using the LCT 
method in the training process is much smaller than that 
of the model using normalization only as shown in Figure 
18. When the batch size=100, the data fluctuations of both 
are basically the same. This speed is lower than the Adam 
optimizer model as shown in Figure 19 and Figure 20.

4.3 Experimental Results
After the completion of the experiment, we counted 

the loss results of all comparative tests and calculated the 
prediction accuracy of the model. The precision is calculated 
as follows:

{ ?1: 0}
.

n i i
i

y
accuracy

n
ρ=

= ∑                        (10)

1) Performance of MNIST
Firstly, the MNIST dataset was used for the experiment, 

and the test was carried out under the learning rate of 0.0007. 
At the same time, the batch sizes of 32, 64, and 100 training 
corresponded, and the epoch was fixed 10 times. After 
the training, the final results were compared through the 
graphical structure as shown in Table 1 to Table 3.

Table 1. The effect of batch size = 32
SGD SGD (LCT) Adam Adam (LCT)

Loss 13.65 3.71 4.52 0. 79
Accuracy 73.28% 84.29% 87.70% 95.90%

Loss optimization effect:
SGD: 9.94——72.82% Adam: 3.73——82.52%

Accuracy optimization effect:
SGD: 11.01% Adam: 8.2%

Table 2. The effect of batch size = 64
SGD SGD (LCT) Adam Adam (LCT)

Loss 10.13 5.92 2.51 0. 30
Accuracy 68.51% 74.88% 90.1% 93%

Loss optimization effect:
SGD: 4.21——41.56% Adam: 2.21——88.05%

Accuracy optimization effect:
SGD: 6.37% Adam: 2.9%
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Table 3. The effect of batch size = 100
SGD SGD (LCT) Adam Adam (LCT)

Loss 4.49 2.48 1.75 0. 66
Accuracy 76.06% 82.49% 92.93% 97.79%

Loss optimization effect:
SGD: 2.01——47.77% Adam: 1.09——62.28%

Accuracy optimization effect:
SGD: 6.43% Adam: 4.86%

2) Performance of CIFAR-10
Second, CIFAR-10 was used for experiments, and the 

learning rates of 0.001 and 0.0007 were tested. At the same 
time, it corresponded to different batch sizes of 32, 64, and 
100, and the epoch was fixed 20 times as shown in Table 4 to 
Table 6. 

Table 4. The effect of batch size = 32
SGD SGD (LCT) Adam Adam (LCT)

Loss 5.43 0.89 4.46 0. 32
Accuracy 36.75% 58.49% 45.56% 71.46%

Loss optimization effect:
SGD: 4.54——83.61% Adam: 4.14——92.83%

Accuracy optimization effect:
SGD: 21.74% Adam: 25.9%

Table 5. The effect of batch size = 64
SGD SGD (LCT) Adam Adam (LCT)

Loss 2.87 1.67 2.17 0. 17
Accuracy 34.4% 56.7% 47.52% 62.28%

Loss optimization effect:
SGD: 1.2——41.81% Adam: 2——92.17%

Accuracy optimization effect:
SGD: 22.3% Adam: 14.76%

Table 6. The effect of batch size = 100
SGD SGD (LCT) Adam Adam (LCT)

Loss 1.84 1.34 1.53 0. 29
Accuracy 34.03% 44.18% 43.44% 50.98%

Loss optimization effect: 
SGD: 0.5——27.17% Adam: 1.24——81.05%

Accuracy optimization effect: 
SGD: 10.15% Adam: 7.54%

3) Performance of HaGRID
Finally, the experiment was carried out using a gesture 

dataset (HaGRID), and the test was carried out at a learning 
rate of 0.0007 and 0.001. At the same time, it corresponded 
to two different batch sizes of 32 and 100, and the epoch was 
fixed 20,000 times as shown in Table 7 and Table 8.

Table 7. The effect of batch size = 32
SGD SGD (LCT) Adam Adam (LCT)

Loss 1.53 0.73 1.51 0.31
Accuracy 86.67% 91.67% 94% 96.67%

Loss optimization effect:
SGD: 0. 8——52.28% Adam: 1.2——79.47%

Accuracy optimization effect:
SGD: 5% Adam: 2.67%

Table 8. The effect of batch size = 100
SGD SGD (LCT) Adam Adam (LCT)

Loss 1.83 1.56 0.75 0.56
Accuracy 83.56% 86.73% 92.1% 94.33%

Loss optimization effect:
SGD: 0.27——14.75% Adam: 0.19——25.33%

Accuracy optimization effect:
SGD: 3.17% Adam: 2.23%

5  Discussion and Conclusion

From the above training images and validation charts, we 
will summarize all the results of using LCT in Table 9 and 
Table 10:

Table 9. The loss of LCT
MNIST% CIFAR-10% HaGRID%

SGD (32) 72.85 83.61 52.28
SGD (64) 41.56 41.81 14.75
SGD (100) 47.77 27.17
Adam (32) 82.52 92.83 79.47
Adam (64) 88.05 92.17 25.33
Adam (100) 62.28 81.05

Table 10. The accuracy of LCT
MNIST% CIFAR-10% HaGRID%

SGD (32) 11.01 21.74 5
SGD (64) 6.37 22.3 3.17
SGD (100) 6.43 10.45
Adam (32) 8.2 25.9 2.67
Adam (64) 2.9 14.76 2.23
Adam (100) 4.86 7.54

As can be seen in Table 9 and Table 10, no matter 
what kind of dataset is used or what optimizer is selected, 
the neural network model using the LCT method has a 
positive improvement compared with the model using only 
data normalization operation. Simarly, the comprehensive 
convergence efficiency of LCT method is always higher. 
From the final data, the average optimization effect of loss 
in the MNIST data set is 65.85%, the average optimization 
effect of loss in the CIFAR-10 data set is 69.78%, and the 
average optimization effect of loss in the HaGRID data set is 
42.96%. The average improvement for accuracy is MNIST: 
6.63%; CIFAR- 10:17.12%; HaGRID: 3.27%. At the same 
time, it is also demonstrated that this method does not rely 
on some rare qualification conditions. As long as the model 
has the universal structure of epoch, batch, and literation, this 
method can be used and has universal applicability.

However, the LCT method also has some limitations. 
Firstly, the LCT method relies heavily on the calculation 
result of the loss function as the measurement standard for 
the core operation, so the limitations of the loss function 
become the limitations of the LCT method. Secondly, when 
the LCT method obtained the relatively highest quality mini 
dataset, although the quality of the training data in each 
epoch was improved, part of the sample characteristics were 
also reduced. Finally, the LCT method belongs to the data 
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processing method inside the training process. The more 
original dataset samples there are, the longer the additional 
data processing time inside the training will be, and the more 
the total time cost will increase.

In future work, we will actively map out an optimal MINI 
dataset based on literation and combine it with the hybridised 
loss function to obtain more accurate loss and achieve better 
results.
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