
Optimize the Performance of the Neural Network by Using a Mini Dataset Processing Method 1221

*Corresponding Author: Bin Li; E-mail: mountjac@foxmail.com
DOI: 10.53106/160792642023112406005

Optimize the Performance of the Neural Network by
Using a Mini Dataset Processing Method
Jingliang Chen1, Chenchen Wu1, Shuisheng Chen1, Yi Zhu2, Bin Li3*

1 School of Computer Science, Hubei University of Technology, China
2 School of Transportation & Information, Hubei Communications Technical College, China

3 China Railway Fifth Survey and Design Institute Group Co., Ltd, China
chen@hbut.edu.cn, wuhbut@foxmail.com,

chenshuisheng@hbut.edu.com, zhuyi22250@163.com, mountjac@foxmail.com

Abstract

In the case of traditional methods such as network models
and algorithms are highly open source and highly bound to
hardware, data processing has become an important method
to optimize the performance of neural networks. In this paper,
we combine traditional data processing methods and propose
a method based on the mini dataset which is strictly randomly
divided within the training process; and takes the calculation
results of the cross-entropy loss function as the measurement
standard, by comparing the mini dataset, screening, and
processing to optimize the deep neural network. Using
this method, each iteration training can obtain a relatively
optimal result, and the optimization effects of each time are
integrated to optimize the results of each epoch. Finally, in
order to verify the effectiveness and applicability of this data
processing method, experiments are carried out on MNIST,
HAGRID, and CIFAR-10 datasets to compare the effects of
using this method and not using this method under different
hyper-parameters, and finally, the effectiveness of this data
processing method is verified. Finally, we summarize the
advantages and limitations of this method and look forward
to the future improvement direction of this method.

Keywords: Neural networks, Data processing, Mini dataset,
Cross-entropy loss function

1 Introduction

In simple terms, deep learning is the imitation of neurons
in the form of a layer to get the data characteristics and store
features in an artificial neural network, and the difference is
that the network is a black box [1], just like the human brain.
Deep learning models are mainly divided into two neural
networks: CNN and RNN. CNN involves convolutional
computation and is usually used to process data with grid-
like topology like images. On the other hand, the RNN model
processes and makes decisions based on the information
calculated [2].

Generally, we can improve the performance of the
deep neural network from four aspects. The first: improve
performance through data. Such as acquiring more data,
which is the most direct and efficient way. In addition, we

can scale the existing data: transform, feature selection,
noise processing, reframe, and so on. The second approach
is to improve the structure of the model. Such as improving
performance through nested models that combine multiple
“good enough” models to achieve excellent predictive
power, or replacing simple neuron units with complex
LSTM neurons, for example, using LSTM models to exploit
the advantages of grammar analysis [3-4]. The third is by
adjusting the parameters of performance improvement, such
as the initialization [5] of an improved model, to ensure
that the early gradient has a large number of sparse, or take
advantage of the principle of linear algebra [6], to initialize
the learning rate, the size of batch size, regularization
coefficient, dropout coefficient. The final method is to choose
a more robust learning algorithm, such as a way of updating
the logarithm gradient [7] or dividing the previous gradient
L2 norm to update all parameters, using a Nonlinear time-
delay system [8], or even choosing a second-order algorithm
[9] with high computational cost.

However, the neural network will be in the process of
learning because of various reasons: noise data [10], data
initialization [11], and other problems, the final training
results and the predicted results are far from the results, and
the loss is too significant. Therefore, we need to optimize
the model constantly. For example, combining automatic
regression integration [12], and stabilizing fuzzy relations
[13]. One common way to optimize is to use optimizers, a
common form of optimizing the optimizer. During most of
the same training time, the process of training and learning,
especially small mill are often unable to get a large amount of
data and also does not have a powerful machine, so we need
to under the condition of the same data set, further pursue
the convergence rate, namely under the same time, relatively
higher precision and lower loss.

So far, the existing data processing [14] techniques related
to this paper, such as data augmentation, normalization,
regularization, whitening, etc., are all the integral operations
performed on the data set before the data is put into the
training, such as data inversion, [0.1] value range scaling,
variance normalization, so this paper proposes a new method:
Limit Comparison Training in Literation (LCT), which is
rooted in the first method of the above four categories of
performance improvement methods. On the basis of different
optimizers, the attention of optimization is focused on the

1222 Journal of Internet Technology Vol. 24 No. 6, November 2023

results of each round inside each batch and each time. The
quality of each result is measured through the loss function,
and the bad effects are traced to the training process that
brought the result. The main contributions are as follows:

• This paper proposes a framework for optimizing the
training performance of deep neural networks.

• In this framework, the LCT method is proposed to
select the relatively optimal mini data set in each
epoch.

• The loss is selected as the standard to measure
the quality of the model, and the loss function is
determined as the cross-entropy function of multi-
classification.

• The effectiveness of the LCT method for optimizing
deep neural networks is verified for three different
datasets.

The remainder of this paper is as follows: In section 2,
we discuss the related work of this paper. In Section 3, the
background of the proposed LCT method and the principle
and framework of the LCT method are described in detail.
The fourth part describes the experimental verification of the
LCT method, the experimental process, parameter settings,
and data results. Finally, in Section V, we discuss and
summarize the LCT method and give some prospects.

2 Related Work

This work mainly involves three aspects: (1) The role
of gradient optimizer in neural network training; (2) Cross-
entropy loss function.

2.1 Deep Learning Optimization
1) SGD
SGD is also called mini-batch Gradient Descent [15].

Generally, under different systems of current deep learning,
the random Gradient Descent method is named the mini-
batch Gradient Descent method by failure. Mini-batch
Gradient Descent means the training dataset is segmented
with sizes such as 32, 64, 128. At each literation, a part of the
segmented dataset is selected for the Gradient Descent of the
model, the update rule is:

1
.(())t x

i i j j jij t
y h x xθ θ α + −

=
= − −∑ (1)

In the current development process of deep learning,
Hinton [16], Xie [17], and Horvath [18], all verified the
effectiveness of Mini-batch Gradient Descent in their papers.

2) Adaptive Moment Estimation (Adam)
Chen proposed the Adaptive Moment Estimation

algorithm for nonstationary temperature problem [19], which
is a combination of the Moment algorithm and RMSProp
algorithm [20].

1

ˆ .
1

t
t t

m
m

β
=

−
 (2)

2

ˆ .
1

t
t t

v
v

β
=

−
 (3)

These are then used to update the parameters, resulting in
Adam’s update rule:

+1 ˆ .
ˆt t t

t

m
v
ηθ

ε
θ= −

+
 (4)

In 2017, Richard Socher [21] found that even though
Adam has gotten better over countless training runs,
researchers found that after testing on the CIFAR-10 dataset.
The convergence speed of Adam is faster than that of SGD
(Mini-batch GD), but the final convergence result is not as
good as SGD, which also leads to the fact that at present, the
frequency of neural network models with high requirements
for absolute accuracy is higher than that of Adam compared
with SGD.

2.2 Cross-entropy Loss Function
The difference between the predicted value of a machine

learning model and the actual value for a single sample is
called the loss. The smaller the loss, the better the model.

In machine learning, we want the predicted value to be
infinitely close to the actual value, so we need to minimize
the difference, and in this process, we need to introduce a loss
function. In specific projects, some loss functions decrease
the gradient of the difference calculated by the gradient fast,
while some decrease slowly. Currently, the commonly used
loss functions in neural networks include 0-1 loss, Logistics
loss, Hinge loss [22], exponential loss, and cross-entropy loss
[23].

Cross-entropy loss functions are divided into binary
cross-entropy loss functions based on sigmoid and multi-
class cross-entropy loss functions based on Softmax. In the
case of binary classification, there are only two cases that the
model needs to predict. For each class, the probability of our
prediction is ρ and 1-ρ. Our function expression is:

1 [log() (1) log(1).i i i i
i

L y y
N

ρ ρ= − + − −∑ (5)

In this expression, yi is the label, and ρi is the predicted
value.

In the case of multi-class classification, the function
expression is:

1 1 log().m
i ic ici i C

L L y
N N

ρ= = −∑ ∑ ∑ (6)

In this expression, M denotes the number of categories,
yic denotes the label of category C, and ρic is the predicted
value of category C.

3 Methodology

This section describes the research problem, principle,
and implementation framework of the LCT method in detail.

Optimize the Performance of the Neural Network by Using a Mini Dataset Processing Method 1223

3.1 Problem Model
Take the ANN neural network for solving multi-

classification problems as an example in Figure 1:

pix-1

pix-2

pix-3

cat?

dog?

Black-box

Figure 1. ANN neural network

As we can see from the model graph, we cannot optimize
the middle part of the training very well. In the blue wire
frame data processing, input, and so on, the function of
the black box is actually a portion of the cross. We can see
that this part of the analysis ignores the incomprehensible
calculation process, starting with the final results.

3.2 Principle Frame

(x1,y1)
(x2,y2)
(x3,y3)
....

(xn,yn)

(x3,y3)
(xn,yn)
(x9,y9)
....

(x5,y5)

mini
batch

A
forward

forward

forward

forward

cross-
entropy

cross-
entropy

cross-
entropy

cross-
entropy

loss_A

loss_B

loss_D

loss_C

+

+

+

C=B

random shuffle and group

mini
batch

B

mini
batch

C

mini
batch

D

container

D=C

B=Abatch size

Figure 2. Frame of LCT

As mentioned above in Figure 2, the core idea of the LCT
method is: we will focus our attention on dataset optimization
on the training data of each literation, actively focus our
attention on this “micro-field,” and then add a data processing
layer to it. The main work of this data processing layer is to
train the data of each literation during the training process.
The MINI dataset with relatively minor noise is selected, and
finally, the selected data is used to retrain and learn.

From the perspective of the internal training process, it
is not only feasible, but also does not conflict with previous
data processing techniques. Theoretically, it can be applied to
any dataset with different optimization algorithms.

To reach this end, we solve the following two problems:
1. How to conduct data processing and select the relatively
optimal MINI data set; 2. How to train and learn after the
MINI data is processed.

1. How to conduct data processing and select the
relatively optimal MINI data set:

The main difficulty lies in getting rid of the process
constraints of the framework and finding the MINI dataset
and the calculation result of the cross-entropy function
originally encapsulated in each literation training process
inside the package.

The above model diagram shows that the LCT method’s
main functional modules are divided into two parts: the

random shuffling grouping module and the MINI dataset
processing module.

In the random shuffling grouping module, we add random
seeds in the processing part of the macro data set and then
shuffle our dataset. Informally, an epoch is a process of
training all training examples through the model once. The
primary purpose of setting epochs is to divide the whole
training process of the model into several segments so that
we can better observe and adjust the model training.

When the number of samples (i.e., all training samples)
for an epoch may be too large (for a computer), we need to
split it into smaller chunks, i.e., batches, for training. Each
round of network parameter optimization needs to use a
batch. Compared with a single sample, a batch of data can
better simulate the distribution of the data set. The larger
the batch is, the better the simulation of the input data
distribution, which is reflected in the network training. It can
make the direction of network training “more correct”.

.seed epoch= (7)

 .

training dataset sizenum of batches
batch size

= (8)

The MINI dataset processing module is the core module
of our LCT method. In this module, we first input the MINI
data set into the network and select the cross-entropy loss
function to calculate the loss corresponding to each literation.
Record the obtained loss with weight parameters and other
hyper-parameters. Secondly, the loss value obtained from
MINI dataset A is compared with the loss value obtained
from Mini dataset B. When the loss value obtained from
MINI dataset A is greater than the loss obtained from MINI
dataset B, this means that MINI dataset B is better than
MINI dataset A. Replace the contents of MINI dataset A
with the contents of MINI dataset B. Finally, this operation
is repeated until the end of the epoch of this round, when all
literation MINI datasets of this round have been processed
and transformed. The formula is as follows:

{
? : }.

pre

pre

minibatch l

l minibatch minibatch

= <
 (9)

Limit comparison training
Require: Global learning rate r, momentum coefficient α
Require: The exponential decay rates of moment estimation, ρ1, ρ2,
Require: Mini batch size and epoch size. The mini-batch size is
usually 32, 64, 128, ... , default values: 64, 10000
Initialize the weight parameters and optimizer
Initialize time step t = 0
If not, proceed to the next step
Step 1: Take samples from mini training set (x1, x2, x3, x4…, xn)
and the corresponding tags (y1, y2, y3, y4…, yn),
Step 2: forward propagation and obtain correct loss and accuracy of
this time,
Step 3: Compare the loss of this time with the pre-loss of last time.
Step 4: If the current loss is not decreased compared with the
previous loss, replace the current data set with the previous data set
and jump to step 2: batch pre-batch

1224 Journal of Internet Technology Vol. 24 No. 6, November 2023

Step 5: Record the current loss and accuracy and store them in the
array
The end

2. How to instruct and master after the procedure:
Returning to the data information pace of the neural

network, the procedure MINI data is re-input into the
network, and the previous record nodules are called on at the
same time. All the weight and hyper-parameters such as W,
B, L, Grads, etc. are restored to the pre-training state. Then,
the current network is re-trained.

4 Experiments

4.1 Dataset
This paper uses three open source datasets, which are the

MNIST dataset, HaGRID dataset and CIFAR-10 dataset.
1) MNIST Dataset
The MNIST dataset was initiated by NIST. In 1998, Yan

LeCun used the MNIST dataset, as shown in Figure 3, which
has 60,000 images and labels in the training set and 10,000 in
the test set.

Figure 3. MNIST

2) CIFAR-10 Dataset
CIFAR-10 is a small dataset for identifying pervasive

objects curated by Hinton’s students Alex Krizhevsky and
Ilya Sutskever as shown in Figure 4. There are 50,000
training images and 10,000 test images. Compared with the
above two datasets, CIFAR-10 contains natural objects in the
real world, which are not only noisy but also have different
proportions and features, leading to great difficulties in
recognition.

Figure 4. CIFAR-10

3) HaGRID Dataset
The hand Gesture Recognition Image Dataset (HaGRID)

dataset size is 716GB and contains 552,992 Full HD (1920
× 1080) RGB images, divided into 18 categories of gestures.
The data is split into 92% training set and 8% test set, where
509,323 images are used for training and 43,669 images for
testing.

4.2 Performance Comparison
1) LCT + MNIST Dataset
Batch size1=32, batch size2=64, batch size3=100,

learning rate: η =7 * 10−4 as shown in Figure 5 to Figure 10.

 Figure 5. Loss of SGD (size=32) Figure 6. Loss of SGD (size=32)

Figure 7. Loss of SGD (size=64) Figure 8. Loss of Adam (size=64)

Figure 9. Loss of SGD (size=100) Figure 10. Loss of Adam(size=100)

2) LCT + CIFAR-10 Dataset
Batch size1=32, batch size2=64, batch size3=100,

learning rate: η=7 * 10−4 as shown in Figure 11 to Figure 16.

Figure 11. Loss of SGD (size=32) Figure 12. Loss of SGD (size=32)

Optimize the Performance of the Neural Network by Using a Mini Dataset Processing Method 1225

 Figure 13. Loss of SGD (size=64) Figure 14. Loss of Adam (size=64)

Figure 15. Loss of SGD (size=100) Figure 16. Loss of Adam (size=100)

3) LCT + HaGRID Dataset
The HaGRID dataset has more samples and richer classes

than other datasets. In this section, the deep learning model is
finally trained and validated using the HaGRID dataset, while
using more training batches and strictly controlling variables.
In this case, the feasibility of the LCT method in HaGRID is
verified, and the credibility of relevant experiments is finally
verified.

Figure 17. Loss of SGD (size=32)

Figure 18. Loss of Adam (size=32)

Figure 19. Loss of SGD (size=100)

Figure 20. Loss of Adam (size=100)

Under two different optimization algorithms, the SGD
optimization algorithm and the Adam optimization algorithm,
it can be found that the training effect of the neural network
model under the HaGRID dataset is common as shown in
Figure 17. The results of using only the normalization method
and using the LCT method from the beginning are basically
the same. At the same time, when the batch size=32, it can
be found that the data fluctuation of the model using the LCT
method in the training process is much smaller than that
of the model using normalization only as shown in Figure
18. When the batch size=100, the data fluctuations of both
are basically the same. This speed is lower than the Adam
optimizer model as shown in Figure 19 and Figure 20.

4.3 Experimental Results
After the completion of the experiment, we counted

the loss results of all comparative tests and calculated the
prediction accuracy of the model. The precision is calculated
as follows:

{ ?1: 0}
.

n i i
i

y
accuracy

n
ρ=

= ∑ (10)

1) Performance of MNIST
Firstly, the MNIST dataset was used for the experiment,

and the test was carried out under the learning rate of 0.0007.
At the same time, the batch sizes of 32, 64, and 100 training
corresponded, and the epoch was fixed 10 times. After
the training, the final results were compared through the
graphical structure as shown in Table 1 to Table 3.

Table 1. The effect of batch size = 32
SGD SGD (LCT) Adam Adam (LCT)

Loss 13.65 3.71 4.52 0. 79
Accuracy 73.28% 84.29% 87.70% 95.90%

Loss optimization effect:
SGD: 9.94——72.82% Adam: 3.73——82.52%

Accuracy optimization effect:
SGD: 11.01% Adam: 8.2%

Table 2. The effect of batch size = 64
SGD SGD (LCT) Adam Adam (LCT)

Loss 10.13 5.92 2.51 0. 30
Accuracy 68.51% 74.88% 90.1% 93%

Loss optimization effect:
SGD: 4.21——41.56% Adam: 2.21——88.05%

Accuracy optimization effect:
SGD: 6.37% Adam: 2.9%

1226 Journal of Internet Technology Vol. 24 No. 6, November 2023

Table 3. The effect of batch size = 100
SGD SGD (LCT) Adam Adam (LCT)

Loss 4.49 2.48 1.75 0. 66
Accuracy 76.06% 82.49% 92.93% 97.79%

Loss optimization effect:
SGD: 2.01——47.77% Adam: 1.09——62.28%

Accuracy optimization effect:
SGD: 6.43% Adam: 4.86%

2) Performance of CIFAR-10
Second, CIFAR-10 was used for experiments, and the

learning rates of 0.001 and 0.0007 were tested. At the same
time, it corresponded to different batch sizes of 32, 64, and
100, and the epoch was fixed 20 times as shown in Table 4 to
Table 6.

Table 4. The effect of batch size = 32
SGD SGD (LCT) Adam Adam (LCT)

Loss 5.43 0.89 4.46 0. 32
Accuracy 36.75% 58.49% 45.56% 71.46%

Loss optimization effect:
SGD: 4.54——83.61% Adam: 4.14——92.83%

Accuracy optimization effect:
SGD: 21.74% Adam: 25.9%

Table 5. The effect of batch size = 64
SGD SGD (LCT) Adam Adam (LCT)

Loss 2.87 1.67 2.17 0. 17
Accuracy 34.4% 56.7% 47.52% 62.28%

Loss optimization effect:
SGD: 1.2——41.81% Adam: 2——92.17%

Accuracy optimization effect:
SGD: 22.3% Adam: 14.76%

Table 6. The effect of batch size = 100
SGD SGD (LCT) Adam Adam (LCT)

Loss 1.84 1.34 1.53 0. 29
Accuracy 34.03% 44.18% 43.44% 50.98%

Loss optimization effect:
SGD: 0.5——27.17% Adam: 1.24——81.05%

Accuracy optimization effect:
SGD: 10.15% Adam: 7.54%

3) Performance of HaGRID
Finally, the experiment was carried out using a gesture

dataset (HaGRID), and the test was carried out at a learning
rate of 0.0007 and 0.001. At the same time, it corresponded
to two different batch sizes of 32 and 100, and the epoch was
fixed 20,000 times as shown in Table 7 and Table 8.

Table 7. The effect of batch size = 32
SGD SGD (LCT) Adam Adam (LCT)

Loss 1.53 0.73 1.51 0.31
Accuracy 86.67% 91.67% 94% 96.67%

Loss optimization effect:
SGD: 0. 8——52.28% Adam: 1.2——79.47%

Accuracy optimization effect:
SGD: 5% Adam: 2.67%

Table 8. The effect of batch size = 100
SGD SGD (LCT) Adam Adam (LCT)

Loss 1.83 1.56 0.75 0.56
Accuracy 83.56% 86.73% 92.1% 94.33%

Loss optimization effect:
SGD: 0.27——14.75% Adam: 0.19——25.33%

Accuracy optimization effect:
SGD: 3.17% Adam: 2.23%

5 Discussion and Conclusion

From the above training images and validation charts, we
will summarize all the results of using LCT in Table 9 and
Table 10:

Table 9. The loss of LCT
MNIST% CIFAR-10% HaGRID%

SGD (32) 72.85 83.61 52.28
SGD (64) 41.56 41.81 14.75
SGD (100) 47.77 27.17
Adam (32) 82.52 92.83 79.47
Adam (64) 88.05 92.17 25.33
Adam (100) 62.28 81.05

Table 10. The accuracy of LCT
MNIST% CIFAR-10% HaGRID%

SGD (32) 11.01 21.74 5
SGD (64) 6.37 22.3 3.17
SGD (100) 6.43 10.45
Adam (32) 8.2 25.9 2.67
Adam (64) 2.9 14.76 2.23
Adam (100) 4.86 7.54

As can be seen in Table 9 and Table 10, no matter
what kind of dataset is used or what optimizer is selected,
the neural network model using the LCT method has a
positive improvement compared with the model using only
data normalization operation. Simarly, the comprehensive
convergence efficiency of LCT method is always higher.
From the final data, the average optimization effect of loss
in the MNIST data set is 65.85%, the average optimization
effect of loss in the CIFAR-10 data set is 69.78%, and the
average optimization effect of loss in the HaGRID data set is
42.96%. The average improvement for accuracy is MNIST:
6.63%; CIFAR- 10:17.12%; HaGRID: 3.27%. At the same
time, it is also demonstrated that this method does not rely
on some rare qualification conditions. As long as the model
has the universal structure of epoch, batch, and literation, this
method can be used and has universal applicability.

However, the LCT method also has some limitations.
Firstly, the LCT method relies heavily on the calculation
result of the loss function as the measurement standard for
the core operation, so the limitations of the loss function
become the limitations of the LCT method. Secondly, when
the LCT method obtained the relatively highest quality mini
dataset, although the quality of the training data in each
epoch was improved, part of the sample characteristics were
also reduced. Finally, the LCT method belongs to the data

Optimize the Performance of the Neural Network by Using a Mini Dataset Processing Method 1227

processing method inside the training process. The more
original dataset samples there are, the longer the additional
data processing time inside the training will be, and the more
the total time cost will increase.

In future work, we will actively map out an optimal MINI
dataset based on literation and combine it with the hybridised
loss function to obtain more accurate loss and achieve better
results.

Acknowledgements

This work is supported by the Key Project of Hubei
Education Department under Grant No. D20191406 &
D20201402; the Teaching Research Project of Hubei
Education Department under Grant No. 2021295 & 2022286;
the Science Start-up Foundation for High-level Talents of
HBUT under Grant No. 430100391 & 337396; the Research
and Demonstration of Digital Technology for Urban Renewal
and Future Community Development sponsored by China
Railway Construction Corporation Limited.

References

[1] O. S. Bayomie, R. Cerqueira, L. Neuendorf, I.
Kornijez, S. Kieling, T. H. Sandermann, K. Lammers,
N. Kockmann, Detecting flooding state in extraction
columns: Convolutional neural networks vs. a white-
box approach for image-based soft sensor development,
Computers & Chemical Engineering: An International
Journal of Computer Applications in Chemical
Engineering, Vol. 164, Article No. 107904, August,
2022.

[2] S. Aggarwal, S. Sehgal, Text Independent Data-level
Fusion Network for Multimodal Sentiment Analysis,
International Journal of Performability Engineering,
Vol. 18, No. 9, pp. 605-612, September, 2022.

[3] R. Socher, C. Y. Lin, A. Y. Ng, C. D. Manning, Parsing
Natural Scenes and Natural Language with Recursive
Neural Networks, Proceedings of the 28th International
Conference on Machine Learning , ICML-2011
Bellevue, Washington, USA, 2011, pp. 129-136.

[4] S. Alagarsamy, V. James, RNN LSTM-based Deep
Hybrid Learning Model for Text Classification using
Machine Learning Variant XGBoost. International
Journal of Performability Engineering, Vol. 18, No. 8,
pp. 545-551, August, 2022.

[5] Q. V. Le, N. Jaitly, G. E. Hinton, A Simple Way to
Initialize Recurrent Networks of Rectified Linear Units,
Computer Science, arXiv preprint arXiv:1504.00941
April, 2015, https://arxiv.org/abs/1504.00941.

[6] A. Takekawa, M. Kajiura, H. Fukuda, Role of Layers
and Neurons in Deep Learning With the Rectified
Linear Unit, Cureus, Article No. e18866, Vol. 13, No.
10, October, 2021

[7] J. C. Duchi, E. Hazan, Y. Singer, Adaptive Subgradient
Methods for Onl ine Learning and Stochas t ic
Optimization, Journal of Machine Learning Research,
Vol. 12, pp. 2121-2159, July, 2011

[8] Y.-X. Duan, Z.-Y. Sun, B.-L. Su, Optimisation control

via the distributed model predictive method for
nonlinear time-delay systems, International Journal of
Systems Science, Vol. 51, No. 16, pp. 3339–3346, 2020.

[9] R. Feng, Y. Liu, Y. Hou, H. Li, Z. Fang, Mixed element
algorithm based on a second-order time approximation
scheme for a two-dimensional nonlinear time fractional
coupled sub-diffusion model, Engineering with
Computers, Vol. 38, pp. 51-68, February, 2022.

[10] S. Herawati, Y. D. P. Negara, M. Latif, Complete
ensemble empirical mode decomposition with adaptive
noise integrating feedforward neural network for tourist
arrival forecasting, Journal of Physics: Conference
Series, IOP Publishing, Vol. 2193, No. 1, Article No.
012049, 2022.

[11] J. Liu, Y. Liu, Q. Zhang, A weight initialization method
based on neural network with asymmetric activation
function, Neurocomputing, Vol. 483, pp. 171-182, April,
2022.

[12] Z. S. Khozani, F. B. Banadkooki, M. Ehteram, A.
N. Ahmed, A. El-Shafie, Combining autoregressive
integrated moving average with long short-term
memory neural network and optimisation algorithms
for predicting ground water level, Journal of Cleaner
Production, Vol. 348, Article No. 131224, May, 2022.

[13] Z. Wang, S.-K. Oh, W. Pedrycz, E.-H. Kim, Z. Fu,
Design of stabilized fuzzy relation-based neural
networks driven to ensemble neurons/layers and multi-
optimization, Neurocomputing, Vol. 486, pp. 27-46,
May, 2022.

[14] F. A. Freitas, R. M. Jafelice, J. W. da Silva, D. de S.
Rabelo, Q. S. S. Nomelini, J. dos R. V. de Moura, C.
A. Gallo, M. J. da Cunha, J. E. Ramos, A new data
normalization approach applied to the electromechanical
impedance method using adaptive neuro-fuzzy inference
system, Journal of the Brazilian Society of Mechanical
Sciences and Engineering, Vol. 43, No. 11, pp. 1-13,
November, 2021.

[15] J. L. Chen, Metrological Software Test for Simulating
the Method of Determining the Thermocouple Error in
Situ During Operation, Measurement Science Review,
Vol. 18, No. 2, pp.52-58, 2018

[16] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-
r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P.
Nguyen, T. N. Sainath, B. Kingsbury, Deep Neural
Networks for Acoustic Modeling in Speech Recognition,
The Shared Views of Four Research Groups, IEEE
Signal Processing Magazine, Vol. 29, No. 6, pp. 82-97,
November, 2012.

[17] F. Xie, J. Wang, R. Xiong, N. Zhang, Y. Ma, K. He,
An Integrated Service Recommendation Approach for
Service-based System Development, Expert Systems
with Applications, Vol. 123, pp. 178-194, June, 2019.

[18] T. Horvath, A. Tomasov, P. Munster, P. Dejdar, V.
Oujezsky, Unsupervised Anomaly Detection Using
Bidirectional GRU Autoencoder Neural Network for
PLOAM Message Sequence Analysis in GPON, 2022
International Conference on Electrical, Computer,
Communications and Mechatronics Engineering
(ICECCME), Maldives, Maldives, 2022, pp. 1-5.

[19] J . L . C h e n , N . O . H e m b a r a , M . H v o z d y u k ,

1228 Journal of Internet Technology Vol. 24 No. 6, November 2023

Nonstationary Temperature Problem for a Cylindrical
Shell with Multilayer Thin Coatings, Materials Science,
Vol. 54, No. 3, pp. 339-348, November, 2018.

[20] D. Xu, S. Zhang, H. Zhang, D. P. Mandic, Convergence
of the RMSprop deep learning method with penalty for
nonconvex optimization, Neural Networks, Vol. 139,
pp. 17-23, July, 2021.

[21] N. S. Keskar, R. Socher, Improving Generalization
Performance by Switching from Adam to SGD,
December, 2017, https://arxiv.org/abs/1712.07628.

[22] J. Luo, H. Qiao, B. Zhang, Learning with smooth
hinge losses, Neurocomputing, Vol. 463, pp. 379-387,
November, 2021.

[23] L. Li, T. Zheng, W. Yin, Q. Wu, Novel pythagorean
fuzzy entropy and pythagorean fuzzy cross-entropy
measures and their applications, Journal of Intelligent
& Fuzzy Systems, Vol. 41, No. 6, pp. 6527-6546,
December, 2021.

Biographies

Jingliang Chen received his Ph.D. degree
in Computer Software and theory from
Wuhan University in 2016. He is an
associate professor in School of Computer
Science, Hubei University of Technology.
His research interests include software
engineering, intelligent computing, and
software methodology.

Chenchen Wu was born in Jiangsu, China.
His major interests are in the areas of deep
learning and training optimization for
neural networks.

Shuisheng Chen i s a p rofessor in
mechanics institute, Hubei University
of Technology. His research interests
include mechanical manufacturing and
automation, mechanical and electronic
engineering, industrial robot technology
and applications.

Yi Zhu received the PhD degree in
computer sof tware f rom School of
Computer Science, Huazhong University of
Science and Technology. She is a lecturer
in computer network technology, Hubei
Communications Technical College. Her
research focuses on database security and
cloud computing.

Bin Li is currently working as a senior
engineer at China Railway Fifth Survey
and Design Institute. His research interests
include Building Information Modeling,
Large Language Model of engineering,
and underwater structural defect image
recognition.

